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WEAK SHARP MINIMA ON RIEMANNIAN MANIFOLDS 

CHONG LI*, BORIS S. MORDUKHOVICHt, JINHUA WANG+, AND JEN-CHIH YAO§ 

Abstract. This is the first paper dealing with the study of weak sharp minima for constrained optimization problems 
on Riemannian manifolds, which are important in many applications. We consider the notions of local weak sharp minima, 
boundedly weak sharp minima, and global weak sharp minima for such problems and obtain their complete characterizations 
in the case of convex problems on finite-dimensional Riemannian manifolds and their Hadamard counterparts. A number of 
the results obtained in this paper are also new for the case of conventional problems in linear spaces. Our methods involve 
appropriate tools of variational analysis and generalized differentiation on Riemannian and Hadamard manifolds developed and 
efficiently implemented in this paper. 

Key words. Variational analysis and optimization, Weak sharp minima, Riemannian manifolds, Hadamard manifolds, 
Convexity, Generalized differentiability 
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1. Introduction. A vast majority of problems considered in optimization theory are formulated in 
finite-dimensional or infinite-dimensional Banach spaces, where the linear structure plays a crucial role 
to employ conventional tools of variational analysis and (classical or generalized) differentiation to deriving 
optimality conditions and then develop numerical algorithms. At the same time many optimization problems 
arising in various applications cannot be posted in linear spaces and require a Riemannian manifold (in 
particular, a Hadamard manifold) structure for their formalization and study. Among various problems of 
this type we mention geometric models for human spine [2], eigenvalue optimization problems [15, 45, 58], 
nonconvex and nonsmooth problems of constrained optimization in JRn that can be reduced to convex and 
smooth unconstrained optimization problems on Riemannian manifolds as in [19, 27, 48, 54, 59], etc. We refer 
the reader to [2, 6, 24, 33, 45, 49, 58, 59] and the bibliographies therein for more examples and discussions. 

It is worth recalling that a strong interest in optimization problems formulated on Riemannian manifolds 
goes back to the very beginning of modern variational analysis; it was one of the crucial motivations for 
developing the fundamental Ekeland variational principle [25] in the framework of complete metric spaces, 
with no linear structure. The seminal Ekeland's paper [25] contains applications of his variational principle 
to the existence of minimal geodesics on Riemannian manifolds; see also [26] for further developments. More 
recently, a number of important results have been obtained on various aspects of optimization theory and 
applications for problems formulated on Riemannian and Hadamard manifolds as well as on other spaces 
with nonlinear structures; see, e.g., [1, 2, 9, 6, 20, 24, 29, 33, 43, 44, 45, 58, 59] and the references therein. 
Let us particularly mention Newton's method, the conjugate gradient method, the trust-region method, and 
their modifications extended from optimization problems on linear spaces to their Riemannian counterparts. 
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On the other hand, the maximal monotonicity notion in Banach spaces extended to Riemannian manifolds 
makes it possible to develop a proximal-type method to find singular points for multivalued vector fields on 
Riemannian manifolds with nonpositive sectional curvatures, i.e., on Hadamard manifolds; see, e.g., [44] with 
other references. Furthermore, various derivative-like and subdifferential constructions for nondifferentiable 
functions on spaces with no linear structure are developed in [3, 5, 28, 39, 46, 47, 51] and applied therein 
to the study of constrained optimization problems, nonclassical problems of the calculus of variations and 
optimal control, and generalized solutions to the first-order partial differential equations on Riemannian 
manifolds and other important classes of spaces with no linearity. 

This paper is devoted to the study of weak sharp minimizers for constrained optimization problems on 
Riemannian and Hadamard manifolds. To the best of our knowledge, it is the first work concerning the 
notions of this type for optimization problems on spaces with no linear structure. Recall that the notion 
of sharp minima is introduced by Polyak [53] in the case of finite-dimensional Euclidean spaces for the 
analysis of perturbation behavior of optimization problems and the convergence analysis of some numerical 
algorithms; a related notion of "strongly unique local minimum" can be found in the paper by Cromme [18]. 
Then Ferris [30] introduces in the same framework the notion of weak sharp minima to describe an extension 
of sharp minimizers in order to include the possibility of multiple solutions. The later notion has been 
extensively studied by many authors in finite-dimensional and infinite-dimensional linear spaces. Primary 
motivations for these studies relate to sensitivity analysis [14, 15, 36, 41, 52, 61, 62, 63] and to convergence 
analysis of a broad range of optimization algorithms [10, 11, 16, 18, 31, 32, 34]. In particular, Burke 
and Ferris [10] derive necessary optimality conditions for weak sharp minimizers, obtaining also their full 
characterizations in the case of convex problems of unconstrained minimization, with applications to convex 
programming and convergence analysis in finite-dimensional Euclidean spaces. Then Burke and Deng [12] 
extend necessary optimality conditions and characterization results from [10] to problems of constrained 
optimization in Banach spaces, study asymptotic properties of weak sharp minima in terms of associated 
recession functions, and establish some new characterizations of local weak sharp minimizers and the so­
called boundedly weak sharp minimizes. Furthermore, in [13] they explore relationships between the notions 
of weak sharp minima, linear regularity, and error bounds. Linear regularity has been extensively studied in 
[7, 8], where its importance for designing algorithms has been revealed. Note that linear regularity is closely 
related to metric regularity and error bounds for convex inequalities that have been comprehensively studied 
by many authors; see, e.g., [4, 21, 37, 38, 41, 42, 49, 50, 64, 65] and the references therein. 

In the linear space setting the characterizations of weak sharp minimizers for convex optimization prob­
lems have been obtained in two interrelated terms: one via the directional derivative of convex functions and 
the other via the normal cone of convex analysis to the corresponding solution setS; see [10, 12]. The key 
ingredients to derive these characterizations are the following well-known representations in convex analysis 
on Banach spaces: of the subdifferential of the distance function d(·; S) to S given by 

(1.1) 

via the normal cone Ns( ·) to S and the unit ball lE in the space in question, and of the projection operator 
P(·IS) associated with the above solution set by 

y E P(xiS) ~ (x- y, z- y) :s; 0 for all z E S. (1.2) 

One of the primary goals of this paper is to develop the aforementioned characterizations for appro­
priately defined notions of weak sharp minima for convex problems on Riemannian manifolds. However, 
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significant technical difficulties arise in this way from the very beginning: the underlying representations are 
not known to hold on Riemannian manifolds. In particular, the distance function dsO may not be convex 
when the solution set S is convex in the case Riemannian manifolds. Our approaches in this paper to derive 
the corresponding counterparts of representations (1.1) and (1.2) and apply them to characterizing weak 
sharp minimizers are largely different from those used under linear structures. We establish a Riemannian 
counterpart of (1.2) employing variational fields, which do not depend on local charts on Riemannian man­
ifolds. Furthermore, an analog of equality (1.1) for convex sets is derived below for totally convex sets in 
Hadamard manifolds exploiting their nonpositive sectional curvatures. Based on these and other develop­
ments, we establish full characterizations of global, local, and boundedly weak sharp minima for convex 
constrained optimization problems on Riemannian and Hadamard manifolds. Some of the characterizations 
obtained in this paper are appropriate extensions of known ones for spaces with linear structures, while a 
number of our results are new even for the case of finite-dimensional Euclidean spaces. 

The rest of the paper is organized as follows. In Section 2 we present some basic constructions and 
preliminaries in linear spaces, mostly for convex functions and sets, widely used in the sequel. Section 3 is 
devoted to the Riemannian manifold theory and contains, together with certain known constructions and 
facts important in what follows, some new results on Riemannian manifolds that play a crucial role for 
the subsequent characterizations of weak sharp minima. In particular, we establish new descriptions of 
projections for closed subsets in Riemannian manifolds, via verifiable conditions on minimizing geodesics, 
and obtain their complete characterizations and other useful consequences in the presence of convexity. 

Sections 4 and 5 present the main results of the paper. In Section 4 we define the notions of local weak 
sharp minima, boundedly weak sharp minima, and global weak sharp minima on general Riemannian mani­
folds presenting also their equivalent descriptions in the case of convex problems of constrained optimization. 
Then we derive a number of their characterizations in terms of the appropriate directional derivative, sub dif­
ferential, and normal cone constructions of convex analysis on Riemannian manifolds. Section 5 is devoted to 
weak sharp minimizers and their modifications for convex constrained problems on Hadamard manifolds. We 
establish a Hadamard space counterpart of representation (1.1) and on its base derive new characterizations 
for the aforementioned notions of weak sharp minima. The final Section 6 contains concluding discussions of 
the main results obtained in the paper, their comparison with known results in the case of linear spaces, and 
also addresses some forthcoming developments for weak sharp minima in nonconvex problems on Riemannian 
and Hadamard manifolds extending recent results in this direction for spaces with linear structures. 

