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Abstract 

This paper concerns the study of solution maps to parameterized variational inequal­
ities over generalized polyhedra in reflexive Banach spaces. It has been recognized that 
generalized polyhedral sets are significantly different from the usual convex polyhedra in 
infinite dimensions and play an important role in various applications to optimization, 
particularly to generalized linear programming. Our main goal is to fully characterize 
robust Lipschitzian stability of the aforementioned solutions maps entirely via their ini­
tial data. This is done on the base of the coderivative criterion in variational analysis 
via efficient calculations of the coderivative and related objects for the systems under 
consideration. The case of generalized polyhedra is essentially more involved in compar­
ison with usual convex polyhedral sets and requires developing elaborated techniques 
and new proofs of variational analysis. 

Keywords: Variational analysis, reflexive Banach spaces, generalized poly­

hedral sets, parametric variational inequalities, robust Lipschitzian stability, 

generalized differentiation, coderivatives 

1 Introduction 

Parametric variational inequalities are among the most important objects in optimization 

theory and variational analysis; see, e.g., the books [2, 8, 19, 20, 22, 25] and the references 

therein. A breakthrough in their study and applications goes back to the seminal work by 

Robinson [23, 24] who treated them as parametric "generalized equations" 

0 E j(p, x) + N(x; 8) for all x E 8, (1.1) 
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where x E X is the decision variable and p E Z is the parameter taking values in the 
corresponding Banach spaces. The "base" mapping f: Z x X ---7 X* in (1.1) takes values 
in the dual space X* while the set-valued "field" part N: X ::::::4 X* is the normal cone 
mapping to a convex set 8 c X. By the classical definition of the normal cone in convex 

analysis with N(x; n) := 0 if X~ e, the generalized equation form (1.1) is equivalent to the 
standard form of variational inequalities: for each p E Z find X E 8 such that 

(j(p, x), X-u)::::; 0 whenever u E 8. 

It has been well recognized that the generalized equation formalism (1.1) is a convenient 
model to describe parametric complementarity problems, moving sets of optimal solutions 
to various optimization and equilibrium problems, KKT systems, and the like; see the 
references above with the bibliographies therein. 

Consider the solution mapS: Z :::::::l X to the parametric variational inequality/ generalized 
equation (1.1) defined by 

S(p) := {x E Xj 0 E f(p,x) + N(x;8)}. (1.2) 

The dependence of (1.2) on the parameter variable p E Z is one of the major issues from the 
viewpoints of sensitivity and stability analysis of the variational systems under consideration 
and their applications to parametric and hierarchical opti~ization, mathemati~al programs 
with equilibrium constraints, etc. Robust Lipschitzian behavior (i.e., stable with respect to 
perturbations of the initial data) of the solution map (1.2) and its quantitative characteristics 
are among the most important goals to achieve. 

Advanced variational analysis and generalized differentiation offer verifiable pointwise 
characterizations of such behavior around reference points with computing the exact Lips­
chitzian moduli via the so-called coderivatives of general set-valued mappings; see [19, 20, 25] 
and Section 2 for more details. However, implementations of these criteria and their re­
alizations in terms of the initial data of variational systems of type (1.2) is definitely not 
an easy job in both finite and infinite dimensions, where the latter case creates additional 
serious complications due to the lack of compactness. 

A remarkable class of convex sets is described by convex polyhedra 

8:={xEXj (x;,x)::::;ci for i=1, ... ,m}, (1.3) 

where xt E X* are fixed elements. Significant progress in the study and applications of 
Lipschitzian stability for parametric variational inequalities (1.1) over polyhedral convex 
sets (1.3) has been achieved on the base of coderivative characterizations mainly in finite 
dimensions [6, 12, 13, 28, 29] and quite recently in reflexive Banach spaces [11, 21]. 

The major attention of this paper is paid to robust Lipschitzian stability of parametric 
variational inequalities over the so-called generalized polyhedral sets defined by 

e := {x E XJ Ax= band (x;,x)::::; Ci, for i = 1, ... ,m} (1.4) 

and formed by fixed elements x; E X*, b E Y, Ci E lR and a linear bounded operator 
A: X ---7 Y from X to another Banach space Y. 
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In contrast to the case of finite-dimensional spaces, the generalized polyhedra (1.4) do 
not reduce to the usual ones (1.3) in infinite dimensions. The "generalized polyhedral" 
terminology has been coined in [2], where systems (1.4) were largely investigated from the 
viewpoint of applications to the generalized linear programs 

minimize (a, x) subject to Ax= b and (xi, x) ~ Ci for i = 1, ... , m} (1.5) 

as well as to problems of concave minimization under generalized polyhedral constraints 
(1.4). We refer the reader to the book [1] for the study of (generalized) linear programs 
in infinite dimensions and their applications to problems in approximation theory, mass­
transfer, optimal control, dynamic network, and semi-infinite and infinite programming. 
The book [10] is particularly devoted to linear semi-infinite programming, while the recent 
papers [4, 5] concern robust stability issues and optimality conditions for semi-infinite and 
infinite programs with linear inequality constraints. 

Among important classes of infinite-dimensional problems that can be written in the 
general polyhedral form (1.5) but not with merely polyhedral constraints (1.3) we mention 
discrete-time Markov decision processes with discounted cost, deterministic continuous-time 
control problems and those of singular stochastic control, problems related to Mather's 
variational principle, etc.; see, e.g., [7, 14, 15, 16, 27] for more details and references. 

The main goal of this paper is to obtain complete characterizations of the Lipschitz-like 

property (known also as the Aubin property) of solution maps (1.2) to parametric variational 
inequalities (1.1) over generalized polyhedral sets 8 from (1.4) entirely in terms of the initial 

data j, A, b, xi, and Ci. The Lipschitz-like/Aubin property has been well recognized in 
nonlinear analysis as the most natural extension of the classical local Lipschitz continuity 
to the case of set-valued mappings, with a localization around the reference point of the 
graph. This property usually accumulates the amount of robust stability needed for the 
analysis of constraint and variational systems; see [19, 20, 25] and the references therein. 

Similarly to [11] the approach of this paper is based on implementing the coderivative 
characterizations [19] of the Lipschitz-like property for general set-valued mappings between 
infinite-dimensional spaces to the case of the solution map (1.2) generated by 8 from (1.4) 

instead of that from (1.3) as in [11]. It occurs however that the case of generalized polyhedra 
is significantly more involved and requires essential elaborations, which are done below. 
Furthermore, some of the results obtained in this paper are new even in the case of usual 
convex polyhedra in finite and infinite dimensions. 

The rest of the paper is organized as follows. Section 2 collects preliminaries from 
variational analysis and generalized differentiations widely used in the sequel. 

Sections 3 and 4 are devoted to technical issues of generalized differentiation of un­
doubted independent interest, which is crucial for employing the coderivative characteriza­
tions of robust stability. Namely, in Section 3 we compute the so-called precoderivative of 

the normal cone mapping N(·; 8) over the generalized polyhedron 8 from (1.4) in reflex­
ive Banach spaces. This serves as a building block for computing the coderivative of the 
mapping N(·; 8) by a limiting procedure. 

Section 5 contains the main results of the paper on complete characterizing the Lipschitz­
like property of the solution map (1.2) to the underlying variational inequality (1.1) over 
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the generalized polyhedron (1.4) in reflexive Banach spaces. We not only derive necessary 
and sufficient conditions for this property but also compute the exact bound of Lipschitzian 
moduli, which provides the most important qualitative characteristics of robust stability 
entirely in terms of the initial data of the variational system (1.2), (1.4) under consideration. 

2 Preliminaries from Variational Analysis 

Let us start with basic definitions, notation, and terminology conventional in variational 
analysis and generalized differentiation; see, e.g., [19, 25, 26]. Unless otherwise stated, every 
Banach spaces in question is assumed to be reflexive with the norm \\ · \\ and the canonical 
pairing ( ·, ·) between the space X and its topological dual X*. Note that a number of the 
results below hold (as follows from their proofs) in arbitrary Banach spaces or for the class 

of Asplund spaces, which contains reflexive ones. But it is more convenient for us to keep 
the reflexivity assumption overall for definiteness. 

As usual, B(X) stands for the closed unit balls of X, and the symbol x'k ~ x* with 
k E IN:= {1, 2, ... } indicates the weak convergence of a sequence in X*. By 

K* := {x* E X*l (x*,x)::; 0 for all x E K} 

we denote the polar to a cone K C X and by 

ker { vj I j E J} := { x E X I (vj, x) = 0 as j E J} 

the kernel/ orthogonality subspace generated by the elements vj E X* as j E J. This 
notation is in agreement with the kernel ker A := { x E X\ Ax = 0} of a linear operator 
A: X --> Y. In the case of just one generating element v* E X* we also use the notation 

{v*}.l := {x E XI (v*, x) = o}. 

This is in agreement with the orthogonality notation for a liner subspace L C X, that is, 
L.l := {x* EX*\ (x*,x) = 0 for all x E L}. 

Recall further that span 0 stands for the span of a nonempty subset 0 c X, i.e., 
the smallest linear subspace containing 0 and that cone 0 signifies the convex conic hull 

of 0; by convention we put span 0 := {0} and cone 0 := {0}. For convenience, denote 

cone{ Xl' ... 'Xm} := pos{ XI, ... 'Xm}. As usual, cl 0 stands for the closure of the set 0. 

Let F: X ::::::4 Y be a set-valued mapping between two Banach spaces with the domain 

domF := {x E XI F(x) =1- 0} and the graph gphF := {(x,y) EX x Y\ y E F(x)}. The 
(sequential) Painlevv-Kuratowski upper/outer limit ofF as x--> xis 

Li~sxupF(x) := {y E Yl :3 sequences Xk--> x, Yk--> y as k--> oo 

such that Yk E F(xk) for all k E IN}. 
(2.1) 

In this way the Bouligand-Severi contingent cone to a set 0 c X at x E 0 is defined by 

O-x 
T(x;O) := Limsup-,-. 

.\10 1\ 
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When n is convex, the contingent cone (2.2) reduces to 

T(x; 0) = cl[cone (0- x)]. 

