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This paper concerns nonsmooth optimization problems involving operator constraints given 
by mappings on complete metric spaces with values in nonconvcx subsets of Banach spaces. 
We derive general first-order necessary optimality conditions for such problems expressed via 
certain constructions of generalized derivatives for mappings on metric spaces and axiomat­
ically defined subdifferentials for the distance function to nonconvex sets in Banach spaces. 
Our proofs arc based on variational principles and perturbation/ approximation techniques 
of modern variational analysis. The general necessary conditions obtained are specified in 
the case of optimization problems with operator constraints dDScribcd by mappings taking 
values in approximately convex subsets of Banach spaces, which admit uniformly Gateaux 
differentiable renorms (in particular, in any separable spaces). 
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1 Introduction 

A vast majority of problems considered in optimization theory arc described in Banach (if 
not finit.e-dimensional) spaces, where the linear structure is crucial to employ conventional 
tools of variational analysis and (generalized) differentiation for deriving necessary opti­
mality conditions and subsequently developing numerical algorithms. On the other hand, 
there is a number of remarkable classes of problems particularly important for optimization, 
control, and their various applications that admit adequate descriptions in spaces with no 

linear structures; sec, e.g., [4, 13, 15, 16, 18, 19] and the references therein. 
In this paper we pay the main attention to deriving first-order necessary optimality 

conditions for a. general class of optimization problems with operator constraints in complete 

metric spaces. The basic problem is described as follows: 

{ 
minimize cp(w) with 
subject to f(w) E 8, 

1 

wEW 
(1.1) 



where (W,p) is a complete metric space with the metric p, where rp: W---> lR := (-oo,oo] 
is a lower semicontinuous (l.s.c.) extended-real-valued cost function, and where f: W --+ X 

is a continuous operator constraint mapping taking values in a closed subset 8 of a Banach 

space (X, II ·Ill equipped with the norm II ·II· Note that the case of additional geometric 
constraints 'WE rl given by a. dosed subset. fl C W can be easily reduced to the basic form 

(1.1) in the complete metric space (n, p). 
Recently problem (1.1) has been considered in [15] in the case when rp is a continuous 

function a.nd when 8 is a. convex subset of a Banach space X whose topologically dual 
space X' is strictly convex (or rotund in the norm topology; sec, e.g., [6]). A version of 
the abstract multiplier rule obtained in [15] has been applied in 116] to derive a maximum 
principle for a general dctcrminist.ic optimal control problem with state constraints. 

Let us particularly emphasize that. the convexity assumption on the constraint set 8 

imposed in [15] is clca.rly a restriction from both viewpoints of optimization theory and 
applications. The primary goa.! of this paper is to establish necessary conditions for local 

optimal solutions to problem (1.1) with no convexity requirements imposed on the constraint 

set 8 a.nd/or continuity assumptions on the cost. function rp. We derive such optimality 
conditions in the genera.! case of complete metric spaces, lower sem.icontinuons cost functions 
rp: W ---> IR, and continuous mappings f: W ---> X taking values in closed subsets 8 of 

arbitrary Banach spaces. Furthermore, we obtain efficient specifications of our general 
necessary optimality conditions in the case of approximately convex subsets 8 of Banach 
spaces X admitting uniformly Gfiteam differentiable renorms (equivalent to rotundedness 
in the wea.k' topology [6]) that. encompass, in particular, every separable Banach space. The 

latter result essentially improves the multiplier rule derived in 115] for problems with convex 
constraint sets considered therein in the more restrictive setting. 

To establish necessary optimality conditions for the general problem (1.1), we employ 
the notions of subderivates for functions and mappings on metric spaces and also of the 

(topological and sequential) outer-regular subdifferentials introduced and applied below for 
the distance functions of closed subsets in Banach spaces. The la.t.ter abstract subdifferential 
notions a.re defined a:Eiom.atica.lly via several required properties that hold in natural settings 

for major subdifferential constructions encountered in variational analysis and optimization. 

The rest of the paper is organized as follows. In Section 2 we define and discuss the 

notions of approximate (sub)derivates and strict (snb)derivates for generally nonsmooth 
mappings and extended-real-valued functions on metric spaces as well as of abstract outer­

regu.la.r su.bdifferentia.ls for t.he distance functions in Banach spaces. 
Section 3 presents tho main result of the paper establishing .first-order necessary optimal­

ity conditions for the general problem (1.1) with operator constraints. The result obtained 

is expressed in terms of the strict subdcrivates of rp and fin (1.1) and of the outer subd­

ifferentials for the distance function de of the constraint set 8 defined in Section 2. The 
proof is based on employing the Ekcland variational principle and advanced perturbation 
techniques of variational analysis via. t.hc strict derivate construction and the appropriate 

properties of outer subgradients postulated anrl justified in t.he previous section. 

Section 4 is devoted to the description and certain useful properties of extended-rca.! 

valued approximately convex functions in Banach spaces introduced in [21]. These con-
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structions arc closely related to some other remarkable notions of generalized convexity, 
which play an important role in variational analysis and optimization. We establish new 

properties of approximately convex functions and sets in terms of generalized differential 
constructions of variational analysis paying the main attention to a modified version of 
approximate convexity around the reference points. 

In the concluding Section 5 we apply the genera.! necessary optimality conditions estab­
lished in Section 3 and the properties of approximately convex functions and sets from Sec­
tion 4 to derive efficient specifications of the general result in t.he case of problem (1.1) with 
approximately convex constraint sets 8 in Banach spaces X admitting uniformly Gateaux 

differentiable renorms. As mentioned, this class of spaces contains every separable Banach 
spaces particularly important for variational analysis and its applications to optimization 
and rclat.cd topics. We show that the major S"/J,bd\ffer·ential constructions in variational 
analysis-that arc known to be the same for the distance functions of approximately convex 
sets--enjoy the required properties of the topological and sequential outer subdifferentials, 
which agree in the Banach spaces under consideration and allow us to efficiently apply the 
main result of Section 3. Furthermore, the latter result is constructively specified for ap­
proximately convex sets and expressed in the form similar to the case of (full) convexity 
developed in [15]. We also discuss various modifications and extensions of the proofs and 
results developed in Sections 4 and 5. 

Throughout the paper we mainly usc standard notation of variational analysis; see, e.g., 
[18, 23]. Recall that IN = {1, 2, ... }, that 1B and JB' stand for the closed unit ball in the 
Banach space in question and its topological dual, that B(x; T) is the closed ball centered 

at x with radius 1' > 0, and that x ~ x' signifies the weak' convergence in the dual X' to 
a Banach space X with the canonical paring(·,·) between the prima.! and dua.l spaces. We 
usc the notation F: X ==# Y for set-valued mappings with the graph 

gphF := {(x,y) EX x Yl11 E F(x)} 

to distinguish them from single-valued mappings denoted as usua.l by f: X --> Y. Given a 
·sot•valued mapping F: X==# X' between a.,Banach space and its dual, the symbol 

Lims:tpF(x) := {x' E X'l 3 a bounded net (.T,,x~) E gphF 
x~x 

with (.Tv,.T~)--> (.'t,x') }· 
(1.2) 

signifies the topological Painleve-Knratowski onter limit ofF as x--> x. If the nets in (1.2) 
arc replaced by sequences, we call (1.2) the seqnentinl Painleve-Knmtowski onter limit of 
F as :x; --> :I: and use the same notation while inrlica.t.ing each time wha.t kind of the limit is 

under consideration in the specific situation. 
Given further a nonempty subset 8 c X of a. Banach space X, denote by cl 8 its closure, 

by bd 8 its boundary, by cone 8 := {ax I a 2: 0, X E 8} its conic hull, and by 

de(:c) := inf {l[x- Yll I y E 8} (1.3) 

the distance function associated with e. We use the symbol 8' := X\ 8 to signify the 

complement of 8 in X and the symbol x ~ x to indicate that X --> x with X E 8. By 
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convention, let a0 := 0 for '-' E IR with a f 0 and 0 · 0 := 0. We always suppose t.hat all 
the extended-real-valued functions ,, : w--> m. under consideration arc proper, i.e., 

dom 1/J := {·wE Wjl/!{'w) < oo} f 0. 

