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SECOND-ORDER ANALYSIS OF POLYHEDRAL SYSTEMS IN FINITE 
AND INFINITE DIMENSIONS WITH APPLICATIONS TO ROBUST 

STABILITY OF VARIATIONAL INEQUALITIES 

RENE HENRION1 , BORIS S. MORDUKHOVICH2 and NGUYEN MAU NAM3 

Abstract. This paper concerns second-order analysis for a remarkable class of variational 
systems in finite-dimensional and infinite-dimensional spaces, which is particularly important for 
the study of optimization and equilibrium problems with equilibrium constraints. Systems of this 
type are described via variational inequalities over polyhedral convex sets and allow us to provide 
a comprehensive local analysis by using appropriate generalized differentiation of the normal cone 
mappings for such sets. In this paper we efficiently compute the required coderivatives of the 
normal cone mappings exclusively via the initial data of polyhedral sets in reflexive Banach spaces. 
This provides the main tools of second-order variational analysis allowing us, in particular, to derive 
necessary and sufficient conditions for robust Lipschitzian stability of solution maps to parameterized 
variational inequalities with evaluating the exact bound of the corresponding Lipschitzian moduli. 
The efficient coderivative calculations and characterizations of robust stability obtained in this paper 
are the first results in the literature for the problems under consideration in infinite-dimensional 
spaces. Most of them are also new in finite dimensions. 

Key words. variational analysis and optimization, reflexive Banach spaces, polyhedral sets, 
parametric variational inequalities, robust stability, generalized differentiation, coderivatives and 
second-order subdifferentials 

AMS subject classification. 49J52, 49K40, 58C20 

1 Introduction 

It has been well recognized in optimization and variational analysis, starting with the sem
inal work by Robinson [23], that a number of the most interesting variational systems and 
variational conditions can be described via the normal cone mapping N(x; 8) to convex 
sets 8 c X as well as their subdifferential counterparts and further nonconvex extensions. 
Among variational models of this type we mention variational inequalities, complementar
ity problems, KKT (Karush-Kuhn-Tucker) conditions in parametric optimization, and other 
variational and equilibrium systems arising in optimization theory and its numerous appli
cations; see, e.g., [4, 9, 10, 15, 16, 19, 20, 23, 24, 25] and the references therein. Particularly 
important classes of sets used in describing variational and equilibrium conditions can be 
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represented in the following convex polyhedral form 

e := {X E XI (xt, x) ~ 0, i E T := {1, ... , m} }, (1.1) 

where xi are given elements of the dual space X*. Note that the homogeneous/conic 
form of polyhedral systems in (1.1) does not restrict the generality, since nonhomogeneous 
polyhedra can always be locally translated to (1.1). 

Known results on variational analysis involving the normal cone mappings to convex 
polyhedra and its efficient implementation for important classes of optimization and equi
librium problems concern the case of finite-dimensional spaces X = IRP. The reader can 
find more information on these and related developments and applications in [3, 4, 6, 7, 
18, 19, 25, 27, 28, 29] and the references therein. It comes naturally that local variational 
analysis of the normal cone mapping 

F(x) := N(x; 8), x EX, (1.2) 

associated with (1.1) and its applications to, e.g., deriving optimality and stationarity con
ditions, sensitivity and stability issues, etc. call for the usage and implementation of ap
propriate constructions of generalized differentiation for set-valued mappings of type (1.2). 

Among other generalized differential constructions, coderivatives of set-valued mappings 
introduced in [12] have been well recognized as a powerful tool of variational analysis and 
its numerous applications, particularly to problems of optimization, equilibria, and control; 
see, e.g., the books [2, 15, 16, 19, 25, 26] with their references and discussions. To proceed 
efficiently with applications of coderivatives, we need to compute them constructively in 
terms of the initial data of the problems in question. Various results in this direction for 
the normal cone mapping generated by polyhedral sets in finite-dimensional spaces can be 
found in [3, 6, 7, 27, 28]. To the best of our knowledge, the constructive results obtained in 
this paper are the first ones for polyhedral sets in infinite dimensions providing also new 
developments and applications in finite-dimensional settings. 

Observe that coderivatives of the normal cone mapping (1.2) accumulate in fact some 
second-order information on the original polyhedral set (1.1), which is used in variational 
analysis of first-order optimality and/or equilibrium conditions (e.g., of the KKT type) 
exhibited by the normal cone mapping under consideration. 

The underlying framework of this paper is the class of reflexive Banach spaces X. Our 
primary goal is to precisely compute the basic/limiting coderivative by Mordukhovich for 
the normal cone mapping (1.2), which is actually the second-order subdifferential [13] of the 
indicator function associated with the polyhedral set (1.1); see Remark 4.8 in Section 4 for 
more details. Then we apply the obtained coderivative formulas to derive efficient conditions 
for robust Lipschitzian stability of solution maps to parameterized variational inequalities 

via the coderivative characterization of the major Lipschitz-like/ Aubin property for general 
set-valued mappings between Asplund (in particular, reflexive) spaces, with computing 
the exact bound of Lipschitzian moduli. As auxiliary results of their own independent 
interest, we evaluate the so-called precoderivative (known also as the Frechet coderivative) 
of the normal cone mapping (1.2) generated by (1.1), which is a crucial building block for 
computing the basic/limiting coderivative of (1.2) in reflexive Banach spaces. 
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Besides employing fundamental tools of variational analysis and generalized differentia
tion taken mainly from [15], we use in this study an appropriate infinite-dimensional version 
of the classical Farkas lemma, in the form of Motzkin's theorem of the alternative (see, e.g., 
[1]), that largely exploits the polyhedral structure of (1.1) described by linear inequalities. 

The rest of the paper is organized as follows. Section 2 contains some basic definitions 

and preliminary material from variational analysis, generalized differentiations, and linear 
inequalities widely used in formulations and proofs of the main results. 

Section 3 deals with computing the prenormal cone (or the Fnkhet normal cone) to the 
graph of (1.2) and the corresponding precoderivative ofF in terms constructively generated 
by the initial data of the given polyhedral set (1.1). The results obtained are the first 
ones in this direction for the case of infinite-dimensional spaces being mostly new and/ or 
improving known results of this type in finite dimensions [3, 27]. 

Section 4 is mainly devoted to precise computing, exclusively via the initial data of 
(1.1), the basic normal cone to the graph of the normal cone mapping (1.2) and the ba
sic coderivative of F by using, among other devices, the passage to the limit procedures 
from the corresponding results of Section 3. Furthermore, we show that the basic normal 

and coderivative constructions are invariant for the normal cone mapping generated by the 
convex polyhedron under consideration while replacing the weak convergence by the norm 

convergence on the the space X and its topological dual X*. We compare the results ob
tained here, which are the first in infinite dimensions, with calculating the basic coderivative 
ofF for convex polyhedral sets given in [3, 7, 27] in the case of finite-dimensional spaces. 

The final Section 5 concerns deriving verifiable conditions for robust Lipschitzian stabil
ity of solution maps to parameterized variational inequalities generated by the normal cone 

mapping to the polyhedral set (1.1) in reflexive Banach spaces. Based on the coderivative 

characterizations of the Lipschitz-like property for general closed-graph mappings from [15], 
on some results of coderivative calculus, and largely on the precise computation of the basic 
coderivative for the normal cone mapping (1.2) given in Section 4, we establish constructive 
criteria as well as easily verifiable sufficient conditions for robust Lipschitzian stability of 
the solution maps in question expressed exclusively via the initial data of model (1.1) in 
both finite-dimensional and reflexive Banach spaces. The results obtained, being the first 
ones in infinite dimensions, are also new in finite-dimensional settings providing charac

terizations of robust stability of parametric variational inequalities entirely via their initial 

data and essentially improving the corresponding results of [3, 28]. Moreover, we derive con
structive estimates as well as precise equalities, new in both finite and infinite dimensions, 
for computing the exact Lipschitzian bounds for solution maps to the polyhedral variational 
inequalities under consideration. 

Our notation and terminology are basically standard and conventional in the area of 
variational analysis and generalized differentiation; see, e.g., [15, 25, 26]. Although most of 
the definitions and some results hold in more general Banach space settings, our standing 

assumption in this paper (unless otherwise stated) is that the Banach space X in question 
is reflexive, since the reflexivity seems to be essential for the validity of the main results 

obtained below. As usual, II · II stands for the norm on X, (-, ·) stands for the canonical 
pairing between X and its topologically dual space X*, the symbol xk, .3!!. x* with k E IN := 
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{1, 2, ... } indicates the weak convergence of a sequence in X*. We use the generic symbol 
* to signify duality /polarity relationships if no confusion arises. In particular, 

K* := {x* EX*\ (x*,x):::; 0 for all x E K} 

is the polar cone to a cone K C X. By 

ker{vj\ j E J} := {x EX\ (vj,x) = 0 for all j E J} 

we denote the kerner/orthogonality subspace generated by the elements vj EX*, j E J. In 
the case of just one generating element v* E X*, we also use the notation 

{v*}.L := {x EX\ (v*,x) = 0}. 

The notation AX stands for the image/range subspace of the linear operator A: X --+ Y. 

Given further a nonempty set n c X, denote by span n the smallest linear subspace 

containing n and by cone n the smallest convex cone containing this set; by convention we 
let cone 0 := {0} and span 0 := {0}. The 0-restricted convergence x ~ x means that x --+ x 
with X E n. Considering finally a set-valued mapping F: X .=;X*' define its domain by 

DomF := { x EX\ F(x) i= 0} 

and the (sequential) Painleve-Kuratowski outer/upper limit ofF as x--+ x by 

Lims~pF(x) := {x* EX* I :3 sequences Xk--+ x, x'k ~ x* as k--+ oo 
x~x 

with x'k E F(xk) for all k E IN}· (1.3) 

2 Basic Definitions and Preliminaries 

In our brief descriptions of basic tools and preliminary results of variational analysis and 
generalized differentiation presented in this section we follow the book [15], where more 
details, proofs, and discussions can be found. We also refer the reader to [2, 16, 26, 25] for 
related and additional material. 

As mentioned in Section 1, our underlying assumption is that all the spaces in question 
are Banach and reflexive, which is the standing setting of this paper unless otherwise stated. 
Note that any reflexive Banach space is Asplund, and thus the major results from [15] 
established in Asplund spaces are applied in the setting of this paper. In [15] the reader can 
find appropriate counterparts of the basic definitions and results presented in this section 
in more general settings of Asplund spaces and also of arbitrary Banach spaces. 

Given a nonempty set n c X, define the prenormal cone (known also as the Frechet or 
regular normal cone) to n at x E n by 

N~( n) { * X* 11' (x*' x- x) o} 
x; H := x E Im;~p llx- xll :::; . 

