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Abstract This paper concerns the study of a general minimal time problem with a 
convex constant dynamic and a closed target set in Banach spaces. We pay the main 
attention to deriving efficient conditions for the major well-posedness properties that 
include the existence and uniqueness of optimal solutions as well as certain regularity of 
the optimal value function with respect to state variables. Most of the results obtained 
are new even in finite-dimensional spaces. Our approach is based on advanced tools of 
variational analysis and generalized differentiation. 

Keywords Minimal time function· Minimal time projection· Variational analysis · 
Generalized differentiation 
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1 Introduction 

A general class of minimal time problems with constant dynamics can be described as: 

minimize t > 0 subject to (x + tF) n C =/= 0, x E X, (1.1) 

where X is a Banach space of state variables, C c X is a closed target set, and F C X 
is a closed, convex, and bounded set with 0 E int F reflecting the constant dynamics 
± E F of the differential inclusion. These requirements on the dynamics and target are 
our standing assumptions in this paper. Various properties of optimal solutions to (1.1) 
were studied in [6, 7, 9, 13] and the references therein in finite and infinite dimensions. 
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The major optimal characteristics of problem (1.1) are given by the optimal value 
function (known also as the minimal value function) defined by 

Tt(x) = T(x) := inf { t > Oi (x + tF) n C)# 0} = inf pp(y- x), (1.2) 
yEC 

where pE(·) is the classical Minkowski functional/gauge 

pp(u) := inf {t > 01 C 1u E F}, u EX, (1.3) 

and by the generalized/minimal time projection 

IIb(x) := {y E Ci PF(Y- x) = T(x)}, x EX, (1.4) 

which is generally a set-valued mapping II: X ==t C with possibly empty values. 
Observe that the minimal value function (1.2) can be considered as a natural gener

alization of the classical distance function 

dist(x;C) := inf IIY- xll, x EX, 
yEC 

(1.5) 

which corresponds to (1.2) with F = lB, the closed unit ball of the space in question. In 
the latter case, the generalized projection (1.4) reduces to the usual metric projection 

IIc(x) := {y E Ci dist(x;C) = IIY- xll}, x EX, (1.6) 

of x onto C induced by the norm of the Banach space X under consideration. 

The main objective of this paper is to study well-posedness of the minimal time 
problem (1.1) in finite-dimensional and infinite-dimensional spaces. By well-posedness 
we understand here the existence and uniqueness of the generalized projection (1.4) in 
connection with certain regularity properties of the minimal time function (1.2). Since 
the latter function is intrinsically nonsmooth, our study strongly involves the usage of 
appropriate tools of advanced variational analysis and generalized differentiation. 

Concerning most relevant results of the previous investigations, note that the proxi
mal and F'rechet subdifferentials of the minimal time function in Hilbert spaces are com
puted in [5, 6]. Furthermore, based on these formulas and adapting respective arguments 
used earlier in [2, 3, 4, 15J to study the metric projection (1.6), the authors of [5, 6] estab
lish some well-posedness properties (existence, uniqueness, and certain regularity near 
the target C) of the minimal time projection (1.4). The assumptions in [5, 6] involve 
both "external sphere type" conditions on C, called c.p-convexity or proximal smoothness, 
and a kind of uniform strict convexity of the dynamics F. Quite recently [7], these con
ditions have been sharpened and localized by introducing a certain regular curvature of 
a convex body. Besides that, an alternative hypothesis involving the duality mapping 
(see Section 2) is proposed in [7] requiring neither c.p-convexity of the target set C nor 
rotundity /strict convexity of the dynamics F. 

Formulas for evaluating the proximal and Jilrechet subdifferentials of the minimal time 
function (1.2) in general Banach spaces, extending the corresponding results of [5, 6] from 
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the Hilbert space setting, are obtained in [9]. The most recent results in this direction 
derived in [13] provide tight upper estimates as well as exact formulas for computing 
the c:-subdifferentials of the Fn§chet type and the limiting/Mordukhovich subdifferential 
of the minimal time function at both in-set (x E C) and out-of-set (x ¢. C) points in 
arbitrary Banach spaces X. The results of [13] extend those obtained in [11, 12] for the 
latter subdifferentials of the distance function (1.5). They are used in what follows to----------------~--------
establish some regularity properties of the minimal time function (1.2). 

In this paper we develop an approach to the existence and uniqueness of the minimal 
time projection (1.4) that is different from the previous investigations discussed above. 
Namely, we study the existence and uniqueness of (1.4) through subdifferentiability of the 
minimal time function (1.2) at a fixed point x E X\ C (not necessarily in a neighborhood 
of the target). A prototype result for the metric projection mapping (1.6) can be found 
in [1, Lemma 6], which proves the existence and uniqueness of the metric projection of 
x E X\ C onto C provided that the distance function (1.5) is Frechet subdifferentiable at 
x and that the space X admits a Frechet smooth renorm. We obtain a similar result in 
this direction for the general minimal time projection (1.4) by using some local rotundity 
properties of the dynamics F expressed in terms of the duality mapping associated with 
F. We also derive other verifiable conditions, including necessary and sufficient ones, for 
the existence and uniqueness of the minimal time projection that are expressed in terms 
of the dynamics and target sets in (1.1). 

Finally, we derive efficient conditions ensuring the lowerjsubdifferential regularity of 
(1.2) at both in-set and out-of-set points of the target. The assumptions imposed and 
the results obtained are illustrated by examples and counterexamples in both finite
dimensional and infinite-dimensional spaces. 

The rest of the paper is organized as follows. Section 2 contains some definitions and 
preliminary material from convex and variational analysis widely used in the paper. 

In Section 3 we establish relationships between the minimal time projection mapping 
(1.4) and its €-enlargement, from one side, and the duality mapping for the dynamics 
and the Frechet subdifferential of the minimal time function at the reference point from 
the other. This allows us to derive sufficient conditions for the existence and uniqueness 
of the minimal time projection via some rotundity properties of the dynamics. 

In Section 4, by using a somewhat different approach in comparison with Section 3, 
we obtain characterizations of· the existence and uniqueness of the minimal time pro
jection in terms of the Gateaux differentiability of the support function associated with 
an appropriate subset of the target C in (1.1). Sufficient conditions of another type are 
derived under the Frechet differentiability of the support function associated with the 
€-enlargement of the minimal time projection onto C. 

The final Section 5 provides efficient conditions ensuring the lower regularity of the 
minimal time function (1.2) that imply, in the case of reflexive and more general As
plund spaces, the Frechet subdifferentiability of (1.2) at the reference points, which is 
essentially used in the most interesting results of Sections 3 and 4 on the uniqueness 
of the minimal time projection (1.4). On the other hand, we present examples showing 
that the lower regularity of (1.2) is not necessary for the uniqueness of (1.4), while even 
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Fn3chet differentiability alone does not ensure the uniqueness of generalized projections. 

