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This paper concerns nonsmooth optimization problems involving operator constraints given
by mappings on complete metric spaces with values in nonconvex subscts of Banach spaces.
We derive general first-order necessary optimality conditions for such problems expressed via
certain constructions of gencralized derivatives for mappings on metric spaces and axiomat-
ically defined subdifferentials for the distance function fo nonconvex sets in Banach spaces.
Our proofs arc based on variational principles and perturbation/approximation techniques
of modern variational analysis. The general necessary conditions obtained are specified in
the case of optimization problems with operator constraints described by mappings taking
values in approximately convex subscts of Banach spaces, which admit uniformly Gateaux
differentiable renorms {in particular, in any separable spaces).
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1 Introduction

A vast majority of problems considered in optimization theory are described in Banach (if
not finite-dimensional} spaces, where the linear structure is crucial to employ conventional
tools of variational analysis and (generalized) differentiation for deriving necessary opti-
mality conditions and subsequently developing numerical algorithms. On the other hand,
there is a number of remarkable classes of problems particularly important for optimization,
control, and their various applications that admit adequate descriptions in spaces with no
linear structures; sce, c.g., (4, 13, 15, 16, 18, 19] and the references therein.

In this paper we pay the main attention to deriving first-order necessary optimality
conditions for a general class of optimization problems with operafor constraints in complete
metric spaces. The basic problem is described as follows:

{ minimize @(w} with we W (1.1)

subject to f(w) € 9O,



where (W, p) is a complete metric space with the metric p, where @: W — IR := (—o0, 00]
is a lower semicontinuous (l.s.c.) cxtended-real-valued cost function, and where f: W — X
is a continuous operator constraint mapping taking values in a closed subset © of a Banach
space (X, | - |) equipped with the norm || - }j. Note that the casc of additional geometric
constraints w € Q given by a closed subset € C W can be casily reduced to the basic form
(1.1) in the complete metric space (£2, p).

Recently problem (1.1) has been considered in [15] in the case when ¢ is a continuous
function and when © is a conver subset of a Banach space X whose topologically dual
space X* is strictly conver (or rotund in the norm topology; sce, c.g., {6]). A version of
the abstract multiplier rule obtained in [15] has been applied in [16] to derive a maximum
principle for a general deterministic optimal control problem with state constraints.

Let us particularly emphasize that the convexity assumption on the constraint set ©
imposed in [15] is clearly a restriction from both viewpoints of optimization theory and
applications. The primary goal of this paper is to establish necessary conditions for local
optimal solutions to problem (1.1) with no convezity requirements imposed on the constraint
set © and/or continuity assumptions on the cost function ¢. We derive such optimality
conditions in the general case of complete metric spaces, lower semicontinuous cost functions
w: W — IR, and continuous mappings f: W — X taking values in closed subsets © of
arbitrary Banach spaces. Furthermore, we obtain efficient specifications of our general
necessary optimality conditions in the case of approzimately conver subsets © of Banach
spaces X admitting uniformly Gdteaur differentioble renorms (equivalent to rotundedness
in the weak* topology [6]) that encompass, in particular, cvery separable Banach space. The
latter result essentially improves the multiplicr rule derived in [15] for problems with convex
constraint sefs considered therein in the more restrictive setting.

To establish necessary optimality conditions for the general problem (1.1), we employ
the notions of subderivates for functions and mappings on metric spaces and also of the
(topological and sequential) outer-reqular subdifferentials introduced and applied below for
the distance functions of closed subsets in Banach spaces. The latter abstract subdifferential
notions are defined ariomatically via scveral required propertics that hold in natural settings
for major subdifferential constructions encountered in variational analysis and optimization:;

The rest of the paper is organized as follows. In Section 2 we define and discuss the
notions of approzimate (sub)derivates and strict {sub)derivates for generally nonsmooth
mappings and cxtended-real-valued functions on metric spaces as well as of abstract outer-
regular subdifferentiols for the distance functions in Banach spaces.

Scction 3 prescnts the main result of the paper cstablishing first-order necessary optimal-
ity conditzons for the general problem (1.1) with opeorator constraints. The result obtained
is expressed in terms of the strict subderivates of ¢ and f in (1.1) and of the outer subd-
ifferentials for the distance function dg of the constraint set © defined in Section 2. The
proof is based on cmploying the Ekeland variational principle and advanced perturbation
techniques of variational analysis via the strict derivate construction and the appropriate
properties of outer subgradients postulated and justified in the previous section.

Scction 4 is devoted to the description and certain uscful properties of extended-real
valued approzimately conver functions in Banach spaccs introduced in [21]. Thesc con-



structions are closely relaied to some other remarkable notions of gencralized convexity,
which play an important role in variational analysis and optimization. We establish new
properties of approximately convex functions and sets in terms of generalized differential
constructions of variational analysis paying the main attention to a modified version of
approximate convexity around the reference points.

In the concluding Scction 5 we apply the general necessary optimality conditions estab-
lished in Section 3 and the propertics of approximately convex functions and scts from See-
tion 4 to derive efficient specifications of the general result in the case of problem (1.1) with
approzimotely conver constraint sets © in Banach spaces X admitting wniformly Géteaux
differentinble renorms. As mentioned, this class of spaces contains every separable Banach
spaces particularly important for variational analysis and its applications to optimization
and related topics. We show that the major subdifferential constructions in variational
analysis—that are known to be the same for the distance functions of approximately convex
sets—enjoy the required properties of the topological and sequential outer subdifferentials,
which agree in the Banach spaces under consideration and allow us to efficiently apply the
main result of Section 3. Furthermore, the latter result is constructively specified for ap-
proximately convex sets and expressed in the form similar to the case of (full) convexity
developed in [15]. We also discuss various modifications and extensions of the proofs and
results developed in Sections 4 and 5. '

Throughout the paper we mainly usc standard notation of variational analysis; see, e.g.,
[18, 23]. Recall that IV = {1,2,...}, that IB and IB* stand for the closed unit ball in the
Banach space in question and its topological dual, that B(#;r) is the closed ball centered
at T with radius 7 > 0, and that z v x* signifies the weak™ convergence in the dual X* to
a Banach space X with the canonical paring (-, ) between the primal and dual spaces. We
usc the notation F': X =2 Y for set-valued mappings with the graph

gph F:= {(z,y) € X x Y|y € F(2)}

to distinguish them from single-valued mappings denoted as usual by f: X - V. Given a
~set-valued mapping F:.X = X* between a.Banach space and.its dual, the symbol

Limsup F(z) := {:1:* € X*| 3 abounded net (z,,z}) € gph F

T T

1.2
with (2,2)) — (:Te,m*)}. (12

signifies the topological Painlevé-Kuratowski outer limit of F as x — Z. If the nets in (1.2)
are replaced by sequences, we call (1.2) the sequentinl Painlevé-Kuratowski outer limit of
F as x — & and usc the same notation while indicating cach time what kind of the limit is
under consideration in the specific situation.

