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TANGENTIAL EXTREMAL PRINCIPLES FOR FINITE AND INFINITE 
SYSTEMS OF SETS, 1: BASIC THEORY* 

BORIS S. MORDUKHOVICHt and HUNG M. PHAN+ 

Abstract. In this paper we develop new extremal principles in variational analysis that deal with 
finite and infinite systems of convex and nonconvex sets. The results obtained, unified under the name 
of tangential extremal principles, combine primal and dual approaches to the study of variational systems 
being in fact first extremal principles applied to infinite systems of sets. The first part of the paper concerns 
the basic theory of tangential extremal principles while the second part presents applications to problems 
of semi-infinite programming and multiobjective optimization. 
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1 Introduction 

It has been well recognized that the convex separation principle plays a crucial role in many as

pects of nonlinear analysis, optimization, and their applications. In particular, a conventional way 
to derive necessary optimality conditions in constrained optimization problems is to construct first 
an appropriate tangential convex approximations of the problem data around an optimal solution 
in primal spaces and then to apply a convex separation theorem to get supporting elements in dual 
spaces (Lagrange multipliers, adjoint arcs, shadow prices, etc.). For problems of nonsmooth opti
mization, this approach inevitably leads to the usage of convex sets of normals and subgradients 
whose calculi are also based on convex separation theorems and/or their equivalents. 

Despite the well-developed technique of convex analysis, the convex separation approach has 
a. number of serious limitations, especially concerning applications to problems of nonsmooth 
optimization and related topics; see, e.g., commentaries and discussions on pp. 132-140 of [5] 
and also on pp. 131-133 of [6] . .To overcome some of these limitations, a dual-space approach 
revolving around extremal principles has been developed and largely applied in the frameworks 
of variational analysis, generalized differentiation, and optimization-related areas; see the two

volume monograph [5, 6] with their references. The extremal principles developed therein can 
be viewed as variational counterparts of convex separation theorems in nonconvex settings while 
providing normal cone descriptions of extremal points of finitely many closed sets in terms of the 
corresponding generalized Euler equation. 

Note that the known extremal principles do not involve any tangential approximations of 
sets in primal spaces and do not employ convex separation. This dual-space approach exhibits a 

number of significant advantages in comparison with convex separation techniques and opens new 
perspectives in variational analysis, generalized differentiation, and their numerous applications. 
On the other hand, we are not familiar with any versions of extremal principles in the scope of 
[5, 6] for infinite systems of sets; it is not even clear how to formulate them appropriately in the 
lines of the developed methodology. Among primary motivations for considering infinite systems 
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of sets we mention problems of semi-infinite programming, especially those concerning the most 
difficult case of countably many constraints vs. conventional ones with compact indexes; cf. [2]. 

The main purpose of this paper is to propose and justify extremal principles of a new type, 
which can be applied to infinite set systems while also provide independent results for finitely 
many nonconvex sets. To achieve this goal, we develop a novel approach that incorporates and 

unifies some ideas from both tangential approximations of sets in primal spaces and nonconvex 
normal cone approximations in dual spaces. The essence of this approach is as follows. Em
ploying a variational technique, we first derive a new conic extremal principle, which concerns 
countable systems of general nonconvex cones in finite dimensions and describes their extremality 
at the origin via an appropriate countable version of the generalized Euler equation formulated in 
terms of the nonconvex limiting normal cone by Mordukhovich [4]. Then we introduce a notion 
of tangential extremal points for infinite (in particular, finite) systems of closed sets involving 
their tangential approximations. The corresponding tangential extremal principles are induced 
in this way by applying the conic extremal principle to the collection of selected tangential ap
proximations. The major attention is paid in this paper to the case of tangential approxima
tions generated by the (nonconvex) Bouligand-Severi contingent cone, which exhibits remarkable 
properties that are most appropriate for implementing the proposed scheme and subsequent ap
plications. The contingent cone is replaced by its weak counterpart when the space in question 
is infinite-dimensional. Selected applications of the developed theory to problems of semi-infinite 
programming and multiobjective optimization are given in the second part of this study [7] 

For the reader's convenience we briefly overview in Section 2 some basic constructions of 
t,angent and normal cones in variational analysis widely used in what follows. Sectim~ 3 contains 
definitions of tangential extremal points of finite and infinite set systems as well as descriptions of 
the extremality conditions for them, which are at the heart of the tangential extremal principles 

established below. In this section we also compare the new notions of tangential extremality with 
the conventional notion of extremality previously known for finite systems of sets. 

Section 4 is devoted to deriving the conic extremal principle for countable systems of arbitrary 
closed cones in finite-dimensional spaces. In Section 5 we apply this basic result to establishing 
several useful representations of Frechet normals to countable intersections of cones at the origin. 

Section 6 concerns the study of the weak contingent cone in infinite-dimensional spaces, which 
reduces to the classical Bouligand-Severi contingent cone in finite dimensions. We show that 
the weak contingent cone provides a remarkable tangential approximation for an arbitrary closed 
subset enjoying, in particular, the new tangential normal enclosedness and approximate normality 
properties in any reflexive Banach spaces. These properties are employed In Section 7 to derive 
contingent and weak contingent extremal principles for countable and finite systems of closed sets 

in finite and infinite dimensions. We also establish appropriate versions of the aforementioned 
results in a broader class of Asplund spaces. 

Throughout the paper we use standard notation of variational analysis; see, e.g., [5, 8]. Unless 

otherwise stated, the space X in quest~on is Banach with the norm II · II and the canonical 
pairing (-, ·) between X and its topological dual X* with lB C X and JB* c X* standing for the 

corresponding closed unit balls. The symbols ~ and ~ indicate the weak convergence in X and 
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the weak* convergence in X*, respectively. Given 0 =f. D C X, denote by 

coneD := U .Xh = U { .Xv I v E D} 
.>-~0 .>-~0 

the conic hull of D and by 

coD := { I: AiUi I I finite , Ai ;:::: 0, I: Ai = 1, ui E D} 
iEI iEI 

the convex hull of this set. The notation x ~ x means that x -* x with x E D. Finally, 

IN := {1, 2, ... } signifies the collection of all natural numbers. 

2 Tangents and Normal to N onconvex Sets 

In this section we recall some basic notions of tangent and normal cones to nonempty sets closed 
around the reference points; see the books [1, 5, 8, 9] for more details and related material. 