X->X 

(2.1) 

For convenience let N(x; n) = 0 if x ~ n. Note that the set N(x; n) is convex and weakly 
closed in X*; furthermore, it reduces to the normal cone of convex analysis if n is convex. 
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However, the prenormal cone (2.1) may be trivial ( = { 0}) at boundary points of simple 
nonconvex sets in JR2 (see examples in [15, 25]), and it does not generally admit pointwise 
calculus (e.g., the crucial intersection rule) required by many applications. The situation 
is dramatically improved when we consider the sequential regularization of (2.1) employing 
the outer limit (1.3) toN(·; n) by 

N(x;n) := LimsupN(x;n) (2.2) 
x~x 

known as the (basic, limiting, Mordukhovich) normal cone to n at x E n. When X = IRn, 
construction (2.2) can be equivalently described in the form: 

there exist O!k 2: 0, Xk ---7 x, Wk En for k E IN such that 

llwk- Xkll = dist(xk; f2) and O:k(Xk- Wk) ---7 x* as k ---7 00} 
originally introduced in [11] via the Euclidean distance function dist( x; n) to n. Observe 
that the basic normal cone (2.2) is often nonconvex in the case of nonconvex sets n while 
it and the corresponding sub differential/ coderivative constructions enjoy full calculus and 
other important properties required by applications. These developments are mainly based 
on variational/ extremal principles of variational analysis, which replace the classical convex 
separation theorems in nonconvex settings. 

Given next a set-valued mapping F: X =J Y with the graph 

gphF := {(x,y) EX x Yl y E F(x)} (2.3) 

and following the pattern initiated in [12], we present two constructions of coderivative type 
via the corresponding normals to the graphical set (2.3). The precoderivati~e (or Fnkhet 
coderivative) ofF at (x, y) E gphF is defined by 

D*F(x,y)(y*) := {x* E X*l (x*,-y*) E N((x,y);gphF)}, y* E Y*, (2.4) 

while the basic/limiting coderivative ofF at (x, y) is 

D*F(x,y)(y*) := {x* E X*l (x*,-y*) E N((x,y);gphF)}, y* E Y*, (2.5) 

which corresponds to the "normal" coderivative construction in [15]. If the given map
ping F = f: X ---7 Y is single-valued and strictly differentiable at x with the derivative 
\1 f(x): X ---7 Y, in the sense that 

lim f(x)- f(u)- (\lf(x),x- u) = 
0 

X,U--->X llx- ull 
(2.6) 

(this is automatic when f is C 1 around x), then 

D*f(x)(y*) = D*f(x)(y*) = {\lf(x)*y*} for ally* E Y*, (2.7) 

where y = f(x) is omitted in the coderivative notation for single-valued mappings. The 
coderivative representations in (2.7) show that both constructions (2.4) and (2.5) reduce to 
the adjoint derivative operator in the classical setting. 
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It is easily implied by the definitions that the basic coderivative (2.5) admits the following 
limiting representation via the precoderivative (2.4) at points thereby: 

D* F(x, y)(y*) = Lim sup D* F(x, y)(z*), 
(x,y)->(x,y) 
z*~y* 

(2.8) 

where the outer limit (1.3) is taken with respect to the weak topology in both dual spaces 
X* andY*. We say that F is (strongly) coderivatively normal at (x, Y) if 

D* F(x, y)(y*) = Lim sup D* F(x, y)(z*), 
(x,y)->(x,ii) 
Jlz*-y*JI->0 

(2.9) 

which means that the coderivative construction (2.5) does not change if we replace the weak 
convergence z* ~ y* in (2.8) by the norm one z* -+ y* in (2.9), while the convergence on 
X* in (2.9) stays weak by (1.3). Note that the right-hand side limit in (2.9) corresponds to 
the "mixed" coderivative construction in [15]. We refer the reader to Proposition 4.9 in [15] 
that lists a number of efficient conditions ensuring the coderivative normality of set-valued 
and single-valued mappings. Standard classes of mappings satisfying (2.9) include of course 
those with convex graph (2.3) as well as strictly differentiable (2.6) at the point in question. 

Recall also a certain "normal compactness" property of set-valued mappings that is 
needed for characterizing robust Lipschitzian stability in infinite dimensions. A mapping 
F: X=? Y is partially sequentially normally compact (PSNC) at (x,fj) E gphF if for any 

sequence {(xk,Yk.xt,,y;:;)} C X x Y x X* x Y* satisfying (xJ:,,yk) E N((xk,Yk);gphF) for 
all k E IN we have the implication 

[(xk,Yk) --t (x,fj), xt, ~ 0, IIYkii-+ o] ===? llxt,ll-+ 0 as k --t 00. (2.10) 

The PSNC property obviously holds if the domain space X is finite-dimensional. In fact, 
it holds in much more general settings of infinite-dimensional spaces being stable with 
respect to various operations performed on set-valued and single-valued mappings; the latter 
calculus based on the extremal/variational principles can be found in [15]. In particular, F 
is PSNC at (x, y) if it is Lipschitz-like around this point, i.e., there are neighborhoods U of 
x and V of fj such that 

F(x) n V C F(u) + .e11x- uii.IB whenever x,u E U (2.11) 

with some constant/modulus .e ~ 0, where lB stands for the closed unit ball in the space in 
question. The infimum of all moduli {.e} in (2.11) is called the exact Lipschitzian bound of 
F around (x,y) and is denoted by lipF(x,fj). Note that property (2.11) seems to be the 
most natural extension of the classical (robust) local Lips chi tzian behavior to set-valued 
mappings. It is also known as Aubin's "pseudo-Lipschitzian" property and reduces to the 
Hausdorff one around x for V = Y in (2.11). It has been well recognized and employed 
in variational analysis that the robust Lipschitzian property (2.11) is equivalent to metric 
regularity and linear openness of the inverse mapping p-1; see, e.g., [8, 15, 25]. 

The following coderivative characterization of the Lipschitz-like property (2.11) as well 
as a lower estimate and the precise formula for computing the exact bound of Lipschitzian 
moduli in (2.11) are consequences of Theorem 4.10 from [15], where the reader can find 
more general results, discussions, and references. 
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Theorem 2.1 ( coderivative characterization and exact bound formula for Lipschitz

like mappings). Let F: X =J Y be closed-graph around (x,y) E gphF and coderivatively 

normal at this point. Then F is Lipschitz-like around (x, y) if and only if 

D* F(x, y)(O) = {0} (2.12) 

and F is PSNC at (x, y). Furthermore, we have the estimate 

lipF(x,y) ~ IID*F(x,y)ll :=sup{llx*lll x* ED*F(x,y)(y*), IIY*II::::; 1}, (2.13) 

which holds as equality if dim X < oo. 

When both X and Y are finite-dimensional, the results of Theorem 2.1 reduce to those 

obtained in [14]; see also [25, Theorem 9.40] and the references therein. 

Finally in this section, we present an appropriate infinite-dimensional version of gener

alized Farkas lemma, in the form of Motzkin's theorem of the alternative, which is taken 

from [1, Theorem 5] and is widely used in the paper. 

Theorem 2.2 (of the alternative). Let W be a vector space of arbitrary dimension, and 

let A: W-+ JRd and B: W-+ lR8 be linear mappings. Then we have the alternative: 

either: 

or: 

3 x E W such that Bx ~ 0 and Ax> 0 componentwise, 

3 A E JRd, 3 tt E lR8 such that A~ 0, A=/= 0, tt 2: 0, and 
d s 

L AiAi + L {tjBj = 0, 
i=l j=l 

where A and Bj refer to the components of A and B, respectively. 

3 Computing Precoderivatives of Normal Cone Mappings to 
Convex Polyhedra 

Given the index set T = {1, ... , m} as m ~ 1 and the generating linear functionals xi E X*, 

i E T, we rewrite the initial convex polyhedron (1.1) as 

e = {X E XI (xi' x) ::::; 0 for all i E T} (3.1) 

and fix some point x E 8. Consider the normal cone of convex analysis 

N(x;G):={x*EXI (x*,x-x)::::;O forall xE8} (3.2) 

to 8 at x E 8 and define the collection of active constraint indices 

I(x) := {i E Tl (xi,x) = o}, (3.3) 

where the dependence on x in notation (3.3) may be omitted if no confusion arises. 

Our main goal in this section is to provide an exact calculation of the prenormal cone 

(2.1) to the (nonconvex) graph of the normal cone mapping Fin (1.2) generated by (3.2) 
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and hence the precoderivative (2.4) of the mapping F entirely in terms of the initial data of 
(3.1) including the active constraint indices (3.3) at the reference point x. 

To proceed, recall the standard construction of the tangent cone 

T(x; e) := N*(x; e) = { v EX\ (v, x*) ::; 0 for all x* E N(x; e)} (3.4) 

to the convex set e at x defined as the dualjpolar cone to the normal one (3.2) in the case 
of reflexive spaces under consideration. 

In our polyhedral case (3.1) the normal and tangent cones to e admit the following 
explicit representations (probably well known while we did no find the exact references) via 
the generating elements xi in (3.1) and the active indices I(x). 

Proposition 3.1 (explicit representations of the normal and tangent cones to 
convex polyhedra). Let e be given in (3.1), and let I(x) be defined in (3.3). Then we 

have the representations 

N(x; e)= cone{ xi\ i E I(x)} = { L A.ixi\ A.i 2: 0 }, 
iEI(x) 

T(x;e) ={vEX\ (xi,v)::; 0 for all i E J(x)}. 

(3.5) 

(3.6) 

Proof. The first representation of the normal cone in (3.5) can be easily derived from 
Theorem 2.2 of the alternative. The second one in (3.5) follows from the first equality in 
therein by the definition of the conic convex hull in the case of the finite set {xi I i E J(x)}. 
The tangent cone representation (3.6) is a direct consequence of the first equality in (3.5) 
and definition (3.4) of the tangent cone. /::, 

Now we consider the set-valued normal cone mapping F: X =1 X* defined in (1.2) by 
:F(x) = N(x; e) and establish an intermediate representation of the prenormal cone (2.1) 
to the graph of :F at (x, x*) E gph :F with some x* E N(x; e) via the tangent cone (3.4) 
to the original polyhedral set (3.1) at the reference point x, which essentially exploits the 
reflexivity of the space X. 

Proposition 3.2 (tangent representation of the prenormal cone to the graph 
of the normal cone mapping). Fix x* E N(x; e) from the normal cone (3.2) to the 

polyhedral set (3.1). Then we have the following representation of the prenormal cone (2.1) 
to the graph of the normal cone mapping (1.2): 

N((x,x*);gphF) = (T(x;e)n{x*}j_)* x (T(x;e)n{x*}j_). (3.7) 

Proof. Take x* E N(x;e) and fix an arbitrary pair (x*,u) E N((x,x*);gph:F). It follows 
from definition (2.1) of the prenormal cone to the graph of :F that 

lim sup 
(x*, x- x) + (u, u* - x*) < O. 

llx- xll + llu*- x*ll -

8 
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Substituting x = x and u* E :F(x) into (3.8) and using the fact that the set :F(x) is a convex 
cone and then construction (3.4) of the tangent cone to 8 at x, we deduce from (3.8) that 

u E N(x*; :F(x)) = N(x*; F(x)) = :F(x)* n {x*}j_ = T(x; E>) n {x*}j_. (3.9) 

To verify the inclusion "C" in (3.7), it remains to check that x* E (T(x;8) n {x*}j_)*, 
which means the fulfillment of the relationship 

(x*,v)::::; 0 for any v ET(x;8)n{x*}j_. (3.10) 

To proceed, take any v E T(x; E>) n {x*}j_ and construct the sequence Xk := x + k- 1v as 
k E IN. Observe that for the generating elements xi in (3.1) we have 

(xi, xk) = (xi, x) + k-1 (xi, v) = k-1 (xi, v) ::::; 0 whenever i E J(x) and k E IN, 

since xi E N(x; 8) for all i E J(x) by (3.2) and (3.3). This implies that Xk E 8 for all 
k E IN sufficiently large, since (xi, x) < 0 as i E T\ I(x). Furthermore, taking into account 
that x* E N(x; 8) and v E {x*}_L, we get 

(x*, X - Xk) = (x*, X - x) - k-1 (x*, v) = (x*, X - x) ::::; 0 for all X E 8, 

which yields, by the construction of :Fin (1.2), that x* E F(xk), i.e., (xk,x*) E gphFwhen 
k E IN is sufficiently large. It is obvious that (xk, x*) --7 (x, x*) as k --7 oo. Putting (xk, x*) 
for (x,u*) in (3.8), we conclude by passing to the limit ask --7 oo that (x*,v)::::; 0 and thus 
arrive at (3.10). Unifying (3.9) and (3.10) allows us to justify the inclusion "c" in (3.7). 