Given further a nonempty subset @ C X of a Banach space X, denote by ¢l @ its closure,
by bd © its boundary, by cone® := {ax| & > 0, x € O} its conic hull, and by

do(r) :=inf {{z -yl | y € ©} (1.3)

the disiance function associated with ©. We use the symbol @ := X \ © to signify the
complement of © in X and the symbol z S & to indicate that z — 7 with z € ©. By



convention, let o := @ for v € IR with o # 0 and 0 - § := 0. We always suppose that all
the extended-real-valued functions : W — IR under consideration arc proper, i.e.,

dom := {we W|p(w) <oo} # 0.

2 Subderivates and Subdifferentials

In this scction we introduce and discuss the major notions of generalized differentiation
used in this paper: the approzimate (sub)derivates and strict (sub)derivetes for nonsmooth
mappings and cxtended-real-valued functions on metric spaces as well as of the axiomatically
defined outer-regular subdifferentials for the distance functions in normed spaces.

Let us start with the constructions of subderivates and derivates and define them for
mappings f: W — X on metric spaces (W, p) with values in normed spaces (X, || - ||)
Although the definitions below do net use the completeness of the domain and image spaces,
thesc propertics are essential in the proofs of the our main results. Thus we always assume
that the underlying domain metric space W is complete and the image space X is Banach.
Furthermore, the presented subderivate/derivate definitions are automatically applied to
extended-real-valued functions ¢: W — IR finite at the reference points.

Given f: W — X and @ € W, denote by S(10) the sets of sequences (w?,#)p such that
wt € W, # € (0,00), and p(uw?, @) <t | 0 as i — oo.

Definition 2.1 (subderivates and derivates of mappings on metric spaces). Let
f: W= X, weW, and S(@) be as described above. Then:

(i) Given £ > 0, we say that v € X 4s an £-SUBDERIVATE of f at @ if there is a sequence
(wt, t*) € S(W) such that

‘f_ﬂ::i‘_)_qH <e (2.1)

Lim sup \
%—*N
We call v o SUBDERIVATE of f at @ if ¢ = 0 and APPROXIMATE SUBDERIVATE of f af @
if € > 0. The collection of c-derivates- of { -at-w is called the e-DERIVATE {DERIVATE and
APPROXIMATE DERIVATE, respectively) of f al this poini and is denoted by D, f{1@).

(i} We say thot v € X is o STRICT SUBDERIVATE of f al @ if for every sequence
wy — W there is a sequence g | O as k — oo such that v € D, fwk) for all k € IN. The
collection of strict subderivates of f at W is called the STRICT DERIVATE of f at this point
and is denoted by D, f ().

The above construction of strict derivate slightly extends the one from [15], where the
sequence =y is replaced by a positive function ={(w) | 0 as v — @. Note that the derivate
and strict derivate have certain similaritics with the classical derivative and strict derivative
of mappings between Banach spaces, while they are different even for smooth real- valued
functions : IR — IR in which case

Detp(w) = [~ |¢'(@)| — & 1¢'(0)] + €] as € 20 and Dyp(w) = [~ [¢'(w)}, [&'(w)I].



On the other hand, the derivate constructions from Definition 2.1 make sense for heavily
discontinuous mappings and extended-real-valued functions. We have, e.g.,

Dep(w) ={-1—21+¢] and Dyp{w) =[-1,1] as we R, £ >0

for the function ¢: IR — IR equal to w at rational numbers and to 1 + w otherwise.

It is worth mentioning that there is a number of pointwise caleulus rules available for
the strict derivate of mappings between both finite-dimensional and infinite-dimensional
spaces. They arc not needed in this paper and will be presented in subsequent publications.

Let us next introduce the notions of (topological and scquential) outer-requlor subdif-
ferentials for the class of distance functions ¢ = de: X -» IR defined in (1.3), where ® ¢ X
is a closed subset of a Banach spaces; in fact, we apply these subdifferential constructions
just to the distance function of the constraint sef @ in the original problem. Note that the
(Lipschitz continuous) distance functions play e fundamental role in subdifferential theory
and variational analysis generating subdifferentials of extended-real-valued functions, which
arc not necded in this paper; sce, ¢.g., [5, 10, 18, 26] for more details and references.

By an abstract outer-regular subdifferential of the distance function dg: X — IR around
a given point £ € © we understand a set-valued mapping Dde: U = X* defined at Z and
on some outer neighborhood U7 C ©' of & that satisfies several properties formulated and
discussed below including the major outer regularity requirement. We present two generally
different versions of the required properties, topological and sequential, which depend on the
(topological or sequential) type of the weak® convergence in the dual space X* and generate
the corresponding notions of topological and sequential outer-regular subdifferentials.

Observe that, for a given subdifferential Dde on a Banach space X, the topological
and sequential properties defined below are equivalent providcd' that the dual unit ball B*
is sequentially weak* compact in X*. This is the case of all Banach spaces admitting a
Giteauz differentiable renorm at nonzcro points as well as all Asplund generated spaces;
the latter class includes every Asplund space and cvery weakly compactly generated (WCG)
space and thus all reflexive and all separable Banach spaces. We refer the reader to the
classical texts [6, T} #@nd to the paper [9], where similar relations between-topological and
sequential properties arc considercd in detail in the framework of variational analysis.