2. Some preliminaries in linear spaces. For the reader's convenience we review in this section some 
conventional notions, notation, and facts from convex and variational analysis in linear spaces used in what 
follows; see, e.g., [9, 49, 55] for more details. Let X be a normed space with the norm II · II and the canonical 
pairing (-, ·) between X and its topological dual X*. The symbol JB) always stands for the closed unit ball in 
the space in question. Given a set C c X, we denote its interior and closure by int C and cl C, respectively. 
The conic hull generated by C and the polar to X are defined, respectively, by 

coneC := U {.XC} and co:= {x* E X*l (x*,x):::; 1 for all x E C} . 
.>-;:::o 

The indicator function oc(·) of the set C c X is given by 

oc(x) := { : 
X E C, 
otherwise, 
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and the support function o-0 (-) of C is defined by 

o-c(x*) := sup(x*,x) for all x* EX*. 
xEC 

By dc(x) := inf{llx- ell I c E C} we denote the distance function of the set C. Note that the support 
function is always convex, while the indicator and distance function associated with the set are convex if 
and only if the set is convex. The results presented in the next proposition are proved in [12]. 

PROPOSITION 2.1. (Properties of support and distance functions of convex sets). Let E, F be 
two subsets of X, and let K be a nonempty closed convex cone in X. The following assertions hold: 

(i) D"E(x) ~ o-p(x) for each x E K if and only if E C cl(F + K 0
). 

( ii) For all x E X we have the relationship d K ( x) = O"JEnKo ( x). 

Consider now an extended-real-valued function g: X --) iR := ( -oo, oo] with the effective domain 
domg := {x E XI g(x) < oo} and the epigraph of g defined by 

epig := {(x,r) EX x ~~ g(x):::; r}. 

Unless otherwise stated, we assume in what follows that g is convex and proper, i.e., dom g =f. 0. The 
conjugate function to g is defined by 

g*(x*) :=sup { (x*, x) - g(x) I x EX} for all x* EX*. 

It easily follows from the definitions that we have 

o0(x*) = o-c(x*) for all x* EX*. (2.1) 

Recall further that a function g: X ->iRis lower semicontinuous (l.s.c.) on X if its epigraph epig is closed 
in X x R The lower semicontinuous hull, or the closure of g, is the function cl g: X -> iR with 

epi(cl g)= cl(epi g), 

which is the greatest l.s.c. function not exceeded g. The following fundamental duality relationship in convex 
analysis involving the biconjugate function g**: X** -> iR follows from [56, Theorems 4 and 5] provided that 
the initial space X is reflexive: 

g**(x) = clg(x) for all x EX. (2.2) 

3. Auxiliary results on Riemannian manifolds. This section contains necessary material on Rie­
mannian manifolds needed for obtaining the main results on weak sharp minima in the subsequent sections. 
We start with basic definitions and reviewing the required known facts referring the reader to [23, 35] for 
more details and then derive new results of their own interest that play a crucial role in what follows. For 
simplicity our considerations are confined to finite-dimensional Riemannian manifolds, while it is worth men­
tioning that the major results obtained below admit natural extensions to infinite-dimensional settings by 
using advanced variational principles and techniques of modern variational analysis in infinite-dimensional 
spaces; see, e.g., [25, 26, 49] and the references therein. 

Let M be a complete connected m-dimensional Riemannian manifold. By \1 we denote the Levi-Civita 
connection on M. The collection of all tangent vectors of ]\![ at p forms an m-dimensional vector space and 
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is denoted by TpM. The union UpEM(P, TpM) forms a new manifold, which is called the tangent bundle of 
M and is denoted by TM. Recall that a Riemannian metric on a smooth manifold M is a 2-tensor field 
that is symmetric and positively definite. Every Riemannian metric thus determines an inner product and 
a norm on each tangent space TpM, which are typically written as (·, ·)p and II · llr, where the subscript p 
may be omitted if no confusion arises. In this way we can treat the tangent space TpM for each p E M as a 
usual finite-dimensional space denoting by 1Bp the closed unit ball ofTpM, i.e., lBp := {v E TpM lllvll:::; 1}. 

Given two points p, q EM, let -y: [0, 1]---> M be a piecewise smooth curve connecting p and q. Then we 
define the arc-length l(r) of 10 and the Riemannian distance from p to q by, respectively, 

l(t) := {
1

11!'(t)lldt and d(p,q) := infl(r), Jo "Y 

where the infimum is taken over all piecewise smooth curves -y: [0, 1] ---> M connecting p and q. Thus 
(M, d) is a complete metric space by the Hopf-Rinow theorem; see, e.g., [23]. Taking into account that M 
is complete, the exponential map at p denoted by expP : TpM ---> M is well-defined on TpM. Recall further 
that a geodesic 1( ·) on M connecting p and q is called a minimizing geodesic if its arc-length equals to the 
Riemannian distance between p and q. It is easy to see that a curve -y: [0, 1] ---> M is a minimizing geodesic 
connecting p and q if and only if there is a vector v E TpM such that 

llvll = d(p,q) and 1(t) = expp(tv) for each t E [0, 1]. 

The symbols B(p, r) and B(p, r) denote, respectively, the open metric ball and the closed metric ball centered 
at the point p E M with radius r > 0, i.e., 

B(p,r) := {q E Ml d(p,q) < r} and B(p,r) := {q E Ml d(p,q):::; r}. 

Given a nonempty subset D of M, define the distance function dn ( ·): M ---> [0, oo) associated with D by 

dn(x) := inf { d(x, y)l y ED}, x EM, 

and consider the projection P(xiD) of x EM on the set D formed by all points of D closest to x as measured 
by the corresponding distance, i.e., 

P(xiD) := {y E Dl d(x, y) = dn(x) }. 

Observe that P(xiD) =/= 0 whenever D is closed due to the assumed finite dimensionality of M. It is not 
hard to show, similarly to the proof for the case of the standard distance function on linear spaces, that the 
Riemannian counterpart dn(x) is globally Lipschitzian on M; we omit the proof here. 

PROPOSITION 3 .1. (Lipschitz continuity of the distance function on Riemannian manifolds.) 
Whenever 0 =/= D C M in the Riemannian manifold M, the associated distance function dn(·) satisfies the 
global Lipschitz condition on M with Lipschitz constant .e = 1, i.e., 

ldv(x)-dn(Y)I:::;d(x,y) forall x,yEM. 

Next we define, following [59, 60], notions of totally convex and strongly convex subsets of Riemannian 
manifolds that play a significant role in the paper. Note to this end that the uniqueness of geodesics is 
always understood up to an equivalent parameter transformation. 
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DEFINITION 3.2. (Totally convex and strongly convex subsets of Riemannian manifolds.) Let 
D be a nonempty subset of the Riemannian manifold M. We say that: 

(i) D is TOTALLY CONVEX if it contains every geodesic 10 on M with endpoints x, y ED. 

(ii) D is STRONGLY CONVEX if for every two points x, y E D there is the only minimizing geodesic on 
M connecting x, y and entirely belonging to D. 

Recall further that the convexity radius at x E M is defined by 

r(x) :=sup {r > 0 I eacdh balhl in Bd(x: r~ isBs(trong) l~ co~~ex. . } . 
an eac geo es1c m x, r IS mmimizmg 

(3.1) 

The following lemma presents some important properties of the convexity radius. The first statement of it 
is taken from [57, Theorem 5.3, p. 169] while the second one is proved in [17, 60]. 

LEMMA 3.3. (Properties of the convexity radius on Riemannian manifolds.) Let r(x) be the 
convexity radius at x E M defined in (3.1). The following properties are satisfied: 

(i) The function r: M-+ (O,oo] is continuous on M. Furthermore, ifr(x) = oo for some x EM, then 
r(y) = oo for every pointy EM. 

(ii) For any compact subset D of M there is a real number 0 < p(D) ::; infxeD r(x) such that whenever 
0 < r ::; p(D) we have the implication: if,: [0, 1 J -+ B(x, r) is an arbitrary nonconstant geodesic and if the 
curve lo: [0, 1] -+ B(x, r) is a minimizing geodesic connecting x and 1(0) with (1'(0), lb(1)) ?: 0, then the 
functions~ d('Y(s), x) is strictly increasing on [0, 1]. 