To prove the opposite inclusion in (3.7), assume by contradiction that there is a pair 
(x*, v) EX* x X satisfying the relationships 

x* E (T(x; E>) n {x*}j_)*, v E T(x; 8) n {x*}j_, (x*, v) ¢ N((x, x*);gphF). (3.11) 

The last one in (3.11) ensures, by the structures of the mapping F and the prenormal cone 
(2.1) to its graph, the existence of a number 'Y > 0 and a sequence (xk, vk) --7 (x, x*) as 

k --7 oo such that Xk E 8, vk E N(xk; 8), and 

(x*,xk- x) + (v,vk- x*) 

llxk - xll + llvk - x* II > 'Y 
(3.12) 

for all k E IN sufficiently large. Considering by (3.3) the collection of active constraint 
indices I(xk) at Xk, we can assume by passing to a subsequence if necessary that there is a 
constant index set I such that I(xk) =I for all k E IN. It easily follows that I c I(x), since 
Xk --7 x ask --7 oo. Taking this into account and employing the normal cone representation 
(3.5) from Proposition 3.1, we get 

vk = L Aikxi with Aik ~ 0 for all i E I(x) and k E IN. 
iEl(x) 

The latter implies, by v E T(x; 8) n {x*}j_ due to the second inclusion in (3.11) and by 

xi E N(x; 8) for all i E I(x), that 

(v, vk- x*) = (v, vk) = L Aik(v, xi) ::::; 0, k E IN, 
iEI(x) 
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which ensures, in particular, that Xk # x for all k E IN due to (3.12). By the reflexivity of 
X and the weak sequential compactness of the unit ball in X we conclude with no loss of 
generality that there is z EX with llzll :::; 1 such that 

Since Xk E e, it follows from (3.2) that 

\II::= :II, z*) :::; 0 for all z* E N(x; e), k E IN, 

which implies by passing to the limit as k ~ oo that (z, z*) :::; 0 for all z* E N(x; e) and 
hence z E T(x; 8) by (3.4). Thus (z, x*) :::; 0, since x* E N(x; e). Moreover, it follows from 
vk, E N(xk; e) and the normal cone definition that 

Passing to the limit in the latter inequality and taking into account that vk, ~ x* strongly 

in X* as k ~ oo, we arrive at (x*, -z) :::; 0 and conclude therefore that (x*, z) = 0, 
since the opposite inequality was proved above. This gives z E { x* }.l, and hence we get 
z E T(x; e) n {x*}.l. Furthermore, it follows from (3.12) and (3.13) that 

'Y < 
(x*,xk- x) + (v,vk,- x*) 

llxk- xll + llvk,- x*ll 

< max { 0, \ x*, II::= :II)}+ max { 0, \ v, II~~= ::II)} 
< max { 0, \ x*, II:: =:II)} for all k E IN. 

Letting k ~ oo at the latter expression and remembering that x* E (T(x; 8) n {x*}.l)* by 
the first assumption in (3.11) and that z E T(x; e) n {x*}.l as proved above, we arrive at 

"(:::;max { 0, (x*, z)} = 0, 

which contradicts the fact that 'Y > 0 in (3.12). This justifies the inclusion ":::::>" in (3.7) and 
thus completes the proof of the proposition. /::, 

The result of Proposition 3.2 gives a precise representation of the prenormal cone (2.1) to 
the graph gphF of the normal cone mapping (1.2) under consideration, while not explicitly 

via the original polyhedral set 8 in (3.1) but involving the tangent cone (3.4) to e. Our next 

goal in this section is to establish an explicit representation of this prenormal cone entirely 

in terms of the initial data of the convex polyhedron (3.1). To proceed, we introduce the 
following two sets in spaces X* and X, respectively, which are constructed via the generating 
elements xi in (3.1) and subsets of the index set Tin (3.1). Given arbitrary collections of 
indices PC Q C T, define the sets 

AQ,P :=cone{ xi! i E Q\P} +span{xil i E P}, (3.14) 
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BQ,P := {x E XJ (xi,x) = 0 for all i E P, (xi,x) :S 0 for all i E Q\P}. (3.15) 

There is a simple duality /polarity relationship between the above sets used in the proofs of 

the main result of this section and those in Section 4. 

Lemma 3.3 (polarity relationship). Let the sets AQ,P and BQ,P be defined in (3.14) 

and (3.15), respectively, via the initial data of the convex polyhedron (3.1). Then we have 

Bq,P = AQ,P for any P C Q C T. (3.16) 

Proof. The inclusion Bq,P ::::> AQ,P follows directly from definitions (3.14) and (3.15). To 
justify the opposite inclusion "c" in (3.16), pick an arbitrary element x* E Bq,P· Then we 
have (x*, x) :S 0 for all x E BQ,P, which means that there is no x E X such that 

(x*,x)>O, (xi,x):s;O, (-xi,x):SO forall iEP 
and (xi , x) :S 0 for all i E Q \ P. 

Applying now Theorem 2.2 of the alternative, we find numbers>.> 0, /-Li ;::: 0 and Vi ;::: 0 as 
i E P, and 'T/i ;::: 0 as j E Q \ P satisfying the equality 

>.x* = L 'T/ixi + L f-Lixi - L Vi xi. 
iEQ\P iEP iEP 

The latter immediately implies the relationships 

x* = L >. -l'T/iXi + L >.-1 (f-Li - vi)xi 
iEQ\P iEP 

E cone{ xi I i E Q \ P} + span{xiJ i E P} = AQ,P, 

which justify the inclusion "c" in (3.16) and complete the proof of the lemma. 6. 

Now we are ready to establish a constructive representation of the prenormal cone (2.1) 

to the graph of the normal cone mapping (1.2) entirely in terms of the original polyhedral 
set (3.1). Namely, given any point (x,x*) E gphF, we represent N((x,x*);gphF) via the 
sets AQ,P and BQ,P from (3.14) and (3.15), respectively, where the index sets Q and Pare 
fully determined by the pair ( x, x*). More specifically, by Q we take the active constraint 
indices I(x) from (3.3), while the index set of "positive multipliers" Pis defined as follows: 
represent x* E N(x; 8) by (3.5) of Lemma 3.1 as 

x* = L >.ixi with Ai ;::: 0 for all i E J(x) 
iEI(x) 

(3.17) 

and take P = J(x, x*) c I(x), where the latter index set of positive multipliers is given by 

J(x,x*) := {i E J(x)J >.i > o}. (3.18) 

Note that the multipliers Ai in representation (3.17) may not uniquely defined unless 

the active generating elements {xil i E J(x)} of (3.1) are linearly independent. Thus the 
index set of positive multipliers (3.18) is not necessarily unique. It is easy to observe nev

ertheless that all the subsequent constructions and results involving J(x, x*) are invariant 
with respect to any choice of the multipliers Ai and the index set J(x, x*) as above. 
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Theorem 3.4 (computing the prenormal cone to the graph of the normal cone 
mapping). Let x* E N(x; 8) for the polyhedral set 8 in (3.1), let the index sets I= I(x) 

and J = J(x, x*) be defined by (3.3) and by (3.17) and (3.18), respectively, and let the 

corresponding sets Ar,J and Br,J be given in (3.14) and (3.15). Then the prenormal cone 

(2.1) to the graph of the normal cone mapping :F(x) = N(x; 8) at (x, x*) is computed by 

N((x, x*); gph:F) = Ar,J x Br,J. (3.19) 

Proof. To verify (3.19), it remains to show, by Proposition 3.2 and Lemma 3.3, that 

T(x; 8) n { x*}j_ = Br,J. (3.20) 

The inclusion ":J" in (3.20) easily follows from the definition of Br,J in (3.15), the tangent 
cone representation (3.4) in Proposition 3.1, and the representation of 

x* = L .. \x1 with >.i > 0 for all i E J = J(x, x*), 
iEJ 

which is an immediate consequence of (3.17) and (3.18). 

(3.21) 

To verify the opposite inclusion "c" in (3.20), fix any v E T(x; 8) n {x*}_L and get 
(x;, v) :::; 0 for all i E I= I(x) by the tangent cone representation (3.6) from Proposition 3.1. 
Furthermore, by representation (3.21) of x* we have 

(x*,v) = 2:>-i(x;,v) = 0, 
iEJ 

which yields (x;, v) = 0 for all i E J by the definition of J = J(x, x*) in (3.18). This justifies 
the inclusion "c" in (3.20) and completes the proof of the lemma. 6. 

As a direct consequence of Theorem 3.4, we arrive at precise and constructive computing 
the precoderivative (2.4) of the normal cone mapping :F(x) = N(x; 8). 

Corollary 3.5 (computing the precoderivative of the normal cone mapping). In 

the notation of Theorem 3.4 we have 

{ 

cone{x;\ i E I\ J} +span{ xi\ i E J} 
D* :F(x, x*)(u) = if (xt, u) = 0 for i E J and (x;, u) ~ 0 for i E I\ J; 

0 for all other u EX. 
(3.22) 

Proof. Follows directly from definition (2.4) of the precoderivative and the result of The
orem 3.4 for computing the prenormal cone to the graph of :F. 6. 

4 Computing Coderivatives of Normal Cone Mappings to 
Convex Polyhedra 

The main goal of this section is to efficiently compute the (basic, limiting) coderivative 

(2.5) of the normal cone mapping :F from(1.2) generated by the polyhedral set (3.1). We 
provide such calculations in the general polyhedral setting under consideration, without any 
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qualification conditions, and also derive more convenient formulas in the case when the 
generating elements xi in ( 3.1) are linearly independent along the active constraints. 

Let us start with deriving a representation of our basic/limiting normal cone (2.2) to the 
graph of :F via collections of active indices at the reference point and establishing a certain 
stability property of this set in the sense defined in [5], which is equivalently simplified here 
in the framework of reflexive spaces. 

Following [5], we say that a set 0 c X is dually norm-stable at x E 0 if the basic normal 

cone (2.2) admits the representation 

N(x; 0) = { x* E X*\:3 Xk ~ x, xk E N(xk; 0) with \\xk- x*\\ ----) 0 as k----) oo }. (4.1) 

Comparing this property with definition (2.2) of the basic normal cone via the outer limit 
(1.3), we observe that (4.1) reads that the weak convergence on X* in (2.2) can be equiv
alently replaced by the norm convergence on X*. Observing that property ( 4.1) obviously 
holds in finite dimensions, we refer the reader to [5] for verifiable conditions ensuring the 
dual norm-stability in infinite-dimensional spaces. Being applied to graphical sets, the dual 
norm-stability surely yields the coderivative normality (2.9) of set-val':led mappings. 