Given DC X and xED, the closed (while often nonconvex) cone 

T(x; D) := { v E XI :3 sequences tk l 0, Vk-* v with x + tkvk ED, Vk E IN} (2.1) 

is the Bouligand-Severi tangent/contingent cone to D at x. We also use its weak counterpart 

Tw(x; D) := { v E XI :3 sequences tk l 0, Vk ~ v with x + tkVk ED, Vk E IN} (2.2) 

known as the weak contingent cone to D at this point. For any£;:::: 0, the collection 

0(- n) { * *ll' (x*,x-x) } 
1vc:X;H := x EX 1m;~P [[x-x[[ ::::;c: 

X->X 

(2.3) 

is called the set of c:-normals to D at x. In the case of£= 0 the set N(x; D) := N0 (x; D) is a cone 
known as the Prechetjregular normal cone (or the prenormal cone) to D at this point. Note that 

the Frechet normal cone is always convex while it may be trivial (i.e., reduced to {0}) at boundary 

points of simple nonconvex sets in finite dimensions as forD= {(x1,x2 ) E ~2 [ x2 ;:::: -[x1[} at 
x = (0, 0). If the space X is reflexive, then 

N(x;D) = T~(x;D) := {x* E X*l (x*,v)::::; 0, Vv E Tw(x;D)}. (2.4) 

The collection of sequential limiting normals 

N(x;D) := {x* E X*l -, l 0 n - * w* * :::1 sequences Ek , Xk ___. x, xk -* x 

such that xt, E Nc:k(xk;D), Vk E IN} 

ask_.oo 
(2.5) 

is known as the Mordukhovichjbasic/limiting normal cone to D at x. If the space X is Asplund, 

i.e., each of its separable subspaces has a separable dual (this is automatic, in particular, for any 

reflexive Banach space), then we can equivalently put C:k = 0 in (2.5); see [5] for more details. 

Observe also that for X= ~n the normal cone (2.5) can be equivalently described in the form 

N(x;D) = {x* E ~n~ :3 sequences Xk-* x, Wk E II(xk;D), ak;:::: 0 

such that ak(Xk - wk) ___. x* as k ___. oo} 
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via the Euclidean projector II(x; 0) := { w E Dlllx- wll = dist(x; D)} of x E lRn onto D. 
It is worth mentioning that the limiting normal cone (2.5) is often nonconvex as, e.g., for 

the set n c JR2 considered above, where N(O; n) = {(ul, U2) E JR2
1 U2 = -lull}. It does not 

happen when n is normally regular at x in the sense that N(x;D) = N(x;D). The latter class 
includes convex sets when both cones (2.3) as r:: = 0 and (2.5) reduce to the classical normal 

cone of convex analysis and also some other collections of "nice" sets of a certain locally convex 

type. At the same time it excludes a number of important settings that frequently appear in 

applications; see, e.g., the books [5, 6, 8] for precise results and discussions. Being nonconvex, the 
normal cone N(x; D) in (2.5) cannot be tangentially generated by duality of type (2.4), since the 

duality/polarity operation automatically_implies convexity. Nevertheless, in contrast to Fn§chet 

normals, this limiting normal cone enjoys full calculus in general Asplund spaces, which is mainly 

based cin extremal principles of variational analysis and related variational techniques; see [5] for 

a comprehensive calculus account and further references. 

The next simple observation is useful in what follows. 

Proposition 2.1 (generalized normals to cones). Let A c X be a cone, and let w E A. 

Then we have the inclusion 

N(w; A) c N(O; A). 

Proof. Pick any x* E N(w; A) and get by definition (2.3) of the Frechet normal cone that 

l
. (x*,x-w) 
lmAsup llx- wll :::; 0. 

X-tW 

Fix x E A, t > 0 and let u := xjt. Then (x/t) E A, tw E A, and 

. (x*,x-tw) . t(x*,(xjt)-w) . (x*,u-w) 
bmsup II II = bmsup II( I) II = bmsup II II :::; o, A X - tw A t X t - W A U - W 

X-+tw X----+W ' U---+W 

which gives x* E N(tw; A) by (2.3). Letting finally t--) 0, we get x* E N(O; A) and thus complete 
the proof of the proposition. 0 

3 Tangential Extremal Systems and Extremality Conditions 

In this section we introduce the notions of conic and tangential extremal systems for finite and 
countable collections of sets and discuss extremality conditions, which are at the heart of the conic 

and tangential extremal principles justified in the subsequent sections. These new extremality 

concepts are compared with conventional notions of local extremality for set systems. 

We start with the new definitions of extremal points and extremal systems of a countable or 
finite number of cones and general sets in normed spaces. 

Definition 3.1 (conic and tangential extremal systems). Let X be an arbitrary normed 

space. Then we say that: 

(a) A countable system of cones {Ai}iEhV C X with 0 E n~1 Ai is EXTREMAL AT THE ORIGIN, 

or simply is an EXTREMAL SYSTEM OF CONES, if there is a bounded sequence { ai}iEhV C X with 

00 n (Ai- ai) = 0. (3.1) 
i=l 
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(b) Let {ni}iEJN c X be an countable system of sets with x E n~1 ni, and let A:= {Ai(x)}iEJN 
with 0 E n~0Ai(x) c X be an approximating system of cones. Then xis a A-TANGENTIAL LOCAL 

EXTREMAL POINT of {Sli}iEJN if the system of cones {Ai(x)}iEIN is extremal at the origin. In this 

case the collection {Sli, x}iEJN is called a A-TANGENTIAL EXTREMAL SYSTEM. 

(c) Suppose that Ai(x) = T(x; ni) are the contingent cones toni at x in (b). Then {Di, x}iEJN 
is called a CONTINGENT EXTREMAL SYSTEM with the CONTINGENT LOCAL EXTREMAL POINT X. 

We use the terminology of WEAK CONTINGENT EXTREMAL SYSTEM and WEAK CONTINGENT 

LOCAL EXTREMAL POINT if Ai(x) = Tw(x; Sli) are the weak contingent cones to Sli at X. 

Note that all the notions in Definition 3.1 obviously apply to the case of systems containing 

finitely many sets; indeed, in such a case the other sets reduce to the whole space X. Observe 

also that both parts in part (c) of this definition are equivalent in finite dimensions. Furthermore, 

they both reduce to (a) in the general case if all the sets ni are cones and x = 0. 

Let us now compare the new notions of Definition 3.1 with the conventional notion of locally 

extremal points for finitely many sets first formulated in [3]. Recall [5, Definition 2.1] that a point 

x E n~1 ni is locally extremal for the system {S11, ... , Dm} if there are sequences { aik} C X with 
aik --t 0 as k --t oo fori = 1, ... , m and a neighborhood U of x such that 

m n (ni- aik) n U = 0 for all large k E IN. (3.2) 
i=l 

We first observe that for finite systems of cones the local extremality of the origin in the sense 

of (3.2) is equivalent to the validity of condition (3.1) of Definition 3.1. 

Proposition 3.2 (equivalent description of cone extremality). The finite system of cones 

{A1, ... , Am} is extremal at the origin in the sense of Definition 3.1(a) if and only if x = 0 is a 

local extremal point of { A1, ... , Am} in t~e sense of (3.2). 

Proof. The "only if' part is obvious. To justify the "if' part, assume that there are elements 

a1, ... , am EX such that 
m n (Ai- ai) = 0. (3.3) 

i=l 

Now for any TJ > 0 we have by (3.3) and the conic structure of Ai that 

m m m 

i=l i=l i=l 

. Letting TJ l 0 implies that the extremality condition (3.2) holds, i.e., the origin is a local extremal 
point of the cone system {A 1, ... , Am}. 0 

Next we show that the local extremality (3.2) and the contingent extremality from Defini

tion 3.1(c) are independent notions even in the case of two sets in JR2. 