Throughout the paper we use the symbol r xy to denote the set of all geodesics 1: [0, 1 J -+ M on M such 
that 1(0) = x and 1(1) = y; the symbol r;>Y stands for the set of geodesics I(·) satisfying the conditions 
1 E r xy and 1 c D. The next theorem is new and plays a key technical role in this paper. 

THEOREM 3.4. (Characterizations of projections on convex subsets of Riemannian mani­
folds.) Let D be a closed subset of M, and let y ED. The following assertions hold: 

(i) Pick a point X E M and a minimizing geodesic lxy E r xy· Then the inclusion y E P(xiD) yields 

(3.2) 

( ii) If furthermore D is totally convex, then there is c: > 0 such that for each x E B (y, c:) we have the 
inclusion y E P(x!D) whenever (3.2) holds for some minimizing geodesic lxy E r xy. 

Proof To justify asserting (i), observe first that it obviously holds when x E D. Thus we need to verify 
it in the case of x ~ D. To proceed, take y E P(xiD) and consider a minimizing geodesic 'Yxy E r xy satisfying 

l('Yxy) = d(x,y) = dD(x). (3.3) 

Arguing by contradiction, suppose that there exist a point z E D and a geodesic lyz E r~z such that 

(3.4) 

We show now that (3.4) implies the existence ofy ED satisfying d(x,Y) < dD(x), which is a clear contra­
diction. Indeed, let V: [0, 1 J -+ T M be a differentiable vector field on the tangent bundle of the smooth 
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manifold M considering along the geodesic /xy and satisfying the endpoint conditions 

V(O) = 0 and V(1) = 'Y~:z(O). (3.5) 

Take c E (0, 1) and define a variation g: (-c,c) x [0, 1]-+ M of {xy by 

g(s, t) := exp"Yxv(t) sV(t) for each (s, t) E ( -c, c) x [0, 1]. 

Then V(t) is a variational field of g, i.e., 

V(t) = ~: (0, t) for all t E [0, 1]. 

Define further a function L: ( -c, c) -+ JR by 

L(s) := 1
1

11~~ (s,t)ll dt for each s E (-c,c), 

which means that L(s) is the arc-length of the curve g(s, ·). In particular, it gives 

L(O) = l('Yxy) = dv(x) (3.6) 

by (3.3). Applying then the first variational formula from [40, Proposition 6.5, p. 99], we have 

Recall that /xy is a geodesic, and thus \l "Y~v(t)'Y~y(t) = 0. This implies together with (3.5) and (3.7) that 

L'(O) = l(~xy) (/~y(1), V(1)) = l(~xy) ('Y~y(1),/~:z(O)) < 0. 

The latter means that the function L(·) is strictly decreasing in a neighborhood of s = 0. Hence there is 
s0 E (0, c) satisfying L(s0 ) < L(O). Letting y := g(s0 , 1) we observe that 

y = g(so, 1) = expy so V(1) = {y:z(so) E /yz CD, 

which ensures that y E D and therefore 

d(x,Y) :s; L(so) < L(O) = dv(x) 

by (3.6). This gives d(x, Y) < dv(x), which is a contradiction showing that assumption (3.4) was wrong, and 
thus we complete the proof of assertion (i) of the theorem. 

It remains to justify the inverse implication (ii) under the additional assumption on the total convexity 
of the underlying set D. Taking r > 0 to be sufficiently small and applying Lemma 3.3(ii) to the compact 
set B(y,r), we get the relationship 

c := min{r,p(B(y,r))} > 0. 

Pick now x E B(y, c) c B(y, r) such that (3.2) holds. To prove (ii), we need to show that y E P(xiD). 
Assume on the contrary that there is y E D satisfying 

d(x, Y) < d(x, y). (3.8) 
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Let lyy E r YY be a minimizing geodesic. Since y, y ED and Dis totally convex, we have that lyy c D. This 
implies, together with the fact that (3.2) holds for x E B(y,c:), the inequality 

(3.9) 

Observing that y,y E B(x,c:) and that B(x,c:) is strongly convex as x E B(y,r) and c:::; p(B(y,r)), we 
conclude that lxy, lyy C B(x, c:). This ensures by (3.9) and Lemma 3.3(ii) that the functions~ d(tyy(s), x) 

is strictly increasing on [0, 1]. Hence d(y,x) < d(y,x), which contradicts (3.8). This completes the proof of 
assertion (ii) and of the whole theorem. D 

Let D be a totally convex subset in M, and let x E D. Recall that a vector v E TxM is tangent to D 

if there is a curve T [0, c:] ~ D such that 1(0) = x and 1' (0) = v. Then the collection TxD of all tangent 
vectors to D at xis a convex cone in the space TxM; see [59, p. 71]). This implies that (Nv(x)) 0 = TxD for 
the dual/polar cone Nv(x) := (TxD) 0 to TxD given by 

Nv(x) = {wE TxMI (w, v)::; 0 for all v E TxD}. (3.10) 

Taking into account the normal cone construction (3.10), we can reformulate condition (3.2) of Theorem 3.4 
in the following equivalent dual form: if lyx E f yx, then 

(3.2) holds{=} l~x(O) E Nv(y) {=} h~x(O), v) ::; 0 for all v E TyD. (3.11) 

Recall next that a function f: M ~ iR on a Riemannian manifold is convex if for any x, y E M and 
1 E f xy the composition (! o 1): [0, 1] ~ iR is a convex function on [0, 1], i.e., 

f(t(t))::; (1- t)f(x) + tf(y) for all t E [0, 1]. 

The effective domain dom f and the properness of f are defined similarly to the standard case. It is easy to 
see that dom f is totally convex for any convex function f: M ~ iR. Furthermore, the directional derivative 
of f at the point x E dom f in the direction v E TxM is defined by 

f'(x; v) := lim f(expx tv)- f(x), 
t-+0+ t 

while the subdifferential of f at x E dom f is constructed by 

8f(x) :={wE TxMI f(y);:::: f(x) + (w,f'(O)) for all Y EM and 1 E fxy}· 

It is worth mentioning that the subdifferential set 8f(x) is nonempty, convex, and compact in the space 
TxM for any point x E int( dom f). 

The next proposition presents some useful properties of the directional derivative and subdifferential of 
convex functions on Riemannian manifolds that are similar to the known ones on linear spaces. Assertion 
(i) of this theorem is taken from [59, p. 71]. 

PROPOSITION 3.5. (Properties of the directional derivative and subdifferential of convex 
functions on Riemannian manifolds.) Let f: M ~ iR be a proper convex function on a Riemannian 

manifold, and let x E D := dom f. The following assertions hold: 

(i) The directional derivative f' (x; ·): TxD ~ iR is convex and positively homogeneous with respect to 

directions, i.e., it satisfies the conditions 
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f' (x; sv) = sf'(x; v) for all v E TxD and s > 0. (3.12) 

Moreover, it possesses the properties 

f'(x;O)=O and -f'(x;-v)~J'(x;v) whenever vETxD. 

(ii) We have the subdifferential representation 

8f(x) ={wE TxM\ (w,v) ~ f'(x;v) for all v E TxM}. (3.13) 

(iii) The support function of the subdifferential O"aj(x) (·) is the lower semicontinuous hull 

a-aJ(x)(·) = clf'(x; ·) (3.14) 

of the directional derivative f'(x; ·) off at x. 

Proof We need to prove assertions (ii) and (iii). Starting with (ii), take any w belonging to the set on 
the right-hand side of (3.13). Then we have 

(w, v) ~ f' (x; v) for all v E TxM. 

Pick now an arbitrary element y EM and consider a geodesic 1 E r xy· Then !'(O) E TxM and thus 

(w./'(0)) ~ f'(x;{'(O)). (3.15) 

Since f is convex, we have the relationships 

J'(x·1'(0)) = inf f( expx t!'(O))- f(x) < f( exp 1'(0))- f(x) = f(y)- f(x). 
' t>O t - x 

This gives together with (3.15) that 

(w./'(0)) ~ f'(x;!'(O)) ~ f(y)- f(x). 

The latter implies by the subdifferential definition that w E 8f(x), and thus the subdifferential 8f(x) 
contains thP- set on the right-hand side of (3.13). 

To justify the opposite inclusion "c" in (3.13), take an arbitrary subgradient wE aj(x) and then pick 
some v E TxM and t E (0, 1). Define 

Ct(s) := expx(stv) for all s E [0, 1] 

and get Ct(1) = expx(tv) and ct E fxexp.,(tv)· Since c~(O) =tv, we have by the subdifferential definition that 

(w, tv) = (w, c~(O)) ~ f ( Ct(1)) - f(x) = f( expx tv) - f(x ). 