In what follows we often consider set-valued mappings F: X =? X* between a Banach 

space X and its topological dual X*. In this case the sequential Painleve-Kuratowski outer 

limit (2.1) is always understood in the sense of the weak topology on Y = X*. 

Let us next define the notions of generalized normals to a nonempty set 0 C X used in 

the paper. Given x E 0 and putting x _s x when x -) x with x E 0, we say that 

( * -) ~ X ,x- X 
N(x; D) := {x* E X* jlim sup :=::; o} n_ llx- xll 

x~x 

(2.3) 

is the prenormal cone (known also as the regular or Frechet normal cone) to n at x. Note 

that the set N(x; 0) is convex and weakly closed in X* and is contained in the polar T*(x; D) 
to the the contingent cone (2.2). Furthermore, N(x; D) = T*(x; D) if either X = IRn or Dis 

convex. In the latter case the cone N(x; D) reduces to the normal cone of convex analysis. 
However, for nonconvex sets 0 the prenormal cone (2.3) does not possess natural properties 

of normal cones even in simple finite-dimensional settings. In particular, we often have 

N(x; D) = {0} for boundary points of sets (e.g., forD = {(u,v) E JR2
1 v 2 -lui} at the 

origin), and the cone (2.3) does not satisfy required calculus rules. 
The .situation dramatically changes if we consider the sequential regularization of the 

mapping N(·; 0): X =t X* by using the outer limit (2.1) in the weak topology of X*: 

N(x;O) := LimsupN(x;D) 
!1_ 

x--~ox 

(2.4) 

and arrive at the construction known as the (basic, limiting, Mordukhovich) normal cone 

to D at x E 0; see [19, 20] and also [3, 25, 26] for more details and references in both finite 
and infinite dimensions. In spite of the intrinsic nonconvexity of the set of limiting normals 

(2.4), the normal cone N(x; D) and related subdifferential and coderivative constructions for 
functions and mappings satisfy comprehensive calculus rules and other required properties 

in the reflexive Banach space setting under consideration (as well as in more generality), 

which are mainly based on the variational/extremal principles of variational analysis. 

Given now a set-valued mapping F: X =t Y and following the pattern initiated in 

[17], we define two "adjoint derivative-coderivative" constructions via generalized normals 

to the graph of F. The precoderivative (known also as the Frechet coderivative) of F at 

(x, y) E gph F is a positively homogeneous mapping fr F(x, Y): Y* =t X* with the values 

D*F(x,y)(y*) := {x* E X*j (x*,-y*) E N((x,y);gphF)}, y* E Y*, (2.5) 

while the (normal, limiting, Mordukhovich) coderivative ofF at (x, y) E gph F is given by 

D*F(x,y)(y*) := {x* E X*j (x*,-y*) E N((x,y);gphF)}, y* E Y*. (2.6) 

If F = f: X -) Y is single-valued and strictly differentiable at x with the derivative 

\7 f(x): X -) Y in the sense that 

lim f(x)- f(u)- (\7 f(x), x- x) = 
0 

x,v->x llx- ull 
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(this is automatic when f is C 1 around x), then we have 

D* f(x)(y*) = D* f(x)(y*) = {V f(x)*y*} for all y* E Y*, (2.7) 

where fj = f(x) is omitted in the coderivative notation for single-valued mappings. The 
coderivative representations in (2.7) show that both constructions (2.5) and (2.6) reduce to 

the adjoint derivative operator in the classical setting. 
It follows from the above definitions that the coderivative (2.6) admits the representation 

D*F(x,y)(y*) = Limsup D*F(x,y)(z*), y* E Y*, (2.8) 

via the outer limit (2.1) with respect to the weak topology in both dual spaces X* andY*. 
As in [19], we say that F is (strongly) coderivatively normal at (x, fi) if 

D* F(x, fi)(y*) = Lim sup D* F(x, y)(z*), 
(x,y)-(x,jj) 

llz*-y*ll--+0 

(2.9) 

which means that the coderivative construction (2.6) does not change if we replace the weak 
convergence z* ~ y* in (2.8) by the norm one z* ~ y* in (2.9), while the convergence on 

X* in (2.9) stays weak by (2.1). 
Another definition needed in what follows is due to [9]: a set 0 c X is dually norm-stable 

at x E 0 if the basic normal cone (2.4) admits the representation 

N(x;O) = {x* E X*l :Jxk ~ x, xk E N(xk;O) with llxk- x*ll---t 0 as k ~ oo}. (2.10) 

Observe that the latter property obviously holds if either X = mn or N(x; 0) = N(x; 0), 
which is automatic when 0 is convex. Being applied to graphical sets, the dual norm­
stability (2.10) surely yields the coderivative normality (2.9) of set-valued mappings. 

Recall further a certain "normal compactness" property of set-valued mappings that is 
needed for characterizing robust Lipschitzian stability in infinite dimensions. A mapping 
F: X :::::1 Y is partially sequentially normally compact (PSNC) at (x, fi) E gph F if for any 

sequence {(xk,Yk,xk,yk)} C X x Y x X* x Y* satisfying (xk,yk) E N((xk,Yk);gphF) for 
all k E IN we have the implication 

[(xk, Yk) ~ (x, fi), xk ~ 0, IIYZ:II ~OJ ===> llxkll ~ 0 ask~ oo. (2.11) 

The PSNC property obviously holds if the domain space X is finite-dimensional. It is 

important to mention that F is PSNC at (x, fi) if it is Lipschitz-like around this point, i.e., 
there are neighborhoods U of x and V of fj such that 

F(x) n V C F(u) + lllx- uiiB(Y) whenever x,u E U (2.12) 

with some constant/modulus l 2': 0. The infimum of all moduli {l} in (2.12) is called 
the exact Lipschitzian bound ofF around (x, fi) and is denoted by lipF(x, fi). Note that 
property (2.12) is also known as Aubin's "pseudo-Lipschitzian" property and reduces to the 
Hausdorff one around x for V =Yin (2.12). Furthermore, the Lipschitz-like property of an 
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arbitrary mapping F between Banach spaces around (x, y) is equivalent to the fundamental 
properties of metric regularity and linear openness of the inverse mapping p-l around 

(Y, x); see [3, 19, 25] for more details, discussions, and references. 
The following coderivative characterization of the Lipschitz-like property as well as a 

lower estimate and precise formula for computing the exact bound of Lipschitzian moduli 

are consequences of [19, Theorem 4.10]. In finite dimensions Theorem 2.1 reduced to [18, 

Theorem 5.7] and [25, Theorem 9.40] named in the latter as the Mordukhovich criterion. 

Theorem 2.1 (coderivative characterization and exact bound formula for Lipschitz­

like mappings). Let F: X =1 Y be closed-graph around (x,y) E gphF and coderivatively 

normal at this point. Then F is Lipschitz-like around (x, y) if and only if 

D* F(x,y)(O) = {0} (2.13) 

and F is PSN C at ( x, y). Furthermore, we have the estimate 

lip F(x, y) 2: liD* F(x, y) II :=sup { llx* II I x* ED* F(x, y)(y*), IIY* II :S 1}, (2.14) 

which holds as equality if dim X < oo. 

Finally in this section, we present a generalized Farkas lemma, which is taken from [2, 

Proposition 1.201] and widely employed in the paper being different from that used in [11]. 

Theorem 2.2 (generalized Farkas lemma). Let X andY be Banach spaces, let ai EX* 
fori= 1, ... ,p, and let A: X-+ Y be a linear continuous operator of closed range. Then 
the polar to the cone 

K:={xEXI Ax=O, (ai,x) :::;o for i=1, ... ,p} 

can be equivalently written in the form 

p 

I<*= A*(Y*) + { I>'iail Ai 2: 0, i = 1, ... ,p }· 
i=l 

3 Precoderivatives of Normal Cone Mappings to Generalized 
Polyhedra in Infinite Dimensions 

In this section we start studying the normal cone mapping :F: X =1 X* defined by 

:F(x) := N(x; 8), x EX, (3.1) 

which is a significant component of describing the underlying solution map (1.2) to the 
parametric variational inequality (1.1). Indeed, we have 

gphS = {(p,x) E Z X 81 - f(p,x) E N(x; 8)}, 

which can be equivalently written in the forms 

gph S = { (p, x) E Z X 81 g(p, x) E gph:f'} = g-1(gph:F) (3.2) 
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via the mapping g: Z x X --> X x X* defined by 

g(p,x) := (x,-f(p,x)) for p E Z and x EX. (3.3) 

In what follows we consider the normal cone mapping (3.1) when G is the generalized 
polyhedron (1.4), which is now written for convenience as 

G={xEXIAx=b and (xi,x):Sci for iEI}, (3.4) 

where I is any given finite index set. We always assume that the range of A in (3.4) is closed, 
although a number of the results below hold without this assumption; see their proofs. 

The major goal of this section is to efficiently compute the prenormal cone (2.3) to the 
graph of (3.1) with the generalized polyhedron (3.4) therein and hence the precoderivative 
(2.5) of this normal cone mapping entirely in terms of the initial data of G. The results 
obtained below significantly extend those from [11] derived for convex polyhedra (1.3) by 
developing an advanced technique of its own interest, which is new even for standard convex 
polyhedra in both finite and infinite dimensions. 

To proceed, consider for fixed x E G the collection of active constraint indices 

I(x) := {i E II (xi,x) = ci}. (3.5) 

Recall that a face of a convex set C C X is a convex subse't ]\If of C such that: if x1 and x2 

belong to C and .Ax1 + (1 - .A)x2 E M for some .A E (0, 1), then x1 and x2 actually belong 
toM. Both the empty set 0 and C itself belong to the collection of faces of C. We denote 
the collection of all nonempty faces of C by M (C). 

For any nonempty face M of G given in (3.4) there is a maximal index subset IM of I 
such that (xi, x) = Ci for every point x E M and each i E I M. We call this I M the active 
index set associated with the face M of G and denote all the active index sets associated 
with nonempty faces of G by J(G) := {IM I M E M(G)}. Note that IM depends not 
only on the set G and the face M, but also on the representation of G because of the 
possible multi-representability of the set G. With no further mentioning we always refer to 

the active index set for a face of a generalized polyhedron in its given representation. For 
distinct nonempty faces of G their active index sets are distinct as well, while there is a 
one-to-one correspondence between M(G) and J(G). 