To formulate and prove the aforementioned result on computing the limiting normal 
cone to the graph of :F, we need the following additional constructions described entirely in 
terms of the initial data of (3.1). Fix an index collection Q C T, form the cone 

CQ:={xEX\(xi,x)=O forall iEQ, (xi,x)<O forall iET\Q}, (4.2) 

and, given (x, x*) E gph:F, consider the family of indices 

I(x,x*) := {P c J(x)\ x* E cone{xi\ i E P} }. (4.3) 

Theorem 4.1 (representation of basic normals to the graph and stability prop
erty for the normal cone mapping). Let (x,x*) E gph:F for the normal cone mapping 

(1.2) generated by the convex polyhedron (3.1), let I= I(x) be given in (3.3), CQ be given 

in (4.2), and I= I(x, x*) be given in (4.3). Then the graphical set gph:F c X x X* is 

dually norm-stable at (x, x*) and the basic normal cone to this set is represented by 

N((x, x*); gph:F) = u (4.4) 
PcQci, PEI,Cqf0 

where AQ,P and BQ,P are defined in (3.14) and (3.15), respectively. 

Proof. In what follows we verify representation (4.4) of the basic normal cone to the graph 
of :F and justify simultaneously the dual norm-stability property of the graph in question. 

Let us start with proving the inclusion "c" in ( 4.4). Pick an arbitrary limiting normal 

(v*,u) E N((x,x*);gph:F) and find by definition (2.2) sequences (xk,z/:) ~ (x,x*) and 

(vJ:,,uk) ~ (v*,u) ask----) oo satisfying 

(4.5) 

13 



It follows from (4.5) due to (1.2) that Xk E 8 and zk, E N(xk; 8) ask E IN. F\1rthermore, 
taking into account that there are finitely many generating elements xi of the convex poly
hedron (3.1) and considering a subsequence of k E IN if necessary, assume with no loss of 
generality that there is a constant index subset Q c I(x) such that 

Q := {i E Tl (xi,xk) = 0} for all k E lN. (4.6) 

It is easy to observe that the set CQ from ( 4.2) is nonempty for the index collection Q defined 
in (4.6). Applying representation (3.5) from Proposition 3.1 to each normal zk, E N(xk; 8) 
from (4.5), we get the equality 

zk, = L Aikxi with some Aik ~ 0, k E IN, 
iEQ 

(4.7) 

and, extracting another subsequence by the above arguments, select without loss of gener
ality a constant index subset PC Q c I(x) such that 

P := { i E Ql Aik > 0} for all k E lN. 

Combining (4.7) and (4.8) allows us to verify that 

zk, = L Aikxi E cone{ xi I i E P}, 
iEP 

(4.8) 

which implies in turn that x* E cone{ xi I i E P} by the closedness of finitely generated 
cones. This justifies that P E I for P and I defined in (4.8) and (4.3), respectively. 

Now apply the prenormal cone representation (3.19) from Theorem 3.4 to ( vk,, uk) in 
(4.5). By the structures of the index sets in (3.19), (4.6), and (4.8) we arrive at 

vk, E AQ,P and Uk E BQ,P for all k E IN, (4.9) 

where Q and P are given in (4.6) and (4.8), respectively. Observe that the set BQ,P is 
obviously weakly closed in X by construction (3.15) and that the set AQ,P is weakly closed 
in X* due to the polarity relationship (3.16) from Lemma 3.3 and the reflexivity of X. 
Passing finally to the limit in ( 4. 9) as k ---t oo, we conclude that ( v*, u) E AQ ,P x BQ ,P and 
thus justify the inclusion "c" in (4.4). 

To prove the opposite inclusion ":::::>" in ( 4.4), fix an arbitrary element 

(v*, u) E u AQ,P X BQ,P 
PcQci, PEI,Cq"f0 

and find therefore some index subsets P c Q c I(x) such that P E I and 

v* E AQ,P and u E BQ,P with CQ i= 0, (4.10) 

where the sets CQ and I = I(x, x*) are defined in (4.2) and (4.3), respectively. Take a 
point x E Cq and construct a sequence { xk} C X by 

(4.11) 
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Since (xi, x) = 0 for all i E Q and (xi, x) < 0 for all i E T \ Q by (4.2), we have Xk E CQ 

as k E IN. This implies that Xk E 8 and that the set of active constraint indices I(xk) at 
Xk reduces to Q for each k E IN. Then representation (3.5) from Proposition 3.1 gives 

N(xk; 8) =cone{ xi I i E Q}, k E IN. 

Observe that the inclusion P E I= I(x, x*) implies by (4.3) that 

with some Ai ~ 0. 

Define further a sequence { z'k} C X* by 

z'k := L (>.i + k-1 )xi with llz'k- x*ll-> 0 as k---> oo 
iEP 

(4.12) 

(4.13) 

(4.14) 

and note that z'k E N(xk; 8) for all k E IN due to (4.12) and P c Q. Furthermore, all the 
coefficients from the representation of z'k in (4.14) are positive. Taking this into account 
and applying Theorem 3.4 to each (xk, z'k) with the index sets Q and P from (4.10), we get 
N((xk, zk); gph.F) = AQ,P X BQ,P and hence 

(v*,u) E N((xk>z'k);gph.F) for all k E IN. (4.15) 

The latter implies, by letting k ---> oo and using definition (2.2) of the basic normal cone, 
that (v*, u) E N((x, x*); gph.F), which completes the proof of representation (4.4). 

To finish the proof of the theorem, it remains to show that the graphical set gph F is 
dually norm-stable at (x, x*). By definition of this property we need to check that any basic 
normal pair (v*,u) E N((x,x*);gph.F) can be strongly (in the norm topology of X* x X) 
approximated by prenormal elements to the graph ofF at points close to (x, x*). It is 
actually shown in the proof of the inclusion ":J" in ( 4.4) that each such pair ( v*, u) satisfies 
inclusion (4.15), where Xk---> x by (4.11) and z'k---> x* by (4.14) ask---> oo strongly X and 
X*, respectively. This surely justifies the dual norm-stability of the graph of the normal 
cone mapping F and ends the the proof of the theorem. L, 

The next result establishes a simplified representation of the basic normal cone to the 
graph of F provided that the generating elements xi corresponding to the active constraint 
indices in the convex polyhedron (3.1) are linearly independent. 

Theorem 4.2 (basic normals to the graph of the normal cone mapping under 
linear independence of active constraints). Let (x, x*) E gph.F in the framework of 
Theorem 4.1, and let J = J(x, x*) be the index set of positive multipliers defined in (3.18). 
Assume that the generating elements {xi I i E J(x)} of (3.1) are linearly independent. Then 
the basic normal cone (2.2) to the graph ofF admits the representation 

N((x, x*); gphF) = (4.16) 
JcPcQci 
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Proof. We intend to show that the general representation (4.4) of the basic normal cone 
reduces to the simplified and more convenient form (4.16) under the imposed linear inde
pendence condition. Let us prove first that the latter assumption implies that 

CQ # 0 whenever Q c I(x) (4.17) 

for the set CQ defined in (4.2). Since x E C1, we obviously have (4.17) for Q = I(x). 
Otherwise, represent the set CQ as 

CQ = {x E XI (xT,x):::.:; 0, (-xT,x):::.:; 0 for i E I and (xT,x) < 0 for i E T \ Q} 

and assume, arguing by contradiction, that CQ = 0. Then Theorem 2.2 of the alternative 
ensures the existence of nonnegative numbers ai, ai, {3j for i E Q and j E T \ Q such that 
at least one of {3j is not zero and 

L CiiX: - L aixi + L {3jx; = 0. (4.18) 
iEQ iEQ jET\Q 

By the inclusion Q c I and definition (3.3) of I= I(x) we get from the latter identity that 

L {3j(xj, x) = 0, 
jET\! 

which implies in turn the relationships 

(xj,x) < 0 and hence {3j = 0 for all j E T\I(x). 

This allows us to deduce from (4.18) that 

L(ai- ai)xT + L /3jx: = 0, 
iEQ jEI\Q 

where at least one of the multipliers {3j is not zero. The latter contradicts the linear 
independence assumption made and thus justifies (4.17). 

To derive next the normal cone representation (4.16) from that of (4.4) in Theorem 4.1, 
it is sufficient to prove the equivalence 

P EI ¢===? J c P, (4.19) 

where I= I(x, x*) is defined in (4.3). Observe right away that the implication "~" in 
(4.19) follows immediately from representation (3.21) and the definition of I. To justify the 
opposite implication "==?" in (4.19), take any PC J and find 'Yi 2: 0 as i E P with 

(4.20) 

Recalling that PC I by definition (4.3) and taking Ai from representation (4.13) , we let 

i E J, 

iEI\J, 
v- ·- { 'Yi, 

2 ,- 0, 
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and conclude by (3.21) and (4.20) that 

(4.21) 

which implies by the linear independence assumption that /-ti =Vi for all i E I. 
Assume now that J cf_ P, i.e., there is an index i E I such that i E J \ P. 

(3.21) and (4.21) that 
It gives by 

for this index, which is an obvious contradiction. Thus J C P, and the conclusion of the 
theorem follows finally from (4.17) and (4.19). 6. 

As consequences of Theorems 4.1 and 4.2, we obtain the following representations of the 
basic coderivative (2.5) involving collections of active index subsets in the general case (3.1) 
of convex polyhedra as well as under the linear independence condition. 

Corollary 4.3 ( coderivative normality and coderivative representations via col
lections of active index subsets). Let ( x, x*) E gph .F in the general framework of 

Theorem 4.1. Then the normal cone mapping .F is coderivatively normal at (x, x*) and the 

basic coderivative (2.5) of .F at (x, x*) admits the representation: 

D*.F(x,x*)(u)={v*EX*l (v*,-u)EAQ,PXBQ,P forsome PcQci 

with P E I(x, x*) and CQ i= 0 }· 

If in addition the generating elements {xi J i E I ( x)} are linearly independent, then 

(4.22) 

D*.F(x,x*)(u) = {v* E X*l (v*,-u) E AQ,P x BQ,P for some J c PC Q C I} (4.23) 

with the index subset of positive multipliers J = J(x, x*) defined in (3.18). 

Proof. Representations (4.22) and (4.23) follows from the coderivative definition (2.5) and 
the normal cone representation (4.4) and (4.16), respectively. The coderivative normality 
(2.9) of .Fat (x, x*) is an immediate consequence of the dual norm-stability of the graph of 
.Fat this point proved in Theorem 4.1. 6. 

Our next result, important for establishing the main theorems in this section, efficiently 
characterizes the coderivative domain Dom D* .F(x, x*) in the general polyhedral case (3.1), 
i.e., describes the subset of the coderivative argument on which the coderivative is nonempty. 

Given an active index collectionS c I(x), we consider the closed cone 

Cs:={xEXI(xi,x)=O forall iES, (xi,x):SO forall iET\S}, (4.24) 

which is the closure of the one in ( 4.2), and define the feature index subset for S by 

Y(S) := {i E I(x)l (xi,x) = 0 for all x E Cs}. (4.25) 
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Proposition 4.4 (characterization of the coderivative domain). Let (x,x*) E gphF 
in the framework of Theorem 4.1. Then u E Dom D* F(x, x*) if and only if 

(xT,u) = 0 for all i E J and (xT,u) 2:: 0 for all i E Y(J) \ J, (4.26) 

where J = J(x, x*) and Y(J) are defined in (3.18) and (4.25), respectively. 