Example 3.3 (contingent extremality versus local extremality). 
(i) Consider two closed subsets in JR2 defined by 

i11 := epicp with cp(x) := xsin(ljx) as x =/= 0, cp(O) = 0 and S12 := (JR X lR_) \inti11. 
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Take the point x = (0, 0) E !11 n !12 and observe that the contingent cones to !11 and !12 at x are 

computed, respectively, by 

T(x; nl) = epi (-I . I) and T(x; n2) =~X ~-· 

It is easy to see that xis a local extremal point of {01, fh} but not a contingent local extremal 

point of this set system. 
(ii) Define two closed subsets of ~2 by 

The contingent cones to !11 and !12 at x = (0, 0) are computed by 

T(x;D1 )=~x~+ and T(x;D2)=~xi!L. 

Vle can see that {D1,D2,x} is a contingent extremal system but not an extremal system of sets. 

Our further intention is to derive verifiable extremality conditions for tangentially extremal 

points of set systems in certain countable forms of the generalized Euler equation expressed via 

the limiting normal cone (2.5) at the points in question. Let us first formulate and discuss the 
desired conditions, which reflect the essence of the tangential extremal principles of this paper. 

Definition 3.4 (extremality conditions for countable systems). We say that: 

(a) The system of cones {Ai}iEJN in X satisfies the CONIC EXTREMALITY CONDITIONS at the 

origin if there are normals xi E N(O; Ai) Jar i = 1, 2, ... such that 

00 1 
"' ---,-x'!' = 0 and L...... 2' ' 
i=l 

f ~i llxill 2 
= 1. (3.4) 

i=l 

(b) Let {Di}iEElN with x E n~1 ni and A := { Ai}iE.IN with 0 E n~1 Ai be, respectively, 

systems of arbitrary sets and approximating cones in X. Then the system { Di}iEJN satisfies the 

A-TANGENTIAL EXTREMALITY CONDITIONS at X if the systems of cones { Ai}iE.IN satisfies the conic 

extremality conditions at the origin. We specify the CONTINGENT EXTREMALITY CONDITIONS and 

the WEAK CONTINGENT EXTREMAIIITY CONDITIONS for {Di}iEJN at X if A= {T(x; fli)}iE.IN and 

A= {Tw(x; Di)}iEJN, respectively. 

(c) The system of sets {Di}iEJN in X satisfies the LIMITING EXTREMALITY CONDITIONS at 

x E n~1 Di if there are limiting normals xi E N(x;Di), i = 1,2, ... , satisfying (3.4). 

Let us briefly discuss the introduced extremality conditions. 

Remark 3.5 (discussions on extremality conditions). 
(i) All the conditions of Definition 3.4 can be obviously specified to the case of finite systems 

of sets by considering all the other sets as the whole space therein. Then the series in (3.4) become 
finite sums and the coefficients 2-i can be dropped by rescaling. 

(ii) It easily follows from the constructions involved that the contingent, weak contingent, and 

limiting extremality conditions are are equivalent to each other if all the sets ni are either cones 

with x = 0 or convex near x. 
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(iii) As we show below, the weak contingent extremality conditions imply the limiting ex
tremality conditions in any reflexive space X and also in Asplund spaces under a certain additional 
assumption, which is automatic under reflexivity. Thus the contingent extremality conditions im
ply the limiting cines in finite dimensions. The opposite implication does not hold even for two 
sets in JR2 . To illustrate it, consider the two sets from Example 3.3(i) for which x = (0, 0) is a 
local extremal point in the usual sense, and hence the limiting extremality conditions hold due 
to [5, Theorem 2.8]. However, it is easy to see that the contingent extremality COJ1ditions are 
violated for this system. 

Observe that for the case of finitely many sets { D1, ... , Dm} the limiting extremality conditions 
·of Definition 3.4(c) correspond to the generalized Euler equation in the exact extremal principle 

of [5, Definition 2:5(iii)] applied to local extremal points of sets. A natural version of the "fuzzy" 
Euler equation in the approximate extremal principle of [5, Definition 2.5(ii)] for the case of a 
countable set system {Di}iEJN at x E n~fni can be formulated as follows: for any c > 0 there are 

Xi E ni n (x + ciB) and xi E N(xi; ni) + ~iclB*, i E IN, . (3.5) 

such that the relationships in (3.4) is satisfied. It turns out that such a countable version of the 
approximate extremal principle always holds trivially, at least in Asplund spaces, for any system 
of closed sets {Di}iEJN at every boundary point x of infinitely many sets ni. 

Proposition 3.6 (triviality of the approximate extremality conditions for countable 
set systems). Let {Di}iEW be a countable system of sets closed around some point x E n~1Di, 
and let c > 0. Assume that for infinitely many i E IN there exist Xi E ni n (x +dB) such that 

N(xi; ni) =1- {0}; this is the case when X is Asplund and x belongs to the boundary of infinitely 

many sets ni. Then we always have {xi}iE.U\T satisfying conditions (3.4) and (3.5). 

Proof. Observe first that the fulfillment of the assumption made in the proposition for the case 
of Asplund spaces follows from the density of Frechet normals on boundaries of closed sets in such 
spaces; see, e.g., [5, Corollary 2.21]. To proceed further, fix c > 0 and find j E IN so large that 

hJ 1 ~ 
2
j_1 :S 2c and N(xj; Dj) =1- {0} with Xj E Dj n (x +dB). 

This allows us to get 0 =1- xj E N(xj;Dj) such that llxjll = hJ and then choose 

Thus we have the sequence {xi}iEW satisfying (3.5) and the relationships 

00 

~ 1 * 1 ( 1 *) 1 * L_- 2i xi = 2 - 2j_1 xj + 0 + ... + 2j xj + ... = 0, 
i=1 

f ~i llxill 2 > 1, 
i=1 

which give (3.4) and complete the proof of the proposition. 0 
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4 Conic Extremal Principle for Countable Systems of Sets 

This section add1:esses the conic extremal principle for countable systems of cones in finite

dimensional spaces. This is the first extremal principle for infinite systems of sets, which ensures 
the fulfillment of the conic extremality conditions of Definition 3.4(a) for a conic extremal system 

at the origin under a natural nonoverlapping assumption. We present a number of examples 

illustrating the results obtained and the assumptions made. 
To derive the main result of this section, we extend the method of metric appmximations 

initiated in [4] to the case of countable systems of cones; cf. an essentially different realization of 
this method in the proof of the extremal principle for local extremal points of finitely many sets 

in ffi.n given in [5,.Theorem 2.8]. First observe an elementary fact needed in what follows. 