2 Basic Definitions and Preliminaries 

In this section we present some constructions and facts from convex and variational 
----~-----------analysis IIeeded-irrwhat-foiiows;-lf-he--reader--can-consult-the--booksil-f!i--in---the--ce~nvex-----

case and [10] in the general setting for more details, discussions, and further references. 
Unless otherwise stated, the space X under consideration is arbitrary Banach with 

the norm 11·11, and the canonical pairing (-, ·) between X and its topological dual X*. 
Given a nonempty set F c X, we recall the construction of its polar 

F 0 := {x* E X*l(x*,x)::::; 1 for all x E F}, 

which is always a convex (even when F is nonconvex) and weak* closed subset of the 
dual space X*. The support function C5F: X* ----> 1R := ( -oo, oo] ofF is 

C5p(x*) = sup(x*, x), x* EX*. 
xEF 

(2.1) 

Note that (2.1) is always convex and lower semicontinuous (l.s.c.) on X*, and it is 
conjugate to the indicator function 8p(·) ofF equal to 0 for x E F and oo otherwise. 

The duality mapping JF: F 0 ==? F for F is defined by 

Jp(x*) := { x E Fl (x*, x) = C5p(x*)}, x* E F 0
, 

which reduces to the simplified representation on the boundary bd F 0 of F 0
: 

Jp(x*) = {x E Fl (x*,x) = 1}, x* E bdF0
• (2.2) 

Furthermore, in the case of reflexive spaces X we have the relationship 

OC5p(x*) = Jp(x*) for all x* E F0
, (2.3) 

where a stands for the classical subdifferential of convex analysis. It is worth mentioning 
that, under our standing assumptions on the dynamics F, both the Minkowski gauge 
(1.3) and the minimal time function (1.2) are Lipschitz continuous on X. Furthermore, 

pp(x) = C5po(x) and ppo(x*) = C5p(x*) for all x EX, x* EX*. (2.4) 

Using (1.2) and (1.3) allows us to consider, together with the (possibly empty) minimal 
time projection (1.4), its always nonempty enlargement called £-approximate minimal 
time projection as e > 0 and denoted by 

Ilb(x,e) := {y E Cl pp(y- x)::::; T(x) +c-}-:/= 0 for all x EX. (2.5) 

Note that both the minimal time projection (1.4) and its £-enlargement (2.5), for all 
t: > 0, are closed subsets of X under our standing assumptions. 
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Let us further recall two outer/upper limits of the Painleve-Kuratowski type needed 
in this paper. Given a set-valued mapping G: Y ==t Z between two Banach spaces, 
consider the weak sequential outer limit of G at y defined and denoted by 

w-Lims_?pG(y):={zEZI 3 sequences Yk---+Y and Zk~Z, as k---+oo 
Y->Y 

where ~ signifies the weak topology of the image space Z. 
Another version of the sequential Painleve-Kuratowski outer limit needed below con

cerns set-valued mappings G: X ==t X* between a Banach space X and its topological 
dual. We say that the construction 

w*-Lims_upG(x) := {x* E X*l 
X->X 

w• 
3 sequences Xk ---+ x and x'k ---+ x* 

with xt, E G(xk) for all k E IN} 
(2.7) 

is the w* -sequential outer limit of G as x ---+ x, where w* signifies the weak* topology 
of the dual space X*. Note that we use sequences in both constructions (2.6) and (2.7) 
although neither the weak topology of a Banach space nor the weak* topology of a dual 
Banach space is generally sequential. 

Consider next an extended-real-valued function cp: X ---+ lR on a Banach space X. 
Given c 2:: 0, the c-subdifferential of cp at x E dom cp := { x E XI cp(x) < oo} is defined by 

Bc;cp(x) := {x* E X*llimi!lf cp(x)- cp(x)- (x* ,x- x) 2:: -c} 
x->x llx - xll 

(2.8) 

with Bcp(x) := Bocp(x) called the Frechet subdifferential if cp at x. If cp is Fnkhet dif
ferentiable at x, then Bcp(x) reduces to the classical Frechet derivative. In general the 
set Bc:cp(x) is convex for any c 2:: 0 while it may often be empty for nonconvex functions 
as, e.g., in the case of cp(x) = -lxl at x = 0 E JR. Observe furthermore that the sub
differential construction (2.8), including Bcp( ·), does not satisfy pointwise calculus rules 
(for sums, compositions, etc.) required in various applications. This is dramatically 
improved for the sequential limiting construction 

acp(x) := w*-LimsupBc:cp(x), 
x!:.x 
c!O 

(2.9) 

known as the basicjlimitingjMordukhovich subdifferential of cp at x, where x .:£., x stands 
for x ---+ x with cp(x) ---+ cp(x). We can equivalently put c = 0 in (2.9) if <p is l.s.c. 
around x and the space X is Asplund, i.e., each separable subspace of it has a separable 
dual. The latter subclass of Banach spaces is sufficiently large including, in particular, 
every reflexive space and every Banach space with a separable dual. Note that the basic 
subdifferential (2.9) reduces to the classical derivative for smooth functions cp and to the 
subdifferential of convex analysis when cp is convex, while the set (2.9) may often be 
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nonconvex for simple nonconvex functions; e.g., acp(O) = { -1, 1} for cp(x) = -lxl. Recall 
also that acp(x) i= 0 if cp is locally Lipschitzian around x and the space X is Asplund. 

It is clear from (2.9) that we always have the inclusion 

Dcp(x) c acp(x), X E domcp. (2.10) 

----~------AJunction-.cp..:-X---==L]fLlFLcallecLto~b.e_lo_weL'LegulaLat_x_iL(2..10}_holds_as_e_qualit~----~---------~----------
Besides smooth functions, convex functions and the like, the latter property is satisfied 
for various classes of "nice" functions important in applications. Furthermore, there is a 
well-developed calculus ensuring the preservation of lower regularity under a variety of 
operations; see [10] for more details. We can easily deduce from the previous discussions 
that Dcp(x) i= 0 if cp is locally Lipschitzian around x and lower regular at this point 
provided that either X is Asplund, or X is arbitrarily Banach and cp is convex. It is 
particularly important in the framework of this paper, where the minimal time function 
(1.2) is Lipschitz continuous on X while its Fn3chet differentiability DT(x) i= f/J is used 
in the major results established below. 