Proof. Let u E DomD*F(x,x*), i.e., D*F(x,x*)(u) # 0. Applying the coderivative 
definition and representation (4.4) of Theorem 4.1, find v* EX* and indices P c Q c I(x) 
with CQ # 0 and P E I(x, x*) such that 

(v*, -u) E AQ,P x BQ,P· (4.27) 

First we show that J c Q. Indeed, fix an element x E CQ and get by definition (4.2) that 

(xT,x) = 0 for all i E Q and (xT,x) < 0 for all i E T\ Q. (4.28) 

Since P E I(x, x*), we find by (4.3) numbers /-ti 2:: 0 such that 

which implies by (4.28) that (x*, x) = 0 due to P c Q. On the other hand, we have from 
the expression of x* in (3.21) that 

0 = (x*,x) = 'L:-Ai(xT,x) with Ai > 0 for all i E J. 
iEJ 

This gives that (xT, x) = 0 whenever i E J, i.e., J c Q. 
To continue proving the "only if' implication in the proposition, we get from ( 4.27) and 

construction (3.15) of the set BQ,P that 

(xT, u) = 0 for all i E P and (xT, u) 2:: 0 for all i E Q \ P. (4.29) 

It follows from the inclusion J C Q that (xi, u) 2:: 0 for all i E J. This allows us to apply 
to u the same arguments as for x above and conclude that (xi,u) = 0 whenever i E J. 

Observe further that for any x satisfying (4.28) we have x E CJ by (4.24) due to the 
inclusion J c Q. Let us now show that Y(J) c Q. Indeed, otherwise we choose some index 
i E Y(J) \ Q and by definition (4.25) get (xi, x) = 0, which clearly contradicts the inclusion 
i tJ. Q. It follows then from (4.29) that (xi,u) 2:: 0 for all i E Y(J) \ J. Thus we arrive at 
( 4.26) and justify the "only if' part of the proposition. 

Let us prove the "if' part of the proposition assuming that the relationships in ( 4.26) 
are satisfied for the given point u EX. Put P := J E I and Q := Y(J) and observe that 
-u E BQ,P for the selected pair (Q, P). Since by definition (3.14) we have 0 E AQ,P, even 
for P = 0 and/or Q = 0 by the convention made, it follows that (0, -u) E AQ,P x BQ,P· By 
Theorem 4.1 we are done while showing that CQ # 0; indeed, in this case 0 ED* F(x, x*)(u). 

To construct x E CQ, observe from definition ( 4.25) of the feature index subset that 

forevery iEI\Q=I\Y(J) thereis XiECJ with (xi,xi)<O. 
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For indices i E T \I we put Xi := x E C J and thus extend the latter relationship to: 

for every i E T \ Q there is Xi E C J with (xi, Xi) < 0. (4.30) 

Letting finally x := LiET\Q Xi E CJ and using (4.30) as well as definition (4.25), we get 

(xi,x) = 0 for all i E Q = Y(J) and 

(xi,x) = (xi,xi) + 2:.: (xi,xj) < 0 for all i E T \ Q, 
jET\Q,iij 

which gives x E CQ and thus completes the proof of the proposition. 

Now we are ready to establish the main results of this section providing efficient evalu
ations of the basic coderivative D* F(x, x*)(u) of the normal cone mapping (1.2) entirely in 
terms of the initial data of the convex polyhedron (3.1), the reference point (x, x*) E gphF, 
and the coderivative argument u E DomD*F(x,x*) from its domain. Given u EX, define 
the characteristic active index subsets 

Io(u) := {i E I(x)l (xi,u) = 0} and I>(u) := {i E I(x)l (xi,u) > 0}. (4.31) 

The next theorem provides a constructive upper estimate of the coderivative on its 
domain in the general polyhedral case (3.1) under consideration. 

Theorem 4.5 (constructive upper estimate of the coderivative for the normal 
cone mapping with no constraint qualifications). Let (x,x*) E gphF in the frame
work of Proposition 4.4, and let Io(u) and I>(u) be the characteristic active index subsets 
defined in (4.31). Then we have the coderivative upper estimate for u E Dom D* F(x, x*): 

D*F(x,x*)(u) c cone{xil i E Io(u)} +span{ xi I i E I>(u)}, (4.32) 

where the coderivative domain is computed by 

DomD*F(x,x*)={uEXI (xi,u)=O, iEJ, and (xi,u)~O, iEY(J)\J}. (4.33) 

Proof. The precise domain formula (4.33) is justified in Proposition 4.4. Pick now arbi
trary elements u E DomD*F(x,x*) and v* E D*F(x,x*)(u) and find, by the coderivative 
definition (2.5) and description (4.4) of the basic normal cone in Theorem 4.1, such index 
subsets P c Q c I(x) that P E I(x, x*), CQ =!= 0, 

v* E AQ,P, and - u E BQ,P· (4.34) 

It follows from definition (3.15) of the set BQ,P that the last inclusion is equivalent to 

(xi,u) = 0 for all i E P and (xi,u) ~ 0 for all i E Q \ P. 

Thus we have the following relationships involving the above vector u E Dom D* F(x, x*) 
as well as the index sets P and Q: 

PcS:={iEQI(xi,u)=O} and (xi,u)>O forall iEQ\S. (4.35) 
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Taking into account the relationships in (4.35) and definition (3.14) of the set AQ,P, we 
derive from the first inclusion in (4.34) that 

v* E span {xi I i E P} + cone{ xi I i E Q \ P} 
(4.36) 

c span{ xi I i E S} +cone{ xi I i E Q \ S}. 

Observe further from the constructions of S in ( 4.35) and of the characteristic active index 
subsets in (4.31) that S C Io(u) and Q \ S c I>(u). Thus we get (4.32) from (4.36) and 
complete the proof of the theorem. /'::, 

The final result of this section establishes a precise formula for computing the coderiva
tive of the normal cone mapping :Fat (x, x*) provided that the generating elements xi of 
the convex polyhedron (3.1) are linearly independent along the active constraints at x. 

Theorem 4.6 (computing the coderivative of the normal cone mapping under 
linear independence of active constraints). Assume in the framework of Theorem 4.5 
that the generating element {xi I i E J(x)} of (3.1) are linearly independent. Then we have 

D* :F(x, x*)(u) =cone{ xi I i E Io(u)} +span{ xi I i E J>(u)} (4.37) 

for all u E DomD*:F(x,x*), where the coderivative domain is computed in (4.33). 

Proof. By Theorem 4.5 it remains to justify the opposite inclusion "::J" to ( 4.32) under the 
imposed linear independence condition. It easily follows from the definitions that T(J) = J 
for the feature index subset ( 4.25) of J = J(x, x*) in (3.18) under the assumed linear 
independence of the generating elements {xil i E J(x)}. Take (v*,u) satisfying 

v* E cone{ xi I i E Io(u)} +span{ xi I i E I>(u)} 

and observe by (3.14) and (3.15) that the latter inclusion yields 

(v*, -u) E AQ,P x BQ,P with Q := Io(u) U J>(u) and P := Io(u) 

via the characteristic active index subsets ( 4.31). Since 

J c Io(u) c Io(u) U J>(u) c I, 

(4.38) 

we derive the inclusion "::J" in ( 4.37) from the relationships in ( 4.38) and the coderivative 
representation (4.22) of Corollary 4.3 and thus complete the proof of the theorem. 6 

Let us conclude this section with three extended remarks, which compare the results 
obtained with known in the literature, relate the main theorems to the second-order subd
ifferentials mentioned in Introduction, and discuss some applications. 

Remark 4. 7 (comparison with known results). As mentioned in Section 1, all the 
results obtained in both Section 3 and Section 4 are new in infinite dimensions. In this 
paper the results of Section 3, which are of their own interest, play an auxiliary role as 
a necessary preliminary step for computing, according to the definitions, the basic normal 
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cone and coderivative in infinite dimensions. In finite-dimensional spaces there are analogs 
and versions of some results obtained above discussed in what follows. 

Proposition 3.2 is implicitly given in [3] in finite dimensions and then explicitly proved 
by a different way in [27] in the same setting. Our proof in reflexive spaces mainly follows 
the approach of [27]. The other results of Section 3 seem to be new even in finite dimensions. 

The first representation of the normal cone (2.2) to the graph of :F = N(x; 8) is given 
in [3, proof of Theorem 2] via some closed face description of convex polyhedra, which is 
generally difficult to check. However, it is shown in [7, Proposition 3.2] that the closed face 
representation of [3] is equivalent to an explicit one, which is of the same type but somewhat 
different from the finite-dimensional analog of our Theorem 4.4. Another proof of a similar 
while not fully explicit normal cone representation in IRn is independently derived in [27, 
Theorem 3.3]. Note that the proof in [27] as well as our proof in infinite dimensions do not 
use the rather involved Reduction Lemma and other devices from [3]. 

The coderivative representation of Theorem 4.6 under the linear independence condi
tion is an infinite-dimensional extension of that in [7, Corollary 3.5]. The other results of 
Section 4 seem to be new in finite dimensions while Theorem 3.5 is an improved version 
of [7, Corollary 3.4]. Note also that the recent paper [6] establishes efficient coderivative 
descriptions of the normal cone mapping for nonpolyhedral inequality systems described 
by smooth nonlinear functions in finite dimensions under certain qualification conditions. 
These new developments are largely based on the methods and results from [7, 17, 18]. 

Remark 4.8 (second-order subdifferentials). Given an extended-real-valued function 
<p: X -t 1R := ( -oo, oo] finite at x E JR, we recall the notions if the (first-order) subdiffer
ential [11] and the second-order subdifferential [13] of <p generated by the basic normal cone 
(2.2); the reader can find equivalent representations, more details and discussions, various 
calculus rules, and numerous applications in [15, 16] in the references therein. The basic 

subdifferential of <p at x is defined by 

o<p(x) := {x* EX*\ (x*,-1) EN((x,<p(x));epi<p)} (4.39) 

via the normal cone to the epigraphical set epi<p := {(x,,u) EX x IR\ ,u 2: <p(x)}. It is easy 
to see the subdifferential representation of the normal cone 

N(x; O) = ao(x; O), x E o, (4.40) 

where 8(·; 0) is the indicator function of the set 0 equal 0 for X E 0 and 00 otherwise. 
Given further (x, x*) E gph o<p, define the second-order subdifferential of <p at this point as 
the coderivative (2.5) of the first-order subdifferential mapping o<p: X =t X* at (x, x*) by 

a2<p(x,x*)(u) := (D*a<p)(x,x*)(u), u EX(= X**). ( 4.41) 

Construction ( 4.41) accumulating second-order information on the function in question is 
a natural development of the classical "derivative-of-derivative" approach to (generalized) 
second-order differentiation; see [13, 15, 18, 21, 25] for more discussions and implementa
tions. It follows from (4.40) and (4.41) that the coderivative of the normal cone mapping 

N(x; 0) to a set 0 can be interpreted as the the second-order subdifferential of the indicator 
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function of 0 at the corresponding point. Note that such second-order constructions nat
urally appear in optimization and sensitivity analysis of parametric variational inequalities 

and related problems known as mathematical and equilibrium programs with equilibrium 

constraints (MPECs and EPECs); see, e.g., [4, 15, 16, 19, 29] and the references therein. 
F'rom this viewpoint, the results obtained in Section 4 as well as their finite-dimensional 

predecessors from [3, 6, 7, 27, 28] can be treated as constructive tools for efficient computing 
the second-order subdifferentials of the indicator functions for convex polyhedra. We thus 
make the first attempt for such a constructive second-order analysis in infinite dimensions. 