2 Subderivates and Subdifferentials 

In this section we introduce and discuss the major not.ions of generalized differentiation 

used in this paper: the approximate (sub)derivates and strict (sub)derivates for nonsmooth 

mappings and extended-real-valued functions on metric spaces as well as of the axiomatically 
defined outer-regular subdi!Jerentials for the distance functions in normcd spaces. 

Let us start with the constructions of subderivates and derivates and define them for 

mappings .f: W--> X on metric spaces (W,p) with values in normed spaces (X, II· Ill­
Although the definitions below do not use the completeness of the domain and image spaces, 
these properties arc essential in the proofs of the our main results. Thus we always assume 
that the underlying domain metric space W is complete and the image space X is Banach. 

Furthermore, the presented subderivate/derivate definitions are automatically applied to 
extended-real-valued functions <p: W --> JR. finite at the reference points. 

Given .f: W--> X and 'lli E W, denote by S('III) the sets of sequences (wi, ti)JN such that 
w; E Til', t; E (O,oo), and p(·u,;,'lD) :'0 tiL 0 as i--> oo. 

Definition 2.1 (subderivates and derivates of mappings on metric spaces). Let 

.f: W--> X, ·wE W, and S('fv) be as described above. Then: 

(i) Given E 2': 0, we say that ·u EX is an c-SUBDERJVATE o.f .f at ·w i.f there is a sequence 
(wi, ti) E S(·w) such that 

(2.1) 

We call v a SUBDERIVATE off at 'IIi if E: = 0 and APPROXIMATE SUBDERIVATE o.f f at •ii.J 

if c > 0. The collection of c-derivates off at 'III is called the e-DERIVATE (DERJVATE and 

APPROXIMATE DERIVATE, respectively) off at this point and is denoted by Def(·w). 

(ii) We say that v E X is o. STRICT SUBDER.IVATE of f at 'llJ if for every sequence 

Wk--> 'III there is a sequence c;, L 0 as k--> oo such that v E D,kf(wk) for all k E IN. The 

collection of strict subderivates of .f at 1I1 is called the STRICT DERIVATE of .f at this point 

and is denoted by Dsf(iiJ). 

The above construction of strict derivate slightly extends the one from [15], where the 

sequence t:k is replaced by a positive function E( w) L 0 as w --> 'III. Note that the derivate 
and strict derivate have certain similarities with the classical derivative and strict derivative 

of mappings between Banach spaces, while they are different even for smooth real-valued 
functions <p: lR--> lR in which case 
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On the other hand, the derivate constructions from Definition 2.1 make sense for heavily 
discontinuous mappings and extended-real-valued functions. We have, e.g., 

D<<p(w) = [-1- E, 1 + t:] and D.,<p(w) = [-1, 1] as wE JR, c :2: 0 

for the function <p: IR --> IR equal to w at rational numbers and to 1 + w otherwise. 
It is worth mentioning that there is a number of pointwise calculus rules available for 

the strict derivate of mappings between both finite-dimensional and infinite-dimensional 
spaces. They arc not needed in this paper and will be presented in subsequent publications. 

Let us next introduce the notions of (topological and sequential) outer-regular subdif­

ferentials for the class of distance functions <p = de: X _, IR defined in (1.3), where 8 c X 

is a closed subset of a Banach spaces; in fact, we apply these subdifferential constructions 
just to the distance function of the constraint set 8 in the original problem. Note that the 
(Lipschitz continuous) distance functions play a fundamental role in subdifferential theory 
and variational analysis generating subdifferent.ials of extended-real-valued functions, which 
arc not needed in this paper; sec, e.g., [5, 10, 18, 26] for more details and references. 

By an abstract ov.ter-regular subd~fferential of the distance function de: X _, IR around 
a given point x E 8 we understand a set-valued mapping Vde: U ==< X* defined at x and 
on some outer neighborhood U C 8' of x that satisfies several properties formulated and 
discussed below including the major outer regularity requirement. We present two generally 

different versions of the required properties, topological and sequential, which depend on the 
(topological or sequential) t.ypc of the weo.k' convergence in the dual space X* and generate 
the corresponding notions of topological and sequential outer-regular subdifferentials. 

Observe that, for a given subdifferential Vde on a Banach space X, the topological 
and sequential properties defined below are equivalent provided that the dual unit ball JB* 
is sequentially weak* compact in X*. This is the case of all Banach spaces admitting a 
Gateaux d~fferentiable renorm at nonzero points as well as all Asplund generated spaces; 
the latter class includes every Asplund space and every weakly compactly generated (WCG) 
space and thus all reflexive and all separable Banach spaces. We refer the reader to the 
classical texts [6, 7] and to the paper [9], where similar relations between topological and 
sequential properties arc considered in detail in the framework of variational analysis. 

Definition 2. 2 (outer robustness). Given :I: E 8, we say that Vde is TOPOLOGICALLY 

OUTER ROBUST around x if there exists an outer neighborhood U C 8' of x such that for 
every x E U we have the inclusion 

V'de(:t) := LimsupDde(u) C Vde(:t), 
e' 
u~x 

(2.2) 

where Lim sup stands .for the topological outer lim.it (1.2) relative to 8'. If (2.2) holds with 

the replacement o.f the topological outer limit by the sequential one, we say that Dde is 

SEQUENTIALLY OUTER ROBUST around .1:. 

Note that the topological outer robustness property implies the sequential one but not 
vice versa. It is also obvious that these properties a.re always satisfied around interior points 
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of 8, since the left-hand side set in (2.2) is empty in this case. For boundary points of any 
closed sets, the outer robustness (both topological and sequential versions) holds for the 

generalized gradient by Clarke [5] and for the "approximate" G-subdifferential by Ioffe [10] 

in arbitrary Banach spaces as well as for the ba.sic/limiting sv.bdifferential by Mordukhovich 
[18] in WCG Banach spaces (not necessarily Asplund); see Theorem 3.60 and the discussions 

after its proof in [18, pp. 323-326]. We can similarly justify the outer robustness in WCG 
Banach spaces for certain modifications of the limiting subdifferential: namely, for the right­

sided subdifferential introduced in [20] (see also [18, Subsetion 1.3.3]) and the closely related 
outer subdifferential of [11[, and also for the sequentia.I limiting subdifferentia.l developed in 
[8] in the case of Asplund generated spaces. 

The next required properties (topologica.l and sequential) of 'Dde arc more selective 
than the corresponding outer robustness and depend, for specific subdifferentials, on the 

set e c X and the point x E E> under consideration. 

Definition 2.3 (outer regularity). Given :I: E 8, we say that 'Dde is TOPOLOGICALLY 

OUTER REGULAR at x if every sequence Xk ~ x as k ---> oo has a infinite subset S such that 
the topological Pa.inleve-I<um.towski ou.tcT limit 

Limsup'Dde(x) is a singleton in X'. 
s-X-+X 

(2.3) 

We say that 'Dde is SEQUENTIALLY OUTER REGULAR at :1; if the topological outer limit in 
(2.3) can be replaced by a sequential one. 

Note that the singleton in (2.3) generally depends on the chosen subset S. Similarly to 
the case of outer robustness, observe that the topological outer regularity property implies 

its sequentia.l counterpart. but not. vice versa. and that these properties obviously hold for 

interior points x of any set e. 
If 8 is "smooth" around :l: E bd E> (in the sense that de is smooth around this point), 

then the outer regularity properties obviously hold for any natural subdifferentia.Is 'Dde on 
Banach spaces such that 'Drcduces to the classical derivative for smooth functions. We show 

in Section 5 that all the ma,jor subdifferentials in variational analysis are outer regular at 
any points of approximately convex sets in Banach spaces admitting Gateaux differentiable 
renorms. This implies, in particular, the outer regularity of the classical subdifferential of 

convex analysis in the case of convex sets in Definition 2.3. 

Further, taking into account the projection form.nla 

"'d ( ) x- IT(:r;E>) 
u e a: = 

de(x) ' 
xrf- e, 

for computing the afore-mention limiting subdifferentia.l of the distance function at out-of-set 

points of closed sets in JR." via the Euclidean projector II(:v; 8) (see, e.g., [23, Example 8.53] 

and [18, p. 111] with more discussions and references therein), we conclude that the limiting 

subdifferent.ia.J is outer regular at. x E bd 8 whenever 

Limsupl1(:r;8) is a singleton in JR.". 