Finally in this section, define the normal cones 

N(x; n) := D8n(x) and N(x; n) := 88n(x) (2.11) 

to a set 0 C X at x E 0 generated by the corresponding subdifferentials (2.8) and (2.9) 
of the indicator function of n. Note that for X= !Rn the limiting normal cone in (2.11) 
can be equivalently described via the metric projection (1.6) by 

N(x; 0) =Lim sup [cone(x- IIn(x))], 
X-+X 

where the symbol "cone" stands for the conic hull of the set. We say that n is normally 
regular at X En if N(x; n) = N(x; n). This property holds for convex and "nice" non
convex sets; it satisfies rich calculus ensuring its preservation under various operations. 

3 Minimal Time Projection via Dynamics Rotundity 

In this section we first establish general relationships between the minimal time projec
tion (1.4) and its enlargement (2.5), from one side, and the minimal time function (1.2) 
and the duality mapping (2.2) from the other in arbitrary Banach spaces. Then these 
relationships are used, in the reflexive space framework, for deriving conditions ensur
ing the existence and uniqueness of generalized projections via of a certain rotundity 
property of the dynamics that, as shown by an example, cannot be generally removed. 

We begin with the following unconditional inclusion, which is definitely of its own 
interest, being at the same tiine crucial for the subsequent applications in this paper. 

Theorem 3.1 (approximate projection via minimal time function and duality 
mapping in Banach spaces). For each x r{. C we have the inclusion 

w-Limsupiif:(x,.s) c 
c!O 

n (x+T(x)Jp(-x*)). 
x•e8T(x) 
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Proof. In the case of DT(x) = 0 inclusion (3.1) is trivial, since the right-hand side of 
(3.1) is the whole space X by the standard convention. Assuming that DT(x) =/= 0, we 
haveDT(x) C -bdF0 by [9, Theorem 4.2], which is a Banach space extension of the 
Hilbert space result of [6, Theorem 3.1]. This implies by (2.2) that 

Jp(-x*) = {x E FJ (-x*,x) = 1} for - x* E DT(x). (3.2) 

Select now an arbitrary element y E w-LimsupTib(x,c) and find by (2.6) a sequence 
dO 

{yk} with Yk E Tib(x, ck) and C'k l 0 as k --t oo. Denoting tk := ck12 > 0, suppose 
without loss of generality that T(x) ::; PF(Yk - x) < T(x) + t~. Taking an arbitrary 
Fn3chet subgradient x* E ffr(x), we get from definition (2.8) as c = 0 that 

l 
.. fT(x)-T(x)-(x*,x-x) 

0 
lffil!l II -11 ::::: . X->X X- X 

(3.3) 

Define further a sequence { xk} C X by 

xk := x + tk(Yk - x), k E IN, 

and observe that Xk --t x ask--too, since {Yk} is bounded in X. Furthermore, Xk i= x for 
all k E IN by construction. It thus follows from (3.3) that there is a sequence { ak} c lR 
with lim ak ::::: 0 for which we have the inequality 

k->oo 

T(xk) - T(x) > (x* Y - x) +a k IN tk _ , k k, E . 

The latter implies by the definitions of the minimal time and Minkowski functions and 
by the constructions of the sequences involved that 

( * _) + < PF(Yk - xk) - PF(Yk - x) + t~ ( -) + t k IN X 'Yk -X Ok - tk = -pp Yk- X k, E . 

By passing to the "lim sup" as k --t oo above, we arrive at 

liminf(x*,x- Yk)::::: lim PF(Yk- x) = T(x). 
k->oo k->oo 

On the other hand, by the choice of x* we have the relationships 

(x*, x- Yk) = (-x*,yk- x)::; apo(Yk- x) = PF(Yk- x), 

which imply, by passing to the "limsup" as k --too, that 

limsup(x*, x- Yk) ::; lim PF(Yk- x) = T(x). 
k->oo k->oo 

(3.4) 

(3.5) 

Comparing (3.5) with (3.4) allows us to conclude that the limit lim (x*, x - Yk) exists 
k->oo 

and equals T(x). This implies, since the sequence {yk} weakly converges in X to the 
element y fixed above, that 

(x*, x - Yk) --t (x*, x - y) as k --t oo, 
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and thus (x*, x- y) = T(x). Furthermore, we have 

lim PF(Yk- x) = T(x) = (x*, x- y) ~ apo(y- x) = pp(y- x), (3.6) 
k-->oo 

By the convexity of pp(·), it is weakly lower semicontinuous on X. Hence 

----------· -----..ulie~fpp(yk- x) > PF(Y- x) 

Combining the relationships in (3.6) and (3.7) gives us 

lim PF(Yk- x) = pp(y- x) = T(x), 
k-->oo 

which in turn implies the equalities 

I x* x - y ) - 1 and 
\ 'pp(y-x) -

x-y 
( ) E -bdF. 

PF y-x 

Since -x* E bd F 0 by the above, we get the inclusion 

~- x _) E Jp( -x*), i.e., y Ex+ T(x)Jp( -x*), 
PF y-x 

(3.7) 

which concludes the proof of the theorem by taking into account that the Frechet sub
gradient -x* E iiT(x) was chosen arbitrarily. 6. 

As a consequence of Theorem 3.1, we obtain a precise representation of the (possibly 
empty) minimal time projection (1.4) in arbitrary Banach spaces under our standing 
assumptions made on the dynamics and target. 

Corollary 3.2 (precise representation of minimal time projection in Banach 
spaces). For each x ¢: C and x* E iiT(x) the following holds: 

IIb(x) = (x + T(x)JF( -x*)) n c. (3.8) 

Proof. It follows from Theorem 3.1 that for any fixed x ¢: C and x* E iiT(x) we have 

IIb(x) c w-Limsupllb(x,e) c x + T(x)Jp(-x*). 
e;!O 

This implies, by taking into account the obvious one Ilb(x) C C, that the inclusion "C" 
holds in (3.8). To justify the opposite inclusion ":J" in (3.8), observe that for any 

y E (x + T(x)Jp(-x*)) n c c (x + T(x)bd F) n c 

we get by the constructions of (1.2) and (2.2) with x* E iiT(x) c -bdF0 that 

y E C and pp(y- x) = T(x), 

which gives y E Ilb(x) and thus completes the proof of the corollary. 

Now we are ready to derive the first result of this paper ensuring the existence and 
uniqueness of the minimal time projection (1.4) in reflexive Banach spaces. 
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Theorem 3.3 · (existence and uniqueness of minimal time projection for ro
tund dynamics). Let X be reflexive, and let x fj. C with BT(x) =/= 0. Assume in 
addition that for some x* E BT(x) the support function ap(·) of the dynamics is Frechet 
differentiable at -x*. Then the set 0 =/= lib(x) is a singleton. 