Remark 4.9 (some applications). The primary motivation for this paper is developing 
applications to robust stability of parametric variational inequalities, which are presented in 
the next section. At the same time the constructive coderivative calculations of Section 4 
can be readily applied to other important issues of variational analysis and optimization. 
In particular, based on these calculations and the general approaches and results developed 
in [16, Chapter 5], we can derive constructive necessary optimality conditions for MPECs 

and EPECs with equilibrium constraints governed by parametric generalized equations 

0 E f(x,p) + N(x; 8), ( 4.42) 

where 8 is the convex polyhedral (3.1) in a reflexive Banach space. Recall that Robinson's 
generalized equation model (4.42) encompasses variational inequalities over polyhedral con
vex sets and has been well recognized as a convenient framework for the study of both 
qualitative and numerical aspects of variational analysis, optimization, and equilibria; see, 
e.g., [4, 16, 19, 23] and the references therein. 

Furthermore, following the scheme developed in [7] for finite-dimensional models, the 
results obtained above have the potential for applications to deriving constructive opti
mality and stationarity conditions as well as their practical implementations in infinite
dimensional MPECs and EPECs arising in electricity spot market modeling with time

dependent/dynamic data such as demands on the network nodes, electricity generation and 
distribution along the arcs, etc. This will be considered in detail in our future research. 

5 Robust Stability of Parametric Variational Inequalities 

The concluding section of the paper is devoted to applications of the coderivative calcula
tions in Section 4 to constructive characterizing robust stability-via the general criteria of 
Theorem 2.1-of parametric variational inequalities given in the generalized equation form: 

0 E f(p, x) + N(x; 8) for x E 8 and p E Z, (5.1) 

where 8 c X is the convex polyhedron (3.1), and where f: Z x X ---+ X* is a continuous 
(with respect to the norm topologies) mapping depending on the decision variable x and 
the parameter variable p taking values in the corresponding reflexive Banach spaces. Note 
that, by construction (3.2) of the normal cone of convex analysis, the generalized equation 
form (5.1) is equivalent to the standard form of variational inequalities over convex sets: 

(! (p, X), X - U) ::; 0 for all U E 8 (5.2) 
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with x E 8 and p E Z. Define further the parametric solution mapS: Z =1 X to (5.1) by 

S(p) := {x E XI 0 E f(p,x) +N(x;G)}, (5.3) 

where we have in fact X E e, since N(x; 8) = 0 for X 1:- e. 
Our primary goal in what follows is to derive constructive characterizations of the 

Lipschitz-like property of the solution map (5.3) with evaluating the exact Lipschitzian 
bound in (2.11) entirely in terms of the initial data of (5.1) in both finite and infinite di
mensions. This will be done by combining the criteria of Theorem 2.1, some calculus results 
from [15], and the co derivative calculations of Section 4. 

Let us first check that the general assumptions of Theorem 2.1 are satisfied for the 
solution mapS: Z =1 X from (5.3). 

Lemma 5.1 (closed graph and coderivative normality properties of solution maps). 
The graph gph S C Z X X of the solution map (5.3) is always closed in Z x X. Furthermore, 

the mapping S: Z =1 X is coderivatively normal at every point (p, x) E gph S where f is 

strictly differentiable and its partial derivative \1 pf(p, x): Z --7 X* is surjective. 

Proof. To prove the closedness of the graph of S, we get by (5.2) that 

gphS = {(p,x) E Z x 81 \J(p,x),x- u) ~ 0 for all u E 8}. 

This readily implies that gphS is closed due to the continuityof the base mapping f. 
Let us next justify the coderivative normality property of S under the additional as

sumptions on f imposed at the given point (p, x) E gph S. To proceed, consider a mapping 
g: Z x X --7 X x X* defined by 

g(p, x) := (x,- f(p, x)) for p E Z and x EX (5.4) 

and observe that the graph of S admits the representation 

gphS = {(p,x) E Z x 81 g(p,x) E gphF} = g-1(gphF) (5.5) 

via the inverse imagefpreimage of the graph of the normal cone mapping F(x) = N(x; 8) 
under the mapping g from (5.4). It is easy to see that g is strictly differentiable at (p, x) 
due to the this property off and that the (full) derivative \1 g(p, x): Z x X --7 X x X* of 
g at (p, x) is surjective by the surjectivity assumption imposed on the partial derivative of 
\1 pf (p, x). Employing the inverse image rule for basic normals from [15, Theorem 1.17] to 
the inverse image representation in (5.5), we get the equality 

N((p,x);gphS) = \lg(p,x)*N((x, -f(p,x));gphF). (5.6) 

Based on representation (5.6) and the surjectivity of \1 g(p, x), let us now prove that 
the graph of the solution map S enjoys the dual norm-stability property (4.1) at (p, x), 

which obviously implies the coderivative normality of S at the reference point. Take 
(p*,x*) E N((p,x);gphS). By (5.6) there is a pair (u*,v*) E N((x,-f(p,x));gphF) 
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such that (p*,x*) = \lg(p,x)*(u*,v*). Since \lg(p,x) is surjective, the pair (u*,v*) is de
termined uniquely; see [15, Lemma 1.18]. As proved in Theorem 4.1, the set gph.F is 
dually norm-stable at (x,- f(p, x)). Thus there are sequences (uk. vk) ---7 (x,- f(p, x)) with 
(uk,vk) E gph.F and {(u/::,vk)} C X* x X such that 

(u/::,vk) E N((uk.vk);gphF) and 1\(u/::,vk)- (u*,v*)l!-+ 0 as k ---7 oo. (5.7) 

Define further (p/::,xl::) := \lg(p,x)*(ul::,vk) for all k E IN and observe by (5.7) that 

(p/::,x/::) E \lg(p,x)*N((uk,vk);gphF) and !i(p/::,x/::)- (p*,x*)l!-+ 0 as k ---7 oo. (5.8) 

It follows from (5.8) by [15, Lemma 1.16] that there are (uk, vk) ---7 (x,- f(p, x)) with 
(uk, vk) E gph.F and 

(iJk,xl::) E N((.Pk,vk);gphS) such that l!(iJk,x/::)- (p*,x*)l!---7 o as k ---7 oo. 

This justifies the dual norm-stability property of the graph of the solution map S at (p, x) 
and thus completes the proof of the lemma. 6 

Our next results presented in the following proposition provide constructive represen
tations of the basic coderivative (2.5) of the solution map (5.3) via the initial data of the 
variational inequality (5.1) under consideration. Based on the coderivative representations 
for the normal cone mapping F(x) = N(x; 8) from Section 4, we consider the two cases: 
the general polyhedra (3.1) without any qualification conditions and the case of linearly 
independent generating elements xi corresponding to active constraints. In the first case 
we involve collections of active index subsets, while the second one allows us to derive a 
precise coderivative representation using only characteristic active index subsets defined in 
(4.31). The results obtained, being of their own interest, are motivated here by applications 
to robust stability to variational inequalities via the criteria of Theorem 2.1. 

Proposition 5.2 (computing the coderivative of solution maps to variational in
equalities). Let (p, x) E gph S for the solution map (5.3), where f is strictly differentiable 
at (p,x) with the surjective partial derivative \lpf(p,x). Let x* := -f(p,x) in the notation 
of Corollary 4.3. Then the following assertions hold: 

(i) The coderivative D* S(p, x): X* =i Z* is computed by 

D*S(p,x)(x*) = { p* E Z*l ::Ju EX, PC Q c I with P E I, Cq # 0 
s.t. (- x*- \1 xf(p, x)*u, -u) E Aq,P X Bq,p, p* = '\1 pf(p, x)*u. 

(ii) Assume in addition that the generating element {xi! i E J(x)} of the convex poly
hedron (3.1) are linearly independent. Then the coderivative D* S(p, x) is computed by 

D*S(p,x)(x*) = { p* E Z*l ::Ju E DomD*F(x,x*) with p* = '\lpf(p,x)*u and 

-x*- 'Vxf(p,x)*u E cone{xil i E Io(u)} + spanxil i E J>(u)}, 

where the characteristic active index subsets Io(u) and I>(u) are defined in (4.31) while the 
coderivative domain Dom D* F(x, x*) is computed in (4.33). 
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Proof. It follows from [15, Theorem 4.44] that, under the strict differentiability and sur
jectivity assumptions made in this proposition, we have the coderivative representation of 
the solution mapS to the variational inequality/generalized equation (5.1): 

D*S(p,x)(x*) = { p* E Z*l 3u EX withp* = \lpf(p,x)*u, (5.9) 

-x*- "Vxf(p,x)*u E D*F(x,x*)(u). 

Then we arrive at both coderivative formulas in (i) and (ii) of the proposition by substituting 
into (5.9) the representations of D* F(x, x*) from (4.22) of Corollary 4.3 and from (4.37) of 
Theorem 4.6, respectively. This completes the proof of the proposition. !::, 

Now we are ready to establish verifiable characterizations for robust Lipschitzian stabil

ity of solution maps to the variational inequalities (5.1) over polyhedral convex sets with 
evaluating the exact Lipschitzian bound. Let us first consider the case when the decision 

space X is finite-dimensional while the parameter space Z may be arbitrary Banach and 
reflexive. We include two statements into the next theorem: one for the general polyhedral 
set (3.1) with no qualification conditions and the other under the linear independence of 
generating elements of the convex polyhedron (3.1). 

Theorem 5.3 (constructive characterizations of robust stability of polyhedral 
variational inequalities with finite-dimensional decision spaces). Take the reference 

point (p, x) E gph S in the framework and notation of Proposition 5.2 and assume that the 

decision space X is finite-dimensional. Then the following assertions hold: 

(i) The solution map (5.3) is Lipschitz-like around (p, x) if and only if 

[- "Vxf(p,x)*u E Aq,P, -u E Bq,P] =? u = 0 (5.10) 

for all P C Q C I(x) with P E I(x, x*) and Cq -=f. 0. Furthermore, we have the lower 

estimate of the exact Lipschitzian bound for S at (p, x): 

lip S(p, x) 2 max { !I"V pf(p, x)*uiil u E -Bq,P, x* E -\lxf(p,x)*u- Aq,P, 

li"Vxf(p,x)*u+x*ll :S 1, P c Q c I(x) 

with P E I(x, x*) and Cq -=f. 0 }, 

which holds as equality if the parameter space Z is finite-dimensional. 

(5.11) 

(ii) Assume in addition that the generating elements {xi I i E J(x)} of (3.1) are linearly 

independent. Then S is Lipschitz-like around (p, x) if and only if 

[- "Vxf(p, x)*u E cone{ xi! i E Io(u)} +span{ xi I i E I>(u)} J =? u = 0 (5.12) 

provided that u E DomF(x,x*), where the characteristic index subsets I0 (u) and I>(u) are 

defined in (4.31) while the coderivative domain DomD*F(x, x*) is computed in (4.33). In 

fact, implication (5.12) with u E Dom D* F(x, x*) is equivalent to 

[- "Vxf(p, x)*u E AI,J, -u E BJ,J] =? u = 0 

with I= I(x) and J = J(x, x*) as well as to the condition 

(5.13) 

ker{xil i E J(x,x*)} n [\7xf(p,x)*r
1

(span{xil i E J(x)}) = {0} (5.14) 
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involving the inverse operator to \l xf(p, x)*. Furthermore, we have the lower estimate 

lipS(p,x) ~max{ IIVpf(p,x)*ull\ u E DomD*F(x,x*, IIVxf(p,x)*u+x*ll ~ 1, 
(5.15) 

-x*- 'Vxf(p,x)*u E cone{xili E Io(u)} +span{xili E J>(u)}} 

for the exact Lipschitzian bound of S at (p, x), which holds as equality when the parameter 

space Z is finite-dimensional. 