"' x-x 
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The latter depends, of course, on 8 and :I; and may hold for sets that arc not approximately 
convex and have a set-valued projector as for 8 = epi (-j:cj') with 0 < 'Y < 1. However, it 
is violated when 'Y = 1 in the above example. We refer the reader to [18, Subsection 1.3.3] 
and [20] for more results on the limiting subgradients of the distance function at out-of-set 
points that can be used for establishing efficient conditions ensuring the outer regularity of 
the basic subdifferential of j18] and its modifica.t.ions. 

Another major property required for t.he abstract subdifferentials considered in this 
paper is the Extended Mean Value Inequality (EMVI), which is a weak extended form of 
the mean value theorem in generalized differentiation. 

Definition 2.4 (extended mean value inequality). We say that the EXTENDED MEAN 

VALUE INEQUALITY (EM VI) holds for Dde a.round :I: E 8 if there exist an outer neighbor­

hood U C 8' of :f:, a. function w: U x [0, 1) --> [0, oo) with w(:c, r) l 0 as (:t, r) -+ (:1', o+), 
and a. dense subset S C U such that for any x, ·u E S we can find v E (x + llu- :vjjJB) n U 
and x' E Dde(v) satisfying 

de(u) - de(:c) :S: (x', u- x) + li·u- :ell w(x, llu- xll). (2.4) 

The case of w = 0 in (2.4) corresponds to the conventional Mean Value Inequality (MVI) 
and holds for the majority of known subdifferentials of Lipschitz cont.inuous functions useful 
in applications; see, c,g., [1, 4, 5, 8, 18, 23, 24, 25] and the references therein. Considering 
a dense subset S in Definition 2.4 allows us to cover the sequential limiting subdifferential 

on Asplund generated spaces in [8] for which the MVI is proved relative to a dense Asplund 
subspace. Thus the extended inequality (2.4) is a. natural subdifferentia.l property, which 
does not impose any restrictions on the ch's of subdifferentia.ls used in what follows. Ob­
serve that. the EMVI property from Definition 2.4 is not. a limiting one and hence does not. 
have topological and sequential versions as those from Definition 2.2 and Definition 2.3. 

Combining the above requirements on Dde with another property that must be always 
fulfilled, we arrive at the following definition of the topological and sequential abstract 

outer•regul.a.r S'IJ.bdifferentials for the class of distance functions under considera.tion. 

Definition 2.5 (abstract outer-regular subdifferentials of distance functions). 
Given a nonempty set 8 C X and a point x E 8, we say that Dde is a TOPOLOGI­

CAL OUTER-REGULAR SUBDIFFERENTIAL of the distance function de around X if the sets 

Dde(x) C X' a.re defined at least at x and on some outer neighborhood U C 8' of this point 

and the following properties are sati~fied: 

(Pl) Dde(x) C 18' for all x E U; 

(P2) Dde is topologically outer robust around x; 
(P 3) Dde is topologically outer regular at x; 
(P4) The extended m.ea.n value inequality holds for Dde around x. 

We say that 1Jde is a SEQUENTIAL OUTER-REGULAR SUBDIFFERENTIAL of de around X 

if it satisfies properties (P1), (P4) a.nd the sequentia.l versions of properties (P2) and (P3) 
.fmm. De.finition 2.2 and Definition 2.3, respectively. 
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Note that there are several versions of axiomatically defined abstract subdifferentials 
in nonsmooth analysis; sec, e.g., [1, 10, 12, 17, 18, 25]. Both topological and sequential 
outer-reg;ular subdifferentials of Definition 2.5 are essentially different from all the known 
constructions. The major differences consist of considering sets (via their distance functions 
in contrast to arbitrary functions) and paying the main attention to outer properties of 
subdifferentials that deal with out-of-set points. In this approach the validity of the imposed 
subdifferential requirements and their realization for specific subdifferentials depend on the 
set and its boundary point in question; see the discussions and examples presented above. 

3 Necessary Optimality Conditions for General Problems 

In this section we establish the main result of the paper providing first-order necessary 
optimality conditions for the general problem (1.1) via the strict derivate and outer-regular 
su.bd~fferentio.l constructions introduced and discussed in Section 2. 

Theorem 3.1 (necessary conditions for constrained optimization in metric spaces). 
Let ·w be a local minimizer for problem (1.1), where (W, p) is a complete metric space and 

(X, II · Ill is a Banach space, cp: W --> 1R is .finite at 'llJ and l.s.c. around this point while 
f: W --> X is continuous around :1: := f ('iii), and where G is locally closed around :I:. Let 
further Ds(cp, f) ('iii) be the strict derivate of the mapping (cp, f): W --> (IR, X) at ·u) and 

'Dde be a topological out.er·-regula.r subd~fferential of de around x. Assume further that 

0 ret 'D'de(:c) (3.1) 

via the topological outer limit of'Dde relative to 8' defined in (2.2). Then there are elements 
(A, x') E [0, 1] x X' such that 

(.X,x') f (0,0), x' E ,/1- .X2'D'de(x), and (3.2) 

.XO + (:E', v) ~ 0 for all (0, v) E D8(cp, f)(·w). (3.3) 

If in addition the dual unit ba.ll IB' C X* is wea.k* sequentially compact in X*, then the 

topologica.l ou.ter-regv.lo.r .mbd~(fererd.ial 'Dde and its iopolo_qica.l outer limit 'D' de can be 
replaced by their sequential counterparts in the relations a.bove. 

Proof. The proof of t.he theorem is rather long but not difficult to follow. We split it 
into seven steps. Observe first that the interior case of :1; = f('iii) E int 8 is trivial, since 
'D'de(:I:) = 0 in this case by construction (2.2) and therefore the theorem holds with:~:*= 0 

and .X= 1 by our convention at the end of Section 1 t.ha.t o:0 i 0 if and only if o: = 0. Thus 
we consider the boundary ca.se :I: E bel 8 in what. follows. In St.eps 1-6, whieh are devoted 
to the proof of the "t.opological" optimality conditions via the topological outer-regular 
snbdifferential in (3.1)-(3.3), the space X is assumed to be arbitrary Banach. 

Step 1: approximation by unconstrained minimization problems. The first. step of 
the proof is to construct a sequence of 1tncon8trained minimization problems approximating 
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the given minimizer ·m for the original problem (1.1) with operator constraints. We proceed 
by using the Ekeland variational principle; sec, e.g., [18, Theorem 2,26]. 

Assume without loss of generality that rp(1I1) = 0, take an arbitrary sequence €k l 0 as 

k --+ oo, and build the pena,lized function 'Pk: W --+ IR by 

(3.4) 

where ¢+(w) := max{ ¢(w), 0} as usual. It is easy to sec that for each k E IN the function 'Pk 
is lower semicontinuous (l.s.c.) and bounded from below. Applying the Ekcla.nd variational 
principle to (3.4) for each k E IN, find Wk E W satisfying the relations 

(3.5) 

(3.6) 

It follows from (3.5) that, p(wk, w) :0: VEJ: l 0, while (3.6) shows that Wk is a. global minimizer 
for the function 'Pk( w) + VEJ:p( w, Wk) and an approximate minimizerfor the functions 'Pk( w) 
from (3.4). Since the constraint function f: W--+ X in (1.1) is continuous, we suppose that 

f(wk) E U for all k E IN, (3.7) 

where U is the fixed outer neighborhood of :1: from the imposed properties of outer robustness 

in Definition 2.2 and the extended mean value inequality (EMVJ) in Definition 2.4. 