It is not hard to observe that a nonempty face M of the generalized polyhedron G in 
(3.4) admits the representation 

M = {x E XI Ax= b, (xi,x) :Sci for i E I\h1 and (xj,x) = Cj for j E hi}. (3.6) 

Furthermore, it follows from the definition of active index set associated with M that for 

each i E I\h1 there is a point x E M such that (xi, x) < Ci. We also have the representation 

affM = {x E XI Ax= b, (xi,x) = Ci for i E hi} 

of the affine hull of M and the one 

riA1={xEXIAx=b, (xi,x)<ci for iEI\h.J and (xj,x)=cj for jEIM} (3.7) 
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of the relative interior of M. Taking into account definition (3.5) of the active constraint 

indices, observe that I(x) = Iu whenever x E riM. 
It follows from the above that any nonempty face M of the generalized polyhedron 8 

in (3.4) is a generalized polyhedral set itself with riM=/::. 0. Given x E 8, the set 

M = {x E XI Ax= b, (xi,x) :Sci for i E I \I(x) and (xj,x) = Cj for j E I(x)} 

is a nonempty face of 8, with the active index set h1 = I(x) for x E riM. Therefore, the 
generalized polyhedron (3.4) is the union of the relative interiors of its nonempty faces, i.e., 

8= U M= U riM. (3.8) 
MEM(G) MEM(G) 

Note also that distinct nonempty faces of 8 have no intersection of their relative interiors. 
Thus all the relative interiors of nonempty faces of 8 form a partition of 8. 

Next we present simple while useful in what follows relationships for contingent (2.2) 
and prenormal (2.3) cones to finite unions of sets valid in general Banach spaces X. 

Proposition 3.1 (contingent and prenormal cones to set unions). Let A C X be 

the union of finitely many closed sets Ai =/::. 0 as i E I. Given any x E A, define the index 

set J(x) := { i E I I x E Ai}. Then we have the relationships 

T(x; A)= U T(x; Ai), 
iEI(x) 

N(x; A) :::;> n N(x; Ai)· 
iEI(x) 

Furthermore, (3.10) holds as equality if all the sets Ai are convex. 

(3.9) 

(3.10) 

Proof. The inclusion "::J" in (3.9) obvious follows from definition (2.2) of the contingent 
cone. To justify the opposite inclusion in (3.9), pick any h E T(x; A) and get from (2.2) 
sequences tk l 0 and hk ---) h as k ---) oo such that 

x + th,hk E U Ai for all k E IN. 
iEJ 

Taking into account that I is a finite index set, we can suppose by passing to a subsequence 
if necessary that x + tkhk E Ai for some i E I and all k E IN. Fui·thermore, x E Ai due 
to closedness of all Ai. This implies that i E J(x) and hE T(x; Ai) c U T(x; Ai), which 

iEI(x) 

completes the proof of equality (3.9). 

To justify inclusion (3.10), assume the contrary and by definition (2.3) of the prenormal 
cone find a dual element x* E n N(x; Ai), a positive number,, and a sequence Xk ---)X 

iEI(x) 

as k ---) oo with Xk E A such that 

(3.11) 
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for all k E IN sufficiently large. Since I is a finite index set, we can assume by passing to a 

subsequence if necessary that Xk E Aio for some io E I and for all k E IN. The closedness 
of Aio yields x E Aio· By (3.11) the latter implies that x* (j. N(x; Ai0 ), a contradiction 
ensuring the fulfillment of inclusion (3.10). 

It remains to justify the opposite inclusion "c" in (3.10) provided that all the sets Ai 
are convex. We have in general that N(x; A) c T(x; A)* and that the polar to the union of 
sets is the intersection of the polars to all of the sets. Thus 

N(x; A) c n T(x; Ai)* 0 

iEI(x) 

Combining the latter with the relationship T(x; Ai)* = N(x; Ai) in the convex case, we 
arrive at the equality in (3.10) and complete the proof of the proposition. 6. 

The next proposition gives a convenient representation of the normal cone mapping 
N (.; 8) on the relative interior of a given face of e. 

Proposition 3.2 (normal cone mappings on faces of generalized polyhedra). Let 

8 be the generalized polyhedron defined in (3.4), and let Jill E M(8) be its face with the 

active index subset I M. Then the normal cone mapping N ( ·; 8) is constant on the relative 

interior of Jill. Denoting the latter value by N ( ri Jill; 8), we have the representation 
' 

N(riM;8) = A*(Y*) + pos{x71 i E fAt}. (3.12) 

Proof. Let us show first the contingent cone (2.2) to 8 admits the representation 

T(x;G) = {x E XI Ax= 0, (x7,x):::; 0 as i E I(x)} for any X E e. (3.13) 

Note that the convexity of 8 yields T(x; 8) = cl [cone(8- x)]. Piking no~ any hE X from 
the right-hand side of (3.13) gives us 

Ah = 0 and (x7, h) :::; 0 whenever i E I(x). 

Since x E 8, we have by (3.4) and definition (3.5) of the active constraint indices that 

Ax= b, (x7,x) = ci for i E I(x), and (xi,x) < ci for i E I \I(x). 

This implies, for all A > 0 sufficiently small, that 

A(x +>-h)= b, (xi,x +>-h):::; ci as i E I(x), and (xi,x +>.h)< ci as i E I \I(x), 

which gives x +>.hE 8 and thus justifies the inclusion ":J" in (3.13). 
To prove the opposite inclusion "c" in (3.13), take any hE T(x; 8) and find by definition 

(2.2) of the contingent cone sequences tk 1 0 and hk -> h such that x + tkhk E 8 whenever 
k E IN, which means that 
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The latter implies the relationships 

Thus we have by passing to the limit ask __, oo that Ah = 0 and (xi, h) :S 0 for all i E J(x), 
which justifies the equality in (3.13). 

The polarity correspondence N(x; 8) = T(x; 8)* held due to the convexity of 8 and the 

established contingent cone representation (3.13) allows us to conclude by the generalized 

Farkas lemma of Theorem 2.2 that 

N(x; e) A*(Y*) + { L /\xi! Ai ~ 0} 
iEl(x) 

A*(Y*) + pos{ xi I i E I(x)}. 

Noting finally that I(x) =1M for each x E riM as shown above, we arrive at (3.12) and 

thus complete the proof of the proposition. 6. 

Let us present a useful consequence of Proposition 3.2 employed in what follows. 

Corollary 3.3 (monotonicity relationships for faces of generalized polyhedra). 

Let h,h E J(8) for the generalized polyhedron (3.4), and let M1 and M2 be nonempty 

faces of 8. Denoting Ni := N(ri Mi; 8) fori= 1, 2, we have 

Proof. Directly follows from the explicit normal cone representation (3.12). 

Note also that for any face M c 8 we have the relationships 

N(x;G) = N(riM;8) c N(x;G) whenever x E riM and x EM. (3.14) 

Indeed, the equality in (3.14) is proved in Proposition 3.2. To check the inclusion therein, 

take any x EM\ riM and find ME M(8) such that M C M with x E riM. Then we get 

from Corollary 3.3 and Proposition 3.2 again that h1 C IM = I(x) and that 

N(ri M; 8) c N(ri M; 8) = N(x; 8), 

which justifies the second relationship in (3.14). 

Next we derive an exact representation of the normal cone to a face of the generalized 

polyhedron under consideration in terms of its initial data. 

Proposition 3.4 (representation of normals to faces of generalized polyhedra). 

Let M c 8 be an nonempty face of the generalized polyhedron (3.4), and let x EM. Then 

we have the normal cone representation 

N(x; M) = A*(Y*) + pos{ xi! i E J(x) \ IM} +span{ xj I j E IM }. (3.15) 
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Proof. As shown above, the given face M of the generalized polyhedron (3.4) is a general­
ized polyhedron itself, which admits representation (3.6). Denote 

- (A) - (b) -A:= B , b:= c , and 1:=1\IM, 

where B is a matrix with the rows xj for j E h1, and where cis a vector with the components 
Cj for j E h1· Then the aforementioned representation of IV! can be rewritten as 

M = { x EX! Ax= b and (xi, x) :=:; ci as i E J}. 

Denote further l(x) := { i E I I (xi, x) = ci} = I(x) \ h1 and consider the set 

M:={xEXIAx=b, (xi,x)~ci as iEl\l(x), and (xj,x)=cj as jEl(x)}. 

Then we have from (3.6) and (3.7) that M is a face of M with x E riM. Applying now 
Proposition 3.2 to the generalized polyhedron M and its face M, we get 

N(x;M) = A*(Y*) +pos{xil i E l(x)} 

A*(Y*) + pos{ xi I i E I(x) \ h1} +span{ xjl j E IM} 

and thus complete the proof of the proposition. 

It makes sense to illustrate the usage of the precise formulas of Propositions 3.2 and 3.4 
in particular settings. For simplicity we consider a convex polyhedron in JR3 . 

Example 3.5 (computing normals to faces of convex polyhedra). Consider a con­
vex polyhedral set 8 with the generating vectors 

xi= (1, 1, 1), x2 = ( -1, 0, 0), xj = (0, -1, 0), x4 = (0, 0, -1) 

and the numbers c1 = 1, c2 = C3 = c4 = 0 in (1.3). Thus 

8 = {x E JR3! (xi,x) :=:; ci with i E I= {1,2,3,4}}. 

Then all the active index sets are given by 

J(8) = {0,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3}, 
{2,4},{3,4},{1,2,3},{1,3,4},{1,2,4},{2,3,4}} 

and the corresponding collection of nonempty faces is 

M(8) = { 8, !'::,ABC, L:,BOC, !'::,AOC, LAOB, BC, AC, AB, OC, 
OB,OA,C,A,B,O}. 

(3.16) 

Here A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1), 0 = (0, 0, 0), the symbol !'::,ABC stands for 
the triangle with the zeniths A, B, C while AB denotes the line segment between A and B. 

Consider now the face 

M =!'::,ABC= {x E JR3
! (xi,x) ~ Ci for i E {2,3,4} and (xi,x) = ci} 
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with the corresponding index set h1 = {1} and the relative interior 

riM= {x E IR3 I (xi,x) < Ci for i E {2,3,4} and (xj,x) = c!}. 