------~----Pro'?i· Since the approximate projection (2.5) is nonempty, closed, and bounded subset 
of X for any c > 0, we deduce from the reflexivity of X that the weak sequential outer 
limit w-Limsupiib(x,.s) is a nonempty subset of X. Pick any element y from the latter 

dO 
set that surely belongs to co C, the convex closure of C. We have by Theorem 3.1 that y E 

x+T(x)Jp(-x*). Furthermore, by the Frechet differentiability of ap(·) (or, equivalently, 
of ppo(·)) at -x*, it follows from [14, Proposition 5.11] that Jp(-x*) is a singleton {v}, 
which is a strongly exposed point ofF; see more discussions in Remark 3.4(ii) below. By 
the above choice y we conclude that y is a weak limit of a minimizing sequence {Yk} C C 
with PF(Yk- x) ---+ T(x) as k---+ oo. Then we have the weak convergence 

Yk- x w y- x 
--:-----:- ------+ -- = v as k ---+ oo. 
PF(Yk- x) T(x) 

(3.9) 

Since vis a strongly exposed point ofF, the convergence in (3.9) is indeed strong in X, 
and thus Yk ---+ y as k ---+ oo. This gives y E C, which yields that y E Ilb(x) =/= 0 by 
Corollary 3.2. Observe finally that the above arguments with the usage of Corollary 3.2 
ensure in fact that the minimal time projection set IIb(x) is a singleton. 1::::, 

Remark 3.4 (on Frechet subdifferentiability and differentiability properties). 
(i) Since any reflexive space is Asplund and since the minimal time function (1.2) 

is Lipschitz continuous, T(·) is Frechet subdifferentiable BT(x) =/= 0 at a point x if, in 
particular, it is lower regular at this point. Indeed, it follows from the definition of lower 
regularity in Section 2 and the fact that the basic subdifferential (2.9) is nonempty for 
any locally Lipschitzian function on an Asplund space; see [10, Corollary 2.25]. 

(ii) Frechet differentiability of the support function aF(·) reflects certain (strong) 
rotundity properties of the dynamics F; some characterizations and verifiable sufficient 
conditions ensuring this property in Hilbert spaces .are given in (8]. Note, in particular, 
that the Frechet differentiability of ap(·) at x* is equivalent to the existence of a unique 
point x E bd F such that the rotundity modulus 

!R(x,x*) := { (x*,x- x)l x E F, llx- xll;:::: r} 

is positive for each r > 0. In this case we have x = \i'ap(x*). In turn, the condition 
!R(x, x*) > 0 is equivalent to say that x is a strongly exposed point of the set F, in the 
sense that the hyperplane 

H(x*) := { x E XI (x*, x) = ap(x*)} (3.10) 

touches Fat the point x only (i.e., Jp(x*) = {x}) and that each sequence {xk} c F 
with (x*, Xk - x) ---+ 0 strongly converges to x as k ---+ oo; in fact, the latter property is 
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used in the proof of Theorem 3.3. The following condition is sufficient for the equivalent 
properties above: taking a unique point x E bdF at which x* is normal to F, we have 

sup pp(x + x) < 2 for each r > 0. 
\lx-x\l>r 

Let us show next that the Frechet differentiability assumptwn on op C:rmTlieo
rem 3.3 cannot be removed, for an arbitrary infinite-dimensional Hilbert space X, in 
order to ensure the existence of the minimal time projection (1.4). Furthermore, the 
generalized projection may exist without this assumption while not being unique. 

Example 3.5 (non-existence and non-uniqueness of generalized projection for 
dynamics with nonsmooth support function). In an arbitrary Hilbert space X 
there are dynamics sets F c X and targets sets C C X satisfying our standing as
sumptions and such that T(·) is Frechet differentiable at 0, that CJp(·) is not Frechet 
differentiable at \7T(O) while rrg(o) = 0. Furthermore, there are F and C with the above 
properties for which rrg(o) i= 0 while the latter projection set in not a singleton. 

Proof. Let X be an arbitrary infinite-dimensional Hilbert space with an orthonormal 
base {en} C X. Define the dynamics and target sets by, respectively, 

F := {x E Xjllxll ~ 1, (x,e1) ~ ~}, (3.11) 

(3.12) 

It is easy to check that the sets F and C satisfy our standing assumptions formulated 
in Section 1. Observe that T(x) = 1 - 2(x, e1) in a neighborhood of the origin, and 
so the minimal time function is Frechet differentiable therein. We have T(O) = 1 and 
VT(O) = -2e1 while pp(y) > 1 for all y E C. The latter means that the minimum of 
pp(·) is not attained inC, and thus rrg(o) = 0. Observe furthermore that 

Jp(- VT(O)) = { x E Xjllxll ~ 1, (x, e1) = ~ }, 

which contains, in particular, the points !e1 + Aen with A2 ~ 3/4, n = 2, 3, .... Thus 
the support function CJ F ( ·) is not Frechet differentiable at - 'VT ( 0). 

By keeping the same dynamics (3.11) while changing the target (3.12) by 

we easily check that the minimal time projection rrg(o) is nonempty, but it is not a 
singleton. In this case the minimal time function T( ·) remains the same. 6. 
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4 Properties of Minimal Time Projection via Target Set 

In this section we derive new verifiable conditions for the existence and uniqueness of 
the minimal time projection (1.4) that, in contrast to the "dynamics" ones in Section 3, 
exploit the corresponding properties of the target set C. Some of the results obtained 
are necessa~cient for the generalized projection set II!';(x) to be a singleton. 
As in Section 3, we essentially use here the underlying projection formula established 
above in Corollary 3.2 applying it to a modified projection operator. 

First we use Corollary 3.2 to interpret the minimal time function (1.21 and the 
minimal time projection (1.4) in a somewhat different way. Assuming that 8T(x) '/= 0 
for some x E X and picking a Fn3chet subgradient x* E fiT(x), consider the modified 
minimal time problem 

minimize t > 0 subject to (x + tJp( -x*)) n C '/= 0, x EX, (4.1) 

for which the dynamics Fin (1.1) is replaced by the duality mapping (2.2). Denote the 
modified minimal time function in (4.1) by 

Tx•(x) = inf PJp(-x•)(Y- x) 
yEC 

and the corresponding modified minimal time projection operator by 

-p * { I - } ITc(x,x) := y E C PJp(-x•)(Y- x) = Tx•(x) . 

(4.2) 

(4.3) 

The next proposition provides conditions for the nonemptiness of the original minimal 
time projection (1.4) in terms of the modified problem (4.1). 

Proposition 4.1 (existence of minimal time projection via modified problem). 
For any fixed x E X and x* E fiT(x) we have that ITb(x) # 0 if and only ifT(x) = Tx• (x) 
and ITb(x, x*) # 0. In this case ITb(x, x*) = ITb(x). 