Step 2: approximation of strict subderivates. Intending further to justify the neces­
sary condition (3.3) of the theorem, take an arbitrary strict subderivate (0, v) E D8 {rp, f)(·m) 
a.nd, by Definition 2.1(ii) along the sequence 'Wk --+ ·m built. in Step 1, find a numerical se­

quence 'Yk l 0 as k --+ oo snch that 

(O,v) E D~,.(rp, f)(·wk) for all k E IN (3.8) 

via the approximate subderivates from Definition 2.1(i). Taking into account that (0, v) is 

a "'k-subdcriva.te (3.8) of the pair (rp, f) at 'Wk and using (2.1), for each k E IN we get a 

sequence (wi, tt)iEJN E Sw,, such that 

(3.9) 

where E'P(i,k) and Et(i, k) inside of I ·I and II· II in (3.9) are the corresponding relative 

errors in approximating the subdcriva.tc ( 0, v) of <p and f. It follows from construction (3.4) 
of the penalized functions 'Pk t.hat the difference 'Pk(wk)- 'Pk(-Wk) can be written as 

'Pk(wi)- 'Pk('Wk) = >.~ { [rp(wU + E"kt- [rp(wk) + E"k]+} 

+ok{de(f(wk))- de(f(wk))}, 
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where the coefficients .Al, and o:~ are defined by 

(3.11) 

Fixed a natural number k E IN, we consider the following three cases, which completely 

cover the situation. For simplicity and with no loss of generality, assume that each of the 
listed cases hold for all k E IN. 

(A) The typical case: we have 

(3.12) 

(B) The mixed sign case: there is a subsequence of {c:k}, still denoted by {ck}, such that 

(3.13) 

(C) The zero case: there is a subsequence of {c:k}, still denoted by {ck}, such that 

(3.14) 

Next we analyze each case above separately paying the main attention to the typical 
case (A) and indicating the necessary changes needed in the other case (B) and (C). 

Step 3: relating the subderivates of ( <p, f) with the topological outer-regular 

subdifferential Dde(f(wk)) in the typical case (A). Employing the lower semiconti­
nuity property of <p around Wk and the continuity property of f around this point for each 

fixed k E IN, we have the relations 

<p(u,D +Ek > 0, de(f(wk)) > 0, f(wD E U (3.15) 

whenever i E JN is sufficiently large. Thus the limit (Ak, O:k) := lim;~00 (.Al,, nt) of the 

sequences in (3.11) exists and is comput.ed by 

due to the strict inequalities in (3.12). Note that (Ak, ak) E (0, 1) x (0, 1) in this case and 

that A~ + L<~ = 1. It follows furthermore that 

(3.17) 

Let us handle the de term in (3.10) by using the EMVI property (P4) of the outer 

subdifferentiaJ Dde on the dense subset 8 of outer neighborhood U. It follows from the 

density of 8 in [I that there arc clements al,, b% E 8 satisfying 

llai- f(wk)ll +lib~- f(wkJII :S (t!Y for all i E IN, (3.18) 
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where the numbers t/, arc taken from (3.9). Since de is Lipschitz continuous with modulus 
e = 1' the last inequality implies that. 

de(f(wk))- de(f(wk)) :s; de(ai)- de(b~) + (t/f (3.19) 

Employing now the extended mean value inequality (2.4) on the dense set S, we find ele­

ments c~ E S n B(a.t; llr4- b~lll and ·u.;k E Vde(ci) such that 

(3.20) 

Combine (3.19) and (3.20) to get the inequality 

Substituting expressions (3.17) and (3.21) into (3.10) and dividing the latter by t~, we arrive 
at the upper estimate of the finite difference 

'Pk(wk) - 'Pk('wk) 

t~ (3.22) 

held for all indices i E IN that are sufficiently large. Let further !:l.f!, := f(w%)- f(wk) and 
observe by (3.9) that !:l.f£ = ti [v + Et(i, k)]. It follows from (3.9) and(3.18) that 

ll
ai - b; II lim sup k i k - v 

~-oo t k 
:s; lim sup : [114- bi- !:l.fkll + ll!:l.fk- tivlll] 

~-oo tk 

:'::lim sup [tl. + IIEJ(i, k)ll] :s; "'k and 
i.--+oo 

=lim sup [19 + E<P(i, k)] :0: 19 + "fk, 
,_00 

which imply, in particular, that 

II
(}_; -b; II lim sup k ; k :':: llvll + "ik 

1.--+oo tk 
and lim sup II a./,- bill= 0. 

1.--+oo 

(3.23) 

Now we intend to pass to the limit in the finite difference estimate (3.22) as i--> oo for 
each fixed k E IN. To proceed, we need to take care of an appropriate convergence of the 
dual elements v.ik E X'. Since the sequence of subgradients (·u;k)iEJN in (3.22) is uniformly 

bounded for any k E IN by the outer su bdifferential property (P1) from Definition 2.5, the 
classical Alaoglu-Bou.rba.ki theorem allows us to conclude that the sequence (v.ik);EJN contains 
a subnet { v.~k} converging to some clement ui; in the weak' topology of X'. Passing to the 
limit in (3.22) along this subnet (while keeping the notation limsup;_00 for the limit) and 
using (3.23) as well as the convergence w(x, r) l 0 as x--> x and T l 0, we get the estimate 

(3.24) 
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where the remainder ak is given by 

(3.25) 

Further, it follows from (3.18) that 

Therefore we have the convergence c/c ---> f(wk) as i ---> oo for the intermediate points 

c!, E S n B(ai, llai- bUll defin<ed above via. the mean value property u.ik E Vde(ci). Then 
the topological mLter rob11.stness property (P2) of the subdifferential Vde gives 

for the weak* limit u.i, of ('U.;k)iEBV whenever k E IN. 
Observe that the left.-hand side of (3.24) is bounded below by -yifk. This follows from 

relation (3.6) with w = 'W~ in the variational principle and from the estimate p(w/c, 'Wk) :S: ti 
in the derivate definition. Thus (3.24) implies that 

(3.26) 

Step 4: completing the proof of the topological optimality conditions in the 
typical case (A). As justified a.bove in "typical" case (A), inequality (3.26) holds with 
some ni, E Vde(J(wk)) for all k E IN. Observe that f(wk) ---> f('iiJ) as k ---> oo for the 
sequence of approximate minimizers 'Wk from (3.5) and (3.6) and that f(wk) ¢c 8 for all 
k E IN in this case due to (3.12). Note also that {·wk} is independent of the particular strict 

subdcrivate ( 0, v) E D.( <p, f)( 1I1) and the selected outer subgradicnts u.i, of de(J(·wk)) under 

consideration. Employing the topological o11.ter reg11.larity property (P3) oft.he subdifferential 
Vde along the sequence {f(wk)}, we find by Definition 2.3 an infinite subset f- 1(8) of {wk} 
generated by the oneS of {f(wk)} from the construction in (2.3) and a dual clement v.* EX* 

independent of ( 0, v) such that 

LimsupVde(.f(w)) = {11.*} (3.27) 
/-1 (S)-

w - w 

via the topological Painleve-Kura.towski onter limit (1.2). It follows from the topological 
o11.ter rob11.stness property (P2) of Vde and the continuity off that ·n* E Vde(J(·w)). Since 

the sequence of ui, E Vde(.f(wk)), k E IN, is 11.nijormly bo11.nded by (P1), it contains-by 
the Alaoglu-Bourbaki theorem-a weak* convergent s11.bnet in X*. By (3.27) and definition 

(1.2) of the topological Painleve-Kuratowski outer limit, each subnet of this type generated 
by any strict. subdcrivate ( 8, 1>) E Ds( <p, f)( fil) weak* converges to v.*. 

Since (Ak, CYk) E [0, 1] 2 in (3.11), assume with no loss of generality tha.t the whole 

sequence of (.Xk, ak) converges to some (.X, a) E IO, 1]2 as k ---> oo. Since (.X~) 2 + (a/Y = 1 
for all k E IN by the construction in ( 3.11), we have 

(3.28) 
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Passing now to the limit in (3.26) as k--> oo along a weak* convergent subnet of {uk} from 
the discussions above and taking into account. that ak l 0 as k --> oo by definition (3.25), 

we arrive at the inequality 

.\il+ c~(v*,v) 2:0 for all (1'1,11) E D,(<p, fl(·m). (3.29) 

It follows from the construction of v.* in (3.27) in the case (A) under consideration that 

u' E V'de(x) for the outer limit V'de defined in (2.2). Thus v.* # 0 due to assumption 
(3.1) of the theorem. This implies that(.\, em*)# (0, 0) by (3.28). Denoting 

, ·- , - -/1 '2 , X .- (t'i.f, - - /\ t/. ' 

we get conditions (3.2) and (3.3) and t.hus complete the proof of the "topological" part of 

the theorem in the typical case (A). 