Proof. Observe first that the general assumptions of Theorem 2.1 are satisfied by Lemma 5.1. 
Note also that the PSNC property of S is automatic when the decision/range space X is 
finite-dimensional and that the condition \l pf(p, x)*u = 0 is equivalent to u = 0 due to 
the surjectivity of \l pf(p, x). Thus the necessary and sufficient conditions (5.10) and (5.12) 
for the Lipschitz-like property of S in (i) and (ii), respectively, follow directly from the 
coderivative criterion (2.12) of Theorem 2.1 and the coderivative formulas for S derived 
in Proposition 5.2 as x* = 0. Further, it follows from the proof of Theorem 4.6 and the 
obvious set monotonicity relationships 

AL,M c AL',M' and BL,M ::J Bv,M' whenever L C L', M c M' (5.16) 

for the constructions in (3.14) and (3.15) that the robust stability criterion (5.12) can be 
equivalently written in the form of (5.13). The equivalence between conditions (5.13) and 
(5.14) directly follows from definitions (3.14) and (3.15). Using finally the coderivative for
mulas from Proposition 5.2, we compute the coderivative norm by the maximum expressions 
in (5.11) and (5.15) under the assumptions imposed. Note that the maximum is realized in 
these formulas for the coderivative norm (2.13) due to [15, Theorem 4.56] and the graph
closedness of the normal cone mapping F in the norm xweak topology on X x X*, which is 
proved by the stability arguments in Theorem 4.1. Thus the exact bound estimates (5.11), 
(5.15) and the equalities therein follow from the corresponding assertions of Theorem 2.1. 
This completes the proof of this theorem. 6 

Let us present a simple consequence of Theorem 5.3 ensuring the Lipschitz-like property 
of the parametric solution map (5.3) when all the generating elements of the convex polyhe
dron (3.1) are active and linearly independent and when the so-called strict complementarity 

condition I(x) = J(x, x*) is satisfied. 

Corollary 5.4 (robust stability under strict complementarity). Assume in the 

framework of Theorem 5.3(ii) that X = IRn and I(x) = J(x, x*) = {1, ... , n}, where 

x* = -f(p,x). Then the solution mapS to (5.1) is Lipschitz-like around (p,x). 

Proof. It immediately follows from (4.33) that DomD* F(x, x*) = {0} in this case, i.e., 
the stability criterion (5.12) of Theorem 5.3(ii) is satisfied automatically. 6 

Remark 5.5 (specifications and implementations of the constructive character
izations of robust stability). Based on the constructive characterizations of robust 
stability obtained in both assertions of Theorem 5.3 in the case of finite-dimensional de
cision spaces, we can derive their various specifications and simplifications in particular 
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settings; Corollary 5.4 provides just a simple example of this. Observe that criterion (5.14) 
in Theorem 5.3(ii) can be equivalently rewritten as 

(5.17) 

where A := \,1 xf(p, x) and where the matrices C1 and C2 are composed from the row 
vectors of the generating vector xi for i E J(x, x*) and i E J(x), respectively. Assuming in 
addition to the linear independence of {xil i E J(x)} the strict complementarity condition 
J(x, x*) = I(x), we have C1 = C2 := C and get (5.17) from the positive definiteness of 
A on the kernel subspace ker{x'il i E J(x)}. The latter readily reduces to the classical 
second-order sufficient condition for local optimality in nonlinear programs written in the 
variational equality form (5.1) with f being the gradient of an objective function; see [24]. 
By some more elaboration we can show that condition (5.17) is actually equivalent in the 
latter setting to the so-called strong second-order sufficient condition for local optimality in 
C 2 nonlinear programs; cf. [3, 9, 24] with the references therein and also further discussions 
in Remark 5.10 below. 

Next we describe general settings in which the conditions of Theorem 5.3(ii) provide 
characterizations of robust stability for solution maps (5.3) to the polyhedral variational 
inequalities (5.1) in the case of infinite-dimensional decision spaces. They rely on a certain 
well-posedness of (5.1) concerning behavior of the partial derivative \,1 xf(p, x) of the base 
mapping f on the kernel space formed by generating elements xi of the convex polyhedron 
(3.1) along the index subset (3.18) of positive multipliers at the reference point. This well
posedness is automatic in finite dimensions while holding under easily verifiable conditions 
in the case of infinite-dimensional decision spaces. 

Definition 5.6 (kernel well-posedness of polyhedral variational inequalities). We 
say that the parametric variational inequality (5.1) over the convex polyhedron (3.1) exhibits 

the KERNEL WELL-POSEDNESS at the point (p, x) E gph 8 of differentiability of the base 

mapping f with respect to the decision variable if 

[II'Vxf(p,x)*xkll-+ 0, Xk ~ 0, Xk E ker{xil i E J(x,x*)}] ==> llxkll-+ 0 (5.18) 

ask---+ oo, where J = J(x, x*) is defined in (3.18) with x* =- f(p, x). 

Observe that the introduced well-posedness property of (5.1) does not actually depend 
on the parameter space Z. Let us now present some verifiable conditions ensuring the kernel 
well-posedness of the polyhedral variational inequalities under consideration. 

Given a linear bounded operator A: X ---+ X* on a Banach space X and a closed subspace 
L c X, we say that A is coercive on the subspace L if there is a constant t-t > 0 such that 

t-tllxll 2 ~ (Ax, x) for all x E L. (5.19) 

This reduces to the conventional coercivity of A: X ---+ X* when L = X. We use both 
versions in what follows; see Theorem 5.8 and Corollary 5.9. 
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Proposition 5.7 (sufficient conditions for kernel well-posedness). Each of the fol

lowing conditions ensures the kernel well-posedness of the polyhedral variational inequality 

(5.1) at (p,x) E gphS: 

(a) The decision space X is finite-dimensional. 

(b) The adjoint operator '\1 xf (p, x)*: X -t X* is injective on the kernel subspace 

L := ker{xil i E J(x,x*)} c X 

of the Banach space X, i.e., we have 

and furthermore the image subspace '\1 xf(p, x)* L is closed in X*; both these properties are 

automatic with L replaced by X when the partial derivative operator '\lxf(p, x) is surjective. 

(c) The operator '\1 x f (p, x) : X -t X* is coercive on the Banach space X. 

Proof. Case (a) is obvious. To justify case (b), it is sufficient to show that 

(5.20) 

under the injectivity and closedness assumptions made in (b). Denote A:= '\lxf(p,x)* and 

prove that there is "' > 0 such that 

IIAxll ~ "'llxll for all x E L, (5.21) 

which surely yields (5.20). To proceed, denote Y := AL c X* and consider the operator 

A: L -t Y. Our assumptions ensure that the set Y is closed and the operator A : L -t Y 
is invertible. By the classical open mapping theorem we conclude that the inverse operator 

A-1 : Y -t Lis continuous. Thus there is a constant v > 0 such that IIA-1yJJ :S vJJyJJ for 

ally E Y. This implies (5.21). If '\1 xf(p, x) is surjective, we have (5.21) and (5.20) with L 

replaced by X from [15, Lemma 1.18]. 

Finally, the kernel well-posedness in case (c) follows directly from the Banach space 

version [22] of the classical Lax-Milgram theorem ensuring that coercivity implies surjectivity. 

This completes the proof of the proposition. 6 

Now we are ready to establish constructive characterizations of robust stability for (5.1) 
in the general case of reflexive decision spaces. 

Theorem 5.8 (constructive conditions for robust stability of well-posed polyhe
dral variational inequalities with infinite-dimensional decision spaces). Let X be 

a reflexive Banach space in the framework of Theorem 5.3(ii). Assume in addition that 

the kernel well-posedness of (5.1) from Definition 5.6 is satisfied at (p, x). Then all the 

conclusions of Theorem 5.3(ii) hold in the infinite-dimensional setting under consideration. 

Proof. Let us show that the solution map (5.3) is PSNC at the reference point (p, x) under 

the assumptions made. This is the only property needed to be checked to justify the con

clusions of this theorem due to the results of Theorem 2.1 and the proof of Theorem 5.3(ii). 
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To verify the PSNC property of S at (p, x) according to its definition in (2.10), take 
sequences (Pk, xk) ~ (p, x) as k ~ oo with (Pk. xk) E gph S for all k E IN and 

(pk,xk) E N((Pk,Xk);gphS) with Pk ~ 0 and llxkll ~ 0 as k ~ oo. (5.22) 

Recall that the graph of S has the inverse image representation (5.5), where the mapping 
g: Z x X .::::t X x X* defined in (5.4) has the surjective derivative at (p,x). Similarly to the 
proof of Lemma 5.1 by using [15, Lemma 1.16], we find sequences (uk, vk) ~ (x,- f(p, x)) 
with ( Uk, vk) E gph F for all k E IN and 

{ 

(pk, xk) E \lg(p, x)* N((uk. Vk); gphF) with 

lliik- Pkll ~ 0 and llxk- xkll--+ 0 as k ~ oo. 

(5.23) 

It is easy to see from (5.22), (5.23), and the structure of gin (5.4) that there are prenormals 

satisfying the following relationships with (fJ'k, xk) in (5.23): 

'""" nf(--)** d-* * nf(--)** Pk = - v P p, x vk an xk = uk - v x p, x vk. 

(5.24) 

(5.25) 

Proceed now as in the proof of Theorem 4.1 for the prenormals (5.24) under consideration 
and define the active indices subsets P c Q c I(x) as in (4.6) and (4.8), respectively, where 

Aik 2: 0 are determined from the representation 

uk = LAikXi 
iEQ 

(5.26) 

via the generating elements {xi I i E Q} of the convex polyhedron (3.1). Then, as in the 
proof of Theorem 4.1, we get from (5.24) and (5.25) the inclusions 

xk + \1 xf(p, x)*v'k E Aq,P and v'k E Bq,P, k E IN. (5.27) 

It is easy to conclude by the standard contradiction arguments based on the linear indepen
dence assumption on the active generating elements {xil i E J(x)} that the sequences {>-.ik} 
are bounded for all E Q. Thus we get without loss of generality that Aik ~ Ai 2: 0 as k ~ oo 
whenever i E Q. It follows from the convergence fJ'k ~ 0 due to (5.22) and (5.23) and the 
surjectivity of \lpf(p, x) that v'k ~ 0 as k ~ oo by the first equality in (5.25). Observe 
further that u'k ~ 0 as k ~ oo by the second equality in (5.25). Now passing to the limit 
in (5.26) as k--+ oo, we arrive at 'L:iEQ Aixi = 0, which implies that Ai = 0 for all i E Q by 
the linear independence of {xil i E Q}. This gives 

llxk + \1 xf(p, x)*v'kll ~ 0 and hence II'V xf(p, x)*v'kll ~ 0 as k ~ oo. (5.28) 

Further, it follows from the construction of Bq,P in (3.15) and the set monotonicity property 
in (5.16) that the second inclusion in (5.27) can be replaced by 

v'k E BJ,J = ker {xil i E J(x,x*)}, k E IN, (5.29) 
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where the equality in (5.29) is a direct consequence of the definitions. We can also easily 
observe that property (5.29) together with (5.28) and the kernel well-posedness of (5.1) at 

(p, x) yield that 1\vkll --+ 0 and hence II.Pkll --+ 0 ask--+ oo by (5.25). Taking now (5.23) into 
account, conclude that the relationships in (5.22) imply that IIPI::II --+ 0 as k --+ oo, which 
justifies the PSNC property of Sat (p, x) and completes the proof of the theorem. 6 

Finally, we present explicitly verifiable conditions, which simultaneously ensure the ful
fillment of the coderivative criterion (5.13) in Theorem 5.3(ii) and the kernel well-posedness 
property of (5.1) from Definition 5.6 and thus efficiently describe important classes of vari
ational inequalities that exhibit robust stability in finite and infinite dimensions. 