Select x = (!, ! , ! ) E riM and observe that the active constraint index set at x is I ( x) = { 1} 
while the normal cones to G and M at x are, respectively, 

N(x; G) = pos{ xi I i E I(x)} = pos{ xi}, 

N(x;M) = pos{xil i E I(x) \1M}+ span{xjl j E 1M}= span{ xi}. 

For the point z = (0, ~,~)the active constraint index set is I(z) = {1, 2} and the normal 
cones to G and M at z are, respectively, 

N(z;G) = pos{xil i E J(z)} = pos{xi,x2}, 

N(z; M) = pos{ xi I i E I(z) \ ht} +span{ xjl j E 1M} = pos{ x2} +span{ xi}. 

All this is in accordance with the results of Propositions 3.2 and 3.4. 

Let us now employ the above "face" relationships to the study of the prenormal cone 
(2.3) to the normal cone mapping (3.1) induced by the generalized polyhedron (3.4). Fixing 
an arbitrary pair ( x, x*) E gph F and using the normal cone representation 

N(x; G) = A*(Y*) + pos{ xi I i E J(x)} 

that follows from Theorem 2.2, for any x* E N(x; G) we get 

x* = A*(Y*) + 2: Aixi with some i/ E Y*. 
iEJ(x) 

>-; ;::o 

Denote the index set of the corresponding "positive multipliers " by 

.J(x, x*) := { i E I(x) I Ai > o in (3.18)} 

(3.17) 

(3.18) 

(3.19) 

and observe that the multipliers Ai in representation (3.18) may not uniquely defined. How­
ever, it is not hard to check that all the subsequent constructions and results involving the 
index collection .J(x; x*) are invariant with respect to any choice of positive multipliers; 
see, e.g., the proof of Theorem 3.6. 

To proceed with deriving a constructive representation of the prenormal cone to the 
graph ofF in (3.1) entirely via the initial data of the generalized polyhedron (3.4), define 
similarly to [11] the following sets depending on indices P C Q C I by 

AQ ,P : = pos {xi I i E Q \ P} + span { xj I j E P}, (3.20) 

BQ,P := {x E XI (xi,x):::; 0 as i E Q\P and (xj,x) = 0 as j E P}. (3.21) 

Now we are ready to establish the main result of this section. 
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Theorem 3.6 (computing the prenormal cone to graphs of normal cone map.,. 
pings over generalized polyhedra). Let (x,x*) E gph.F for the normal cone mapping 
(3.1) over the generalized polyhedron 8 from (3.4), and let Q = I(x) and P = .J(x, x*) be 
the corresponding index sets. Then we have the prenormal cone representation 

N((x, x*); gph.F) = [AQ,P + A*(Y*)] x [BQ,P n (ker A)] (3.22) 

via the sets AQ,P and BQ,P computed in (3.20) and (3.21), respectively. 

Proof. It follows from (3.8) that the graph of the normal cone mapping (3.1) generated by 

(3.4) admits the face representation: 

gph.F =U{{x}xN(x;8)\xE8} 

= u {riM X N (riM; 8) I M E M ( 8)} 

= U{M x N(riM;8)\ ME M(8)}. 

(3.23) 

Then we have from the normal cone equality in Proposition 3.1 and the convexity of the 

above sets M and N(ri M; 8) that 

R((x, x*); gph.F) = n 
(x,x*)EMxN(ri M;8) 

MEM(8) 

N((x,x*);M x N(riJ\!!;8)). 

Applying the product formula for normals in the right-hand side of (3.24) gives 

(3.24) 

N((x,x*);gph.F) = [ n N(x;M)] X [ n N(x*;N(riJ\!!;8))]. 
(x,x*)EMxN(ri M;8) (x,x*)EMxN(ri M;8) 

MEM(8) MEM(8) 

By Proposition 3.2 and Theorem 2.2 we have 

N(riM; 8) A*(Y*) +pos{xi\ i E JM} 

{xEX\Ax=O and (xi,x)~O as iEIM}*, 

which is a closed and convex cone. This yields the representation 

N(x*;N(riM;8))={xEX\Ax=0 and (xi,x):SO as iEh1}n{x*}.l. (3.25) 

Consider further the two cases: (a) x E ri M and (b) x ~ ri M. Starting with (a), we 

have IM = I(x) and .J(x,x*) c h1- Since x* E N(x;8), it gives by (3.18) and (3.19) that 

x* = A*(y*) + L .\ixi for some y* E Y*. 
iE.J(x,x•) 

This allows us to deduce from (3.25) and definition (3.21) that 

N (x*; N(ri M; 8)) 

{xEX\Ax=O, (xi,x)~O as iEI(x)\.J(x,x*), and (xj,x)=O as jE.J(x,x*)} 

BI(x),.J(x,x•) n (kerA). 
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In case (b) we find a face ME M(8) such that x E riM C M and h1 C IM = I(x). 
This implies by Corollary 3.3 that x* E N(riM;8) C N(riM;8), and hence 

N(x*; N(ri M; 8)) c N(x*; N(ri M; 8)). 

Combining the relationships above, we arrive at the equality 

n N(x*;N(riM;8)) = n [BI(x),.J(x,x•) n (ker A)]. (3.26) 
(x,x*)EMxN(ri M;B) 

MEM(B) 
(x,x*)EMxN(ri M;B) 

xEri M, MEM(B) 

Let us show next that for different representations of x* in (3.18)-i.e., for different 

collections of positive multipliers ..11 (x, x*) and .J2(x, x*) in (3.19)-the following equality 

(3.27) 

holds. Indeed, picking any .J1 (x, x*), .J2(x, x*), and x E B 1(x),.71 (x,x*) n (ker A), we get by 
definitions (3.19) and (3.21) that 

x* = A*y2 + L P,jxj = A*yi + L >-.ixi 
iE.J1 (x,x•) 

for some Yi, y2_ E Y* and that 

(x*,x)=(y2,Ax)+ L P,j(xj,x)=(yi,Ax)+ L >-.i(xi,x)=O. 

The latter implies in turn that 

L P,j(xj,x) = 0. 
jEJ"2(x,x•) 

This yields that (xj,x) = 0 for all j E .J2(x,x*), since (xj,x) ~ 0 and /-Lj > 0 whenever 

j E .J2(x, x*) c I(x). Hence 

BI(x),.71 (x,x*) n (ker A) c BI(x),.72 (x,x*) n (ker A), 

which ensures the equality in (3.27) due to the arbitrary choice of .J1(x,x*) and J2(x,x*). 
It follows thus from (3.26) and (3.27) that 

n 
(x,x*)EMxN(ri M;B) 

MEM(B) 

N(x*; N(ri M; 8)) = BI(x),.1(x,x•) n (ker A). (3.28) 

Applying now Propositions 3.2 and 3.4, for every ME M(8) with (x,x*) E MxN(riM;8) 
we have the relationships 

N(x;M) = A*(Y*) +pos{xiJ i E I(x) \IM} + span{xjJ j E IM} 
:J N(x; 8) +span{ x*}, 

which imply therefore the inclusion 

n 
(x,x*)EMxN(ri M;e) 

JHEM(B) 

N(x; M) :J N(x; 8) + span{x*}. 
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Taking into account the duality relationship 

N(x;G)+span{x*} = [T(x,G)n{x*}j_]*, 

the inclusion opposite to (3.29) follows from the implication 

[x* E n N(x;M)] ==? [(x*,v) ~ 0 for any v E T(x;G) n {x*}_L]. (3.30) 
(x,x*)EMxN(ri M;8) 

MEM(8) 

To proceed with the proof of (3.30), pick any v E T(x; G) n { x*}_i_ and let Xk := x + iv. 
Then it follows from the proof of Proposition 3.2 that Xk E e for all k E IN sufficiently 
large. Taking into account the second representation of the generalized polyhedron 8 in 
(3.8) and that 8 has finitely many facies, suppose by passing to a subsequence if necessary 

that xh, E ri Mo for some Mo E M ( 8) and all k E IN, and hence x E Mo by passing to the 
limit ask~ oo. Since x* E N(x; 8) and v E {x*}\ we have 

1 
(x*,x- Xk) = (x*,x- x)- k(x*,v) ~ 0 for all x E 8 .and k E IN. 

The latter implies that x* E N(xk; 8), and consequently x* E N(ri Mo; 8) by Proposi­
tion 3.2. Hence x* E N(x; Mo), which yields that (x*, v) ~ 0 due to Xk = x + iv E Mo for 
all k E IN. Thus we get the equality · 

n N(x; M) = N(x; 8) +span{ x*}. 
(x,x*)EM xN(ri J\1;8) 

MEM(8) 

To complete the proof of the theorem, it remains to show that 

N(x; 8) +span{ x*} = AI(x),.J(x,x•) + A*(Y*). 

The latter clearly follows from the definitions of J'(x, x*) in (3.19) and AQ,P in (3.20) by 
representation (3.17) of the normal cone N(x; 8). Thus we are done. 6. 

As an immediate consequence of Theorem 3.6, we obtain the following precise represen­
tation of the precoderivative (2.5) of the normal cone mapping (3.1), which allows us to 
compute it entirely in terms of the initial data of the generalized polyhedron (3.4). 

Corollary 3. 7 (computing the precoderivative of normal cone mappings over 
generalized polyhedra). In the notation of Theorem 3.6 we have 

{ 

pos{xil i E Q\P} +span{xjl j E P} +A*(Y*) 
D*F(x,x*)(u)= if (xj,u)=O for jEP, Au=O, and (xi,u)2::0 

0 for all other u E X. 
for i E Q \ P; 

Proof. Follows directly from precoderivative definition and the results of Theorem 3.6 on 
computing the prenormal cone to the graph of the normal cone mapping F. 6. 
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4 Coderivatives of Normal Cone Mappings to Generalized 

Polyhedral Sets 

In this section we compute the basic coderivative (2.6) of the normal cone mapping (3.1) 

entirely via the initial data of the generalized polyhedron (3.4) in infinite dimensions. The 
results obtained extend those established in [11] for usual polyhedra (1.3). Similarly to the 

latter paper, the proofs here are mainly based on passing to the limit from the corresponding 
results of Section 3 for prenormals and precoderivatives with some significant modifications 
in comparison with [11] due to the nature of generalized polyhedra. 