Lemma 4.1 (series differentiability). Let II · II be the usual Euclidian norm in ffi.n, and let 

{ zi}iEJN C ffi.n be a bounded sequence. Tnen a function <p: ffi.n _... ffi. defined by 

00 
1 2 

<p(x) := L 
2
Jx- zill , x E ffi.n, 

i=l 

is continuously differentiable on ffi.n with the derivative 

00 1 
\l<p(x) = L 

2
i-l (x- zi), x E ffi.n. 

i=l 

Proof. It is easy to see that both series above converge for every x E ffi.n. Taking further any 

u, ~ E ffi.n with the norm 11~11 sufficiently small, we have 

Thus it follows for any x E ffi.n and y close to x that 

<p(y)- <p(~)- (V<p(x),y- x) = f ;i [IIY- zill 2 -llx- zill 2
- 2(x- zi,Y- x)] 

i=l 
-oo 1 

= L 2i IIY- xll 2 = o(IIY- xll), 
i=l 

which justifies that V<p(x) is the derivative of <pat x, which is obviously continuous on ffi.n. 0 

Here is the extremal principle for a countable systems of cones, which plays a crucial role in 
the subsequent applications of this paper and its continuation [7]. 

Theorem 4.2 (conic extremal principle in finite dimensions). Let {AihEIN be an extremal 

system of closed cones in X = ffi.n satisfying the NONOVERLAPPING CONDITION 

00 n Ai = {0}. ( 4.1) 
i=l 

Then the conic extremal principle holds, i.e., there are xi E N(O; Ai) fori= 1, 2, ... such that 

00 1 L 
2
ixi = 0 and 

i=l 

Moreover, one can find Wi E Ai for which xi E N(wi; Ai), i = 1, 2, .... 
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Proof. Pick a bounded sequence {ai}iElN C lRn from Definition 3.1(a) satisfying 

n (Ai- ai) = 0 
i=l 

and consider the unconstrained optimization problem: 

[

00 

1 ]! minimize<p(x):= t;
2
idist 2(x+ai;Ai) , xElRn. (4.2) 

. Let us prove that problem ( 4.2) has an optimal solution. Since the function <pin. ( 4.2) is continuous 

on lRn due the continuity of the distance function and the uniform convergence of the series therein, 

it suffices to show that there is a > 0 for which the nonempty level set {x E JRnl <p(x) :::; infx <p+a} 
is bounded and then to apply the classical Weierstrass theorem. Suppose by the contrary that 

the level sets are unbounded whenever a > 0, for any k E IN find Xk E lRn satisfying 

. 1 
llxkll > k _and <p(xk) :::; 1~f <p + k' 

Setting uk := Xk/llxkll with llukll = 1 and taking into account that all Ai are cones, we get 

Furthermore, there is M > 0 such that for large k E IN we have 

Without relabeling, assume uk -) u as k -) oo with some u E lRn. Passing now to the limit as 

k -) oo in (4.3) and employing the uniform convergence of the series therein and the fact that 

adllxkll -) 0 uniformly in i E IN due the boundedness of {ai}iEJN, we have 

This implies by the closedness of the cones Ai and the nonoverlapping condition (4.1) of the 

theorem that u E n:,1 Ai = {0}. The latter is impossible due to llull = 1, which contradicts 
our intermediate assumption on the unboundedness of the level sets for <p and thus justifies the 
existence of an optimal solution x to problem (4.2). 

Since the system of closed cones {Ai}iEJN is extremal at the origin, it follows from the con

struction of <p in.( 4.2) that <p(x) > 0. Taking into account the nonemptiness of the projection 

II(x; A) of x E lRn onto an arbitrary closed set A C lRn, pick any Wi E II(x + ai; Ai) as i E IN and 

observe from Proposition 2.1 above and the proof of [5, Theorem 1.6] that 

(4.4) 

Furthermore, the sequence { ai - wi}iElN is bounded in lRn due to 
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Next we consider another unconstrained optimization problem: 

[

00 1 ]! 
minimize '1/J(x) := ,?: 

2
i llx + ai- will 2 

, 

t=l 

(4.5) 

It follows from 'lj;(x) ~ cp(x) ~ cp(x) = '1/J(x) for all x E ~n that problem (4.5) has the same optimal 
solution x as (4.2). The main difference between these two problems is that the cost function 'lj; 
in (4.5) is smooth around x by Lemma 4.1, the smoothness of the function Vt around nonzero 
points, and the fact that '1/J(x) =f. 0 due to the cone extremality. Applying now the classical Fermat 
rule to the smooth unconstrained minimization problem (4.5) and using the derivative calculation 
in Lemma 4.1, we arrive at the relationships 

V''lj;(x) = f ~ixi = 0 with xi := '1/Jtx) ( x + ai- wi), i E IN. 
t=l 

( 4.6) 

The latter implies by (4.4) that xi E N(wi; Ai) C N(O; Ai) for all i E IN. Furthermore, it follows 
from the constructions of xi in (4.6) and of 'ljJ in (4.5) that 

f ~Jxill 2 
= 1, 

i=l 

which thus completes the proof of the theorem. D 

In the remaining part of this section, we present three examples showing that all the assump
tions made in Theorem 4.2 (nonoverlapping, finite dimension, and conic structure) are essential 
for the validity of this result. 

Example 4.3 (nonoverlapping condition is essential). Let us show that the conic extremal 
principle may fail for. countable systems of convex cones in ~2 if the nonoverlapping condition 
( 4.1) is violated. Define the convex cones Ai C ~2 as i E IN by 

A1:=~X~+ and Ai:={(x,y)E~2 Iy::;~} for i=2,3, .... 
~ 

Observe that for any v > 0 we have 
00 

( A1 + (O,v)) n Ak = 0, 
k=2 

which means that the cone system { Ai}i~JN is ~xtremal at the origin. On the other hand, 
00 n Ai = ~+ x { 0}, 

i=l 

i.e., the nonoverlap ping condition ( 4.1) is violated. Furthermore, we can easily compute the 
corresponding normal cones by 

N(O;A1) = {A(O, -1)1 A~ 0} and N(O;Ai) = {>.(-1,i)l A~ 0}, i = 2,3, .... 

Taking now any xi E N(O; Ai) as i E IN, -observe the equivalence 

[f:~ixi=0]<=>[~1 (0,-1)+f~:(-1,i)=0 with Ai~O as iEINJ. 
i=l i=2 . 

The latter implies that Ai = 0 and hence x; = 0 for all i E IN. Thus the nontriviality condition 
in (3.4) is not satisfied, which shows that the conic extremal principle fails for this system. 
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Example 4.4 (conic structure is essential). If all the sets Di for i E IN are convex but some 
of them are not cones, then the equivalent extremality conditions of Definition 3.4(b,c) are natural 
extensions of the conic extremality conditions in Theorem 4.2. We show nevertheless that the 
corresponding extension of the conic extremal principle under the nonoverlapping requirement 

00 n ni = {0} (4.7) 
i=l 

fails without imposing a conic structure on all the sets involved. Indeed, consider a countable 
system of closed a,nd convex sets in JR2 defined by 

We can see that only the set D1 is not a cone and that the nonoverlapping requirement (4.7) 
is satisfied. Furthermore, the system {Di}iE.IN is extremal at the origin in the sense that (3.1) 
holds. However, the arguments similar to Example 4.3 show that the extremality conditions (3.4) 
with xi E N(O; Di) as i E IN fail to fulfill. Note that, as shown in Section 7, both contingent and 
limiting extremal principles hold for countable systems of general nonconvex sets if nonoverlapping 
condition ( 4. 7) is replaced by another one reflecting the contingent extremality. 