Definition 2.2 (outer robustness). Given T € ©, we say that Dde is TOPOLOGICALLY
OUTER ROBUST around Z if there exists an outer neighborhood Ul C @' of & such that for
every © € U we have the inclusion

D'de(z) = Limsup Ddo (u) C Dde(x), (2.2)
ef
U— T

where Lim sup siands for the topological outer limit (1.2) relative to ©'. If (2.2} holds with
the replacement of the topological outer limit by the sequential one, we say thot Ddg is
SEQUENTIALLY OUTER ROBUST around 7.

Note that the topological cuter robustness property implics the sequential one but not
vice versa. It is also obvious that these properties are always satisfied around interior points

o1 ]



of ©, since the left-hand side set in (2.2) is empty in this case. For boundary points of any
closed sets, the outer robustness (both topological and sequential versions) holds for the
generalized gradient by Clarke [5] and for the “epprozimate” G -subdifferential by loffe [10]
in arbitrary Banach spaces as well as for the basic/limiting subdifferential by Mordukhovich
[18] in WC'G Banach spaces (not necessarily Asplund); see Theorem 3.60 and the discussions
after its proof in [18, pp. 323-326). We can similarly justify the outer robustness in WCG
Banach spaces for certain modifications of the limiting subdifferential: namely, for the right-
sided subdifferential introduced in [20] (see also [18, Subsetion 1.3.3]) and the closely related
outer subdifferential of [11], and also for the sequential limiting subdifferential developed in
[8] in the case of Asplund gencrated spaces. ‘

The next required propertics (topological and sequential) of Ddg arc more selective
than the corresponding outer robustness and depend, for specific subdifferentials, on the
set © C X and the point Z € @ under consideration.

Definition 2.3 (outer regularity). Given & € ©, we say thet Ddo is TOPOLOGICALLY

. o o
OUTER REGULAR at T if every sequence 1 — T a3 k — 00 has a infinite subset S such that
the topological Painlevé-Kuratowski outer lmil

Limsup Dde(z) is a singleton in X" (2.3)
23z
We say that Ddo is SEQUENTIALLY QUTER REGULAR at T if the topological outer limit in
(2.3) can be replaced by a sequential one.

Note that the singleton in (2.3) gencrally depends on the chosen subsct §. Similarly to
the case of outer robustness, observe that the topological outer regularity property implies
its sequential counterpart but not vice versa and that these properties obvicusly hold for
interior points Z of any set ©.

If ® is “smooth” around # € bd © (in the sense that deg is smooth around this point},
then the outer regularity properties obviously hold for any natural subdifferentials Ddg on
Banach spaces such that Preduces to the classical derivative for smooth functions. We show
in Section 5 that all the major subdifferentials in variational analysis are outer regular at
any points of approzimately conver scts in Banach spaces admitting Géatenur differentiable
renorms. This implies, in particular, the onter regularity of the classical subdifferentiol of
conver analysis in the case of convex sets in Definition 2.3.

Further, taking into account the projection formula

. xr— 10
dde(z) = _—“d@((m) ) \

for computing the afore-mention limiting subdifferential of the distance function at out-of-set
points of closed sets in JR™ via the Euclidean projector Il(z; ©) (see, e.g., [23, Exatple 8.53]
and [18, p. 111] with morc discussions and references thercin), we conclude that the limiting
subdifferential is outer regular at @ € bd @ whenever

x ¢ 0,

Limsup II(x; ©®) is a singleton in R".

ef
T—T
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The latter depends, of course, on © and Z and may hold for scts that are not approximately
convex and have a set-valued projector as for © = epi(—i{x|?) with 0 < v < 1. However, it
is violated when v =1 in the above example. We refer the reader to {18, Subsection 1.3.3]
and [20] for more results on the limiting subgradients of the distance function at out-of-set
points that can be used for establishing efficient conditions ensuring the outer regularity of
the basic subdifferential of [18] and its modifications.

Another major property required for the abstract subdifferentials considered in this
paper is the Briended Mean Vaolue Inequality (EMVT), which is a weak extended form of
the mean value theorem in generalized differentiation.

Definition 2.4 (extended mean value inequality). We say that the EXTENDED MEAN
VALUE INEQUALITY (EMVI) holds for Dde around & € © if there exist an outer neighbor-
hood U C © of ¥, a function w: U x[0,1) - [0,00) with w(x,7) | 0 as {x, 1} — (Z,07),
and a dense subset S C U such that for any x,u € S we can findv e (x+ |lu —2iBYNU
and z* € Dde(v) satisfying

do(u) — do(x) < (&%, u— z) + |u — ol w(z, |u —=|). | (2._4)

The case of w = 0 in (2.4) corresponds to the conventional Mean Velue Inequelity (MVY)
and holds for the majority of known subdifferentials of Lipschitz continuous functions useful
in applications; see, ¢,g., [1, 4, 5, 8, 18, 23, 24, 25] and the references therein. Considering
a dense subset S in Definition 2.4 allows us to cover the sequential limiting subdifferential
on Asplund generated spaces in {8] for which the MVI is proved relative to a dense Asplund
subspace. Thus the extended inequality (2.4) is a natural subdifferential property, which
does not impose any restrictions on the class of subdifferentials used in what follows. Ob-
serve that the EMVI property from Definition 2.4 is not a limiting one and hence does not
have topological and sequential versions as those from Definition 2.2 and Definition 2.3.

Combining the above requirements on Dde with another property that must be always
fulfilled, we arrive at the following definition of the topological and sequential ebstract
- outersregular subdifferentials for- the-class-of distance functions.under.consideration. .

Definition 2.5 (abstract outer-regular subdifferentials of distance functions).
Given o nonemply set @ C X and a point T € ©, we say that Dde is a TOPOLOGI-
CAL OUTER-REGULAR SUBDIFFERENTIAL of the distance function dg around I if the sets
Dde(z) C X* are defined at lenst at T and on some outer neighborhood U C @' of this point
and the following properities are satisfied:

(P1) Dde(x) C B* for allx € U;

(P2) Dde is topologically outer robust around T;

(P3) Dde is topologically outer regular at ;

(P4) The extended mean value inequality holds for Dde around Z.

We say that Ddg is ¢ SEQUENTIAL OUTER-REGULAR SUBDIFFERENTIAL of dg around I
if it satisfies properties (P1), (P4) and the sequential versions of properties (P2) and (P3)
from Definition 2.2 and Definition 2.3, respectively.