Given (x, x*) E gphF, consider the family of indices 

I(x,x*) := {P c J(x)l x* E A*(Y*) +pos{xi! i E P}}. (4.1) 

The next theorem represents the basic normal cone (2.4) to the graph of the normal cone 
mapping (3.1) via the indexed sets defined in (3.20) and (3.21) and the collection of faces 
of the generalized polyhedron (3.4). 

Theorem 4.1 (face representation of basic normals to graphs of normal cone 
mappings). Let (x,x*) E gphF.for the normal cone mapping (3.1) built upon the gen­
eralized polyhedron (3.4), and let I(x) and I = I(x,x*) be defined in (3.5) and (4.1), 
respectively. Then we have the representation 

N((x,x*);gphF) = u 
PClMCl(x),PEI, MEM(G) 

Furthermore, the graphical set gphF c X x X* is dually norm-stable at (x,x*) . 

Proof. We verify representation ( 4.2) of the basic normal cone to the graph of F and 
justify simultaneously the dual norm-stability property of the graph in question. 

Let us start with proving the inclusion "c" in ( 4.2). Pick an arbitrary limiting normal 

(u*,u) E N((x,x*);gphF) and find by definition (2.4) sequences (xk,xk,) g~ (x,x*) and 

(uz,u~,,) ~ (u*,u) ask~ oo satisfying 

(4.3) 

It follows from (4.3) that xk E 8 and xk E N(xk; 8) as k E IN. Since 8 has a finite 
number of faces, assume without loss of generality that there is a common face M E M(8) 
such that Xk E riM for all k E IN and that x E M. It gives consequently that 

I(xk) = h1 c I(x) for all k E IN. (4.4) 

By representation (3.12) of Proposition 3.2 applied to each normal xt, E N(xk; 8), we get 

x'k = A*y'k + L .Aikxi with some .Aik 2: 0 and Yk E Y* as k E l!V. (4.5) 
iElM 

vVith no loss of generality, extracting another subsequence if necessary, select a constant 
index subset PC !111 c I(x) such that 

p := .J(xk, x'k) = { i E JM I )..ik > 0} whenever k E IN. ( 4.6) 

17 



Observe that the finitely generated sets Ahr,P from (3.20) and BfA1 ,P from (3.21) are 
obviously weakly closed in the corresponding spaces. Hence this property holds for the set 

Bh1 ,p n ker A and also for the image A*(Y*) due to the polarity relationship 

A*(Y*) + Alu,P = (ker A)*+ Bju,P = [BfA1 ,P n (ker A)]*. 

Combining now (4.5) and (4.6), we get that 

x'k = A*yk, + I>\kxi E A*(Y*) + pos{ xi I i E P}, 
iEP 

which implies in turns by passing to the limit ask---) oo that x* E A*(Y*)+pos{xil i E P}. 
This justifies the inclusion P E I. 

Applying the prenormal cone representation (3.22) from Theorem 3.6 to each ( uk,, uk) 
in ( 4.3) and using the structures of the index sets under consideration, we arrive at 

uk, E A*(Y*) + AfA1 ,P and Uk E B1r.4 ,p n (ker A) for all k E IN. (4.7) 

Passing finally to the limit in ( 4. 7) ask ---) oo, we conclude that ( u*, u) E [AIM,P + A*(Y*)] x 
[Biu,P n (ker A)], which proves the inclusion "C" in (4.2). 

To justify now the opposite inclusion "::)" in ( 4.2), fix an arbitrary element 

(u*,u) E u 
PClMCl(x), PEI,MEM(G) 

and then find a nonempty face M of 8 as well as index subsets P c h1 c I(x) such that 
P E I= I(x, x*) with 

u* E A*(Y*) + A1111 ,P and u E B11..,r,P n (ker A). (4.8) 

Take further a point x E riM and construct a sequence { xk} C X by 

(4.9) 

Since (xi' x) = C; for all i E h1' (xi' x) < Ci for all i E 1\IM' and Ax= b, we have Xk E riM 
whenever k E IN 0 This implies that Xk E e and that the set of active constraint indices 
I(xk) at Xk reduces to h1 for each k E IN. Then representation (3.12) of Proposition 3.2 
gives in this case that 

N(xk;8)=A*(Y*)+pos{xiliEiu} forall kEIN. 

Furthermore, the inclusion P E I= I(x,x*) implies by (4.1) the equality 

x* = A*y* + L Aixi with some y* E Y* and Ai 2:: 0. 
iEP 

Defining now a sequence {xk,} c X* by 

x'k := A*y* + L(Ai + k-l )xi with llx'k- x* II ---) 0 as k---) oo, 
iEP 
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observe that xt, E N(xk;G) for all k E IN due to (4.10) and P c IJ\1. Thus Theo­
rem 3.6 applied to each (xk, xt,) with the index sets h1 and P from (4.8) ensures that 

. N((Xk, xt,); gph.F) = [A*(Y*) + AIM,P] X [BIM,P n (ker A)] and hence 

(u*,u) E N((xk,xk);gphF) for all k E IN. (4.12) 

Passing to the limit in (4.12) ask--too and using definition (2.4) of the basic normal cone, 
we get that (u*,u) E N((x,x*);gph.F), which fully justifies representation (4.2). 

It remains to show that the graphical set gph.F is dually norm-stable at (x,x*). By the 
definition of this property in Section 1 we need to check that any basic normal pair ( u*, u) E 
N ( ( x, x*); gph F) can be approximated in the norm topology of X x X* by pre normals to the 
graph ofF at points nearby. It fact, it can be observed from the proof of the inclusion "=:J" 
in ( 4.2) that each such normal ( u*, u) satisfies inclusion ( 4.12) with the strongly convergent 
sequences Xk --) X by ( 4.9) and xt, --) x*. This completes the proof of the theorem. 6. 

Next we establish a simplified representation of the basic normal cone to the graph of 
F under the additional verifiable assumptions: the linear independence of the generating 
elements {xi I i E I(x)} and the qualification condition 

(kerA)_L nspan{xil i E J(x)} = {0}. (4.13) 

Theorem 4.2 (simplified representation of basic normals to graphs of normal 
cone mappings). Let (x,x*) E gphF in the setting of Theorem 4.1. Assume in addition 
that the generating elements {xi I i E I(x)} are linearly independent in X* and that the 
qualification condition (4.13) is satisfied. Then we have 

N((x,x*);gphF) = u [Aq,P + A*(Y*)] x [BQ,P n (ker A)]. (4.14) 
.JcPcQci(x) 

Proof. First we show that the assumptions made imply that 

Mq E M(G) with lMq = Q for any Q c I(x), (4.15) 

whereMQ:={xEXIAx=b, (xi,x)~ci as iEI\Q, and (xj,x)=cj as jEQ}. 
It is clear that x E Mq E M(G). Furthermore, we can easily check that the linear 

independence assumption of the theorem and the qualification condition ( 4.13) ensure that 
the family {xi I i E I ( x)} of linear continuous functions on the linear subspace ker A are 
linearly independent as well. Then the linear system 

(xi,x) = 0 as i E Q and (xj,x) = -1 as j E I(x) \ Q 

has a solution x E ker A. Hence we have 

A(x+tx)=b, (xi,x+tx)<ci as iEI\Q as (xj,x+tx)=cj as jEQ 

for all t > 0 sufficiently small, which implies that h.1q = Q. 
To derive next the normal cone representation (4.14) from that of (4.2) in Theorem 4.1, 

it is sufficient to prove the equivalence 

PE'I ¢=:? JcP ( 4.16) 
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with I= I(x,x*) defined in (4.1) and with the corresponding index set of positive multi­
pliers as in (3.19). It is easy to see that the implication "'¢=" in (4.16) follows from the 
definition of I and the inclusions 

x* E A*(Y*) + pos{xil i E ..1} c A*(Y*) + pos{xil i E P} if ..1 c P. 

To justify the opposite implication "===>" in (4.16), pick any P E I and find multipliers 
Ai 2: 0 as i E P and a dual element y* E Y* such that 

(4.17) 

Let us show that the index set of positive multipliers .J(x, x*) for (x, x*) in (4.1 7) is uniquely 

determined. Indeed, suppose that .J1, ..12 are two different such sets sets corresponding to 

(x, x*) in (4.17), i.e., (.J2 \ .J1) u (.J1 \ .J2) =I= 0. Thus 

x* = A*y1* + L Aixi = A*y2* + L /'iXj for some Y1*,y2* E Y*. 
iE.:h jE.J2 

This implies the equality 

0 = L (>.l- !'l)xi + L Aixi + L "YjXj + A*(yl*- Y2*), 
lE.J1n.J2 iE.J1\.J2 jE.J2\.J1 

which yields in turn that 

L (>.1- !'l)x'[ + L Aixi + L /'jXi = A*(y2*- Yl*) = 0 
lE.J1n.J2 iE.J1\.J2 jE.J2\.J1 

due to the classical fact that A*(Y*) = (ker A)_i and the classification condition (4.13). 

Applying then the assumed linear independence of the generating elements { x; I i E J(x)} 
of (3.4), we have that Al = 'Yl for alll E .J1 n.J2, Ai = 0 for all i E .J1 \.J2, and /'j = 0 for all 
j E ..12 \ Jl· The latter surely contradicts the multiplier positivity Ai > 0 for all i E ..11 \ ..72 
and /'j > 0 for all j E ..12 \ Jl· Hence we get ..1 C P by the definition of the index set 
of positive multipliers ..1 in ( 4 .17), and the conclusion of the theorem follows finally from 
relationships (4.15) and (4.16). 6 

From the normal cone representations of Theorems 4.1 and 4.2 we derive the corre­
sponding representations of the basic coderivative (2.6) of the normal cone mapping (3.1) 
built upon the generalized polyhedron (3.4). 