Proof. With no loss of generality, suppose that x ¢. C. Assuming that Ilb(x) '/= 0 and 
taking the selected subgradient x* E fiT(x) give us by Corollary 3.2 that 

(x + T(x)Jp(-x*)) n C i= 0, and hence Tx•(x):::; T(x). 

On the other hand, we have the relationships 

Jp( -x*) C F, and thus PJp(-x•)(Y- x) ~ pp(y- x) for all y E C. (4.4) 

Taking the infimum in (4.4) over y E C gives us Tx•(x) ~ T(x). Thus we get 

Tx• (x) = T(x) and llb(x, x*) = C n (x + Tx• (x)Jp( -x*)) = IIb(x) i= 0, 

which proves the "only if'' part of the proposition. 
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To justify the "if' part, suppose that T(x) = Tx• (x) and rrb(x, x*) ¥= 0. Then we 
easily conclude by Corollary 3.2 that 

ITb(x) (x+T(x)Jp(-x*))nc 

= (x + Tx•(x)Jp(-x*)) n C = ITb(x,x*) ¥= 0, 

which thus completes the proof of the proposition. 

To proceed with deriving efficient conditions for well-posedness of the minimal time 
problem (1.1) in terms of the target set C, we need the following representation (Propo
sition 4.2) of the modified projection (4.3) via the support function of some subset of 
the target. Given x* E liT(x), denote by Kx• the convex and closed cone generated by 
the duality mapping value Jp( -x*). Consider further the set 

C(x, x*) := C n (x + Kx• ), (4.5) 

which is nonempty if and only if Tx• (x) < oo for the modified minimal time function 
(4.2). Thus it follows from Proposition 4.1 that C(x, x*) # 0 if llb(x) # 0. 

Proposition 4.2 (representation of modified minimal time projection in Ba
nach spaces). Given x ~ C and x* E BT(x), we have the representation 

ITb(x, x*) = {y E C(x, x*) I O"c(x,x•)(x*) = (x*, y)} (4.6) 

of the modified projection ( 4.3) via the support function of ( 4.5). 

Proof. If y belongs to the right-hand side of (4.6), then 

(x*,y) 2: (x*,v) for all v E C with v- x E Kx•· (4.7) 

Moreover, y E C(x,x*), i.e., y E C and there exists A> 0 withy Ex+ AJp(-x*). 
Let us show that A= Tx• (x). Indeed, we have (-x*, y- x) =A, and thus inequality 

( 4. 7) can be rewritten as follows: 

A~t for all t>O such that Cn(x+tJp(-x*)) -#0. 

This implies that A~ Tx• (x), since Tx• (x) is the infimum of all such t > 0 by ( 4.1) and 
(4.2). On the other hand, we have 

yE (x+AJp(-x*))nC¥=0, 

which yields Tx• (x) ~ A. Thus A= Tx• (x) < oo, and furthermore 

PJp(-x•)(Y- x) ~A= Tx•(x), i.e., y E llb(x,x*). 

This gives y E ITb(x,x*) and justifies the inclusion ":J" in (4.6). 
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To prove the inclusion "c" in (4.6), pick any y E fit;(x,x*) and get by (4.3) that 

P3F(-x•)(Y- x) :S P3F(-x•)(v- x) for all v E c. 

Define further A:= Tx•(x) = p3F(-x•)(y-x) and observe that y E x+AJ'p(-x*). On the 
other hand, take t > 0 to be sufficiently small to have C n (x + tJ'p(-x*)) '/: 0. In this 
case there is v E C with t = ( -x*, v - x), and we get A :S t. Taking now into account 
that A = ( -x*, y- x) by construction, we arrive at 

(x*, y- x) ~ (x*, v- x) for each v E C with v- x E tJ'p( -x*), t > 0. 

It gives (x*, y) ~ (x*, v) whenever v E C n (x + Kx• ), which justifies the inclusion "C" 
in ( 4.6) and completes the proof of the proposition. 6. 

Next we use the above propositions to derive necessary and sufficient conditions for 
the existence and uniqueness of the minimal time projection (1.4) at the point in question 
involving the modified value function (4.2) and appropriate subsets of the target set C. 
Note the results obtained in the following theorem are new for the uniqueness part even 
in the cases when the existence is already known as, e.g., in finite dimensions as well as 
for convex target sets in reflexive spaces. 

Theorem 4.3 (characterization of well-posedness of minimal time projection 
via subsets of target). Let X be a reflexive Banach space, and let x E X. The minimal 
time projection set IIb(x) is a nonempty singleton if and only if there exists a Prechet 
subgradient x* E BT(x) such that Tx•(x) = T(x) and the support function O"G(x,x•)(·) of 
( 4.5) is Gateaux differentiable at x*. In this case 

(4.8) 

Proof. By Proposition 4.1 we have that the set rrt;(x) is nonempty if and only if 
ITb(x, x*) f= 0 and Tx• (x) = T(x) for some x* E ifr(x). It holds furthermore that 
llb ( x, x*) = IIb ( x), and thus the sets rrt; ( x) and fib ( x, x*) are singletons simultaneously. 
Employing Proposition 4.2, we get in this case that the right-hand side of ( 4.6) reduces 
to {y} for some y E C(x, x*). On the other hand, the subdifferential of the (always 
convex) support function O'G(x,x•)(·) at x* admits the representation 

aaG(x,x•)(x*) = aacoc(x,x•) (x*) = { v E co C(x, x*) I O'c(x,x*) (x*) = (x*' v)}. (4.9) 

It follows from (4.9) that the set C := 8ac(x,x•)(x*) is an exposed face of the convex 

closed set co C(x, x*). Let us show that Cis bounded. 
To proceed, fix v E C and note that (x*, v) ~ (x*, Y). Since y E x+T(x)JF( -x*), we 

have by Corollary 3.2 that (-x*,y- x) = T(x), which yields f..£:= (-x*,v- x) :S T(x). 
On the other hand, it follows from (4.5) and (4.9) that vEx+ Kx•, which gives 

f..£> 0 and vEx+ [0, T(x)]J'p(-x*); 
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and so ensures the boundedness of the set C in X. 
The reflexivity of the space X and the convexity and closedness of C allow us to 

conclude that the latter set is weakly _50mpact in X. By the classical Krein-Milman 
theorem there is an extreme point ii of C that is, by transitivity, an extreme point of the 
set co C(x, x*) as well. Thus we have ii E C(x, x*), and the equality O'C(x,x•) (x*) = (x*, ii) 

-----~OOJ.ds~he-la.tt~longS--to-the.-set on the_righkh~ide of (4 6), 
which is the singleton {y} in the notation above. This justifies that the subgradient set 
C = 8CTc(x,x•) (x*) is a singleton, and thus-by the classical result of convex analysis-the 
support function O'G(x,x•)O is Gateaux differentiable at x* with 

rrg(x) = {y} = {ii} = {\i'O'G(x,x•)(x*) }. 