Step 5: completing the proof of the topological optimality conditions in the 

mixed case (B). In this case we have 

for the penalized function (3.4) by (3.13). Furthermore, formula (3.16) continues to hold 

in case (3.13) with (.\k, ak) = (0, 1) for all k E IN. Since the function x+ := max{x, 0} is 
obviously Lipschitz continuous, we get the estimate and convergence 

.\; I I .\i I I tt (rp(u{) + Ekt - [rp(·wk) + Ekj+ S 
1

(,' rp(wl,) - rp(wk) 

S .\~ (IE"'(i, k)l + IOI] __, 0 as i __, oo, k E IN, 

with .At and E"'(i, k) defined in (3.11) and (3.9), respectively. Taking into account that 
f(wk) r/c e for all k E IN in case (B), we repeat. the arguments of case (A) to arrive at all 
the "topological" conclusions of the theorem with (A, a)= (0, 1) in the mixccl sign case (B). 

Step 6: completing the proof of the topological optimality conditions in the zero 

case (C). Considering the case (C), we observe that f(wk) E e for all k E IN sufficiently 

large in (3.14), since the set e is assumed to be locally closed around x = j(ii1) and since 
f(wk) __, x as k--> oo. Without loss of generality, conclude that Wk is a feasible solution to 

(1.1) for all k E IN, and hence 'Pk('Wk) 2: rp(·w) as k E IN due the local optimality of 'LV in 

the original constrained problem. Thus 

for the perturbed function (3.4) in this case, and we have counterparts of relations (3.16) 

and (3.26) with (.\k, ak) = (1, 0) for all k E IN. Repeating further the arguments of case 
(A) with no actual use of the subdifferent.ial properties of de, we arrive at the necessary 
optimality conditions (3.2) and (3.3) with (.\,x') = (1,0). 

Step 7: proof of the necessary optimality conditions for the sequential outer­
regular subdifferential. It. remains to show that. the necessary optimality conditions 

of the theorem hold with the replacement of the topological outer-regular subdifferent.ial 
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and its outer limit in (3.1)-(3.3) by their seqnential count"rpart.s from Definition 2.5 and 
Definition 2.2 provided that dual unit ball JB* C X* is seqnentially weak* compact. This 

follows directly from the arguments above, where the latter assumption and property (P1) 
allow us to usc snbsequences instead of snbnets in the corresponding limiting procedures. 

Thus we complete the proof of the theorem. 6 

It is not. hard t.o show that the necessary optimality condit.ions obtained in Theorem 3.1 

imply the classical Lagrange mnltiplier rule in the case of problems with finitely many 

equality and inequality const.raints given by strictly differentiable functions on Banach spaces 
W. They arc also consistent with some extended versions of multiplier rules for problems 
with nonsmooth data on Banach spaces obtained in terms of the afore-mentioned specific 

subdifferent.ials; cf. [4, 5, 19, 23, 24] and the references therein. 

In the next section we consider a remarkable class of generally nonconvex constraint sct.s 

8 in Banach spaces for which the necessary optimality conditions of Theorem 3.1 can be 
constructively expressed via the major su.bdifferential constructions of variational analysis 

that agree with each other and satisfy all the requirements imposed in Theorem 3.1. 

4 Approximately Convex Functions and Sets 

The main notion studied in this section is approximate conve.'IJity for extended-real-valued 
functions on Banach spaces introduced by Ngai, Luc and Thera in [21] and and its realization 
for the case of sets via the distance functions, which is needed in what follows. The concept 
of approximate convexity has been proved to be very useful for many aspects of variational 

analysis a..nd optimization being closely related to (while generally different from) other 
important notions of generalized convexity for functions and sets. VIle refer the reader to 

[2, 19, 21, 22, 23, 27] and the bibliographies therein for various properties of approximately 
convex functions and sets, their relations with other notions of generalized convexity, and 

a number of applications to variational analysis and generalized differentiation. 

In this section we recall some facts on approximate convexity and derive several proper­
ties~ of approximately convex funct.ions and sets needed for the implementation in Section 5 
of our general necessary optimality conditions from Theorem 3.1 in the case of approxi­

mately convex constraint sets. Together with the approximate convexity of functions and 

sets at the reference point as in [21], we define and study in this section and then apply 
in Section 5 a version of approximate convexity around the reference point involving all 

the points in the neighborhood of the reference one. Note that the latter modification is 
generally different from the original one in [21] as well well from the nniform approximate 

convexity introduced recently in [22]. Let us sta.rt with the ba.sic definitions. 

Definition 4.1 (approximately convex functions and sets). Let '1/J: X -> IR be a 
proper extended-real-valued fnnction on a Banach space X, and let 8 c X be a nonempty 

snbset of X. Then: 

(i) The function 7/1 is APPROXIMATELY CONVEX AT :f E dom 1j; ~f.for each number "f > 0 

there is·~> 0 such that for a.ll :1:, y E B(:I:: 'f/) and t E (0, 1) we have 

7f;((1- i)x + ty) :0: (1- t)'lj1(x) + t'ljJ(y) + 1t(1- t)llx- Yll· (4.1) 
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(ii) The fv:nction 1/J is APPROXIMATELY CONVEX AROUND J: E dom 1/J if there is a 
neighborhood of:); S11Ch that VJ is approximately conve.'!: at every point of this neighborhood. 

(iii) The set 8 is APPR.OXIMATf;LY CONVEX AT (respectively, AROUND) X if the distance 

function de: X ---> lR is approxima.tely convex at (respectively, around:) this point. 

Observe that the approximate convexity around x from Definition 4.1(ii) is generally 
a. weaker assumption in comparison with the "uniform.approxima.te convexity" around the 

reference point definwl in [22], where (4.1) is required to hold for all points (x, 11) close to 

ea.ch other uniformly in a fixed neighborhood of x. In finite dimensions, the approximate 
convexity around x from Definition 4.1(ii) is equivalent to the uniform convexity due to the 
compactness of the unit ball; it is easy to show this by standard compactness arguments. 
Note also that the approximate convexity at the point in question does not imply the one 
around this point even for strict d(fferentiable functions on the real line as in the following 
case taken from [18, p. 19]. 

Example 4.2 (difference between approximate convexity at and around the point). 
Consider the function 1j;: JR. __, lR given by 

l-x2 if x = 1/k, k E IN, 
1/J(x) := . o if x = 0, 

linear otherwise. 
(4.2) 

It is easy to check that this functions is strictly differentiable a.t x = 0 (although it is 

not Freehet differentiable at points nearby) and that strict differentiability always implies 
approximate convexity at the point in question. However, this function is not approximately 
convex around :c. Indeed, we get. directly from the above construction ( 4.2) that the function 
1j1(:c) admits the following representation on (0, 1): 

l 1 ( 1) - 2 +m1 :r--

1/J(:c) = \. . ... ·. . T. 
- 2 + mz(x- -) 

k k 

l
"f 1 1 

k+1 <x<p 
if 1 1 

;;<x<k-1' 
k E IN, 

where m.z < m1 < 0 arc the corresponding slopes to the graph of 1/J(a:). Pick Zk E (o, k(k~l)) 
and Jet x;, := t - Zk and Yk := t + Zk. Then 

which implies the following equalities for all k E IN: 

7/;(k-1) _ V;(:tk) + V;(yk) = (m.1 - tnz)zk 
2 2 2 

The latter shows that inequality (4.1) cannot be satisfied for :t = :r:ko y = Yk, and t = 1/2 
if AI > 0 is chosen to be sufficiently small (say 1 < 1/2) however small .,, is. Thus function 

( 4.2) is not a.pproxima.t.ely convex at. :f:k = 1/ k for any large k E IN. 
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An important fact established in [21, Theorem 3.6] shows that for every l.s.c. function 
1j;: X ___, lR on an arbitrary Banach space X the major snbdifferentia.ls of variational analysis 

(Ciarke-Rockafellar, Fr<§chet, Ioffe, Mordnkhovich) coincide at a point x E dom 1/J where 1j; 

is approximately convex and they agree with the convex-type snbd~lferentia.l 

&1/J(:I:) := {:r' EX* I (:r',v)::; 1j/(i:;v) for all vEX} ( 4.3) 

defined via the classical directional derivative 

-''(- ) 
1
. 1/J(:I: +tv) -1/J(:I:) 

,.P :r; 11 := 1m 
tjO f; 

( 4.4) 

of 'lj; at x in the direction v, which exists and is sublincar on X. If 1/J is convex, the 
subdifferential ( 4.3) reduces to the classical subclifferential of convex analysis. Thus we 
keep the notation &7/J(x) for the su.bd\fferentia.l of the approxima.tely convex .fnnction 1j; at x 

that encompasses all the afore-mentioned subclifferentials. 