Corollary 4.3 ( coderivative representations for normal cone mappings over gen­
eralized polyhedra). Let (x, x*) E gphF for the normal cone mapping (3.1) with 8 from 
(3.4), and let the corresponding index sets be defined in Theorem 4.1. Then the normal cone 
mapping F is coderivatively normal at (x, x*) and the following assertions hold: 

(i) Under the general assumptions made the basic coderivative (2.6) ofF at (x, x*) is 
represented by 

D* F(x, x*)(u) = { u* EX* I (u*, -u) E [AfA1 ,P + A*(Y*)] x [B1111 ,P n ker A] 
forsome Pc]p.1cf(x) with PEI(x,x*) and MEM(8)}. 
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(ii) If in addition the generating elements {xi I i E I(x)} of (3.4) are linearly indepen­

dent and the qualification condition ( 4.13) is satisfied, then 

D*F(x,x*)(u)={u*EX*i (u*,-u)E [AQ,P+A*(Y*)] x [BQ,Pn(kerA)] 
for some .J c PC Q c I(x)}. 

(4.19) 

Proof. Representations (4.18) and (4.19) follow directly from the coderivative definition 
(2.6) and the normal cone representation (4.2) and (4.14), respectively. The coderivative 
normality (2.9) of the normal cone mapping :F at (x, x*) is a consequence of the dual 
norm-stability of the graph of :Fat this point justified in Theorem 4.1. 6 

To proceed further, given an active index collection T C I(x) consider the closed set 

Mr := {x E XI Ax= b, (xj,x) ~ e; as i E I\ T, and (xj,x) = Cj as jET}, (4.20) 

which is a face of the generalized polyhedron (3.4), Define the feature index set forT by 

Y(T) := {i E I(x)l (xj,x) = ci whenever x E Mr }. (4.21) 

It follows from the proof ofrelationships (4.15) in Theorem 4.2 that Y(T) = T whenever 
the generating elements {xi I i E I ( x)} of ( 3.4) are linearly independent and and the 
qualification condition ( 4.13) is satisfied. 

The following example shows that the feature index set Y(T) for T is not necessarily 
equal to T in the general case under consideration. 

Example 4.4 (properties of feature index sets). Let 

xi= ( -1, 0), x; = (0, -1), x3 = ( -1, -1), x;; = (1, 1), 

let c1 = c2 = c3 = 0, C4 = 1, and let I = { 1, 2, 3, 4}. Define a convex polyhedron in JR2 by 

8 := {x E JR2
1 (xi,x) ~ Ci for i E I}. 

Take x = (0, 0) and select an active index collection T = {1, 2} c I(x) = {1, 2, 3}. Then we 
have by (4.20) and (4.21) that, respectively, 

Mr = {x E IR2
1 (x3,x) = -x1- x2 ~ 0, (x4,x) = x1 + x2::; 1, 

(xi,x) = -Xl = 0, (x2,x) = -X2 = 0} = {(0,0)} and 

Y(T) = {1, 2, 3} = I(x) # T. 

Similarly it is easy to check that for T1 = {1, 3} and T2 = {2, 3}, we get that 

Mr1 = Mr2 = {(0,0)} and Y(TI) = Y(T2 ) = I(x) = {1,2,3}. 

The next result fully characterizes the coderivative domain of the normal cone mapping 
(3.1) in constructive terms involving the feature index set (4.21) 

21 



Theorem 4.5 (description of the coderivative domain for normal cone map­
pings). Let (x, x*) E gphF in the general setting of Theorem 4.1. Then u E dom D* F(x, x*) 

if and only if we have the relationships 

Au= 0, (xT,u) :2: 0 as i E Y(.:l) \ .:7, and (xj,u) = 0 as j E .:7, (4.22) 

where .:7 = .:l(x, x*) is the index set of positive multipliers and Y(.J) is defined in (4.21). 

Proof. First we justify the necessity of condition ( 4.22) for D* F( x, x*) ( u) =I= 0. Taking 
u E domD* F(x, x*) and applying the coderivative definition (2.6) and representation (4.2) 

of the basic normal cone, find u* E X*, M E M(8), and index sets P C hv! C I(x) with 
P E I satisfying the inclusion 

( 4.23) 

Let us now show that .:7 C IM. To proceed, fix x E riM and get by (3.7) that 

Ax= b, (xT,x) < Ci as i E I\h.1, and (xj,x) = Cj as j E IM. 

Taking into account that h1 C I ( x), we have 

A(x-x)=O, (xi,x-x)<O as iEJ(x)\h1, and (xj,x-x)=O as j EiM. (4.24) 

Furthermore, the inclusion P E I ( x, x*) allows us to find by ( 4.1) numbers )..i ;::: 0 as i E P 
and a dual element Yp E Y* such that 

By (4.24) and PC 1M the latter implies that 

(x*, x- x) = (yj,, A(x- x)) + L )..i (xi, x- x) = o. 
iEP 

On the other hand, we have from the expression of x* in ( 4.17) in the definition of .J that 

0 = (x*,x- x) = (yj,A(x- x)) +I: >-.i(xi,x- x) 
iE:J 

=I: >-.i(xi,x- x) with some yj E Y*, and \ > 0 as i E J. 
iE:J 

This together with .:7 C I(x) and (4.24) imply that (xi,x- x) = 0 whenever i E .J, which 
yields .:7 C h1· Furthermore, from (4.23) and definition (3.21) of the set B1M,P we get that 

Au= 0, (xi,u) :2:0 as i E JM \P and (xj,u) = 0 as j E P. 

It follows from the inclusion .J C IM that Au= 0 and (xi, u) ;::: 0 for all i E J. This allows 
us to apply to the chosen element u the same arguments as for x - x above and conclude 
that Au= 0 and (xi, u) = 0 whenever i E .J. 
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To complete the proof of the necessity, it remains to show that 1(.7) c IM. Since 

.J C IM, we have M C M.; by definition (4.20), which implies that 1(.7) C IM by 
Corollary 3.3. Thus we arrive at ( 4.22) and justify the necessity in the theorem. 

To prove the sufficiency part of the theorem, assume that the relationships in ( 4.22) are 
satisfied for the given point 1t EX. Put M := M.:7 with the active index set IM = 1(.1) 
and P := .J E I. It is clear that x E M.; E M(E>). Observe that -u E BIM,P n (ker A) 
for the selected pair (JM, P). By definition (3.20) we have 0 E AJM,P + A*(Y*), even when 

P = 0 and/or h1 \ P = 0 by the convention made. Thus 

(0, -u) E [AIM,P + A*(Y*)] X [BIM,P n (ker A)), 

and the sufficiency of condition (4.22) follows from Theorem 4.1. 

The next two theorems are the main results of this section providing constructive eval­
uations of the basic coderivative D*:F(x,x*)(u) of the normal cone mapping (3.1) entirely 

in term~? of the initial data of the generalized polyhedron (3.4). Given u E X, define the 
characteristic active index subsets as follows: 

Io(u) := {i E J(x)l (xi,u) = 0} and I>(u) := {i E J(x)l (xi,u) > 0}. (4.25) 

The first main result gives a constructive coderivative upper estimate in the general setting. 

Theorem 4.6 ( coderivative estimate for normal cone mappings over generalized 
polyhedra). Let (x, x*) E gph:F in the framework of Theorem 4.5, and let Io( u) and I>(u) 
be the characteristic active index subsets defined in ( 4.25). Then for all u E X we have 

D* :F(x, x*)(u) c A*(Y*) + pos{ xi I i E I>(u)} +span{ xi I i E Io(u) }. (4.26) 

Proof. Estimate ( 4.26) is trivial when the domain of D* :F(x, x*) is empty. Take further 

u E dom D* :F(x, x*) and u* ED* :F(x, x*)(u) and find by (2.6) and Theorem 4.1 such a face 
M E M(E>) and index subsets P c It.1 c I(x) that P E I(x, x*) and 

u* E A*(Y*) + AIM,P, -u E BIM,P n (ker A). (4.27) 

By definition (3.21) of the set BIM,P the last inclusion in (4.27) is equivalent to 

Au = 0, (xi, u) 2: 0 as i E JM \ P, and (xj, u) = 0 as j E P, 

which implies the relationships 

PC T := {i E IMI (xi,u) = 0} and (xi,u) > 0 for all i E JM \ T. (4.28) 

It follows from (4.27), (4.28), and definition (3.20) of the set AIM,P that 

u* E A*(Y*) + pos{ xi I i E hi\ P} +span{ xi I i E P} 

C A*(Y*) + pos{xil i E h1 \ T} +span{ xi I i E T}. 
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Observing finally from the constructions ofT in ( 4.28) and of the characteristic active index 

subset in (4.25) that T C Io(u) and hvt \ T C I>(u), we get (4.26) from (4.29) and thus 
complete the proof of the theorem. 6. 

The second main result of this section contains a precise formula for computing the 

coderivative of the normal cone mapping Fat (x, x*) under the linear independence of the 
generating elements xi in (3.4) and the qualification condition ( 4.13). 

Theorem 4. 7 (precise computing coderivatives of normal cone mappings over 
generalized polyhedra). Let in the framework of Theorem 4.6 the generating elements 
{xi I i E I(x)} of (3.4) be linearly independent and the qualification condition (4.13) be 
satisfied. Then for all u E dom D* F(x, x*) we have 

D* F(x, x*)(u) = A*(Y*) + pos{ xi I i E I>(u)} +span{ xi I i E Io(u)}. (4.30) 

Proof. By Theorem 4.6 we need to prove the inclusion "~" opposite to (4.26). It is clear 

that the imposed linear independence and qualification conditions imply that Y(.J) = .J for 
the feature index subset (4.21) of .J = .J(x,x*). Take now (u*,u) satisfying the inclusions 
u E dom D* F(x, x*) and 

u* E A*(Y*) + pos{xil i E I>(u)} + span{xil i E Io(u)} 

' 
and then get from (3 .20), (3 .21), and the latter inclusion that 

(4.31) 

with 1M:= Io(u) U I>(u) and P := Io(u). 

Taking finally into account by Theorem 4.5 and the constructions in (4.25) that 

.J c Io(u) c Io(u) U I>(u) c I(x), 

we derive the inclusion "~" in (4.30) from the relationships in (4.31) and the coderivative 
representation (4.19) of Corollary 4.3(ii). This completes the proof of the theorem. 6. 