Note that there are several versions of axiomatically defined abstract subdifferentials
in nonsmooth analysis; sec, c.g., [1, 10, 12, 17, 18, 25]. Both fopological and sequential
outer-regular subdifferentials of Definition 2.5 are essentially different from all the known
constructions. The major differences consist of considering sets (via their distance functions
in contrast to arbitrary functions) and paying the main attention to outer propertics of
subdifferentials that deal with oui-of-set points. In this approach the validity of the imposed
subdifferential requirements and their realization for specific subdifferentials depend on the
set and its boundary point in question; see the discussions and examples presented above.

3 Necessary Optimality Conditions for General Problems

In this section we establish the main result of the paper providing first-order necessary
optimality conditions for the general problem (1.1) via the sirict derivate and ouler-reguiar
subdifferential constructions introduced and discussed in Section 2.

Theorem 3.1 (necessary conditions for constrained optimization in metric spaces).
Let @ be a local minimizer for problem (1.1), where (W, p} is a complete metric space and
(X,]| - | is @ Banach space, w: W — IR is finite at @ and Ls.c. around this point while
i W — X is continuous around T = f(w), and where © is locally closed around T. Let
further Dy(ip, f)(ww) be the strict derivate of the mapping (i, f): W — (IR, X) at @ and
Ddg be a topological ouler-regular subdifferentiol of do cround . Assume further that

0 ¢ D'de() (3.1)

via the topological outer limit of Dde relative to © defined in (2.2). Then there are elements
(A x*) €10,1] x X* such thal

(A a*) #(0,0), z"eV1—-XDde(z), and (3.2)
A9+ A{x*,v) =0 for-all (#,v) € Ds{p, fHw). (3.3)

If in oddition the duel unil bell IB* C X* is weak® sequentiolly compact in X*, then the
topological outer-regular subdifferential Dde and ils lopological outer limit D'de can be
replaced by their sequential counterparis in the relations above.

Proof. The proof of the theorem is rather long but not difficult to follow. We split it
into seven steps. Observe first that the interior case of T = f() € int © is trivial, since
D'do (%) = 0 in this casc by construction (2.2) and therefore the theorem holds with 4* = 0
and A = 1 by our convention at the end of Scction 1 that o # @ if and only if o = 0. Thus
we consider the boundaery case ¥ € bd © in what follows. Tt Steps 1-6, which are devoted
to the proof of the “topological” optimality conditions via the topological outer-regular
subdifferential in (3.1)-(3.3), the space X is assumed to be arbitrary Bonach.

Step 1: approximation by unconstrained minimization problems. The first step of
the proof is to construct a scquence of unconstrained minimization problems approximating



the given minimizer @ for the original problem (1.1) with operator constraints. We proceed
by using the Ekeland variational principle; sec, c.g., [18, Theorem 2,26},

Assume without loss of generality that (@) = 0, take an arbitrary sequence g | 0 as
k — oo, and build the penalized function wp: W — IR by

or{w) = \/R;(w) + ek)+]2 + do (f(fw))z, (3.4)

where ¢ (w) = max{¢(w),0} as usual. It is casy to sec that for cach k& € IV the function
is lower semicontinuous (1.s.c.) and bounded from below. Applying the Ekeland variational
principle to (3.4) for cach k € IN, find w; € W satisfying the relations

wr(wk) + VERp(we, W) < wr(w) = ¢, and (3.5)
wr(wr) < r(w) + Verp(w,wy) for all we W\ {wi}. (3.6)

It follows from (3.5) that p(w, W) < /& L 0, while (3.6) shows that wy. is a global minimizer
for the function @r(w)+ /Erp(w, wy) and an epprozimate minimizer for the functions pg(w)
from (3.4). Since the constraint function f: W — X in (1.1) is continuous, we suppose that

flugyeUforall ke IV, (3.7)

where U7 is the fixed ouler neighborhood of I from the imposed properties of outer robustiness
in Definition 2.2 and the extended mean value inequality (EMVI) in Definition 2.4.

Step 2: approximation of strict subderivates. Intending further to justify the neces-
sary condition (3.3) of the theorem, take an arbitrary strict subderivate (9, v) € Dgs{¢, f)}{@)
and, by Definition 2.1(ii} along the sequence Wi = w built in Step 1, find a numerical se-
quence Y& | 0 as & — oc such that

(9,v) € Dy, (i, N wg) for all ke IN (3.8)

via the approximate subderivates from Definition 2.1(i). Taking into account that (¥, v) is
a yg-subderivate (3.8) of the pair (¢, f) at wg and using (2.1), for cach k € IN we get a
sequence (w;,ti)ie N € Sy, such that

(w}) — o(wy)

9’ < Y%,

lim sup | E, (4, k)] —hmsup‘(p
o e s )
lim sup || E¢ (i, k}|| := limsup H—kﬁ— - UH < Y
i—r00 100 k
where E,(1,k) and Ef(4,k) inside of | - | and || - || in (3.9) are the corresponding relative

errors in approximating the subdcerivate (9, v) of ¢ and f. Tt follows from construction (3.4)
of the penalized functions ¢y, that the difference p(w}) — @r(wy) can be written as

en(wh) — or(wr) = M, {[so(wi) +ex] T — lp(wp) + Ek]+}

. | (3.10
+aj, {do(f(u})) = do(/(wr))}, |



where the coefficients A, and ¢ are defined by

N o [P0+ ol o o) e
ke wr(w}) +(Pk;(’wk)) Y (3.11)

d@(f w ) + de( €0.1].
wr{wh ) + @p{wy) ‘

i
1=

Fixed a natural number £ € IV, we consider the following three cases, which completely
cover the situation. For simplicity and with no loss of generality, assume that cach of the
listed cases hold for all k € IV.

(A) The typical case: we have
wlwe) + g1 >0, de(flww)) >0, ke N (3.12)
(B) The mized sign case: therc is a subsequence of {z;}, still denoted by {e;}, such that
elwg)+e, <0, de (f('wk)) >0, kelN. (3.13)
(C) The zero case: there is a subsequence of {£}, still denoted by {£}, such that
do(f(wx)) =0, ke NN, | (3.14)

Next we analyze each case above separately paying the main attention to the typical
case {A) and indicating the necessary changes needed in the other case (B) and (C).