The next proposition contains some useful properties of approximately convex functions 
1J: X ___, JR. aronnd the reference point, em ploycd, in particular, in the proof of necessary 

optimality conditions of Section 5. Observe that we assume the "around" approximate 

convexity of 1j; to make sure that &1/J(-) in (4.3) is the subclifferential of the function 1j; not 

only in x but also at all the points x E dom 1/J sufficiently close to x. In fact, certain modifi­
cations of the proofs below allow us to justify the necessary optimality conditions obtained 
in Section 5 in the more genera.! case when the constraint set 8 in (1.1) is approximately 

convex only at the optimal point; sec Remark 5.7. 

Proposition 4.3 (properties of approximately convex functions). Let 1/J: X---> lR 

be approximately convex aronnd x on a Banach space X. Then there is an npper semicon­

tinnons function IJ: (0, DO) ---> [0, DO) such that IJ( r) 1 0 as r 1 0 and the .following hold: 

(i) For all :t,)J EX sufficiently close to :c and all f; E (0, 1) we have 

1
1/J(.T,)::; (1- t)1J(x) + t'ljJ(y~ + iJ(r[x,yJ(x))t(l- t)llx- Yll, 

1/!(x,) -7/J(x) ::; 1J(y) -1/!(a.) + IJ(r-[x.yj(:I:))(l-1:), 
llxt -.Til IIY- xll 

where T[x.yJ(x) := max{llx- xll, IIY- xll} and where Xt := x + t(y- .1:). 

( 4.5) 

(ii) Let x' E f)1/!(x), where x E X is sufficiently close to :c. Then .for ally EX we have 

(x*, y- x) ::; 1/.•(y) -1/J(x) + B(rrx.yj(x)) IIY- xll. (4.6) 

(iii) l.f ( 4.6) holds .for some x E X close l.o x and ally E X close to x, then 

(:r', v) ::; 4/(:t:; ·e) + 11(1\:t:- :i:ll) II vii whenever v E X. (4.7) 

Proof. Define the function IJ: (0, DO) ___, [0, DO) by 

IJ(r) := limsupw(ry), r E (O,DO), (4.8) 
7]---'T 
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where w(rJ) := inf{/ > 01 {4.1) holds for all {:~:,y) E B(:I:;rJ)}. It is easy to check that 
function ( 4.8) satisfies all the requirements asserted in the theorem. Let us justify the three 

properties (i)-(iii) with this function ll{r). 
To proceed with (i), observe that the first inequality in {4.5) follows directly from {4.1) 

and {4.8). Subtracting lj!(X) from both sides of the first inequality in {4.5) and dividing 

then each term by II.Tt- xll = tiiY- xll, we arrive at the second inequality in (4.5) and thus 
justify property (i) of the proposition. 

To prove (ii), fix x E X sufficiently close to x and take any y E X. Then the second 
inequality in ( 4.5) implies that 

1/J{:r: +tv) - 7/J{:c) 
t $ 1/J(.T + v) -1/J(X) + ll(r'[x,yJ(x)){l- f)llvll {4.9) 

with v := y - .T for all t > 0 sufficiently small. By passing to the limit in ( 4.9) as t 1 0 and 
taking into account the existence of the directional derivative in ( 4.4), we conclude that 

lj/{:c; v) ::; 1/J(:c + v) -7/J(:v) + e(r[x,x+vJ(:E)) II vii with 'V = y- :r:. ( 4.10) 

Since (:~:',y- x) S ljl(x;y- x) for any x' E r!lj!(x) by {4.3), it follows from (4.10) that 

estimate (4.6) is satisfied, which justifies property (ii). 
Finally, let x' satisfy ( 4.6) for some fixed .T close to x and any y close to x. Taking an 

arbitrary direction vEX and setting y := x +tv for small t > 0, we get from {4.6) that 

, 7/J(x +tv) -7/J(x) 
(x,v)S t +ll(r[x,x+tvj(x))llvll, 

which gives (4.7) by passing to the limit as t 1 0 by {4.4) due to the upper scmicontinuity 

of 8(-). This justifies (iii) and completes the proof of the proposition. 6. 

5 Case Study for Approximately Convex Constraints 

The concluding section of the paper is devoted to the implementation and specification of 

the general n~c~~sary optiiTia.lity conclitions for problern (1.1) defined on complete metric 
spaces in the case of approximately convex constraint sets e that belong to a. broad class of 

Banach spaces a.dmitting uniformly Gateaux differential renorms. 

Recall that a norm II · II on a Banach space X is u.n~formly Gdteau:.r; differentiable if for 

every h E X with llhll = 1 the limit 

I
. ll:r: + thll- llx:ll 
Jill 

t-o t 

exists and the convergence is uniform in x E X with llxll = 1. We say that a Banach 
space X is uniformly Gateaux smooth if it admits a uniformly Gateaux renorming, i.e., an 

equiva.Ient uniformly Gateaux differentiable norm. The class of Gateaux smooth Banach 
space is sufficiently broad containing, in particular, all weakly compactly generated Banach 

spaces and thus every separable and every reflexive space. We refer the reader to [6] and the 
bibliographies therein for a vadcty of results on Gateaux smooth spaces including equivalent 

descriptions, sufficient conditions, examples, and more discussions. In our proof below we 
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need the following equivalent descriptions from [6, Proposition 6.2(ii) a.nd Theorem 6.7] of 

the uniformly Gateaux norm 11·11 on X via. the dual norm on X'; for simplicity we keep the 

same norm notation llx'll for dual clements x' EX'. 

Proposition 5.1 (equivalent dual descriptions of uniformly Gateaux differentiable 

norms). The norm II · II on X is u.n~formly Gfitea.ux diffe1·entiable ~f and only if the du.al 

norm on X' is w' -nni.formly rotund in the sense that .for any sequences of dnal elements 

x;: E X' a.nd Yk E X' a.s k E IN sa.ti~fying the relations 

llx::ll = IIYZII = 1 .for all k E IN and llx); + YZII __, 2 as k--> oo (5.1) 

we have the weak' convergence (x;; -y!:) ~ 0 ask__, oo in X*. Furthermore, the conditions 

llx);ll = lly); II = 1 as k E IN in ( 5.1) ca.n be eqv.ivalently replaced by those of II a:); II --> 1 and 
ll:v); II __, 1 as k __, oo in t.he chamcterizo.t.ion of 11.n~form GrUea.u.x differentiable norms. 

For the main result of this section we need also the following property for the constraint 

set 8 at. the reference optima.! solution :I'= .f('in) to (1.1), which ensures the nontrivia.lity 

of multiplies in the corresponding necessary optimality conditions. 

Definition 5.2 (tangential relative interior points). We say that a su.bset 8 of a 

Banach space X has a TANGENTIAL RELATIVE INTERIOR. POINT at ;(; E 8 i.f there exist 

xo EX, numbers Tf > 0, 0 f > 0 and a compact set CCX su.ch that 

B(a:0 ;·Tf) c [c1(8 -:r)] n D3 + C .for all t E (o,,). (5.2) 

Note that condition (5.2) aut.omatically holds with :ro = 0 for every closed a.nd convex 

set 8 c X such that the linear subspace spanned by 8 is closed and .finil:e-codimensiona.l in 
X and its relative interior, ri 8, is nonempty. Indeed, it follows from [3, Theorem 2.5] that 
in this case there is a convex compact set C C X such that 0 E int [ (8 - x) n D3 + C], i.e., 

B(O; Tf) c (8- x) n D3 + C for some rJ > 0. (5.3) 

Since 8 eonvex a.nd 0 E (8-x), we hB"e 8-5.: c t-1 (8-i:), and hence (5.3) implies (5.2). 