This proves the "only if'' part of the theorem with the projection representation (4.8). 
To justify the "if'' part, suppose that the support function O'c(x,x•)O is Gateaux 

differentiable at x*, which gives the relationships 

80'G(x,x•)(x*) = {\i'O'c(x,x•)(x*)} =: {y}. 

Arguing as above, we conclude that y E C(x, x*). This yields, by using formula ( 4.6) from 
Proposition 4.2, that fig(x,x*) = {y}. Taking finally into account that Tx•(x) = T(x) 
as assumed, we arrive at rrg(x) = {y} and complete the proof of the theorem. 6. 

The following remarkable characterization of well-posedness of the minimal time 
problem (1.1) in the case of convex targets follows from Theorem 4.3. 

Corollary 4.4 (existence and uniqueness of minimal time projection for con
vex targets). Let C be a closed and convex subset of a reflexive space X, and let x E X. 
Then 8T(x) f:. 0, and for any subgradient x* E 8T(x) the minimal time projection rrg(x) 
is a nonempty singleton if and only if the support function of the set C(x, x*) in (4.5) is 
Gateaux differentiable at x*. 

Proof. Since the minimal time function T(x) is (Lipschitz) continuous and convex on 
X under the assumptions made, we get that the Fnkhet subdifferential 8T(x) reduces 
to 8T(x), the subdifferential of convex analysis, and also T(x) = Tx•(x) for every sub
gradient x* E 8T(x). The results of the corollary follow now from Theorem 4.3. 6. 

Remark 4.5 (Gateaux differentiability versus Frechet differentiability of con
vex functions). Observe that, in contrast to the results of Section 3 involving the 
Jilrechet differentiability assumption on the support function of the dynamics, we use in 
Theorem 4.3 and Corollary 4.4 the Gateaux differentiability requirement on the support 
function of a subset of the target set. As it is well known, a Gateaux differentiability 
requirement is essentially weaker than the Frechet differentiability one for convex con
tinuous functions in infinite dimensions. In particular, there is an equivalent norm in the 
space £1 , which is nowhere Frechet differentiable while Gateaux differentiable at every 
nonzero point; see, e.g., [14, Example 1.14(c)]. 
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Let us next obtain another sufficient condition for well-posedness of the minimal 
time problem (1.1), different from the previous results of this section, that relates to 
the Gateaux differentiability of the support function of an enlargement of the minimal 
time projection. We preliminary need the following proposition of its own interest; cf. 
[6, Theorem 4.2] for the case of Hilbert spaces. 

Proposition 4.6 (minimal time function and projection estimates for convex 
targets in Banach spaces). Let C c X be a closed and convex subset of a Banach 
space X. Then for any x E X we have the inclusion 

8T(x) c N(fj; C) whenever fj E 11b(x), (4.10) 

which can be equivalently written in the dual form 

rrg(x) c 8ac(x*) for each x* E 8T(x) =!= 0. (4.11) 

Proof. As mentioned above, the (Lipschitz continuous) minimal time function T( ·) 
is convex, and hence its Fnkhet subdifferential ffr(x) is nonempty and reduces to the 
subdifferential 8T(x) of convex analysis, i.e., 

T(x)- T(x) ;:::: (x*, x- x) for all x EX and x* E 8T(x). 

By the construction of T(x) in (1.2) the latter implies, in particular, that 

(x*,x- x)::::; -T(x) for all x E C, (4.12) 

which implies (4.10) by T(x) ;:::: 0. On the other hand, we get from Corollary 3.2 that 

[y E 11b(x) c x + T(x)JF( -x*)] ===} [ (-x*, y- x) = T(x)]. (4.13) 

It follows from (4.12) and (4.13) that (x*, x- y) ::::; 0 for all x E C, and hence we get 
(x*, y) ;:::: ac(x*). Consequently, (x*, y) = ac(x*) by y E C. Thus y E 8ac(x*), which 
justifies (4.11) as well as the equivalence between (4.10) and (4.11). 6. 

Now we are ready to derive the aforementioned sufficient condition for well-posedness 
of the minimal function problem with an arbitrary closed target set (1.1). 

Theorem 4. 7 (existence and uniqueness of minimal time projection via prop
erties of its enlargement). Let X be reflexive, let x fJ. C, and let EfT(x) =/= 0. Given 
any c > 0, denote by S(x,c) the closed convex hull of the €-approximate projection 
ITb(x,c) in (2.5). Then the minimal time projection ITb(x) is a nonempty singleton if 

for some x* E EfT(x) the support function as(x,e-)0 is Gateaux differentiable at x*. 

Proof. Since the space X is reflexive and the set S(x,c) is convex and closed, the ap
proximate projection set IT~(x,e-)(x) is nonempty. Moreover, we get from Proposition 4.2 

that rr:(x,e) (x) c 8as(x,e-) (x*), and hence the set rr:(x,e-) (x) is a singleton 

rr~(x,e)(x) =: {fj} 
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by the imposed differentiability assumption. Furthermore, it follows from the Gateux 
differentiability of as(x,c) at x* that fj is an exposed point (not strongly) of the convex 
and closed set S(x, c) C C, i.e., the corresponding hyperplane (3.10) touches the set 
S ( x, c) only at fj. This yields that fj E C. 

Let us next justify the inequality in 

pp(Y- x)- mf pp(y- x) S T(x). 
yES(x,c) 

Indeed, given an arbitrary 'Y satisfying 0 < 'Y < c and using definition (1.2), find y E C 
such that T(x) 2: pp(y- x)- "f 2: pp(y- x)- c. This gives y E S(x, c) and thus justifies 
the inequality in (4.14). Since fj E C, we get pp(fj- x) = T(x), i.e., fj E IIb(x) i= 0. 

It remains to prove the uniqueness of the minimal time projection. Assume on the 
contrary that there is y E rrg(x) withy i= fj. We obviously have y E S(x, c) and 

( -x*, fj - x) = ( -x*, y- x) = 1 

by Corollary 3.2. The latter gives 

as(x,c)(x*) = (x*, fj) = (x*, Y), 

which contradicts the assumed differentiability of the support function as(x,c) at x* and 
this completes the proof of the theorem. 6. 

5 Lower Regularity of Minimal Time Function and Unique
ness of Generalized Projections 

Observe that the major results of Sections 3 and 4 involve the assumption about the 
Frechet subdifferentiability of the minimal time function (1.2) at the reference point, i.e., 
aT(x) i= 0. As mentioned above, this assumption holds if the minimal time function 
T(·) is lower regular at x and the space X is either Asplund (e.g., reflexive), or X is 
arbitrary Banach and TO is convex on X. On the other hand, it is well known (see 
[10, p. 111] and the references therein) that, in the case of the metric projection (1.6) of 
x fj. C onto a closed subset C of a finite-dimensional Euclidean space, i.e., for X = IRn 
and F = 1B in (1.4), the lower regularity ofT(·) = dist(·; C) at x is equivalent to its 
differentiability at this point and provides a necessary and sufficient condition for IIc(x) 
to be a singleton. This characterization is essentially due to the fact that the distance 
function is semiconcave around out-of-set points x fj. C. 