Step 3: relating the subderivates of (i, f} with the topological outer-regular
subdifferential Ddo(f(w;)) in the typical case (A). Employing the lower semiconti-
nuity property of ¢ around wy and the continuity property of f around this point for each
fixed k € IN, we have the rclations

o(wy) +ex >0, do(f(wi) >0, flwh)eU (3.15)

whenever ¢ €IV is-sufficiently large. Thus the Hmit- (Mg, ) = Hmioo(AL, ) of the
scquences in (3.11) exists and is computed by

o plwe) + s de(f(w)) .
(/\ka(lfk)—( orlwn) | rlan) ) (3.16)

duc to the strict incqualities in (3.12). Note that (A, o) € (0,1) x (0,1) in this casc and
that )\%, + ai = 1. It follows furthermore that

[o(w) + e]+ — [p(wr) + 2]" = w(w}) — @(we) for all large i€ IN. | (3.17)

Let us handle the de term in (3.10) by using the EMVI property (P4) of the outer
subdifferential Ddg on the dense subset § of outer neighborhood 7. It follows from the
density of S in {7 that there arc clements af, b}; € 5 satislying

Ntk — FCnli + 16k — S ()|l < (k)7 for all i€ IV, (3.18)
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where the numbers ¢, arc taken from (3.9). Since de is Lipschitz continuous with modulus
£ =1, the last incquality implics that

do(f(wp)) — de{f(un)) < do(uy) — de(bl) + (1}.)°. (3.19)

Employing now the extended mean value inequality (2.4) on the dense set S, we find ele-
ments ¢§, € §N Bal;|lal — b ||) and ), € Dde(cl) such that

do(a}) — do(b}) < (g, aj, — b} + llaf, — Bpllw(aj. llak — Bill)- (3.20)
Combine (3.19) and (3.20} to get the incquality
do(f(wh)) — do (f(wy)) < (ufy, af — B + llaf — Billw(ak, llag, — 831} + ()%, (3.21)

Substituting expressions (3.17) and (3.21) into (3.10) and dividing the latter by i, we arrive
at the upper estimate of the finite difference

o) —pule) o) ) e ¢~ b:;>
= A t1 S By

% t t

g — b . _ _ ' (3.22)
B2 | (et i — 61 + 14}
k

+

held for all indices i € IN that are sufficiently large. Let further Af} == f(wh) — f(wy) and
observe by (3.9) that Af} = ¢} [v+ E¢(i, k)]. It follows from (3.9) and(3.18) that

b?
lim sup H —of < timeup o [lak — ¥ — AfE+ 1AS ~ ol
'J,—POO 'ﬁ“"*w k
< limsup [t} + §B7(4, k}] < and
P— 00

lim sup M = limsup [§ + E (i, k)] < 9+ w,

. f-"" .
00 . ‘b [ Y]

\

which imply, in particular, that

- b,
.

Now we intend to pass to the limit in the finite difference estimate (3.22) as i — oo for
each fixed k € IN. To proceed, we nced to take care of an appropriate convergence of the
dual elements u}, € X*. Since the sequence of subgradients (u},)iem in (3.22) is uniformily
bounded for any k € IN by the outer subdifferential property (P1) from Definition 2.5, the
classical Alaoglu- Bourboki theorem allows us to conclude that the sequence (w0, )ie v contains

L |lvll + 9% and .lil.ll sup |laf, — bl = 0. (3.23)

=00

i—00

a subnet {u),} converging to some clement uf in the weak® topology of X*. Passing to the
limit in (3.22) along this subnet (while keeping the notation limsup,_,, for the limit) and
using (3.23) as well as the convergence w(z,7) | 0 as x — Z and 7 | 0, we get the estimate
pr(w)) = or(wy)

111_11 sup 7
im0 'k

< MW+ aglug, v) + o, (3.24)
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where the remainder oy is given by
or = M + g {e + (ol + ) w(f(we),0) ). ke V. (3.25)
Further, it follows from {3.18) that
aj = f(wy) and flal — B < |AfL + (8)* — 0 as i — 0.

Thereforc we have the convergence ¢ — f(wg) as 4 — oo for the intermediate points
ci € §N Blak,|lal — b,||) defined above via the mean value property uf, € Pdg{c}). Then
the topological outer robustness property (P2} of the subdifferential Dde gives

'u,i € ’D'd@(f('wk)) C Pdg (f(wk)), ke lN,

for the weak* limit u} of (u}, )iciv Whenever k€ IN.

Obscrve that the left-hand side of (3.24) is bounded below by —./€x. This follows from
rclation (3.6) with w = w}, in the variational principle and from the estimate p(w, wy) < £
in the derivate definition. Thus (3.24) implies that

—{ok + VEr) € M+ o luf,v), ke IN. {3.26)

Step 4: completing the proof of the topological optimality conditions in the
typical case (A). As justified above in “typical” case (A), inequality (3.26) holds with
some u} € Dde(f(wy)) for all kX € IN. Observe that f(uy) — f(@) as k — oo for the
sequence of approximate minimizers w; from (3.5) and (3.6) and that f(w;) ¢ @ for all
k € IN in this case due to (3.12). Note also that {wg} is independent of the particular strict
subderivate (9, v) € Dy(¢p, f)(i) and the selected outer subgradients u}, of de{f(wy)) under
consideration. Employing the topologicel outer regularity property (P3) of the subdifferential
Dde along the sequence { f(wy}}, we find by Definition 2.3 an infinite subset, f~1(S) of {wy}
generated by the one S of { f(wi)} from the construction in (2.3} and a dual element v* € X*
- independent of (#,v) such that

Lim suﬁ bd@ (flw)) = {u*} (3.27)

sy
w — w

via the topological Painlevé-Kuratowski outer limit (1.2). It follows from the fopological
outer robustness property (P2} of Dde and the continuity of f that u* € Dde(f(@)). Since
the scquence of v} € Dde(f(wr)), k € IN, is uniformly bounded by (P1), it contains—hby
the Alaoglu-Bourbaki thecorem—a weak* convergent subnet in X*. By (3.27) and definition
(1.2} of the topological Painlevé-Kuratowski outer limit, each subnet of this type generated
by any strict subdcrivate {9, v) € Ds(p, f)() weak* converges to u*.