Therefore, by using the directional derivative construction, we arrive at the relationships 

( )< r f(expxtv)-f(x) =!'(.) 
w, v - t.!.If?-+ t x, v ' 

which show that the subgradient w belongs to the set on the right-hand side of (3.13) due to the arbitrary 
choice of v E TxM. This completes the proof of assertion (ii) of the proposition. 
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It remains to justify assertion (iii). To proceed, define an extended-real-valued function h: TxM -----) ffi' 
by h(v) := f'(x;v) as v E TxM. By (3.13) we have 

(w, v) $ f' (x; v) whenever w E 8 f(x) and v E TxM 

and using then the construction of the conjugate function arrive at 

h*(w) = 0 for all wE 8f(x). (3.16) 

Consider further the case of wE TxM \ 8f(x) and by (3.13) find vo E TxM satisfying 

(w, vo) - f' (x; vo) > 0. 

By (3.12) we have f'(x; svo) = sf'(x; vo) for each s > 0 and so 

h*(w):::: sup((w, sv0 )- f'(x; svo)) = oo. 
s>O 

Combining the latter with (3.16) gives us h* = baJ(x)· Hence h** = (baf(x))* = aaf(x) by (2.1). Consequently 
we have (3.14) due to (2.2) and thus complete the proof of (iii) and of the whole theorem. D 

4. Weak sharp minima on Riemann,ian manifolds. Given a function f: M --> iR and a subset 
SCM of a Riemannian manifold M, consider the constrained optimization problem 

P: 
minimize f ( x) 
subject to x E S. 

with the cost function f and the constraint setS. Our standing assumptions in Sections 4 and 5 are that 
the function f is a proper and convex on M and that the set S is closed and totally convex in M. Let S be 
the set of optimal solutions toP, i.e., 

S := argminsf = {X E Sj f(x) = minf(y)}. 
yES 

(4.1) 

It is easy to check that S is totally convex under the assumptions made. Throughout the paper we suppose 
that the solution setS in (4.1) is closed in M. The following definitions extend and modify the corresponding 
notions of weak sharp minima from linear spaces ( cf. [12] with somewhat different terminology and also the 
discussion in Section 1) to the Riemannian manifold setting under consideration. 

DEFINITION 4.1. (Versions of weak sharp minima on Riemannian manifolds.) LetS be the 
solution set ( 4.1) for the constrained minimization problem P. Then we say that: 

(i) X E S is a LOCAL WEAK SHARP MINIMIZER for p with modulus a > 0 if there is c > 0 such that for 
all xES n B(x,c) we have the estimate 

f(x):::: f(x) + ad:s(x). (4.2) 

(ii) S is the set of LOCAL WEAK SHARP MINIMA for problem P if each x E S is a local weak sharp 
minimizer for P with some modulus a> 0. 

(iii) S is the set of BOUNDEDLY WEAK SHARP MINIMA for P if for every bounded set W C M with 
W n S =/= 0 there is a= aw > 0 such that (4.2) holds with this modulus a for all xES and xES n W. 
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(iv) S is the set of GLOBAL WEAK SHARP MINIMA for P with the uniform modulus a > 0 if estimate 
(4.2) holds for all xES and x E S. 

To conduct the study of all the versions of weak sharp minima from Definition 4.1, consider an extended­
real-valued function fo: M ---+iii given by 

fo(x) := f(x) + os(x) = { ~x) if X E 8, 
otherwise 

(4.3) 

and observe that the initial constrained optimization problem P can be rewritten in unconstrained form 

minimize fo(x) subject to x EM. 

The following qualification condition plays an important role for deriving the subsequent results in this paper. 

DEFINITION 4.2. (Mild qualification condition.) Given a proper convex function f: M ---+ iR 
and a convex subset S C M of a Riemannian manifold M, we say that the pair {!, S} satisfies the MILD 
QUALIFICATION CONDITION (MQC) at x E (domf) n 8 if 

8(! + os)(x) = c1(8f(x) + Ns(x)). (4.4) 

Condition ( 4.4) is a Riemannian manifold counterpart of the one used in [12] in the linear space setting. It is 
indeed a "mild" qualification condition ensuring a version of the subdifferential sum rule for the summation 
function fo in (4.3). Besides [12], we refer the reader to the recent paper [22] and the bibliographies therein 
for "closedness qualification conditions" of this type, their relationships with more conventional qualification 
conditions in convex analysis, and applications to various classes of optimization problems on linear spaces. 

To proceed further, observe first the following obvious while useful relationships held for any a> 0: 

a[[v[[ = O"a~a.(v) = O"aJa.nN:s(z)(v) for all v E Ns(z). (4.5) 

The next two lemmas are important to establish the main results of this section. 

LEMMA 4.3. (Some relationships under the mild qualification condition.) Assume that the mild 
qualification condition of Definition 4.2 holds for the pair {!, S} at a given point z E S with the solution set 
S to problem P defined in (4.1). Fix a> 0 and consider the following conditions: 

fMz; v) ~ a[[v[[ for all v E Ns(z); (4.6) 

(4.7) 

alffiz n Ns(z) c c1(8f(z) + Ns(z) + TzB); (4.8) 

f'(z; v) ~ a[[v[[ for all v E TzS n Ns(z); (4.9) 

Oilffiz c 8f(z) + (TzSnN;s(z)t for all a E (O,a). (4.10) 

Then we have the relationships between these conditions: 

(4.6) ~ (4.7) ~ (4.8) ===? (4.9) ~ (4.10). 
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Proof. First we justify the equivalencies: 

(4.6) {:==? (4.7) {:==? (4.8). 

Indeed, it follows from Proposition 3.5(iii) and the relationships in (4.5) that condition (4.6) is equivalent to 

(4.11) 

Invoking Proposition 2.1 and the MQC assumption (4.4), we get the equivalence of condition (4.11) to 

alffiz n Ns(z) C cl(8fo(z) + (Ns(zW) = cl(8f(z) + Ns(z) + TzB). 

Hence (4.6) is equivalent to (4.8). Similarly we derive the equivalence of (4.6) to (4.7). 

To check next the implication ( 4.6)=?( 4.9), observe from (4.3) and the above constructions of nonsmooth 
analysis on Riemannian manifolds that fb(z; v) = f'(z; v) for all v E TzS n Ns(z), which verifies the result. 

It remains to prove the equivalence (4.9) {:==? (4.10), which holds in fact without the MQC assumption. 
Indeed, by Proposition 3.5(iii) and the relationships in (4.5), condition (4.9) is equivalent to 

O"aiffi. (v) = a\lv\1 :::; 0'8f(z)(v) for all v E TzS n Ns(z). 

Furthermore, by Proposition 2.1 the latter inequality is equivalent to the inclusion 

which in turn is equivalent to the one 

by the convexity of the sets involved. Therefore we conclude that (4.9) is equivalent to (4.10) and thus 
complete the proof of the lemma. 0 

The next crucial lemma establishes relationships between the generalized differential conditions of 
Lemma 4.3 and the underlying weak sharp inequality ( 4.2) in the setting under consideration. Its proof 
is largely based on the major Theorem 3.4 in Riemannian manifolds derived in the previous section. 

LEMMA 4.4. (Weak sharp inequality via generalized differentiation.) Fix arbitrary a > 0, 
0 < r :::; oo, and x E S and consider the following assertions: 

(i) for each xES n B(x, r) condition (4.2) holds; 

(ii) for each z E S n B(x, r) condition (4.6) holds; 

(iii) for each z E S n B(x, r) condition (4.9) holds; 

(iv) for each xES n B (x, ~) condition (4.2) holds. 
Then we have the implications (i) ==? (ii) ==?(iii)==? (iv). 

Proof. To justify implication (i)=?(ii), take arbitrary z E S n B(x, r) and v E N8 (z) and observe that 

fo(z) = fo(x) (4.12) 
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due to construction (4.3). Define a geodesic T [0, 1] -> M by 

1(t) := expz tv for all t E [0, 1]. 

Since z E S and S is a closed totally convex subset of M, we get from Theorem 3.4(ii) that there exists 
Eo > 0 such that for each p E B(z, Eo) the following implication holds: 

( 4.13) 

where /pz E fpz is a minimizing geodesic, and where the constructions involved in (4.13) are defined in 
Section 3. Choose 71 E (0, 1) such that 

'Y([O, ryl) c B(z, Eo) and 'YI[o,ryJ is minimizing. 

Let us verify next the equality 

ds(expz tv)= tllvll for all t E [O,ry]. 