In this section we pursue a twofold goal. First to illustrate by examples that the 
aforementioned relationships are no longer true for the minimal time problem (1.1) with 
C i= lB in both finite and infinite dimensions. Then we present efficient conditions, which 
ensure (and some of them are also necessary for) the lower regularity of the minimal time 
function (1.2) at in-set and out-of set points. 

Let us start with an example showing that, already in X = JR2 , the minimal time 
projection rrg(x) can be a singleton for some x fj. C while the minimal time function 
T(·) is not differentiable and even not lower regular at this point. 
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Example 5.1 (single-valuedness of minimal time projection does not imply 
either differentiability or lower regularity of minimal time function in finite 
dimensions). There is a nonconvex target set C c JR2 and a convex polyhedral dynamics 
F such that IT~(x) is a singleton at some x fj. C while T(·) is not lower regular at x. 

________ _p_r_o_of._Gonsider_a.n even_functioiLc,cL:_.llL:::Lll:Lgi.Ye.lLQll IR+ := [0, oo)_by___ ____ ·-·--------------------------··-

0 

k(x- I.)- 2_ 
k k2 

cp(x) := 

00 

for x = 0 

1 k2 + 1 
for - < x < -- k > 2 k- - k3 ' -

k2 + 1 1 
for -- < x < -- k > 2 k3 - - k -1' -

for x > 1 

and define the closed target set C c JR2 in question by the epigraph of this function 

C := {(x,y) E JR2
1 y ~ cp(x)} 

depicted at Figure 1. It is easy to see that cp is differentiable at x = 0 with cp' (0) = 0, 
and thus N((O, 0); C) = (0, -1)JR+. Consider now the dynamics 

and observe that II~(O, -1/2) = {(0, 0)} and that T(O, -1/2) = 1. Letting further 

0 := {(x,y) E IR2
1 T(x,y)::; 1}, (5.1) 

we get the representation of the Fnkhet normal cone (2.11) to this set at (0, -1/2): 

N((o, -1/2); n) = (o, -1)JR+. 

In fact, there are no points belonging to n below the parabola y = -1/2- x2 forall X 

sufficiently close to 0. On the other hand, all the points 

Zk := ( ~, - : 2 - ~) , k ~ 2, 

belong to both the set 0 in (5.1) and the aforementioned parabola for all k ~ 2. Thus 
it follows from [6, Theorem 3.1] that 

81'(0, -1/2) = {(0, ->.)}, where>. E lR is such that ppo(O, -\) = L 
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Observe further that for each k ~ 2 if the triangle Zk + F is displaced a little in the 
direction e = (1, 2), then it continues to touch the boundary of the target Cat the point 
(1/k, -1jk2 ) only; in the other words 

ITb(Zk + te) = (~,- : 2 ) and T(zk + te) = 1 

for all t ~ 0 sufficiently small (see Figure 1). Then for each t > 0 we have 

(2, -1) E N(zk + te; n), k ~ 2. 

c 

1/k 1/(k- 1) 

y = -x2 -1/2 

Figure 1 

Thus there exists an appropriate constant >: > 0 such that 

:>:(2, -1) E 8T(zk + te) for small t ~ 0 and k ~ 2. 

Passing to the limit in the latter inclusions as k --) oo and t l 0, we arrive at 

);(2, -1) E 8T(O, 1/2) 

for the limiting subdifferential (2.9). This implies that 8T(O, -1/2) of. 8T(O, -1/2), and 
hence the minimal time function T(·) is not lower regular at (0, -1/2). 6 

It is worth mentioning further that there are sets C, F C JR2 and a point x 1-. C such 
that the minimal time function is Frechet subdifferentiable at x with 8T(x) not being 
a singleton, while the minimal time projection 0 of. ITF (x; C) is a singleton. Indeed, it 
holds, e.g., in the case of the sets 
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for any point x =(xi. x2) with x1 = x2 > 0. 

Observe also that, as shown in Example 3.5, the Frechet differentiability of the min
imal time function T(·) at x tJ. C does not imply the nonemptiness of the minimal time 
projection rrg(x) in a Hilbert space X. Some modification of that example allows us to 
examine the situation when aT(x) = 0 (and thus T(-) is definitely not lower regular at 

------~x~)~,w~ll:W3ftt~)~r~~nm~.-----------------------------------

Example 5.2 (existence and uniqueness of minimal time projection do not 
imply Frechet subdifferentiability of minimal time function). There are subsets 
C, F C X of a Hilbert space X satisfying the standing assumptions and a point x tJ. C 
such that rrg(x) =/= 0 is a singleton while aT(x) = 0. 

Proof. Let F and C be given as in Example 3.5. Consider now the minimal time 
problem (1.1) with the same dynamics (3.11) and the modified target 

It is easy to check that IIb
1 
(0) = { -el}, while for all A E lR sufficiently small we compute 

the corresponding minimal time function by 

T(Ael) = {1- 2.\ if A~ 0, (5.2) 
1 +A if A< 0. 

Then definition (2.8) withe= 0 applied to function (5.2) gives us aT(O) = 0. 6 

In the rest of the section we study the lower regularity property of the minimal time 
function (1.2) in infinite-dimensional spaces. This topic is of its own interest as a part 
of well-posedness of the minimal time problem (1.1) while, as seen above, is important 
from the viewpoint of existence and uniqueness of the minimal time projection (1.4). 

We begin with establishing a characterization of the lower regularity ofT(·) at in-set 
points of target sets in arbitrary Banach spaces. 

Proposition 5.3 (characterization of lower regularity of minimal time func
tions at in-set points of targets in Banach spaces). Let x E C under the standing 
assumptions made. Then the minimal time function T(·) is lower regular at x if and 
only if the target set C is normally regular at this point. 

Proof. It follows from [9, Theorem 4.1] that 

aT(x) = N(x;C) n {x* E X*l ppo(x*)::; 1}. 

Furthermore, we get from [13, Theorem 3.6] the representation 

N(x; C)= U A8T(x). 
>.;::o 
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Since 0 E int F 0
, equality (5.3) easily implies that 

N(x; C)= U >.fiT(x) (5.5) 
>.:=::o 

with the convention that 0 x 0 = 0. Combining (5.4) and (5.5), we arrive at the equiva-
----------,-,le:-:cn:-::-c-,--e~stL:a-rte-,--,dr-in the proposition. ts-

Next we derive sufficient conditions for lower regularity of the minimal time function 
T(·) at out-of-set points x (j. C in arbitrary Banach spaces. To proceed, let us recall two 
additional constructions needed in what follows. 