Example 4.5 (failure of the conic extremal principle in infinite dimensions). The last 
example demonstrates that the conic extremal principle of Theorem 4.2 with the nonoverlapping 
condition ( 4.1) may fail for countable systems of convex cones (in fact, half-spaces) in an arbitrary 
infinite-dimensional Hilbert space. To proceed, consider a Hilbert space X with the orthonormal 
basis { ei I i E IN} and define a countable system of closed half-spaces by 

It is easy to compute the corresponding J!.Ormal cones to the above sets: 

Now let us check that the nonoverlapping condition ( 4.1) is satisfied. Indeed, picking any point 

00 00 

X= l::aiei E nAi, 
i=l i=l 

we have a1 = (x, e1) ~ 0 and ai = (:1(, ei)-~ (x, ei-1) =Gi-l fori= 2, 3, .... This clearly leads to 
ai = 0 for all i E IN, which yields x = 0 and thus justifies (4.1). The same arguments show that 

00 

(A1 - e1) n n Ai = 0, 
i=2 

i.e., {Ai}iE.IN is a conic extremal system. However, the conic extremality conditions of Defini
tion 3.4(a) fail for this system. To check this, suppose that there exist xi E N(O; Ai) as i E IN 

satisfying the relationships 
00 00 

l::xi = 0 and L llxill > 0. (4.8) 
i=l i=l 
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By the above structure of N(O;Ai) we have xi= .A1e1 and xi= Ai(ei- ei-1) as i = 2,3, ... for 
some .Ai 2: 0 as i E IN. Thus the first condition in ( 4.8) reduces to 

00 

.A1e1 + L:::.Xi(ei- ei-1) = 0. 
i=2 

The latter is possible if either (a): Ai = 1 for all i E IN or (b): Ai = 0 for all i E IN. Case (a) 
surely contradicts the convergence ofthe-series·in the second condition of (4.8) while in case (b) 
the latter series converges to zero. Hence the conic extremal principle of Theorem 4.2 does not 
hold in this infinite-dimensional setting. 

5 Frechet Normals to Countable Intersections of Cones 

In this section we present applications of the conic extremal principle established in Theorem 4.2 
to deriving several representations, uncle~ appropriate assumptions, of Frechet normals to count

able intersections of cones in finite-dimensional spaces. These calculus results are certainly of 
their independent interest while their are largely employed in [7] to problems of semi-infinite 
programming and muitiobjective optimization. 

To begin with, we introduce the following qualification condition for countable systems of 
cones formulated in terms of limiting normals (2.5), which plays a significant role in deriving the 
results of this section as well as in the subsequent applications given in [7]. 

Definition 5.1 (normal qualification_ condition for countable systems of cones). Let 

{ Ai}iEJN be a countable system of closed cones in X. We say that it satisfies the NORMAL QUAL

IFICATION CONDITION at the origin if 

00 

[L:>i = 0, xi E N(O;Ai)] ==?[xi= 0, i E IN). 
i=l 

(5.1) 

This definition corresponds to the normal qualification condition of [5] for finite systems of 
sets; seethe discussions and various applications of the latter condition therein. We refer the 
reader to [7] for a nonconic version of (5.1), its relationships with other qualification conditions for 
countable systems of sets, and sufficient conditions for its validity that equally apply to both conic 
and nonconic versions. In this section we use the normal qualification condition of Definition 5.1 
to represent Frechet normals to countable intersections of cones in terms of limiting normals to 
each of the sets involved. Let us start with the following "fuzzy" intersection rule at the origin. 

Theorem 5.2 (fuzzy intersection rule for Frechet normals to countable intersections 
of cones). Let { Ai hEIN be a countable system of arbitrary closed cones in ]Rn satisfying the 

normal qualification condition (5.1). Then given a Prechet normal x* E N(O; n~1 Ai) and a 

number e > 0, there are limiting normals x'[ E N (0; Ai) as i E IN such that 

00 1 
x* E 2:: 

2
i xi + dB*. 

i=1 

(5.2) 
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Proof. Fix x* E N ( 0; n~l Ai) and c > 0. By definition (2.3) of Frechet normals we have 

00 

(x*, x)- cllxll < 0 whenever X E n Ai \ {0}. (5.3) 
i=l 

Define a countable system of closed cones in m;n+l by 

Let us check that all the assumptions for the validity of the conic extremal principle in Theorem 4.2 
are satisfied for the system {Oi}iEJN· Picking any (x, a) E n~l Oi, we have x E n~l Ai and a 2: 0 
from the construction of ni as i 2: 2. This implies in fact that (x, a) = (0, 0). Indeed, supposing 

x -=f 0 gives us by (5.3) that 

0:::; a:::; (x*,x)- cllxll < 0, 
.. 

which is a contradiction. On the other hand, the inclusion (0, a) E 01 yields that a :::;' 0 by the 

construction of 01, i.e., a= 0. Thus the nonoverlapping condition 

00 n oi = {(0,0)} 
i=1 

holds for { OihE.nv. Similarly we check that 

00 

( 01 - (0, 1)) n n Oi = 0 for any fixed 1 > 0, (5.5) 
i=2 

i.e., {Oi}iE.llV is a conic extremal system at the origin. Indeed, violating (5.5) means he existence 
of (x, a) E m;n x lR such that 

00 

(x,a) E [01- (0,1)] n n Oi, 
i=2 

which implies that X E n~1 oi and a 2: 0. Then by the construction of 01 in (5.4) we get 

l+a::::: (x*,x) -cllxll::::: 0, 

a contradiction due the positivity of 1 in-(5.5) .. 

Applying now the second conclusion of Theorem 4.2 to the system { Oi}iE.llV gives us the pairs 

(wi, ai) E Oi and (xi, ..\i) E N((wi, ai); Oi) as i E IN satisfying the relationships 

(5.6) 

It immediately follows from the constructions of Oi as i 2: 2 in (5.4) that Ai :::; 0 and xi E 

N(wi; Ai); thus xi E N(O; Ai) fori= 2, 3, ... by Proposition 2.1. Furthermore, we get 

(5.7) 

by the definition of Frechet normals to 01 at (w1, a1) E 01 with ..\1 2: 0 and 

(5.8) 
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by the construction of 01. Examine next the two possible cases in (5.6): /.1 = 0 and /.1 > 0. 

Case 1: >.1 = 0. If inequality (5.8) is strict in this case, find a neighborhood U of w1 such that 

al<(x*,x)-.sllxll forall xEU, 

which ensures that (x, a1) E 01 for all x E A1 n U. Substituting (x, a1) into (5.7) gives us 

. (xi,x-wl) 
hmsup II II :s: o, 

A1 X- Wl 
X-tW! 

which means that xi E N(w1;A1). If (5.8) holds as equality, weput a:= (x*,x)- cllxll and get 

Furthermore, it follows from (5. 7) that 

Thus for any v > 0 sufficiently small and a chosen above, we have 

whenever x E A1 is sufficiently closed to w1. The latter yields that 

. (xi,x-wl) * N~( A) 
hm sup II II :S: 0, i.e., x1 E w1; 1 . 