5 Robust Stability of Variational Inequalities Over General­
ized Polyhedra 

The primary goal in this section is to establish constructive characterizations of the Lipschitz­
like property of the solution map (1.2) with evaluating the exact Lipschitzian bound in (2.12) 
entirely in terms of the initial data of the generalized polyhedron (3.4) in reflexive Banach 
spaces. This will be done by combining the criteria of Theorem 2.1, some calculus results 

from [19], and the coderivative calculations of Section 4. Observe that the main results and 
· arguments in what follows are significantly more involved in comparison with those in [11] 

in the case of standard convex polyhedra. 

Let us first present a result from [11, Lemma 5.1] showing that the general assumptions 
imposed in Theorem 2.1 are satisfied for the solution map (1.2) in our setting. 
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Proposition 5.1 (properties of solutions maps to parametric variational inequal­
ities). The graph gph S C Z x X of the solution map S: Z ::::l X is always closed in Z x X. 
Furthermore, the mapping S: Z =t X is coderivatively normal at every point (p, x) E gph S 
where f is strictly differentiable and its partial derivative \Jvf(p, x): Z---' X* is surjective. 

Next we establish, based on the results in Section 4 and calculus rules of generalized 
differentiation, constructive representations for the coderivative (2.6) of the solution map 
(1.2) via the initial data in (1.1) and (3.4). 

Proposition 5.2 (coderivatives of solution maps to parametric variational in­
equalities). Let (p,x) E gphS for the solution map (1.2), where f is strictly differentiable 
at (p,x) with the surjective partial derivative 'Vvf(p,x), and let x* := -f(p,x). Then we 
have the following assertions: 

(i) The coderivative D* S(p, x): X* ::::l Z* is computed in the general setting by 

D*S(p,x)(x*) = such that P E I, ME M(8), p* = '\lpf(p,x)*u, and 
{ 

p* E Z* I :J u E X with P C h1 C I ( x) 

(- x* - '\7 xf(p, x)*u, -u) E [A*(Y*) + A1M,P] X [BIM,P n (ker A)). 

(ii) Assume in addition that the generating element {xi \ i E I(x)} of (3.4) are linearly 
independent and that the qualification condition ( 4.13) is satisfied. Then the coderivative 
D* S(p, x): X* =t Z* is computed by 

· D* S(- x)(x*) = {. p* E Z* I :J u E dom D* F(x, x*) such that p* = \l vf(p, x)*u, 
p, -x*- 'Vxf(p,x)*u E A*(Y*) +pos{xil i E J>(u)} +span{xil i E Io(u)}, 

where the characteristic active index subsets Io(u) and I>(u) are defined in (4.25) while the 
coderivative domain dom D* F(x, x*) is computed in Theorem 4.5. 

Proof. Observe first the image rule for basic normals from [19, Theorem 1.17] applied to 
representation (3.3) ensures the equality 

N((f5, x); gph s) = \Jg(p, x)* N((x,- f(p, x)); gph.F). (5.1) 

Combining now (5.1) with the coderivative definition in (2.6) and the basic normal repre­
sentation (4.2) from Theorem 4.1, we arrive at the equalities 

D*S(p,x)(x*) = {p* E Z*l (p*,-x*) 

E'Vg(p,x)*( U [A*(Y*)+AIM,P] X [BfA1pn(kerA)])} 
PclMCl(i:), PEI, MEM(G) 

= {p* E Z*l (p* -x*) E ( 0 -'\lvf(p,x)*) ( A*(Y*) +AIM,P) 
' 1 - \l xf(p, x)* . BJM,P n (ker A) 

with P c !111 C l(x), P E I, and IV! E M(8)} 
= {p* E Z* I :J u* E A*(Y*) + AiJ11 p, -u E B1M,P n (ker A) 

with P c ft..1 c I(x), P E I, and ME M(8) 
such that p* = '\7 vf(p, x)*u and - x* = u* + '\7 xf(p, x)*u} 

= {p* E Z*l :lu EX, P c ft..1 c I(x) with P E I, ME M(8) 
such that p* = '\7 vf(p, x)*u and 

( -x*- '\lxf(p, x)*u, -u) E [A*(Y*) + A1M,P) X [BIM,P n (ker A)]}, 
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which imply assertion (i) of this proposition. 
To justify next assertion ( ii), observe the representation 

N((x, x*); gph F) = { (u*, -u) I u* ED* F(x, x*)(u) for u E dom D* F(x, x*) }. 

Combining the latter with (x,-f(p,x)) = (x,x*) and the representation of D*F(x,x*) in 

(4.30) from Theorem 4.7, we have the following equalities: 

n• S(p, x)(x•) ~ {p• E z·1 ( _P:. ) E ( ~ = ~:j~: :~: ) ( ~~ ) 
for some u E domD*F(x,x*) and u* E D*F(x,x*)(u)} 

= {p* E Z*l p* = \lpf(p,x)*u, -x* = u* + 'Vxf(p,x)*u 

for some u E dom D* F(x, x*) and u* ED* F(x, x*)(u)} 

= {p* E Z*l3u E domD*F(x,x*) with p* = \lpf(p,x)*u and 

-x*- \1 xf(p, x)*u E A*(Y*) + pos{ xi I i E J>(u)} +span {xi I i E Io(u)} }, 

which thus complete the proof of the proposition. 

Now we are ready to obtain verifiable characterizations for robust Lipschitzian stability 
of solution maps to the parametric variational inequalities ,(1.1) over generalized polyhedra 
with evaluating the exact Lipschitzian bound. To proceed in this direction, let us first focus 
on the case when the parameter space Z is finite-dimensional while the decision variable 
belongs to an arbitrary reflexive Banach X. 

Theorem 5.3 (Lipschitzian stability of variational inequalities over generalized 
polyhedra with finite-dimensional parameter spaces). Let (p, x) ·E gph S in the 
framework and notation of Proposition 5.2, and let dim Z < oo. Then we h~ve the following: 

(i) The solution map (1.2) is Lipschitz-like around (p, x) if and only if 

[- 'V xf(p, x)*u E A*(Y*) + AJtv1 ,P, -u E B1111 ,P n (ker A)] ==? u = 0 (5.2) 

fo1' all P c h1 C I(x) with P E I(x, x*) and ME M(8). Furthermore, we have the precise 
formula for computing the exact Lipschitzian bound of the solution map S at (p, x): 

lip S(p, x) =sup { IIV pf(p, x)*ullltt E -B1;..1 ,P n (ker A), 
x* E- \1 xf(p, x)*u- A*(Y*)- AJM,P, IIV xf(p, x)*u + x*ll ::; 1, (5.3) 

for all P c h1 c I(x) with P E I(x, x*) and ME M(8). 

(ii) Assume in addition that the generating element {xi I i E J(x)} of (3.4) are linearly 
independent and that the qual~fication condition (4.13) is satisfied. Then S is Lipschitz-like 
around (p, x) ~f and only if 

[- 'Vxf(p,x)*u E A*(Y*) +pos{xil i E J>(u)} 

+span{xil i E Io(u)}] ==? u = 0 
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provided that u E domD*F(x,x*), where the characteristic active index subsets Io(u) and 

I>(u) are defined in (4.25) while the coderivative domain domD*F(x,x*) is computed in 

Theorem 4.5. In fact, implication (5.4) with u E dom D* F(x, x*) is equivalent to 

[- \7 xf(p, x)*u E A*(Y*) + AI,J, -u E B:~s n (ker A)] =? u = 0 (5.5) 

with I= I(x) and .:J = .:J(x,x*). Furthermore, we have the precise formula for computing 

the exact Lipschitzian bound of the solution map S at (p, x): 

lipS(p,x) =sup {II'Vpf(p,x)*ulll u E domD*F(p,x), 

-x* - \7 xf(p, x)*u E A*(Y*) +span{ xi I i E Io(u)} 

+pos{xil i E J>(u)}, II'Vxf(x,x*)*u+x*ll ~ 1}. 
(5.6) 

Proof. Let us employ the coderivative characterizations of Theorem 2.1 whose general 
assumptions are satisfied by Proposition 5.1. Furthermore, the PSNC property of S is 
automatic due to the finite dimension of the parameter/domain space Z, and the condition 
\7 pf(p, x)*u = 0 is equivalent to u = 0 by the assumed surjectivity of \7 pf (p, x). Hence 
criteria (5.2) and (5.4) for the Lipschitz-like property of Sin (i) and (ii), respectively, follow 
directly from (2.13) and the coderivative formulas for S obtained in Proposition 5.2 as 
x* = 0. Observe also from the proof of Theorem 4. 7 and the monotonicity relationships 

Aa,T c Aa',T' and Ba,T :J Ba',T' whenever G C G', T c T' (5.7) 

for the constructions in (3.20) and (3.21) that the Lipschitzian stability criterion (5.2) can 
be equivalently written in form (5.5). Indeed, from the proof of Theorem 4.7 we have that 
Y(.:J) = .:J under the assumptions in (ii). Thus 

domD*F(x,x*) = {u E XI Au= 0 and (xi,u) = 0 for all i E.:!}= B.7,.:7 n (kerA). 

The exact bound formulas (5.3) and (5.6) follow now from Theorem 2.1 and the coderivative 
calculations of Proposition 5.2. This completes the proof of the theorem. 6 

Next we study the Lipschitz-like property of the solution map (1.2) over the generalized 
polyhedron (3.4) when both parameter and decision spaces are infinite-dimensional. The 
Banach space setting for the parameter space Z makes the situation significantly more 
difficult in comparison with Theorem 5.3, since it requires to verify the PSNC property of 
the solution map according to Theorem 2.1. To proceed, we rely on a certain well-posedness 
of the original variational inequality (1.1) formalized in the following definition, which is an 
extension of the corresponding property from [11] to the case of generalized polyhedra. 

Definition 5.4 (kernel well-posedness of variational inequalities over generalized 
polyhedra). We say that the parametric variational inequality (1.1) over the generalized 

polyhedron (3.4) exhibits the KERNEL WELL-POSEDNESS at the point (p, x) E gph S of dif­

ferentiability of the base mapping f with respect to the decision variable if 

[sup{I('Vxf(p,x)u,xk)ll u E (kerA) nB(X)} -t 0, Xk ~ 0, 

xkEL:=(kerA)n(ker{xiliE.:J(x,x*)}] ==? llxkll->0 as k->oo, 
(5.8) 

where .:J (x, x*) is the corresponding index set of positive multipliers with x* = - f (p, x). 
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It is obvious that the kernel well-posedness holds when the decision space X is finite­

dimensional. The next proposition presents some sufficient conditions for the latter property 

in the case of reflexive Banach spaces X. Observe that the coercivity condition (b) therein 

significantly improves the one in [11, Proposition 5.6( c)] and its simple proof given below 

is independent of the Lax-Milgram theorem employed in [11]. 