To this end we take t E [0, ry], denote p := expz tv, and define a geodesic /pz: [0, 1] -> M by 

/pz(s) := expz(1- s)tv for all s E [0, 1]. 

Employing then the conditions in (4.14) held due to the choice of ry, we get 

p E B(z, Eo) and /pz E r pz is minimizing. 

Since v E Ns(z), it follows from the above that 

('Y~z(1),"f~y(O)) = (-V,"f~y(O)};:::: 0 for ally ES and /zy E r~Y' 

and thus z E P(piS) by condition (4.13). This justifies that 

ds(P) = d(z,p) = d(z,expz tv), 

(4.14) 

(4.15) 

( 4.16) 

which yields together with (4.16) that equality (4.15) holds by the above arbitrary choice oft E [O,ry]. 

Note further that, since z belongs to the open ball B(x, r), there exists e > 0 such that 1([0, eJ) c B(x, r). 
By assertion (i) assumed to hold we have condition (4.2). It follows from (4.12) that 

fo(expz tv)- fo(z) = fo(expz tv)- fo(x);:::: ads(expz tv) for all t E [0, eJ. (4.17) 

Letting now ( := min{ry,e}, we conclude from (4.15) and (4.17) that 

fo(expz tv)- fo(z);:::: ads(expz tv)= atllvll for all t E [0,(]. 

By the definition of the directional derivative in Section 3 the latter implies that 

J,'( . ) _ 1. fo(expz tv)- fo(z) > II II 
0 z, v - 1m _ a v , 

t--+0+ t 

which gives (ii) and thus completes the proof of implication (i)==?(ii). 

The next implication (ii)==?(iii) follows immediately from that of (4.6) ===? (4.9) in Lemma 4.3. 
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It remains to justify implication (iii)=?(iv). Pick x E S n B (x, ~) and fi E P(xiS) and consider a 
minimizing geodesic /yx E fyx· Then we have 

(4.18) 

It follows from Theorem 3.4(i) and the "dual" assertion (3.11) applied to y = fi that 

bwx(O), v) $ o for all v E TwS. 

Noting that lwx(O) E TwS by x, fiE S, we get 

(4.19) 

It follows then from assertion (iii) and the obvious inequalities 

r 
d(y, x) $ d(y, x) + d(x, x) $ 2d(x, x) < 2. 2 = r 

that (4.9) holds with z = fj, i.e., we have 

f'(y; v) 2 allvll for all v E TwS n Ns(fi). 

This implies together with (4.18) and (4.19) that 

(4.20) 

Remembering finally that f is a convex function on a Riemannian manifold, we get from ( 4.20) that 

f(x)- f(x) = f(x)- f(Y) = f(~ux(1))- f(~ux(O)) 2 f'(Y,/wx(O)) 2 ads(x), 

which justifies (4.2) and completes the proof of the lemma. D 

In the rest of this section we employ the lemmas established above as well as auxiliary results from Sec­
tion 3 and some related constructions to derive comprehensive characterizations of all the types of weak sharp 
minima from Definition 4.1 via the defined notions of generalized differentiation on RiP-mannian manifolds. 
Let us start with characterizing the set of global weak sharp minima. 

THEOREM 4.5. (Characterizations of the set of global weak sharp minima on Riemannian 
manifolds.) LetS be the solution set (4.1) for the constrained optimization problem P under the standing 
assumptions made. Suppose in addition that the pair {f, S} satisfies the mild qualification condition (4.4) 
at every point xES. Then, given a number a> 0, the following assertions are equivalent: 

(i) S is the set of global weak sharp minima for P with the unform modulus a> 0. 

(ii) For each xES we have the inclusion 

allllx c cl(af(x) + Ns(x) + TxS). 

(iii) For each xES we have the inclusion 

alffix n N8 (x) c cl(af(x) + Ns(x) + TxS). 
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(iv) For each xES we have the estimate 

f'(x; v)? allvll wheneveT v E T-xS n N8 (x). 

( v) For each x E S we have the inclusion 

&lffi-x c 8f(x) + (T-xS n N-s(x)t whenever a E (0, a). 

(vi) For each xES and each x E P(xiS) we have the estimate 

f'(x;'Y'(O))? ad8 (x), 

wheTe 'Y E r-xx is any minimizing geodesic connecting these two points. 

Proof. First we verify implication (i)==?(ii) of the theorem. By Definition 4.1(iv) the weak sharp 
inequality (4.2) is satisfied with the given a> 0 for each xES and xES. Thus it follows from implication 
(i)==?(ii) of Lemma 4.4 with r = oo that the directional derivative estimate (4.6) holds on S. We now derive 
the validity of assertion (ii) of the theorem from the equivalency relationship (4.6) ~ ( 4.7) in Lemma 4.3. 

Relationships (ii)~(iii)==?(iv)~(v) in the theorem follow from the corresponding relationships 
(4.7)~(4.8)==?(4.9)~(4.10) in Lemma 4.3. 

To justify implication (iv)==?(vi), pick any points x E S and x E P(xiS) and consider a minimizing 
geodesic 1 E fxx connecting these points. Then we have the equalities 

11!'(0)11 = d(x,x) = d8 (x). (4.21) 

Employing now Theorem 3.4(i) allows us to conclude that 

('Y'(O),I~zCO)):::; 0 for all z E S and /xz E riz, 

which implies in turn the inclusion 1'(0) E N-s(x). Combining the latter with the inclusion 1 c S gives us 
that 7'(0) E T-xS n N8 (x). Hence it follows from the assumed assertion (iv) that 

f'(x;I'(O))? allf'(O)II = ad-s(x), 

where the last equality holds due to (4.21). Thus we arrive at assertion (vi). 

It remains to verify implication (vi)==?(i) of the theorem. Take x E S, x E P(xiS), and a minimizing 
geodesic 1 E fxx· Then by (vi) we get f'(x;'Y'(O))? ad-s(x). Since the function f is convex, the latter gives 

f(x) - f(x) = f (!(1)) - f(x) ? f' (xd (0)) ? ad8 (x ), 

which ensures (i) and completes the proof of the theorem. D 

The next theorem provides similar characterizations of boundedly weak sharp minima for problem P. 

THEOREM 4.6. (Characterizations of the set of boundedly weak sharp minima on Rieman­
nian manifolds.) LetS be the solution set to problem P, and let all the assumptions of Theorem 4.5 be 
satisfied. Then the following assertions aTe equivalent: 

(i) Sis the set of boundedly sharp minima for problem P. 
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(ii) For every xES and every r > 0 there is a(r) > 0 such that 

a(r)llllznNs-(z)ccl(of(z)+Ns(z)+TzS) whenever zESnB(x,r). (4.22) 

(iii) For every xES and every r > 0 there is a(r) > 0 such that 

a(r)llllzccl(of(x)+Ns(z)+TzS) whenever zESnB(x,r). (4.23) 

(iv) For every xES and every r > 0 there is a(r) > 0 such that 

f'(z;v);:::a(r)\lvll whenever zESnB(x,r) and vETzSnNs-(z). (4.24) 

(v) For every xES and r > 0 there is a(r) > 0 such that 

a(r)llllz c 8f(z) + (TzS n N8 (z)r whenever z E S n B(x, r). 

(vi) For every xES and every r > 0 there is a(r) > 0 such that 

f'(z;')''(O)) 2:: a(r)d8 (x) whenever x E SnB(x,r) and z E P(xiS) ( 4.25) 

independently of the choice of a ·minimizing geodesic ')' E r zx connecting the points z and x. 

Proof. We first justify implication (i)=?(ii) in the theorem. Observe that the Definition 4.l(iv) of the 
set of boundedly weak sharp minima can be equivalently formulated as follows: for every x E S and every 
r > 0 there is a modulus a(r) > 0 such that 

f(x) 2:: f(x) + a(r)d8 (x) whenever xES n B(x; r). (4.26) 

Using now implication (i)=?(ii) of Lemma 4.4, we conclude that assertion (i) of this theorem yields the 
validity of condition (4.6) for all S n B(x, r) with the same number a = a(r) as in (4.26). Thus it follows 
from implication (4.6) ===? (4.8) in Lemma 4.3 that assertion (ii) of this theorem holds. 

Observe further that relationships (ii)~(iii)=?(iv)~(v) of the theorem follow directly from the 
corresponding results of Lemma 4.3. 