A1 X- Wl 
X---+Wl 

Thus in both cases of the strict inequality and equality in (5.8), we justify that xi E N(w1; A1) 
and thus xi E N(O; Al) by Proposition 2._1. Summarizing the above discussions gives us 

xi E N(O; Ai) and Ai = 0 for all i E IN 

in Case 1 under consideration. Hence it follows from (5.6) that there are xi := (1/2i)xi E N(O; Ai) 
as i E IN, not equal to zero simultaneously, satisfying 

00 

l:xi =O. 
i=l 

This contradicts the normal qualification condition (5.1) and thus shows that the case of Al = 0 
is actually not possible in (5.8). 

Case 2: /.1 > 0. If inequality (5.8) is strict, put x = w1 in (5.7) and get 

l . /.1(a-a1)<0 1msup _ . 
a->a1 Ia- a1l 

That yields Al = 0, a contradiction. Hence it remains to consider the case when (5.8) holds as 
equality. To proceed, take (x, a) E 01 satisfying 

x E A1 \ {w1} and a= (x*, x) - .sllxll· 
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By the equality in (5.8) we have 

On the other hand, it follows from (5.7.) that for any 'Y > 0 sufficiently small there exists a 

neighborhood V of w1 such that 

whenever X E Al n v. Substituting (x,a) with X E Al n v into (5.9) gives us 

(xi", x- w1) + /.1 (a- al) = (xi+ /.1x*, x- w1) + Alc(llwlll - llxll) 

:::; >.nc(llx- w1ll + Ia- a11) 

;:; >-ni[llx- w1ll + (llx*ll + c)llx- w1IIJ 

= A1"fc(1 + llx*ll +c) llx- w1ll· 

It follows from the above that for small 'Y > 0 we have 

and thus arrive at the estimates 

-
(xi+ A1x*, x- w1) :::; Alcllx- w1ll + Alc(llxll - llw1ll) :::; 2/.lcllx- w1ll 

for all x E A1 n V. The latter implies by definition (2.3) of £"-normals that 

(5.9) 

(5.10) 

Furthermore, it is easy to observe from the above choice of /.1 and the structure of 01 in (5.4) that 
>.1 :::; 2 + 2c. Employing now the representation of £"-normals in (5.10) from [5, formula (2.51)] 
held in finite dimensions, we find v E A1 n (w1 + 2?.1t:JB) such that 

(5.11) 

00 

Since Al > 0 in the case under consideration and by -xi = 2 L ~i xi due to the first equality in 
i=2 

(5.6), it foliows from (5.11) that 

x* E N(O; A1) + ,
2 ~~xi+ 2clB*, 

.. Al L...J 2t 
i=2 

and hence there exists xi E N(O; A1) such that 

x* E f ~ixt + 2clB* with xi:= 2;i E N(O; Ai) for i = 2, 3, .... 
~1 1 

This justifies (5.2) and completes the proof of the theorem. 0 

Our next result shows that we can put c = 0 in representation (5.2) under an additional 
assumption on Frechet normals to cone intersections. 
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Theorem 5.3 (refined representation of Fnkhet normals to countable intersections of 
cones). Let {Ai}iEJN be a countable system of arbitrary closed cones in lRn satisfying the normal 

qualification condition (5.1). Then for a~y Fre~het normal x* E .N( 0; n:1 Ai) satisfying 

00 

(x*, x) < 0 whenever X E n Ai \ {0} (5.12) 
i=1 

there are limiting.normals xi E N(O;Ai), i = 1,2, ... , such that 

00 

.x* = L ~ixi-
i=1 

(5.13) 

Proof. Fix a Frechet normal x* E N ( 0; n:1 Ai) satisfying condition (5.12) and construct a 
countable system of closed cones in lRn x lR by 

01 := {(x,a) E IRn X IRI X E A1, a::; (x*,x)} and oi := Ai X IR+ fori= 2,3, .... (5.14) 

Similarly to the proof Theorem 5.2 with taking (5.12) into account, we can verify that all the 
assumptions of Theorem 4.2 hold. Applying the conic extremal principle from this theorem gives 
us pairs (wi,ai) E Oi and (xi,>-i) E N((wi,ai);Oi) such that the extremality conditions in (5.6) 

are satisfied. We obviously get Ai ::; 0 and xi E N(wi; Ai) for i = 1, 2, ... , which ensures that 
xi E N(O; Ai) as i 2: 2 by Proposition 2.1. It follows furthermore that for i = 1 the limiting 
inequality (5.7) holds. The latter implies by the structure of the set 01 in (5.14) that 

(5.15) 

Similarly to the proof of Theorem 5.2 Wf? consider the two possible cases >-1 = 0 and >-1 > 0 in 
(5.15) and show that the first case contradicts the normal qualification condition (5.1). In the 
second case we arrive at representation (5.13) based on the extremality conditions in (5.6) and 
the structures of the sets oi in (5.14). 0 

The next theorem in this section provides constructive upper estimates of the Frechet normal 
cone to countable intersections of closed cones in finite dimensions and of its interior via limiting 
normals to the sets involved at the origin. 

Theorem 5.4 (Frechet normal cone to countable intersections). Let {Ai}iEJN be a count

able system of arbitrary closed cones in lRn satisfying the normal qualification condition (5.1), and 

let A:= n:1 Ai· Then we have the inclusions 

00 

intN(O;A) c {Lxil xi E N(O;Ai)}, 
i=1 

N(O; A) C cl {I: xi I xi E N(O; Ai), IE .C }, 
iEI 

where .C stands for the collection of all finite subsets of the natural series IN. 
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Proof. First we justify inclusion (5.16) assuming without loss of generality that int N(O; A) =/= 0. 
Pick any x* E int N(O; A) and also/'> 0 such that x* +3f'lB* C N(O; A). Then for any x E A\ {0} 
find z* E ~n satisfying the relationships 

1\z*ll = 21' and (z*,x) < -l'llxll· 

Since x* - z* E x* + 3f'lB* c N(O; A), we have (x* - z*, x) :::; 0 and hence 

(x*, x) = (x* -?, x) + (z*, x) < -l'llxll < 0. 

This allows us to employ Theorem 5.3 and thus justify the first inclusion (5.16). 
To prove the remaining inclusion (5.17), pick pick x* E N(O;A) and for any fixed c > 0 apply 

Theorem 5.2. In this way we find xi E N(O; Ai), i E IN, such that 
00 

* '\""'1* * x E L,.; 
2
ixi + c.IB . 

i=l 

Since c > 0 was chosen arbitrarily, it follows that 

x* E A:= cl {f ~ixil xi E N(O; Ai)}. 
•=1 

Let us finally justify the inclusion 

A c clC with C := {I: xi I xi E N(O; Ai), IE .C }· 
iEJ 

To proceed, pick z* E A and for any fixed c > 0 find xi E N(O; Ai) satisfying 

I 
*- ~- 1 * c 

z - L,.; 2i xi :::; 2. 
i=l 

Then choose a number k E IN so large that 

k 
* "\"""" 1 * 

z - L,.; 2ixi :::; c. 
i=l 

k ' 

Since L 1
i xi E C, we get (z* + clB*) n C =/= 0, which means that z* E cl C. This justifies (5.17) 

' ~12 - ' 
and completes the proof of the theorem. D 

Finally in this section, we present a consequence of Theorem 5.4, which gives an exact com

putation of Frechet normals to countable intersections of cones normally regular at the origin. 