Corollary 5.9 (robust stability under coercivity). Let (p, x) E gph S for the solution 

map (5.3) to (5.1) with the reflexive spaces X and Z and with the linearly independent 

generating elements {xil i E I(x)}. Assume that fin (5.1) is strictly differentiable at (p,x), 

that I(x) = J(x,x*) with x* = -f(p,x), and that the operator \lpf(p,x) is surjective. In 

addition we impose the conditions: 

(a) the kernel well-posedness of (5.1) holds at (p, x), 

(b) the operator 'Vxf(p,x) is coercive on the kernel subspace ker{xil i E J(x)}, 

which both are satisfied when \1 xf(p, x) is coercive on X. Then the solution map S is 

Lipschitz-like around (p, x). 

Proof. We show first that the imposed coercivity of \1 xf(p, x) on the kernel subspace 
implies the coderivative criterion (5.13). Observe that 

ker{ xi! i E I(x)} = BJ,J = B1,1 (5.30) 

under the assumptions made and that the coderivative criterion (5.13) reads: 

[- 'Vxf(p,x)*u E A1,1, -u E B1,1] ===> u = 0. (5.31) 

It easily follows from the definitions of A1,1 in (3.14) and the representation of B1,1 in (5.30) 
that criterion (5.31) amounts to verify that 

[ \1 xf(p, x)*u E span{ xi I i E I(x)} and u E ker{ xi I i E J(x)} J ===> u = 0. (5.32) 

Employing now the kernel coercivity (b) of the operator A= \lxf(p,x) as in (5.19) with 
L := ker{xil i E I(x)} and using the above representations of A1,1 and B1,1 as well as the 
reflexivity of X, we find a constant f.L > 0 such that 

f.LIIull 2 ~ (\1 xf(fi, x)u, u) = ('V xf(fi, x)*u, u) = o 

for any u satisfying the inclusions in (5.32). The latter yields u = 0 justifying implication 
(5.32). Thus the Lipschitz-like property of the solution map (5.3) follows, under the as
sumptions made in the corollary, from Theorem 5.8. To complete the proof, it remains to 
observe that the coercivity of 'V xf(p, x) on the whole space X obviously implies (b) and 
ensures condition (a) of the corollary due to Proposition 5.7(c). 6 

Our concluding remarks compare the stability results obtained in this section with those 
known in the literature. We also discuss some further extensions. 
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Remark 5.10 (comparison with known results on robust stability). The results on 
robust stability of polyhedral variational inequalities most close to our study are obtained 
in [3, 28] in the case of finite-dimensional spaces of decision and parameter variables, with 
no evaluation of the exact Lipschitzian bound. Applications to robust stability in both 
papers [3, 28] are based on the coderivative characterization of the Lipschitz-like/ Aubin 
property from Theorem 2.1 and coderivative calculations discussed above in Remark 4.7. 

In fact, paper [3] addresses the case of so-called canonical perturbations in polyhedral vari
ational inequalities, which are linear with respect to the major parameter variable. The 
critical face characterization of robust stability established therein involves closed faces of 
some polyhedral critical cone built upon the tangent cone to the convex polyhedron e. 
This characterization cannot be easily checked in general settings. It is worth emphasiz
ing that results of [3] establishes the equivalence of the Lipschitz-like/ Aubin property of 
solution maps to canonically perturbed variational inequality over convex polyhedra in fi
nite dimensions to their strong regularity in Robinson's sense [24], which postulates locally 
single-valued Lipschitzian behavior. 

Certain simplifications of the latter characterization is obtained in [28] on the base of 
the co derivative calculations from [27]. However, the robust stability conditions obtained 
in [28] also involve closed faces of some polyhedral cone associated with the tangent cone 
to the initial convex polyhedron e. 

Observe that our stability results are fully explicit and are expressed exclusively in terms 
of the initial data of the convex polyhedron e and the base mapping f of the variational 
inequality (5.1) in both finite-dimensional and infinite-dimensional spaces. Since, in the 
finite-dimensional setting of [3], the Lipschitz-like property of solution maps is equivalent 
to Robinson's strong regularity, our explicit conditions provide also criteria for strong reg

ularity of polyhedral variational inequalities in finite dimensions. It is a challenging open 

question whether this holds in infinite-dimensional spaces. 

Remark 5.11 (further extensions). Combining coderivative calculations of Section 4 
with coderivative formulas (mainly upper estimates) and PSNC conditions established in 
[15, Section 4.4] for solution maps to parametric generalized equations, we can obtain suf

ficient conditions for robust stability constructively expressed via the initial data of poly
hedral variational inequalities (5.1) in both finite and infinite dimensions in a number of 
settings when the base mappings fin (5.1) are nonsmooth or have nonsurjective derivatives. 

Note finally that, employing the techniques developed in this paper together with those 
from [6] based on the transformation formula derived in [18], we can extend the robust 
stability results obtained here to variational inequalities over nonpolyhedral sets described by 
finitely many nonlinear inequality constraints. These and related topics will be considered 
in detail in our subsequent research. 

References 

[1] D. BARTL, A short algebraic proof of the Farkas lemma, SIAM J. Optim., 19 (2008), 
pp. 234-239. 

31 



[2] J. M. BoRWEIN AND Q. J. ZHu, Techniques of Variational Analysis, Springer, New 

York, 2005. 

[3] A. L. DoNTCHEV AND R. T. RoCKAFELLAR, Characterization of strong regularity 
for variational inequalities over polyhedral convex sets, SIAM J. Optim., 7 (1996), pp. 

1087-1105. 

[4] F. FACCHINEI AND J.-P. PANG, Finite-Dimensional Variational Inequalities and Com
plementarity Problems, Springer, New York, 2003. 

[5] W. GEREMEW, B. S. MORDUKHOVICH AND N. M. NAM, Coderivative calculus and 
metric regularity for constraint and variational systems, Nonlinear Anal., 70 (2009), 

pp. 529-552. 

[6] R. HENRI ON, J. V. 0UTRATA AND T. SUROWIEC, On the coderivative of normal cone 
mappings to inequality systems, Nonlinear Anal., to appear. 

[7] R. HENRION AND W. RoMISCH, On M-stationary points for a stochastic equilibrium 
problem under equilibrium constraints in electricity spot market modeling, Appl. Math., 

52 (2007), pp. 473-494. 

[8] A. D. IOFFE, Metric regularity and subdifferential calculus, Russian Math. Surv., 55 

(2000), pp. 501-558. 

[9] D. KLATTE AND B. KuMMER, Nonsmooth Equations in Optimization. Regularity, 
Calculus, Methods and Applications, Kluwer, Dordrecht, 2002. 

[10] A. B. LEVY AND B. S. MORDUKHOVICH, Coderivatives in parametric optimization, 
Math. Prog., 99 (2004), pp. 311-327. 

[11] B. S. MORDUKHOVICH. Maximum principle in problems of time optimal control with 
nonsmooth constgraints, Appl. Math. Mech., 40 (1976), pp. 960-969. 

[12] B. S. MORDUKHOVICH, Metric approximations and necessary optimality conditions for 
general classes of extremal problems, Soviet Math. Dokl., 22 (1980), pp. 526-530. 

[13] B. S. MoRDUKHOVICH, Sensitivity analysis in nonsmooth optimization, in Theoretical 

Aspects of Industrial Design, D. A. Field and V. Komkov (eds.), Proceedings in Applied 

Mathematics, Vol. 58, SIAM, Philadelphia, 1992, pp. 32-46. 

[14] B. S. MORDUKHOVICH, Complete characterizations of openness, metric regularity and 
Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc., 340 (1993), pp. 

1-35. 

[15] B. S. MORDUKHOVICH, Variational Analysis and Generalized Differentiation, I: Basic 

Theory, Springer, Berlin, 2006. 

[16] B. S. MORDUKHOVICH, Variational Analysis and Generalized Differentiation, II: Ap

plications, Springer, Berlin, 2006. 

32 



[17] B. S. MORDUKHOVICH AND J. V. 0UTRATA, On second-order subdifferentials and 
their applications, SIAM J. Optim., 12 (2001), pp. 139-169. 

[18] B.S. MORDUKHOVICH AND J. V. OUTRATA, Coderivative analysis of quasi-variational 
inequalities with applications to stability and optimization, SIAM J. Optim., 18 (2007), 

pp. 389-412. 

[19] J. V. OUTRATA, Mathematical programs with equilibrium constraints: Theory and 
numerical methods, in Nonsmooth Mechanics of Solids, CISM Lecture Notes, Vol. 485, 

J. Haslinger and G. E. Stavroulakis (eds.), Springer, New York, 2006, pp. 221-274. 

[20] J. V. OUTRATA AND D. SuN, On the coderivative of the projection operator onto the 
second-order cone, Set-Valued Anal., 16 (2008), pp. 999-1014. 

[21] R. A. POLIQUIN AND R. T. ROCKAFELLAR, Tilt stability of a local minimum, SIAM 

J. Optim., 8 (1998), pp. 287-299. 

[22] S. RAMASWAMY, The Lax-Milgram theorem for Banach spaces, Proc. Japan Acad., 56 

(1980), pp. 462-464. 

[23] S. M. ROBINSON, Generalized equations and their solutions. Part 1: Basic theory, 
Math. Prog. Study, 10 (1979), pp. 128-141. 

[24] S. M. ROBINSON, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), 

pp. 43-62. 

[25] R. T. ROCKAFELLAR AND R. J-B WETS, Variational Analysis, Springer, Berlin, 1998. 

[26] W. SCHIROTZEK, Nonsmooth Analysis, Springer, Berlin, 2007. 

[27] J.-C. YAO AND N. D. YEN, Coderivative calculation related to a parametric affine 
variational inequality. Part 1: Basic calculations, Acta Math. Vietnamica, to appear. 

[28] J.-C. YAO AND N. D. YEN, Pointbased calculation related to a parametric affine 
variational inequality. Part 2: Applications, Pacific J. Optim., to appear. 

[29] J. J. YE, Constraint qualifications and necessary optimality conditions for optimization 
problems with variational inequality constraints, SIAM J. Optim., 10 (2000), pp. 943-

962. 

33 


	Wayne State University
	2-1-2009
	Second-Order Analysis of Polyhedral Systems in Finite and Infinite Dimensions with Applications to Robust Stability of Variational Inequalities
	René Henrion
	Boris S. Mordukhovich
	Nguyen Mau Nam
	Recommended Citation