To verify next implication (iv)=?(vi) of the theorem, pick any x E S and r > 0 and find by (iv) a 
number a= a(r) > 0 such that 

[z ESnB(x,2r) and v E TzSnNs-(z)] ===? [f'(z;v) 2:: a(r)llvll]. (4.27) 

Taking any xES n B(x, r) and z E P(xiS), we have the equalities 

llt'(0)\1 = d(x,z) = ds-(x), (4.28) 

where 1 E r zx is a minimizing geodesic connecting z and x. Applying then Theorem 3.4 gives us condition 
(3.2). It follows then from the equivalence in (3.11) and the inclusion 1 C S that 

1'(0) E TzS n Ns-(z). (4.29) 
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Furthermore, we get the inclusion z E S n B(x, 2r) from the obvious inequalities 

d(z, x) ::::: d(z, x) + d(x, x) ::::: 2d(x, x) ::::: 2r. 

Combining this with relationships (4.27) and (4.29) allows us to conclude that 

f'(z;r'(O)) 2:: a(r)lb'(0)\1 = a(r)ds(x), 

where the last equality holds due to (4.28). Thus we arrive at assertion (vi) of the theorem. 

Let us finally justify the remaining implication (vi)==>(i). Take x E S and r > 0 and by (vi) find a 
number a( r) > 0 such that 

f'(z;,'(O)) 2:: a(r)ds(x) 

for each x E SnB(x, r), z E P(xiS), and the minimizing geodesic"( E r zx connecting these points. It follows 
further from the convexity of the cost function f in P that 

f(x)- f(x) = f(r(l))- f(z) 2:: f'(z;r'(O)) 2:: a(r)ds(x), 

which gives the underlying estimate (4.26) in (i) and thus completes the proof of the theorem. 0 

Our next step is to derive efficient characterizations of local weak sharp minimizers to P in the sense 
of Definition 4.l(i). To proceed, we need the following proposition taken from [60], which ensures the local 
Lipschitz continuity of the projection mapping. 

PROPOSITION 4.7. (Local Lipschitz continuity of projections on totally convex subsets of 
Riemannian manifolds.) Let D be a totally convex subset of a Riemannian manifold M. Then there are 
numbers r > 0 and e 2:: 1 such that 

d(P(xiD),P(yiD)) :S:: ed(x,y) 

for each pair (x, y) EM x M with dD(x) :S:: r and dD(Y) :S:: r. 

Combining this proposition with the methods and results developed above allows us to establish the 
following characterizations of local weak sharp minimizers. 

THEOREM 4.8. (Characterizations of local weak sharp minimizers for convex problems on 
Riemannian manifolds.) Let x E S be an optimal solution to the constrained optimization problem p 
under the standing assumptions 'On its initial data. Suppose in addition that the mild qualification condition 
(4.4) holds on a neighborhood ofx. Then, given a> 0, the following assertions are equivalent: 

(i) x is a local weak sharp minimizer for P with modulus a. 

(ii) There is£ > 0 such that we have the inclusion 

alEz C cl(af(z) + Ns(z) + TzB) for all z E S n B(x, £). 

(iii) There is £ > 0 such that we have the inclusion 

alEz n Ns(z) c cl(af(z) + Ns(z) + TzB) for all z E S n B(x, £). 
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(iv) There iss> 0 such that we have the estimate 

f'(z; v) ~all vii for all z E S n B(x, s) and v E TzS n Ns(z). 

( v) There is s > 0 such that we have the inclusion 

(vi) There is s > 0 such that we have the estimate 

f'(z;!'(O))~ads(x) forall xESnB(x,s) and zEP(xiS), 

where 1 E r zx is a minimizing geodesic connecting the corresponding points. 

Proof. Observe that the imposed miid qualification condition (4.4) on {f, S} around x means there is a 
number s1 > 0 such that 

8(! + 8s)(z) = cl(of(z) + Ns(z)) for all z E B(x,s1). (4.30) 

To verify implication (i)==?(ii) of the theorem, find by assertion(i) such a number s2 > 0 that the weak 
sharp inequality (4.2) holds on SnB(x,s2). Letting s := min{s1,s2}, we have by implication (i)==?(ii) 
of Lemma 4.4 that condition (4.6) is satisfied for all z E S n B(x, s). Using now (4.30) and equivalence 
(4.6) <===? (4.7) from Lemma 4.3, we arrive at assertion (ii). 

As above, relationships (ii)<==?(iii)==?(iv)<==?(v) in the theorem follow directly from the corresponding 
relationships in Lemma 4.3. 

The proof of implication (iv)==?(vi) in this theorem requires some change in comparison with the similar 
implications of Theorem 4.5 and Theorem 4.6. To proceed, assume that assertion (iv) of the theorem holds, 
i.e., there is s1 > 0 such that 

f'(z; v) ~all vii for all z E S n B(x, s1) and v E TzS n Ns(z). (4.31) 

Since Sis totally convex, Proposition 4.7 allows us to conclude that there are r > 0 and 1!.:::: 1 such that 

d(P(xiS), P(yiS)) ::::;: 1!. d(x, y) whenever ds(x)::::;: r and ds(Y)::::;: r. (4.32) 

Take x E S n B(x, s) and z E P(xiS), where the numbers > 0 is defined by 

. { s1} s :=min r, C . 

As in the proof of Theorem 4.6, we have the equalities in (4.28), where 1 E fzx is a minimizing geodesic 
connecting z and x. Applying further Theorem 3.4 with D = S and the equivalent dual description (3.11) 
of condition (3.2) ensures that 1'(0) E N8 (z). Noting that 'Y C S, we get therefore that 

'Y'(O) E TzS n Ns(z). (4.33) 

On the other hand, it follows from ( 4.32) by the choice of x E B (x, s) with s > 0 defined above that 

d(z,x)::::;: l!.d(x,x) < l!.s::::;: s 1 . 
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Combining the latter with (4.31) and (4.33) yields that 

f'(z;!''(O)) ~-a\11''(0)1\ = ads(x), 

where the last equality holds due to (4.28). Thus we arrive at assertion (vi) of the theorem. 

Observing finally that the verification of implication (vi)=>(i) in this theorem is similar to the one in 
Theorem 4.6, we complete the proof of the result. D 

The following characterizations of the set of local weak sharp minima are direct consequences of the 
corresponding characterizations of local weak sharp minimizers from Theorem 4.8 and Definition 4.1(ii). 

CoROLLARY 4.9. (Characterizations of the set of local weak sharp minima on Riemannian 
manifolds.) Let all the assumptions of Theorem 4.5 be satisfied. The following assertions are equivalent: 

(i) S is the set of local weak sharp minima for problem P. 

(ii) For every xES there are r > 0 and a(r) > 0 such that condition (4.22) holds. 

(iii) For every xES there are r > 0 and a(r) > 0 such that condition (4.23) holds. 

(iv) For every xES there are r > 0 and a(r) > 0 such that condition (4.24) holds. 

(v) For every xES there are r > 0 and a(r) > 0 such that 

&lll\z c 8f(z) + (TzS n Ns(z)) 
0 

for all z E S n B(x, r) and 0::; & < a(r). 

(vi) For every xES there are 1' > 0 and a(r) > 0 such that condition (4.25) holds, where I' E rzx is a 
minimizing geodesic connecting the points z and x. 

Comparing the results of Theorem 4.6 and of Corollary 4.9 and taking into account that the Riemannian 
manifold M considered in this section is finite-dimensional, we conclude by compactness arguments that sets 
of boundedly weak sharp minima and local weak sharp minima agree under the assumptions made. 

CoROLLARY 4.10. (Sets of boundedly weak sharp minima and local weak sharp minima 
agree on finite-dimensional Riemannian manifolds.) Under the assumptions made in Theorem 4.5 
the solution set (4.1) to problem P is the set of boundedly weak sharp minima for P if and only if it is the 
set of local weak sharp minima for this problem. 

Proof It immediately follows from the definitions that the set of boundedly weak sharp minima is 
contained in the set of local ones. To justify the opposite implication, fix x E S and r > 0. Then for any 
yES n B(x, r) we find by assertions (ii) of Corollary 4.9 numbers ry > 0 and a(ry) > 0 such that 

a(ry)lll\z n N8 (z) c c!(af(z) + Ns(z) + TzS) for all z E S n B(y, ry)· 

Since S n B (x, r) is a compact subset of the finite-dimensional Riemannian manifold M and since 

U B(y, ry) :::l (8 n B(x, r)), 
yESnB(x,r) 

there exists a finite covering of the set S n B(x, r) by the above balls, i.e., a natural number n ~ 1 such that 

n 

UB(yi,ry;) :J (SnB(x,r)). 
i=l 
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Letting now a(r) := min { a(ry,) 11 :S i :S n}, we have 

a(r)llllz n Ns(z) c cl(of(z) + N8 (z) + TzS) for all z E S n B(x, r), 

which ensures the validity of condition (ii) in Theorem 4.6. The latter justifies that Sis the set of boundedly 
weak sharp minima P and thus completes the proof of the corollary. D 

5. Weak sharp minima on Hadamard manifolds. In this section we obtain new characterizations 
of all the versions of weak sharp minima under consideration for convex problems on Hadamard manifolds 
essentially exploiting their special structure; the new conditions obtained do not have appropriate analogs 
in the general Riemannian case. Recall that a Hadamard manifold is a complete connected m-dimensional 
Riemannian manifold with nonpositive sectional curvature. Throughout the whole section we assume that 
M is a Hadamard manifold. In this case the mapping exp,: T,M o-f M is a diffeomorphism for each x E M; 
see [23, p. 149]. The latter implies that for any two points x, y E M there is one and only one geodesic 
connecting x, y, which is a minimizing geodesic. 