Corollary 5.5 (countable intersections of normally regular cones). In addition to the 

assumptions of Theorem 5.4, suppose that all the cones Ai, i E IN, are normally regular at the 

origin. Then the Frechet normal cone to the intersection A = n~1 Ai is computed by 

N(O; A)= cl { 2:: xi I xi E N(O; Ai), IE .C }· (5.18) 
iEJ 

Proof. It is easy to check that 

cl {I: xi I xi E N(O; Ai), IE .C} C N(O; A) 
iEJ 

for arbitrary set systems. Combining this with inclusion (5.17) of Theorem 5.4 and the normal 

regularity of each cone Ai as i E IN, gives us equality (5.18). D 
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6 Tangential Normal Enclosedness and Approximate Normality 

In this section we introduce and study two important properties of tangents cones that are of 
their own interest while allow us make a bridge between the extremal principles for cones and the 
limiting extremality conditions for arbitrary closed sets at their tangential extremal points. The 
main attention is paid to the contingent and weak contingent cones, which are proved to enjoy 
these properties under natural assumptions. 

Let us start with introducing a new property of sets that is formulated in terms of the limiting 
normal cone (2.5) and plays a crucial role of what follows. 

Definition 6.1 (tangential normal enclosedness). Given a nonempty subset n C X and a 

subcone A C X of a Banach space X, we say that A is TANGENTIALLY NORMALLY ENCLOSED 

(TNE) into n at a point x E n if 

N(O; A) c N(x; n). (6.1) 

The word "tangential" in Definition 6.1 reflects the fact that this normal enclosedness property 
is applied to tangential approximations of sets_ at reference points. Observe that if the set n is 
convex near x, then its classical tangent cone at x enjoys the TNE property; indeed, in this case 
inclusion (6.1) holds as equality. We establish below a remarkable fact on the validity of the TNE 
property for the weak contingent cone (2.2) to any closed subset of a reflexive Banach space. 

To study this and related properties, fix n c X with x En and denote by Aw := Tw(x; r!) the 
weak contingent cone ton at x without indicating nand x for brevity. Given a direction dE Aw, 

let Tdw be the collection of all sequences { xk} c n such that 

xk -x w 
-- =---t d for some tk! 0. 

tk 

It follows from definition (2.2) of Aw = T(x; f!) that 'Jdw =/= 0 whenever dE Aw. 

Definition 6.2 (tangential approximate normality). We say that n c X has the TANGEN

TIAL APPROXIMATE NORMALITY (TAN) property at x E Sl if whenever d E Aw and x* E N ( d; Aw) 

are chosen there is a sequence { xk} E 'Jdw along which the following holds: for any c > 0 there 

exists r5 E (0, c) such that 

lim sup [sup { (x*' z _:__ Xk) I z E n n (xk + tk81B) }] :::; 2cr5, 
k->oo tk 

(6.2) 

where tk ! 0 is taken from the construction of 'Jdw. 

'I:'he meaning of this property that gives the name is as follows: any x* E N(d; Aw) for the 
tangential approximation of n at x behaves approximately like a true normal at appropriate points 
Xk near x. It occurs that the TAN property holds for any closed subset of a reflexive Banach 
space. The next proposition provides even a stronger result. 

Proposition 6.3 (approximate tangential normality in reflexive spaces). Let n be a 

subset of a reflexive space X, and let x En. Then given any dE Aw = T(x; n) and x* E N(d; Aw), 

we have (6.2) whenever sequences { xk} E Tdw and tk ! 0 are taken from the construction of 'ldw. 

In particular, the set n enjoys the TAN property at x. 
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Proof. Assume that x = 0 for simplicity. Pick any c > 0 and by the definition of Frechet normals 

find 8 E (O,c) such that 

€ (x*,v-d):::; 211v-dll forall vEAwn(d+81B). (6.3) 

Fix any sequences { xk} E 'Jdw and tk ! 0 from the formulation of the proposition and show 

. that property (6.2) holds with the numbers c: and 8 chosen above. Supposing the contrary, find 

{ xk} E 'Jdw and the corresponding sequence tk ! 0 such that 

lim {sup (x*,z- Xk) I zEn n (B(xk + tk81B)} > 2c8 
k->oo tk 

along s~me subsequence of k E IN, with no relabeling here and in what follows. Hence there is a 

sequence of zk E n(xk + tk81B) along which 

(x*' Zk - Xk) > c:o for k E IN. 
tk 

Taking into account the relationships 

u and - ----> d as k ---> oo, II 
Zk - Xk II < J: Xk w 
tk tk - - . tk 

we get that the sequence { ~: } is bounded in X, and so is { ;: } . Since any bounded sequence 

in a reflexive Banach space contains a weakly convergent subsequence, we may assume with no 
loss of generality that the sequence { Zk} weakly converges to some v E X as k ---> oo. It follows 

tk 
from the weak convergence of this sequence that 

. . II Zk Xk II llv- dll:::; hmmf --- :::; 8. 
k->oo tk tk 

This allows us to conclude that 

c € 
(x*,v- d)~ c:o > 28 ~ 2llv- dll, 

which contradicts (6.3) and thus completes the proof of the proposition. 0 

The next theorem is the main result of this section showing that the TAN property of a closed 
set in an Asplund space implies the TNE property of the weak contingent cone to this set at the 

reference point. This unconditionally justifies the latter property in reflexive spaces. 

Theorem 6.4 (TNE property in Asplund spaces). Let D be a closed subset of an Asplund 

space X, and let x E D. Assume that D has the tangential approximate normality property at 

x. Then the weak contingent cone Aw = T(x; D) is tangentially normally enclosed into n at this 

point. Furthermore, the latter TNE property holds for any closed subset of a reflexive space. 

Proof. We are going show that the following holds in the Asplund space setting under the TAN 

property of n at x: 
N(d; Aw) c N(x; n) .for all dE A, lldll = 1, (6.4) 

which is obviously equivalent to N(O; Aw) C N(x; D), the TNE property of the weak contingent 

cone Aw. Then the second conclusion of the theorem in reflexive spaces immediately follows from 
Proposition 6.3. Assume without loss of generality that x = 0. 
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To justify (6.4), fix dE Aw and x* E N(d;Aw) with \\d\\ = 1 and 1\x*\1 = 1. Taking {xk} E Ta,w 
from Definition 6.2, it follows that for any c there is 8 < c such that (6.2) holds with x = 0. Hence 

(x*, z- xk) :::; 3tkc8 whenever z E Q := D n (xk + tk81B), k E IN. (6.5) 

Consider further the function 

cp(z) := -(x*, z- Xk), z E Q, 

for which we have· by (6.5) that 

Setting A := ¥ and£:= 3tkcb, we apply the Ekeland variational principle (s~e, e.g., [5, Theo

rem 2.26]) with A and £to the function cp on Q. In this way we find x E Q such that 1\x -xk\1:::; A 
and x minimizes the perturbed function 

c 
7/J(z) := -(x*,z- Xk) + );1\z- x\1 = -(x*,z- Xk) +9cl\z- x\1, Z E Q. 