Since (Ar, ) € [0,1]* in (3.11), assume with no loss of generality that the whole
sequence of (Az, o) converges to some (A, a) € [0,1)% as k& — oc. Since (A)% + (i) =1
for all & € IN by the construction in (3.11), we have

Miol=1, e, a=V1-)2 (3.28)
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Passing now to the limit in {3.26) as &k — oo along a weak* convergent subnet of {u}} from
the discussions above and taking into account that ¢, | 0 as k — oo by definition (3.25),
we arrive at the inequality

M+ auw” vy 2 0 for all (9,v) € Dy, /){1D). (3.29)

It follows from the construction of «* in {3.27) in the case (A) under consideration that
u* € D'de(Z) for the outer limit D'de defined in (2.2). Thus u* # 0 due to assumption
(3.1} of the theorem. This implies that (A, au*) # (0,0) by (3.28). Denoting

¥ = out = V1= A2,
we get conditions {3.2) and (3.3} and thus complete the proof of the “topological” part of
the theorem in the typical case (A).

Step 5: completing the proof of the topological optimality conditions in the
mixed case (B). In this casc we have

(Pk(u?k) = dg (f('wk)): ke Wa

for the penalized function (3.4) by (3.13). Furthermore, ormula (3.16) continues to hold
in case (3.13) with (Ag, o) = (0,1) for all k € IN. Since the function 2t = max{z,0} is
obviously Lipschitz continuous, we get the estimate and convergence

?- - .
2 () + e p(u}) — plun)
k
<A[EG(i k)| +19] =0 as i — o0, ke N,

X
"~ lptwn) + )" | < 2
‘&

with A, and E,(i,k) defined in (3.11) and (3.9), respectively. Taking into account that
flwe) € © for all £ € IN in case (B), we repcat the arguments of case (A) to arrive at all
the “topological” conclusions of the theorem with (A, o) = (0, 1) in the mixed sign case (B).

Step 6: completing the proof of the topological optimality conditions in the zero
case (C). Corsidcring the ¢asc (C), we observe that f{wg) € © for all k€ IN-sufficiently
large in (3.14), since the set © is assumed to be locally closed around & = f(@) and since
fluwg) — T as k — oco. Without loss of gencrality, conclude that wy is a feasible solution to
(1.1) for all k € IN, and hence @i (wy) = w(w) as k € IN due the local optimality of w in
the original constrained probiem. Thus

wr(wg) = plw) +éx 2 &, k€N,

for the perturbed function (3.4} in this casc, and we have counterparts of relations (3.16)
and (3.26) with (A, ax) = (1,0) for all & € IN. Repeating further the arguments of case
(A) with no actual use of the subdifferential properties of dg, we arrive at the nccessary
optimality conditions (3.2) and (3.3) with (A, 2"} = (1,0).

Step T: proof of the necessary optimality conditions for the sequential outer-
regular subdifferential. It remains to show that thc nccessary optimality conditions
of the theorem hold with the replacement of the topological outer-regular subdifferential
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and its outer limit in (3.1)-(3.3) by their sequentiel counterparts from Definition 2.5 and
Definition 2.2 provided that dual unit ball IB* C X* is sequentially weak* compact. This
follows dircctly from the arguments above, where the latter assumption and property (P1)
allow vs to usc subsequences instead of subnets in the corresponding limiting procedures.
Thus we complete the proof of the theorem. A

It is not hard to show that the necessary optimality conditions obtained in Theorem 3.1
imply the classical Lagrange muliiplier rule in the case of problems with finitely many
cquality and inequality constraints given by strictly differentiable functions on Banach spaces
W. They are also consistent with some cxtended versions of multiplier rules for problems
with nonsmooth data on Banach spaces obtained in terms of the afore-mentioned specific
subdifferentials; cf. [4, 5, 19, 23, 24| and the references therein.

In the next scetion we consider a remarkable class of gencrally nonconvex constraint scts
© in Banach spaces for which the necessary optimality conditions of Theorem 3.1 can be
constructively expressed via the major subdifferential constructions of variational analysis
that agree with each other and satisfy all the requirements imposed in Theorem 3.1.

4 Approximately Convex Functions and Sets

The main notien studied in this section is epprovimete converity for extended-real-valued
functions on Banach spaces introduced by Ngai, Luc and Théra in [21] and and its realization
for the case of sets via the distance functions, which is needed in what follows. The concept
of approximatc convexity has been proved to be very uscful for many aspects of variational
analysis and optimization being closely related to (while generally different from) other
important notions of generalized convexity for functions and scts. We refer the reader to
(2, 19, 21, 22, 23, 27] and the bibliographies therein for various properties of approximately
convex functions and scts, their relations with other notions of generalized convexity, and
a number of applications to variational analysis and generalized differentiation.

In this section we recall some facts on approximate convexity and derive several proper-
ties-of approximately convex functions.and sets needed for, the implementation in Section 5
of our gencral necessary optimality conditions from Theorem 3.1 in the case of approxi-
mately convex constraint scts. Togother with the approximate convexity of functions and
scts at the reference point as in [21], we define and study in this section and then apply
in Section 5 a version of approximate convexity around the reference point involving all
the points in the neighborhood of the reference one. Note that the latter modification is
generally different from the original one in [21} ag well well from the uniform approximate
convexity introduced recently in [22]. Let us start with the basic definitions.

Definition 4.1 (approximately convex functions and sets). Let 4: X — R be o
proper extended-real-valued function on a Banach space X, and let © C X be ¢ nonempty
subset of X. Then:

(i) The function i is APPROXIMATELY CONVEX AT & € dom ¢ if for each number v > 0
there is n > 0 such that for all &,y € B{dI;n} and t € (0,1) we have

P((1 =)+ ty) < (1 - )w(z) + tly) + (1 - Dz -yl (4.1)
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(ii) The function ¥ i$ APPROXIMATELY CONVEX AROUND # € dom?) if there is a
neighborhood of & such that ¥ is approzimalely conver al every point of this neighborhood.