The following well known result (see, e.g., [57]) concerns some properties of geodesic triangle .6.(p1p 2p3) 

consisting by definition of three points P1, P2, P3 and three minimizing geodesic segments /i that join Pi and 
Pi+1 with i = 1, 2, 3 (mod 3). 

PROPOSITION 5.1. (Comparison result for geodesic triangles.) Let .6.(P1P2P3 ) be a geodesic 
triangle, and let /i: [0, 1] -f M be the corresponding geodesic segments joining Pi and Pi+1 with i = 1, 2, 3 
(mod 3). Denote li := l(!i), ai := L(!i(O), -7L1(1)). Then we have the relationships 

The next result reveals a significant specific feature of Hadamard manifolds in comparison with the 
general class of Riemannian manifolds: it shows namely that the distance function for totally convex subsets 
of Hadamard manifolds is convex. 

LEMMA 5. 2. (Convexity of the distance function on Hadamard manifolds). Let D be a totally 
convex subset of a Hadamard manifold M. Then the distance function dv(·) is convex on M. 

Proof. Take x, y EM and for any 1': > 0 pick elements c,, ey ED satisfying the conditions 

d(x, c,) :S dv(x) + 1': and d(y, cy) :S dv(y) + 1':. 

Let 71 : [0, 1] o-f M be a geodesic connecting x andy, and let 72 : [0, 1] o-f M be another geodesic connecting c, 
and cy. It follows from the total convexity of the set D that 72 ([0, 1]) c D. Since a function h: [0, 1] o-f [0, oo) 
defined by h(t) := d('Y1(t),/2 (t)) is convex on [0,1] by [59, p. 105], we have the inequalities 

dv (11 (t)) < d(/1 (t), 12(t)) :S (1 - t)d(x, c,) + td(y, cy) 
< (1- t)dv(x) + tdv(Y) + 1': for all t E [0, 1]. 

This completes the proof of the lemma due to the arbitrary choice of 1': > 0. D 

The following theorem is certainly of independent interest for convex analysis on Hadamard manifolds, 
while it plays a crucial role in deriving the main characterizations of weak sharp minima in the rest of 
this section. Observe that results of this type relating subgradients of the distance function and normals 
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to the corresponding set are known for various subdifferentials in general nonconvex settings of Banach 
spaces, being of great importance for many aspects of variational analysis and its applications; see [49, 50], 
particularly (49, Subsection 1.3.3], with the references and commentaries therein. 

THEOREM 5.3. (Subdifferential representation for the distance function of totally convex 
sets in Hadamard manifolds.) Let D c M be a totally convex subset of a Hadamard manifold. Then the 
subdifferential of the convex distance function dv(·) is computed by 

8dv(x) =Jill., n Nv(x) for all xED (5.1) 

via the normal cone N D ( ·) to the set D at the corresponding point. 

Proof. The convexity of the distance function dv(·) on Hadamard manifolds is established in Lemma 5.2. 
Using the definitions of dv(x) and Nv(x) on Riemannian manifolds given in Section 3, we easily conclude 
that inclusion "C" in (5.1) holds. Let us now prove the opposite inclusion in (5.1), i.e., 

Jill., n Nv(x) c 8dv(x) 

for any fixed xED. To proceed, take wE Jill., n Nv(x) and check that wE 8dv(x). By Proposition 3.5(i) it 
is sufficient to verify the inequality 

d'o(x;v) 2:: (w,v) for all v E T.,M. (5.2) 

Since d'o(x; v) 2:: 0 and (w, v) :::; 0 for each v E T.,D, we have that (5.2) is satisfied on T.,D. It remains to 
show that (5.2) also holds on T.,M \ T.,D. Pick any v E T.,M \ T.,D and verify first that 

dv(exp., tv) 2:: inf lltv- ull whenever t > 0. 
uEexp; 1 D 

Indeed, take arbitrary t > 0 and u E exp;;-1 D and denote 

Pl := exp., tv, P2 := x, and P3 := exp., u. 

Let further /i: [0, 1]---+ M be a geodesic connecting Pi and Pi+l fori= 1, 2, 3 (mod 3). Then 

lbt) = lltvll, 1(12) = llull, and e := .L( -~~ (1), 1~(0)) = .L(tv, u). 

Applying Proposition 5.1 to the geodesic triangle 6(P1P2P3), we get 

d2(exp., tv, exp., u) d2(pt,P3) 

This allows us to conclude that 

;:::: 1bt)2 + 1(12)2 - 2lbt)l(l2) cos e 
lltv112 + llul12- 2lltvll·llull cose 

lltv- ull 2· 

dv(exp., tv)= inf d(exp., tv,exp.,u) 2:: inf lltv- ull, 
uEexp; 1 D uEexp;;- 1 D 

and thus condition (5.3) is verified. Furthermore, it follows from w E Jill., n N v(x) that 

infuEexp;l D I ltv - ull > infuEexp;l D (w, tv- u) 
infuEexp;l D ( (w, tv) - (w, u)) 
(w, tv), 

(5.3) 

(5.4) 
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where the last equality holds due to u E exp;1 D and (w, u) :::; 0. Combining consequently (5.3) and (5.4), 
we arrive at the relationship 

d' ( ) 1. dv(expx tv)- dv(x) ( ) 
D x;v = 1m 2: w, v, 

t->0+ t 

which justifies (5.2) and thus completes the proof of the theorem. 0 

To establish the main characterizations of weak sharp minima on Hadamard manifolds, we need one 
more auxiliary result involving the distance function of the solution set (4.1) to the optimization problem P. 

LEMMA 5.4. (Some relationships involving the distance function of the solution set on 
Hadamard manifolds.) LetS be the solution set (4.1) to problem P, and let xES. In addition to the 

standing assumptions made, suppose that the mild qualification condition (4.4) holds at x. Consider the 

following relationships, where the function fo is defined in ( 4.3): 

alffix n N8 (x) c cl(ofo(x)) = cl(of(x) + Ns(x)); (5.5) 

f~(x; v) 2: ad]-(x; v) for all v E TxM; (5.6) 

f'(x;v) 2: adT;s(v) for all v E TxS; (5.7) 

f'(x; v) 2: allvll for all v E TxS n Ns(x). (5.8) 

Then we have (5.5) {=} (5.6) ===? (5.7) ===? (5.8). 

Proof. First we observe the validity of the following equalities: 

d~(x; v) = O'&d:s(x)(v) = O'JR,..nN:s(x)(v) = dT,.s(v) for all v E TxM. (5.9) 

Indeed, it follows from the condition dom d8 = M that the function ~(x; ·) is sublinear and thus continuous 
on TxM. Then applying to ~(x; ·) equality (3.14) from Proposition 3.5 together with Proposition 2.1(ii) 
and the subdifferential representation (5.1) from Theorem 5.3, we see that all the equalities in (5.9) hold. 

Returning now to the proof of this lemma, let us verify equivalence (5.5){=}(5.6). Since ~(x; ·) is 
continuous on TxM as noted, we have that condition (5.6) is equivalent to 

cl f~ (x; v) 2: ad~(x; v) for all v E TxM. 

Thus applying (3.14) to fo and then using (5.9) allows us to conclude that (5.10) is equivalent to 

O'&Jo(x)(v) 2: O'&(ad8 )(x)(v) = O'aJR,.nN:s(x)(v) for all v E TxM, 

which is in equivalent in turn to (5.5) by Proposition 2.1 and the qualification condition (4.4). 

(5.10) 

To verify next implication (5.6)===?(5.7), take v E TxS and get the equalities f'(x;v) = fb(x;v) and 
~(x; v) = dT,.:s(v) due to (5.9), which thus justifies the result. 