Applying now the generalized Fermat rule to 7/J.at Xk and then the fuzzy sum rule in the Asplund 

space setting (see, e.g., [5, Lemma 2.32]) gives us 

0 E -x* + (9c + >-.)JB* + N(xk; Q) (6.6) 

with some xk ED n (x +AlB). The latter means that 

Hence Xk belongs to the interior of the -ball centered at x with radius tkb, which implies that 

N(xk; Q) = N(xk; D). Thus we get from (6.6) that 

x* E N(xk; D)+ (9c + >-.)JB*, k E IN. 

Letting there k -) oo and then c 1 0 gives us Xk -) x and x* E N(x; D). This justifies (6.4) and 

completes the proof of the theorem. D 

Corollary 6.5 (TNE property of the contingent cone in finite dimensions). Let a set 
fl c IRn be closed around x E D. Th,en- the contingent cone T(x; D) to D at x is tangentially 
normally enclosed into D at this point, i.e., we have 

N(O; A) c N(x; D) with A:= T(x;D). (6.7) 

Proof. It follows from Theorem 6.4 due to T(x; D) = Tw(x; D) in ffi.n. D 

Note that another proof of inclusion (6.7) in !Rn can be found in [8, Theorem 6.27]. 
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7 Contingent and Weak Contingent Extremal Principles for Count
able and Finite Systems of Closed Sets 

By tangential extremal principles we understand results justifying the validity of extremality con
ditions defined in Section 3 for countable and/or finite systems of closed sets at the corresponding 
tangential extremal points. Note that, given a system of A= {Ai}-approximating cones to a set 
system {ni} at x, the results ensuring the fulfillment of the A-tangential extremality conditions at 
A-tangential local extremal points are dir~ctly i:nduced by an appropriate conic extremal principle 
applied to the cone system {Ai} at the origin. It is remarkable, however, that for tangentially 

normally enclosed cones { Ai} we simultaneously ensure the fulfillment of the limiting extremal-

. ity conditions of Definition 3.4(c) 'at the corresponding tangential extremal points. As shown in 
Section 6, this is the case of the contingent cone in finite dimensions and of the weak contingent 
cone in reflexive (and also in Asplund) spaces. 

In this section we pay the main attention to deriving the contingent and weak contingent 

extremal principle involving the aforementioned extremality conditions for countable and finite 
systems of sets and finite-dimensional and infinite-dimensional spaces. Observe that in the case 
of countable collections of sets the results obtained are the first in the literature, while in the case 
of finite systeltiS of sets they are independent of the those known before being applied to different 
notions of tangential extremal points; see the discussions in Section 3. 

We begin with the contingent extremal principle for countable systems of arbitrary closed sets 
in finite-dimensional spaces. 

Theorem 7.1 (contingent extremal principle for countable sets systems in finite di
mensions). Let x E n:l ni be a contingent local extremal point of a countable system of closed 

sets {ni}iEJN in ffi.n. Assume that the contingent cones T(x; ni) to ni at x are nonoverlapping 

00 n { T(x; ni)} = {0}. 
i=l 

Then there are normal vectors 

satisfying the extremality conditions in (3.4). 

Proof. This result follows from combining Theorem 4.2 and Corollary 6.5. 0 

Consider further systems of finitely many sets {n1, ... , r2m} in Asplund spaces and derive for 
them the weak contingent extremal principle. Recall that a set n c X is sequentially normally 

compact (SNC) at x E r2 if for any sequence {(x~c,x/:,)}kEIN C r2 x X* we have the implication 

[xk---* x, xk, ~ 0 with xk, E N(x~c;n), k E .IN]:::=} llx/:,11---* 0 as k---* oo. 

In [5, Subsection 1.1.4], the reader can find a number of efficient conditions ensuring the SNC 
property, which holds in rather broad infinite-dimensional settings. The next proposition shows 
that the SNC property of TAN sets is inherent by their weak contingent cones. 
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Proposition 7.2 (S:NC property of weak contingent cones). Let D be a closed subset of 

an Asplund space X satisfying the tangential approximate normality property at x ED. Then the 

weak contingent cone Tw(x; D) is SNC at the origin provided that D is SNC at x. In particular, 

in reflexive spaces the SNC property of a closed subset D at x unconditionally implies the SNC 

property of its weak contingent cone Tw(x; D) at the origin. 

Proof. To justify the SNC property of Aw := Tw(x; D) at the origin, take sequences dk ~ 0 and 

x'fo E N ( dk; Aw) satisfying x'fo ~ 0 as k ~ oo. Using the TAN property of D at x and following 

the proof of Theorem 6.4, we find sequences ck l 0 and Xk E. x such that 

Hence there are x'fo E N(xk; D) with llx'k-- x'foll :::; q, which implies that x'fo ~ 0 as k ~ 00. By 

the SNC property of D at x we get that llx/:,11 ~ 0, which yields in turn that llx/:,11 ~ 0 ask E oo. 
This justifies the SNC property of Aw at the origin. The second assertion of this proposition 

immediately follows from Proposition 6.3. 0 

Now we are ready to establish the weak contingent extremal principle for systems of finitely 

many closed subsets of Asplund spaces in both approximate and exact forms. 

Theorem 7.3 (weak contingent extremal principle for finite systems of sets in As

plund spaces). Let x E n:1 Di be -a weak contingent local extremal point of the system 

{D1, ... , Dm} of closed sets in an Asplund space X. Assume that all the sets Di, i = 1, ... , m, 

have the TAN property at x, which is automatic in reflexive spaces. Then the following versions 

of the weak contingent extremal principle hold: 

(i) APPROXIMATE VERSION: for any c > 0 there are xi E N(x; Di) as i = 1, ... , m satisfying 

llxi + .. · + x~ll:::; c and llxill + .. · + llx:"nll = 1. (7.1) 

(ii) EXACT VERSION: if in addition q,ll but_ one of the sets ni as i = 1, ... , m are SNC at x, 

then there exist xi E N(x; Di) as i = 1, ... , m satisfying 

xi+ ... + x~ = 0 and llxill + ... + llx~ll = 1. (7.2) 

Proof. It follows from Proposition 3.2 that the cone system {A~= Tw(x; Di)} as i = 1, ... , m is 
extremal at the origin in the conventional sense (3.2). Applying to it the approximate extremal 

principle from [5, Theorem 2.20], for any c > 0 we find Xi E A~ and xi E N(xi; A~) as i = 1, ... , m 

such that all the relationships in (7.1) hold. Then 

xi E N(xi; A~) c N(O; A~) c N(x; Di), i = 1, ... , m, 

by Proposition 2.1 and Theorem 6.4, which justifies assertion (i). 

Now to justify (ii), observe that all but one of the cones A~ are SNC at the origin by Proposi
tion 7.2. Thus the conclusion of (ii) follows from the exact extremal principle in [5, Theorem 2.22] 
and Theorem 6.4 established above. D 
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