Proposition 5.5 (sufficient conditions for kernel well-posedness in generalized 
polyhedral settings). Let X be a reflexive Banach space, and let the subspace L C X 

be defined in (5.8). Then the variational inequality (1.1) over (3.4) exhibits the kernel 

well-posedness under each of the following conditions: 

(a) The adjoint operator \l xf(p, x)*: X --) X* is injective on L, i.e., 

and the image space (\lxf(p,x)*(L) is closed in X*; both these properties are automatic 

when the operator \l xf(p, x) is surjective. 

(b) The operator \lxf(p,x) is coercive on L, i.e., there is some f.L > 0 such that 

1-LIIxll2 ::; (\7 xf(p, x)x, x) for all X E L. (5.9) 

Proof. For case (a) it follows the lines in the proof of [1,1, Proposition 5.6(b)]· with the 

kernel subspace L defined in (5.8) instead of the one from [11]. To justify the result in case 

(b), take a sequence {xk} on the left-hand side of (5.8) and observe by (5.9) that 

which implies that llxkll-) 0 ask--) oo and completes the proof of the proposition. 6 

The following lemma plays a key technical role in the proof of the main stability results 

of Theorem 5.7, where the parameter space is infinite-dimensional. 

Lemma 5.6 (kernel well-posedness implies the PSNC property of solution maps). 

In addition to the assumptions of Proposition 5.2(ii), suppose that the kernel well-posedness 

condition from Definition 5.4 is satisfied. Then the solution map (1.2) is PSNC at (p, x). 

Proof. To verify the PSNC property of the solution map S at (p, x) according to its 

definition (2.11), take sequences (pk,xhc)--) (p,x) such that (pk,xk) E gphS ask E IN and 

(p'k,vk) E N((pkJxk);gphS) with Pk ~ 0 and llv'kll-) 0 as k-+ oo. (5.10) 

Since \1 pf(p, x) is assumed to be surjective, the mapping g: Z x X ::::\ X x X* defined in 

(3.3) has the surjective derivative at (p,x). Applying now [19, Lemma 1.16] to the inverse 

image representation of the graph of sin (3.2), we find sequences (xk, x'k) g~ (x,- f(p, x)) 

such that (x~.c, xt) E gph F for all k E IN and 

{ 
(ift,vk) E \lg(p,x)*N((xk,X'k);gphF) with 

llif'k - P'k II --) 0 and llv'k - v'k II -+ 0 as k -+ oo. (5.11) 
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It is easy to observe from (5.11) and the structure of g in (3.3) that there are 

(uk,,uk) E N((xk,x'k);gphF) for all k E IN 

satisfying the following relationships with CiSi,,, wk,) from (5.11): 

~ " !(- -)* d -· * " !(- -)* Pk = - v p p, x uk an vk = uk - v x p, x Uk. 

(5.12) 

(5.13) 

Proceeding now as in the proof of Theorem 4.1 for prenormals (5.12) and defining the active 
indices subsets P c 1M c 1(x) as in (4.4) and (4.6), respectively, we get that 

(5.14) 

along a subsequence of k E IN with no relabeling. Hence 

uk, = A*yJ; + L Aikxi + L /-Ljkxj (5.15) 
iElM\P jEP 

for some Aik ~ 0 as i E 1M\ P, /-Ljk E lR as j E P, and yJ; E Y* via the generating elements 
{xi I i E h.1} of (3.4) and the operator A in the generalized polyhedron description (3.4). 

It follows from the convergence :P'k ~ 0 due to (5.10) and (5.11) and from the surjec­
tivity of the operator \lpf(p,x) that Uk ~ 0 ask-) oo by the first equality in (5.13). 
Employing again the relationships in (5.10) and (5.11), we get that 

llvZII ::; 11111;- vZII + llvZII -) 0 as k-) oo. (5.16) 

Combining the latter with the second equality in (5.13) implies the convergence u;; ~ 0 as 
k -) oo. Furthermore, the sequence { uk} is bounded by the uniform boundedness principle. 
It is not hard to conclude from (5.15) by the standard contradiction arguments based on 
the linear independence assumption on the active generating element {xi I i E 1(x)} and 
the qualification condition (4.13) that the sequences {yk}, {Aik}, and {f.Ljk} are bounded 
for all i E 1M \ P and all j E P, respectively. This ensures with no loss of generality that 
yj, ~ y* E Y*, Aik -) Ai ~ 0, and /-Ljk -) /-Lj E lR as k -) oo whenever i E 1M\ P and 
j E P. Now passing to the limit in (5.15) as k-) oo, we arrive at 

L Aixi + Lf-Lixj + A*y* = 0. (5.17) 
iEIM\P jEP 

It follows from (5.17) and the qualification condition (4.13) that 

L Aixi + L f.LjXj = A*y* = 0, 
iElM\P jEP 

which implies that Ai = 0 for all i E h.1(x) and /-Lj = 0 for all j E P by the assumed linear 
independence of {xi I i E h.1}. This gives in turns that 

lim llu'k- A*yZII = 0. 
~,,_,00 

Thus we arrive at the limiting relationship 

lim sup I (u'k, u) I = 0, 
k-+oo 11.E(kerA)nB(X) 
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which yields by (5.13) and (5.16) that 

lim . sup i(ubf(p,x)u)i = 0. 
l.c->oo u.E(kerA)nB(X) 

(5.18) 

Further, it follows from the construction of B1p.,1 ,p in (3.21) and the set monotonicity rela­

tionships in (5.7) that the second inclusion in (5.14) can be replaced by 

Uk E BIM,P n (ker A) c B.J,.J n (ker A) = (ker A) n ker {xi I i E .J(x, x*)}, (5.19) 

where the equality in (5.19) is a direct consequence of the definitions. Observe also that 
property (5.19) together with (5.18) and the kernel well-posedness of (1.1) at (p, x) imply 

that liukil ---4 0 and hence IIP'r,ll ---4 0 ask ---4 oo by (5.13). Taking finally (5.10) into account 
allows us to conclude that the relationships in (5.11) imply that liP!: II ---4 0 ask ---4 oo, which 
thus justifies the PSNC property of S at (p, x) and completes the proof of the lemma. 6 

Combining the above pieces together, we now arrive at characterizing the Lipschitz-like 
property of the solution map (1.2), which is a (not full) counterpart of Theorem 5.3(ii) when 
the parameter space Z is infinite-dimensional. 

Theorem 5. 7 (Lipschitzian stability of parametric variational inequalities over 
generalized polyhedra in infinite dimensions). Let the parameter space Z be a reflex­

ive Banach space in the framework of Theorem 5.3(ii). Assume in addition the fulfillment 

of the kernel well-posedness condition from Definition 5.4. Then all the conclusions of The­

orem 5.3(ii) holds true in this setting except that equality (5.6) is replaced by the following 

lower estimate of the exact Lipschitzian bound: 

lipS(p,x) 2:: sup {IIY'pf(p,x)*uiil u E domD*F(p,x), 
-x*- Y'xf(p,x)*u E A*(Y*) +span{ xi! i E Io(u)} · 

+pos{xil i E J>(u)}, IIY'xf(p,x)*u+x*ll :S 1}. 

(5.20) 

Proof. Observe first that the general assumptions of Theorem 2.1 are satisfied by Proposi­
tion 5.1. Furthermore, the PSNC property of S is satisfied under the kernel well-posedness 
by Lemma 5.6. Based now the coderivative characterization of the Lipschitz-like property 
from Theorem 2.1 and repeating the proof of Theorem 5.3(ii), we arrive at all the conclusion 
of this theorem, where the lower estimate for the exact Lipschitzian bound (5.20) follows 
from the corresponding estimate (2.14) in Theorem 2.1. This completes the proof. !::, 

To conclude this section and the whole paper, we derive explicit conditions ensuring the 
fulfillment of the coderivative criterion (5.5) in Theorems 5.3(ii) and 5.7 together with the 
kernel well-posedness of the variational inequality under consideration. Observe that the 
result below improves [11, Corollary 5.8] even in the case of standard convex polyhedra. 

Corollary 5.8 (Lipschitzian stability under kernel coercivity over generalized 

polyhedra). Let (p, x) E gph S for the solution map (1.2) to the parametric variational 

inequality (1.1) over the generalized polyhedron (3.4) in reflexive Banach spaces X and 

Z, where the base mapping f is strictly differentiable at (p, x) with the surjective partial 

derivative \i'pf(p,x). Assume that the generating elements {xi I i E I(x)} of (3.4) are 
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linearly independent, that the qualification condition (4.13) is satisfied, that I(x) = .J(x,x*) 
with x* = - f(p, x), and that \7 xf(p, x) is coercive on the kernel subspace L from (5.8). Then 

the solution map S is Lipschitz-like around (p, x). 

Proof. Observe first that the kernel well-posedness property from Definition 5.4 is satisfied 

under the assumed coercivity (5.9) by Proposition 5.5(b). By Theorem 5.7 it remains to 
check that the coderivative criterion (5.5) holds in this setting. We can easily see that the 
kernel subspace L from (5.8) admits the representations 

L = B.:J,.:J n (ker A) = B1,1 n (ker A) 

and that the criterion (5.5) can be equivalently written as 

-\lxf(p,x)*u E A*(Y*) +span{ xi I i E J(x)} } ==> 1L = O. 
and -u E (ker A) n ker {xi I 'i E I(x)} 

(5.21) 

(5.22) 

By the coercivity (5.9) of \7 xf(p, x) on the kernel subspace L from (5.21), we find a constant 

J.l > 0 such that 

J.LIIull 2 :=:; (\7 xf(fJ, x)u, u) = (u, \7 xf(fJ, x)*u) = o 
for any u E X satisfying the inclusions on the left-hand side of (5.22). The latter justifies 
the implication in (5.22) and thus completes the proof of the proposition. 6. 
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