In what follows we pay the main attention to approximately convex sets admitting tan­

gential relative interior points in uniformly Gdteau.x smooth Banach spaces. The next the­

orem shows that the su.bd~!Jerential ( 4.3) of the distance functions de for such sets, which 

encompasses the major subclifferentials of variational analysis, is an outer-regu.lar su.bdiffer­

ential in the sense of Definition 2 .. 5 sat;isfying furthermore the nontriviality condition (3.1) 
of Theorem 3.1. Note that, since the dual unit ball D3' C X' is sequentially weak' com­

pact for any uniformly Gat.caux smooth space X by the discussion in Section 2, there is no 

difference between topological and sequential outer-regular subdifferentials in the setting 
under consideration in the next theorem. 

Theorem 5.3 (outer-regular sub differential for the distance functions of approx­
imately convex sets ). Let. X be a. u.n\formly Gateaux smooth Banach space, a:n.d let 

n C X be an nonempty su.bsel. locally closed a.rou.nd x E n. The .following a.ssertions hold: 
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(i) If 8 is approximately convex around :c, then the snbd~fferentia.l 8de in ( 4.3) of the 
distance .function de encompassing the major s1tbd~fferentia.ls of variational a.na.lysis is an 
ou.ter-regnlar su.bdifferential nrov.nd .t. 

(ii) If in addition 8 has a tangential relative interior point at x, then the nontriviality 
condition 0 ·1/c 8'de(x) holds for the S1I.bd~fferentia.l8de. 

Proof. To justify (i), observe first t.hat, a.s discussed in Section 4, the approximate convexity 
around x ensures the existence of a neighborhood of x on which the subclifferential 8d8 (x) 
in (4.3) of t.he dist.ance funct.ion df> encompasses the major subclifferentials of variational 
analysis. Property (Pl) in Definition 2.5 follows for the subdifferential (4.3) of de directly 
from its definition. The outer robustness property (P2) and EMVI property (P4) with 
w = 0 in (2.4) hold for 8de due to, e.g., their validity for Clarke's generalized gradient of 
Lipschitz continuous functions; sec [5, Proposition 2.1.5 and Theorem 2.3.7]. 

To complete the proof of (i), it remains to justify the outer regularity property (P3) 
of 8de from Definition 2.5. The case of :f: E int8 is trivial, since in this case there is no 
sequence of Xk E 8' converging to x. Thus we consider the boundary case x E bel 8, fix 

an arbitrary sequence Xk ·::; x as k--+ oo, and with no loss of generality select. a uniformly 
Gfitea'UX differentiable norm 11·11 on X. Take now any sequence of subgradients x1 E 8de(xk) 
from ( 4.3) and establish first the norm convergence 

llxi,ll --> 1 as k--> oo. (5.4) 

To proceed, let E:k := 1/k for all k E IN and choose Yk E 8 such that 

Apply now property ( 4.6) of the approximately convex function 1/l(x) = de(x) with x' =xi, 
and (x, y) = (xk, Yk) therein to get the estimate 

since de(Yk) = 0. Dividing then each term of the above inequality by -llxk - Yk II 'I 0 for 
all k E IN, we conclude that 

which gives 1 2': llxi;ll 2': 1- E:k- O(r[x.,y,,[(x)). Passing to the limit in the latter estimates 
ask--+ oo and taking into account that Xk, Yk--+ x and r[x.,y.J(x)--+ 0, we arrive at (5.4). 

Since x"k E JB' for all· k E IN and the dual ball JB' C X' is seq'Uentially weak' compact 
in X' (by the Gateaux smoothness of X), the sequence {xn contains a. subscqnence that 
weak' converges t.o some 1;' E X'. "Without loss of generality, assume that the sequence 
{ xk} itself converges to x' as k --+ oo. To justify the outer regularity property (2.3), we 
thus need to show that any weak' convergent sequence of ;qj, E 8de(:rk), k E IN, has the 
same weak* limit x*, i.e., 

• 
xt- Yk 'S 0 as k--+ oo whenever Yk E ode(xk), k E IN, (5.5) 
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and the sequence {yk} weak' converges in X'. Indeed, by the obvious convexity of the set 

ade(:rk) in (4.3), we have t.he inclusion (:ri; + yi;)/2 E 8de(:tk) for all k E IN. Therefore, 

the above relation (5.4) implies the norm convergence 

IIYZII---> 1 and llx/; + Ykll---> 2 as h' __, oo. (5.6) 

It easily follows from (5.6) a.nd tho oquiva.lcnt dual description of the uniformly Gateaux 

differentiable norm II · II from Proposition 5.1 that :r:;; - Yk ~ 0 as k __, oo. This justifies 
(5.5) a.nd thus completes the proof of the outer regularity assertion (i) of the theorem. 

Next we justify assertion (ii) of the theorem ensuring tho validity of the nontriviality 
condition 0 <f. a'de(.'i:) for the outer limit (2.2) of the subdifferentia.I (4.3) for t.he distance 
function de under the tangential relative interiority property ( 5.2) of the approximately con­
vex set 8 under consideration. Take any x' E a'de(x) and by tho (sequential) construction 

W w' in (2.2) find sequences :r:k -+ :I: and :r/; E ade(:ck) such that. :r:); _, :t' as k-+ oo. We need to 

show that x' to 0. To proceed, employ the tangentially relative interiority property of e at 

x from Definition 5.2 assuming without loss of generality that l'o = 0 therein. In this way, 
using the function 11(-) from Proposition 4.3 and the constants from Definition 5.2, select 

t E (O,'Y) so small that IJ(t) :":: ry/4 and suppose in what follows that k E IN is so large that 
llxk - xll :":: t. Applying inequality ( 4.6) from Proposition 4.3 to de with x = Xk and taking 

into account that de(.Tk) 2: 0 and de(Y) = 0, we get 

(5.7) 

Since T[x,,yj(X) :":: max{llxk- xll, IIY- xl} :":: t, IIY- Xkii :":: 21;, and O(t) :":: ry/4 in (5.7), this 
estimate yields that 

(:r/;, y - Xk) :":: ryt/2 for large k E IN. (5.8) 

Take further any point n E B(O; ry) and represent it by the tangential relative interiority 

condition (5.2) in Definition 5.2 as 

11. = xjt + z for sonic x E (0- xj n B(O; t) and z E C. 

Lotting y := :r: + :1: = t(u- z) +:I: E 8 n B(:I:; t), we get. from (5.8) that 

(.T/;, t(11- z) +X- Xk) S ryt/2, 

which immediately implies the estimate 

Since tho latter also holds with ·u. replaced by -u E B(O; '1/), we arrive at. 

for all large k E IN. Let UR finally show that estimate (5.9) ensures that x' 
* . . * 'Wt * weak hm1t of xk _, x as k: _, oo. 

20 

(5.9) 

to 0 for tho 



Assuming the contrary and taking into account the compactness of C in X, we get 

maxJ(:r*,z)i-> 0 as k-> oo 
zEC 

w• 
from the weak* convergence :r;, -> 0. Furthermore, it follows from the norm convergence 

"'~> _, :/:and from the boundcdncss of {:ck} in X* by the nni.form. bmmdedness principle that 

i(:t:;:,a:- :I:) I-+ 0 as k ___, oo 

The latter two relations allow us to conclude from (5.9) that llx::ll :S 2/3 for all large k E IN 
that clearly contradicts the norm convergence (5.4) derived above. Thus x* # 0, which 

completes the proof of assertion (ii) and of the whole theorem. 6. 

Now we are ready to establish the main result of this section providing verifiable nec­
essary optimality conditions for the original problem (1.1) on metric spaces with operator 
constraints given by genera.! nonsmooth mappings and approximately convex sets in uni­

formly Giiteanx smooth Banach spaces. This result is an efficient specification in the setting 
under consideration of the general necessary optimality conditions of Section 3 obtained via 

abstract outer-regular subdifferentials. To formulate the new result, we recall the following 
well-known constructions of variational analysis; sec, e.g., [18, Chapter 1]. 