(iii) The set © 1s APPROXIMATELY CONVEX AT (respectively, AROUND) Z if the distance
function dg: X — IR is approzimaotely conver at (respectively, around) this point.

Observe that the approximate convexity around % from Definition 4.1(it} is generally
a weaker assumption in comparison with the “uniform approximate convexity” around the
reference point defined in [22], where (4.1} is required to hold for all points (z,y) closc to
cach other wniformly in a fixed neighborhood of Z. In finite dimensions, the approximate
convexity around Z from Definition 4.1(ii) is equivalent to the uniform convexity due to the
compactness of the unit ball; it is casy to show this by standard compactness arguments.
Note also that the approximate convexity af the point in question does not imply the one
around this point cven for strict differenticble functions on the real line as in the following
casc taken from [18, p. 19].

Example 4.2 (difference between approximate convexity at and around the point).
Consider the function ¢: IR — IR given by

i x=1/k ke NN,
wE)=< 0 if =0, (4.2)
lincar  otherwisc.

It is easy to check that this functions is strictly differeniioble at & = 0 (although it is
not Fréchet differentiable at points nearby) and that strict differentiability ahways implies
approxrimate converity af the point in guestion. Howevcer, this function is not approzimaiely
conver around . Indecd, we get directly from the above construction (4.2) that the function
() admits the following represcentation on (0, 1}:

1+m( 1) it L <T<1
" l
ay=4{ K BB TR ke,
%2+m2(m—k)__.__ _l,f_E <$<.k_1..,

where ma < my < 0 arc the corresponding slopes to the graph of ¢(x). Pick 2, € (O, E'('k1-|-_1))
and lct z == § — 2 and g := } + z. Then

1
W(ag) = —% MLk and ¥(yg) = + mazg, ke N,

A2
which implies the following cqualitics for all k € IN:

w(k™1) — Wley) + Yye) (o —ma)ze  lye — | 2

2 2 4 9

The latter shows that inequality (4.1) cannot be satisfied for = = a, ¥ = 9, and t = 1/2
if v > 0 is chosen to be sufficiently small (say v < 1/2) however small  is. Thus function
(4.2) is not approximately convex at T3, = 1/k for any large k € IV,
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An important fact cstablished in [21, Theorem 3.6] shows that for cvery Ls.c. function
¥: X — IR on an arbitrary Banach spacc X the magjor subdifferentials of variational analysis
(Clarke-Rockafellar, Fréchet, loffe, Mordukhovich) coincide at a point T € dom 1 where
is approximately convex and they agree with the convez-type subdifferential

Ip(E) == {a* € X*| (x*,v) < ¢/(Z;v) forall ve X} (4.3)
defined via the classical directional derivative

W (1) 1= lim 2T = W(7)
tl0 n

(4.4)

of ¢ at ¥ in the dircetion w, which exists and is sublinear on X. If ¢ is convex, the
subdifferential (4.3) reduces to the classical subdifferential of convex analysis. Thus we
keep the notation Jy¥(z) for the subdifferential of the approximately convexr function ¢ at
that encompasses all the afore-mentioned subdifferentials. '

The next proposition contains some uscful propertics of approximatcly convex functions
p: X — IR around the rcference point cmployed, in particular, in the proof of neccessary
optimality conditions of Scction 5. Observe that we assume the “around” approximate
convexity of ¥ to make sure that 9¢(.) in (4.3) is the subdifferential of the function ¢ not
only in @ but also at all the points & € dom 1 sufficiently close to Z. In fact, certain modifi-
cations of the proofs below allow us to justify the nccessary optimality conditions obtained
in Section 5 in the more general case when the constraint set © in (L 1) is approximately
convex only et the optimal point; sce Remark 5.7.

Proposition 4.3 (properties of approximately convex functions). Let ¥: X — I
be approzimately conver around T on a Banach space X. Then there is an upper semicon-
tinuous function 0: (0,00) — [0,00) such that (7) L 0 as 7 | 0 and the following hold:

(i) For all x,y € X sufficiently close to & and all t € (0,1) we have

Ylae) < (1= 09(@) + 1Y) + 0(r g (2))E(1 = Dile —pll,

Ylae) —vlx) o Py) - (q) (4.5)

Ne: =z~ ly— =

('r'[m’y] (:I:)) (1-1),

where 1, (%) = max{|lz — zl}, ly — ||} end where s =2+ H(y - 2). .
(ii) Let z* € O¥(x), where x € X is sufficiently close fo 2. Then for ally € X we have

@,y — ) <P(y) — (@) + 0(rpey) (@) 1y — 2. | (4.6)
(iii) If (4.6) holds for some x € X close to 7 and all y € X close to =, then
(x*,v) <y (aie) + 0(||lx — &) vl whenever ve X. (4.7)
Proof. Define the function #: (0,00) — [0,00) by

A(7) ;= limsupw(n), 7€ (0,00), (1.8)

n—T
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where w(n) = inf{y > 0| (4.1) holds for all (x,y) € B(Z;7)}. It is easy to check that
function (4.8) satisfies all the requirements asserted in the theorem. Let us justify the three
propertics (1)—(iii) with this function ().

To proceed with (i), observe that the first inequality in (4.5} follows directly from (4.1)
and {4.8). Subtracting (z) from both sides of the first inequality in (4.5) and dividing
then cach term by [|2; — x|f = tlly — z||, we arrive at the second inequality in (4.5) and thus
justify property (i) of the proposition.

To prove (ii}, fix x € X sufliciently close to Z and take any ¥ € X. Then the sccond
ineguality in (4.5} implies that

P+ tv) — ¥la)
t

with v := ¢ — x for all t > 0 sufficiently small. By passing to the limit in (4.9) as ¢ | 0 and
taking into account the cxistence of the directional derivative in (4.4), we conclude that

< Yla + 1) — i) + 8(rpy (@) (1~ Do (4.9)

P (a5 0) <P+ 0) — (&) + 0(rig oy (B)lo] with v =1y -, (4.10)

Since {x*,y — ) < ¥'(x;y — x) for any a* € JP(x) by (4.3), it follows from (4.10) that
estimate (4.6) is satisfied, which justifies property (ii).