It remains to prove implication (5.7)===?(5.8). Taking v E TxS n Ns(x) and applying the equalities in 
(4.5) at the point z = x, we have 
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The latter implies together with (5.9) that dT,.:s(v) = llvll, which justifies the claimed implication and 
completes the proof of the lemma. D 

Now we are ready to establish characterizations of all the types of weak sharp minima from Definition 4.1 
in the case of Hadamard manifolds. We start with global weak sharp minima deriving new characterizations 
in addition to those in Theorem 4.5. 

THEOREM 5.5. (Characterizations of the set of global weak sharp minima on Hadamard 
manifolds.) Suppose that all the assumptions of Theorem 4.5 are satisfied and that in addition the manifold 
M is Hadamard. Then assertions (i)-(vi) of Theorem 4.5 are equivalent to the following ones: 

(vii) For each xES we have the inclusion 

alffi:xn N8 (x) c c1(8f(x) + Ns(x)). 

(viii) For each xES and each v E T:;;S we have the estimate 

Proof. Assume that S is the set of global weak sharp minima for problem P and let x E S. Then for all 
t > 0 and all v E T:xM we have the inequality 

fo(exPxtv)- fo(x) ~ ads(exp:;;tv), 

which implies in turn that 

fo(exp:;;tv)- fo(x) ds(exp:;;tv)- ds(x) 
t ~a t · (5.11) 

Taking the limit as t! 0 on both sides in (5.11), we get the estimate 

fMx;v) ~ ad~('x;v). 

Since v E T:xM was chosen arbitrarily, condition (5.6) of Lemma 5.4 holds. The latter yields together 
with equivalence (5.5){=:?(5.6) in Lemma 5.4 that condition (vii) is satisfied. Therefore assertion (i) of 
Theorem 4.5 implies that of (vii) in this theorem. 

It easily follows from implications (5.5)==?(5.7)==?(5.8) in Lemma 5.4 that condition (vii) of this theorem 
implies that of (viii) and the latter implies in turn condition (iv) of Theorem 4.5. Thus all the aforementioned 
conditions (i)-(viii) are equivalent, and the proof of this theorem is complete. D 

Next we establish new characterizations of boundedly weak sharp minima for constrained problem of 
convex optimization on Hadamard manifolds. 

THEOREM 5.6. (Characterizations of the set of boundedly weak sharp minima on Hadamard 
manifolds.) Let all the assumptions of Theorem 5.5 be satisfied. Then assertions (i)-(vi) in Theorem 4.6 
and the following new assertions are equivalent: 

(vii) For every xES and every r > 0 there is a(r) > 0 such that 

a(r)lffiznNs(z) ccl(8f(z)+Ns(z)) whenever z ESnB(x,r). (5.12) 
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(viii) For every xES and every r > 0 there is a:(r) > 0 such that 

f'(z; v);::: a:(r)drzs(v) (5.13) 

whenever z E S n B(x, r) and v E T-xS. 

Proof. Let us assume according to assertion (i) of Theorem 4.6 that S is the set of boundedly weak 
sharp minima. Pick any xES and r > 0, we find by Definition 4.1(iii) such a:(r) > 0 that 

f(x);::: f(x) + a:(r)d8 (x) for all xES n B(x, r). (5.14) 

Take further z E S n B(x, r) and pick v E TzM with !I vii =J 0. Then for any t satisfying 0 < t < r-~~~~,x), we 
get from (5.14) and construction (4.3) of fo that 

fo(expz tv)- fo(z) = fo(expz tv)- fo(x) = fo(expz tv)- f(x);::: a:(r)ds(expz tv). 

The latter implies by definition of the directional derivative that 

-~''( . ) = 1. fo(expz tv)- fo(z) > ( )d!...( . ) 
JO z, v 1m _ a: r 

8 
z, v , 

t>D,t->0 t 

which gives assertion (vii) of the theorem by equivalence (5.5)¢==?(5.6) in Lemma 5.4. 

The remaining implications (vii)==?(viii)==?[(iv) in Theorem 4.6] follow from those 

(5.5) ==} (5.7) ==} (5.8) 
' 

in Lemma 5.4. This completes the proof of the theorem. D 

The next result provides new qharacterizations of local weak sharp minimizers in Hadamard manifolds 
in addition to those obtained in Theorem 4.8 for the general Riemannian case. 

THEOREM 5.7. (Characterizations of local weak sharp minimizers on Hadamard manifolds.) 
In addition to all the assumptions of Theorem 4.8 suppose that M is a Hadamard manifold. Then assertions 
(i)-(vi) of Theorem 4.8 are equivalent to the following: 

(vii) There exists a positive number c such that 

a:lffiz n N:s(z) c cl(8f(z) + Ns(z)) whenever z E S n B(x, c). 

(viii) There exists a positive number c such that 

f'(z; v);::: a:dyzs(v) 

whenever z E S n B(x, c) and v E TzS. 

Proof. Take an arbitrary local weak sharp minimizer x for problem P. By Definition 4.1(i) there is c > 0 
such that we have the underlying weak sharp inequality 

f(x);::: f(x) + a:d8 (x) for all xES n B(x,c). 

Similarly to the proof of Theorem 5.6, pick any z E SnB(x,c) and v E TzM with !lvll =J 0 and observe that 

c- d(z, x) 
fo(expz tv)- fo(z) = fo(expz tv)- fo(x);::: a:ds(expz tv) whenever 0 < t < !lvll , 
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where the function fo is defined in (4.3). The latter inequality gives 

J,'( . ) _ 1. fo(expz tv)- fo(z) > J'( . ) 
0 z,v - 1m _a~ z,v, 

t>O,t-->0 t 

which in turn ensures the validity of assertion (vii) of the theorem by equivalence (5.5)~(5.6) in Lemma 5.4. 

To conclude the proof of the theorem, observe that implications (vii)==>(viii)==>[(iv) in Theorem 4.8] 
follow from the corresponding ones (5.5)==>(5.7)==>(5.8) in Lemma 5.4. D 

Finally in this section, we provide new characterizations of the set of local weak sharp minima on 
Hadamard manifolds. They follow directly from Theorem 5.7 by Definition 4.1(ii). 

COROLLARY 5.8. (Characterizations of the set of local weak sharp minima on Hadamard 
manifolds.) Under the assumptions of Theorem 5.5 we have the equivalence of the assertions of Corollary 4.9 
with the following conditions: 

(vii) For every xES there exist r > 0 and a(r) > 0 such that inclusion (5.12) is satisfied. 

(viii) For every x E S there exist r > 0 and a(r) > 0 such that estimate (5.13) is satisfied whenever 
z E SnB(x,r) and v E To;S. 

6. Concluding remarks. To the best of our knowledge, this paper is the first one in the literature 
dealing with weak sharp minima for constrained optimization problems on Riemannian and Hadamard 
manifolds. The main characterizations of global, boundedly, and local sharp minima for convex problems on 
Riemannian manifolds in assertions (ii) and (iii) of Theorems 4.5, 4.6, 4.8 and Corollary 4.9, respectively, 
are new even for the case of finite-dimensional Euclidean spaces. The other characterizations, including 
those for Hadamard manifolds from Section 5, are extensions of the corresponding results by Burke and 
Ferris [10] and Burke and Deng [12] obtained in the case of spaces with liner structures. Observe that to 
proceed with no linearity, we need to develop new methods and results of variational analysis on Riemannian 
and Hadamard manifolds including, in particular, the characterization of projections on convex subsets of 
Riemannian manifolds given in Theorem 3.4 and the normal cone representation for the subdifferential of the 
distance function for totally convex subsets of Hadamard manifolds derived in Theorem 5.3. These results 
seem to be of independent interest for various aspects of analysis on Riemannian and Hadamard manifolds 
regardless of their particular applications to the study of weak sharp minima. 

Note that this paper mainly concerns convex problems of constrained optimization on Riemannian and 
Hadamard manifolds while some of our methods and results can be used for the further analysis of weak sharp 
minima in nonconvex optimization problems on spaces with no linear structure. In this respect we mention, 
in particular, the possibility of direct extending to the case of Hadamard manifolds necessary optimality 
conditions for weak sharp minima obtained in [52] for nonconvex optimization problems on Banach spaces in 
terms of Frechet subgradients and Mordukhovich basic/limiting and singular subgradients of l.s.c. functions 
and the corresponding normals to closed subsets of Banach spaces. The latter constructions have been partly 
explored for other purposes in the recent study [39] in the case of smooth nonlinear manifolds. Among the 
key ingredients of the aforementioned developments in [52] is the subdifferential formula of type (5.1) for the 
distance function, which admits appropriate extensions to nonconvex frameworks in spaces with no linearity. 
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