Given a nonempty set 8 c X in a Banach space X and a point x E 8, the Frechet 

normal cone to 8 at x is defined by 

NUt; 8) := {:c* E X* I lim sup (x*' x- x) :S 0} 
"'- llx -xll 

X---'-.1; 

(5.10) 

via t.hc standard upper limit of scalar functions. The weak contingent cone to 8 at :/: is 
defined via the weak convergence "~" on X by 

Tw(x;8) := {v E XI e 
3 sequences Xk ___, x and Cl!k ::': 0 

such that Cl!k(Xk- x) ~ v as k--> oo }. 
(5.11) 

If the weak convergence in (5.11) is replaced by the norm convergence on X, construction 

(5.11) reduces to the classical Bonligand-Severi contingent cone T(x;8); see [18, Subsec­

tion 1.1.2] for more details, discussions, and references. We obviously have the inclusion 

T(:I:; 8) c T,,,(:Y:; 8), 

where t.hc equality holds if X is flnite-dimensional. Furthermore, the polarity inclusion 

N(.t;8) c {x* EX* I (x*,v) :S 0 for all v E T,,(x;8)} ( 5.12) 

is satisfied in arbit.ra.ry Banach spaces, where the equality holds in (5.12) if X is reflexive; 

see [18, Theorem 1.10]. Observe tha.t the Fnkhet normal cone (5.10) is always convex while 
neither T,,,(x; 8) nor T(x; 8) is even in finite dimensions. 

Theorem 5.4 (necessary optimality conditions for operator-constrained prob­

lems on metric spaces with approximately convex constraint sets). Let 111 be a 
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locn.l minimizer· for problem (1.1) in the .framework of Theorem 3.1. Assume in addition 
tha.t X is a Gfitea11tc smooth Banach space, that the constraint 8et G C X is a.ppro.'Eim.ately 

convex around x := .f(7IJ), and that G admits a. tangentia.l relative interior point at x. Then 

there are multipliers (.A, 1:') E /R x X' such that 

{.A, :r') 'I (0, 0), ,A ::0: 0, x' E N(x; G), (5.13) 

a.nd the strid derivnte relntion 

.AV+(:r',v)?O .forall (v,v)ED,(<p,.f)('iD) (5.14) 

is satisfied. Fu.rthermore, the norma.l cone inclusion x' E N(:t; G) in (5.13) implies that 

(x',v):::; 0 .for all v E T,,(x;G) (5.15) 

via. the wmk contingent; cone (5.11), where t.he equivalence between .1:' E N(x; G) a.nd (5.15) 

holds if the Banach space X is reflexive. 

Proof. Theorem 5.3 tells us that the snbdifferentia.l 8de in ( 4.3) of the approximately 
convex distance function de, which encompasses the major subdifferentials of variational 

analysis, is an ou.ter-regula.r su.bd~fferential of de around x under the assumptions made. 
Thus we can apply the sequential version of Theorem 3.1 (equivalent to the topological one) 
to the case under consideration in the uniformly Ga.teaux smooth space X. By assertion (ii) 

of Theorem 5.3 t.he nontriviality condition (3.1) with V'de(x) = 8'de(x) holds, and thus 
Theorem 3.1 ensures the existence of multipliers (.A, 1:') E IR x X' such that 

(.A,x') =J (0,0), A 2:0, :c' E conefJ'de(:'t), (5.16) 

and the strict derivate relation (3.3)=(5.14) is satisfied. To complete t.he proof of t.he 
theorem, it romans to show that the inclusion x' E cone fJ'de(x) in (5.16) implies that 

x' E N(x; 0), which in turn yields (5.15). 

Indeed, it follows directly from tho outer robustness property (2.2) of the subdifferential 
(4:3) at x == x that fJ'de(x) cfJde(x). Since the subdifferential (4.3) for t-he approximate 

convex function 1/J = de reduces to the Frechet subdifferential of de at x, we get from [18, 

Corollary 1.96] that :t' E N(:I:; G) for the Fn>chet normal cone defined in (5.10). Further­

more, inequality (5.15) in arbitrary Banach spaces X and it.s cquiva.lence to :c' E N(:c; G) in 

(5.13) if X is reflexive follow from the polarity inclusion (5.12) and from the case of equality 
therein mentioned above. This completes the proof of the theorem. /:, 

We conclude this section with several remarks discussing some specifications and exten­
sions of the major results obtained in the paper. 

Remark 5.5 (multiplier rule in the case of convex constraint sets). If the con­

stra.int set. Gin (1.1) is convex, then condition ;c' E N(:I;; n) in (5.13) reduces to 

(:c*, :t- ;I:) :::; 0 for all :1: E 8. 

This follows from the fact that in the convex case t.hc normal cone (5.10) agrees with the 

classical normal cone of convex analysis. This V<'rsion of Theorem 5.4 significant.ly extends 
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the main result of (15] obtained in the case when the cost function <p is continuous and 

the space X has a strictly convex/norm-rotund dual (instead of weak* rotundcdness as 

in Theorem 5.4) and the set El is convex and finite-codimensional with closed span and 
nonempty relative interior. The latter assumptions imply the tangential rclat.ive interior 
condition (5.2) as discussed aft.er Definition 5.2. Note that the proof of the nont.rivia.Iity 

condition(>., :r') i (0, 0) in (15] is based on Lemma 3.6 from Chapter 4 in (14], which cannot 
be applied in the setting of Theorem 5.3. 

Remark 5.6 (nontriviality condition under sequential normal compactness). The 
nontriviality condition (>., x') i (0, 0) in Theorem 5.4 based on assertion (ii) of Theorem 5.3 
holds in fact under the repla.cement of the tangential relative interiority assumption (5.2) 

by generally loss restrictive sequential normal compactness (SNC) property of El at :f; E 8 
formulated via the normal cone (5.10) as follows: 

[x; E N(xk; El) with a:k-> x, xZ ~OJ = ll:tJ::II-> 0 as k-> oo. (5.17) 

This property is automatic in finite dimensions while playing a crucial role in variational 
analysis and its applications in infinite-dimensional spaces; see [18, 19] for a comprehensive 

theory and numerous app!icat.ions. It has boon well recognized that the SNC property (5.17) 
is implied in arbitrary Banach spaces by certain Lipschitzian requirements imposed on tho 
sot in question, in particular, by tho compactly epi-Lipschitzian (CEL) property of 8 around 

:l: in the sense of Borwein and Str6jwas that follows from (5.2); see (18, Subsection 1.1.4] 
and (9] for more details and references. 

Remark 5. 7 (case of approximately convex constraint sets AT versus AROUND the 
reference point). Some modificat.ions of the proofs given in Proposition 4.3, Theorem 5.3, 
and Theorem 5.4 allow us to justify tho necessary optimality conditions of Theorem 5.4 un­
der t.he aesumpt.ion that the constraint set El is approximately convex only a.t (versus arouncl) 

t.he reference point :Y:. The main idea behind these changes is to keep the subdifferential 
construction ( 4.3) via t.hc classical directional derivative 'lj/ (x; v) at x for a. locally Lips­

chitzi;;'ll. functi~n ¢ whil~ replacing 1/l'(x; v) by the robust Clarke's generalized directional 
derivative 1j1°(x; v) of¢ at points nearby. This robust approximation allows us to conduct 
the limiting procedure in the proof of Theorem 5.3 and consequently in Theorem 5.4. 

Remark 5.8 (extensions to other classes of regular functions and sets). Approx­

imate convexity is not the only typo of nice/regular behavior of functions and sets. Other 
classes of functions and sots exhibiting locally nice convex-like properties have been exten­

sively studied and applied in variational analysis and optimization; sec, e.g., [2, 4, 19, 22, 23] 

and the references therein. Recently many of such notions have been unified in [22] under 
the name of r.p-regularity. The latter notion postulates a property of type ( 4.6) from Propo­

sit.ion 4.3(ii) with respect to Frechet subgradient.s. The class of <p-rcgular functions contains, 

in particular, all prox-regular functions that arc highly important in many aspects of vari­

ational analysis and its applications. As the reader can observe from the proofs presented 

above, the methods developed in this paper allow us to modify and extend the major results 
obtained to the case of <p-regularity. 
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