Given a target set C c X and a point x (j. C, define the minimal time enlargement 
of C relative to x by 

Cr := { x E Xj T(x) ~ r} with r = T(x) > 0. (5.6) 

Given further a function cp: X--+ lR on a Banach space with cp(x) < oo and following 
[11], define the right-sided limiting subdifferential of cp at x by 

8::::cp(x) := { x* E X* I 3 sequences Ek l 0, Xk --t x and x'k ~ x* 

such that cp(xk) l cp(x) and xk E fiekcp(xk) }· 
(5.7) 

Comparing (5.7) with the basic subdifferential (2.9), we see that the only difference 
between these two constructions is that cp(xk)--+ cp(x) with cp(xk);:::: cp(x) in (5.7) while 
the latter requirement is omitted in (2.9). It follows from the definitions that 

acp(x) c a>cp(x) c 8cp(x). (5.8) 

Note that both inclusions in (5.8) are generally strict even in finite dimensions and that 
we can equivalently put Ek = 0 in (5.7) if X is Asplund and cp is lower semicontinuous 
around x; see [11, 12] and [10, Subsection 1.3.3] for these and other properties of the 
right-sided limiting subdifferential (5.7). 

Proposition 5.4 (lower regularity of minimal time function at out-of-set points 
in Banach spaces). Assume that the minimal time enlargement (5.6) is normally reg
ular at x (j. C. Then the minimal time function T( ·) is lower regular at this point. 

Proof. It follows from [9, Theorem 4.2] (see also [13, Theorem 4.2] for another proof 
and correction) that 

fiT(x) = N(x;Cr) n {x* EX* I ppo(x*) ~ 1} (5.9) 

in terms of the enlargement (5.6). On the other hand, we get from [13, Theorem 4.4] by 
involving the right-sided limiting subdifferential (5. 7) that 

N(x; Cr) = U >.8::::T(x). 
>.:=::o 
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Comparing (5.9) and (5.10) and taking (5.8) into account allow us to arrive at the 
conclusion of the proposition. 6. 

Our final result provides efficient conditions of another type ensuring the lower regu
larity ofT(·) at out-of set points in terms of their generalized projection onto the target 
set X under additional assumptions in Hilbert spaces. 

Recall that the prox~mal normal cone to asetf2TAat:rE111s <:leftne<:lby~----

Np(x; 0) := { x* E X*J3, > 0 with (x*, X- x):::; 'YIIx- xll 2 for all X E 0}. (5.11) 

We always have the inclusions 

Nv(x; O) c N(x; O) c N(x; O), x Eo, (5.12) 

both of which can be strict already in finite dimensions. Accordingly, a set 0 is proximally 
regular at a point x E 0 if 

Nv(x; O) = N(x; O). 

It follows directly from (5.12) that the proximal regularity of a set implies its normal 
regularity at the corresponding point. 

Now we are ready to establish the aforementioned sufficient conditions for lower 
regularity of the minimal time function, giving moreover a precise representation of its 
subdifferential(s) under consideration. 

Theorem 5.5 (lower regularity of minimal time function at out-of-set points 
in Hilbert spaces). In the framework of problem (1.1) let the space X be Hilbert, and 
let x (j. C. Assume furthermore that the minimal time projection ITb ( ·) is single-valued 
around x and satisfies the following "one-point" Holder property at x: there are constants 
K > 0, 1/2 <a:::; 1, and neighborhood U of x such that 

IIIIb(x)- IIb(x)ll :S Kllx- xlla: for all x E U. (5.13) 

If the set C is proximally regular around y := ITb(x), then the minimal time function 
T(-) is lower regular at this point, and we have the representation 

8T(x) = N(y;C) n (- 8pp(Y- x)). (5.14) 

Proof. Fix an arbitrary point x E U from the neighborhood U in (5.13). It follows from 
[6, Theorem 3.3] and the assumed proximal regularity of C around y that 

8T(x) C Np(y;C) n (- 8pF(Y- x)) for y = ITb(x) and any x E U. (5.15) 

Let us now justify the "one-point" version 

Np(Y; C) n (- 8pF(Y- x)) C 8T(x) (5.16) 
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of the opposite inclusion to (5.15) under all the assumptions made. Picking x* from the 
set on the left-hand side of (5.16), we get by the subdifferential construction of convex 
analysis that the inclusion -x* E app(y- x) reads as 

pp(u) 2:: pp(Y- x) + (-x*, u- y + x) for all u EX. (5.17) 

(x*, v - y) ~ f'llv - Vll 2 for all v E C. (5.18) 

Putting then u = y- x for x E U andy= Ilb(x), we get from (5.17) the estimate 

PF(Y- x)- pp(Y- x)- (x*,x- x) 2:: (-x*,y- y). (5.19) 

Combining (5.18) and (5.19) allows us to conclude that 

l
. . f T(x)- T(x)- (x*,x- x) 

1
. . f (-x*,y- y) 

lmm > lmm 
x-+x llx- xll - x-+x llx- xll 

2:: lim i!lf -I'IIY- Vll2 2:: - K I' liii!.IIx- xll2a-1 = 0, 
x-+x llx - xll x-+x 

(5.20) 

where the latter inequality is due to the Holder condition (5.13). By definition (2.8) with 
c = 0, we get from (5.20) that x* E aT(x) and thus justify inclusion (5.16). 

Using next construction (2.9) of the basic subdifferential in the case of Hilbert spaces 
and then inclusion (5.15) and the first one in (5.12) gives us the relationships 

aT(x) = w-LimsupaT(x) c w-Limsup [Nv(y;G) n (- app(y- x))] 
x~x x~x 

c w- Lim sup [N(y; G) n (- app(y- x))], 
x--+X 

(5.21) 

where clearly y = Ilb(x) -t y as x -t x. It follows further from the normal cone 
definitions (2.11) and the graph closedness of the subdifferential of convex analysis that 
the right-hand side of the last inclusion in (5.21) reduces to N(y;C) n (-app(Y- x)). 
This yields by inclusions (5.16), (2.10), and the proximal regularity of G at y that 

N(y; C) n (- app(y- x)) = Np(Y; G) n (- app(Y- x)) c aT(x) c aT(x). (5.22) 

Combining (5.21) and (5.22), we get the lower regularity ofT at x and thus complete 
the proof of theorem. 6. 

Note that efficient conditions ensuring the Holder property of the minimal time pro
jection (5.13) appear in [8]. 
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