Finally, let z* satisfy (4.6) for some fixed z close to & and any y close to x. Taking an
arbitrary direction v € X and setting ¢ := 2 + tv for small ¢ > 0, we get from (4.6) that

Pz + tv) — P(x)

‘IL‘*,’U S
(@*,0) :

+0 ('r{m,.?:+tv] (’E)) H 'UH 1

which gives (4.7) by passing to the limit as ¢ | 0 by (4.4) duc to the upper semicontinuity
of 8(-). This justifies (iii} and completes the proof of the proposition. VAN

5 Case Study for Approximately Convex Constraints

The conc ludmg section of the paper is devoted to the implementation and specification of
the ge\neral necessary optlmallty conditions for problem {1.1) defined on” complete meétric
spaces in the casc of approzimately conver constraint sets © that belong to a broad class of
Banach spaces admitting uniformly Gateaux differential renorms.

Recall that a norm || - || on a Banach space X is uniformly Gdteauz differentiable if for
every h € X with ||| = 1 the limit

i et th - ]
t—@O i

exists and the convergence is uniform in # € X with ||z|| = 1. We say that a Benach
space X is uniformly Giteaux smooth if it admits a uniformly Gateaux renorming, i.c., an
equivalent uniformly Gateaux differentiable norm. The class of Gateaux smooth Banach
space is sufficiently broad containing, in particular, all weakly compactly generated Banach
spaces and thus every separable and every reflexive space. We refer the reader to [6] and the
bibliographies therein for a varicty of results on Gatecaux smooth spaces including equivalent
descriptions, sufficient conditions, examples, and more discussions. In our proof below we
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nced the following equivalent descriptions from [6, Proposition 6.2(ii) and Theorem 6.7] of
the uniformly Gétcaux norm || || on X via the dual norm on X*; for simplicity we keep the
samc norm notation ||2*} for dual elements 2* € X*. ' '

Proposition 5.1 (equivalent dual descriptions of uniformly Géateaux differentiable
norms). The norm |- || on X is uniformly Gdteouz differentiable if and only if the dual
norm on X* is w*-uniformly roiund in the sense that for ony sequences of duol elements
xp € X and y; € X* as k € IN satisfying the relations

Heill = llyih =1 forall ke N and ||z} + 33l — 2 as k— o0 (5.1

we have the weak* convergence (xj—yl)} = 0 as k — oo in X*. Furthermore, the conditions
et = llytll =1 as k € IN in (5.1) can be equivalently replaced by those of |zi[f — 1 and
lwill = 1 as k — oo in the characterization of uniform Giteauz differentiable norms.

For the main result of this section we need also the following property for the constraint
set © at the reference optimal solution & = f(w) to (1.1), which ensures the nontriviality
of muiltiplies in the corresponding necessary optimality conditions.

Definition 5.2 (tangential relative interior points)., We say that o subset © of @
Banach space X has a TANGENTIAL RELATIVE INTERIOR POINT at & € © if there ezist
2o € X, numbers n >0, v > 0 and a compact set C C X such that

B(wo;m) C [t (@ —2)|NB+C for all £t (0,7). (5.2)

Note that condition (5.2) automatically holds with xp = 0 for every closed and convex
set © C X such that the linear subspace spanned by © is closed and finite-codimensional in
X and its relative interior, 1109, is nonempty. Indced, it follows from [3, Theorem 2.5] that
in this casc there is a convex compact set C' C X such that 0 € int [(© —2)n B + C], i.e.,

B(_U;_"?) C (Q - 'I") n B+ C for some i > 0. (5.3)

Since © convex and 0 € (8 —17), we have © —F C t~'(© — 7}, and hence (5.3) implies (5.2).

In what follows we pay the main attention to approzimately conver sets admitting tan-
gential relative interior points in uniformly Gdteauz smooth Banach spaces. The next the-
orem shows that the subdifferential (4.3) of the distance functions dg for such sets, which
encompasses the major subdifferentials of variational analysis, is an outer-regular subdiffer-
ential in the sense of Definition 2.5 satisfying furthermore the nontriviality condition (3.1)
of Theorem 3.1. Note that, since the dual unit ball B* C X* is sequentiolly weak® com-
pact for any uniformly Gatcaux smooth space X by the discussion in Scction 2, there is no
difference between topological and sequential outer-regular subdifferentials in the setting
under consideration in the next theorem.

Theorem 5.3 (outer-regular subdifferential for the distance functions of approx-
imately convex sets ). Let X be a uniformly Géteaux smooth Banach space, and let
Q C X be an nonempiy subset locelly closed around & € £1. The following assertions hold:
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(i) If © is approzimalely conver around T, then the subdifferential Ode in (4.3) of the
distance function dg encompassing the major subdifferentials of variational analysis is an
outer-reqular subdifferentiol around 7.

(ii) If in addition © has a tangeniial relative interior point ot T, then the nontriviality
condition 0 ¢ Fdo(®) holds for the subdifferential Ode .

Proof. To justify (i), observe first that, as discussed in Section 4, the approximate convexity
around T ensures the existence of a neighborhood of Z on which the subdifferential dde (z)
in (4.3) of the distance function de encompasses the major subdifferentials of variational
analysis. Property (P1) in Definition 2.5 follows for the subdifferential (4.3) of de directly
from its definition. The outer robustness property (P2) and EMVI property (P4) with
w = 0 in (2.4) hold for 8dg due to, e.g., their validity for Clarke’s generalized gradient of
Lipschitz continuous functions; see {5, Proposition 2.1.5 and Theorem 2.3.7].

To completc the proof of (i), it remains to justify the outer regularity property (P3)
of Ade from Definition 2.5. The case of £ € int © is trivial, since in this case there is no
sequencc of 2 € © converging to . Thus we consider the boundary case Z € bd @, fix
an arbitrary scquence g 9; E as k — oo, and with no loss of gencrality select a uniformiy
Giteaur differentiable norm |- || on X. Take now any sequence of subgradients x, € dde{x;)
from (4.3) and establish first the norm convergence :

lzgll — 1 as k — oo. (5.4)
To proceed, let & := 1/k for all k € IN and choose y € © such that
do(wk) 2 (1 —er)llze —yel, ke IV

Apply now property (4.6) of the approximately convex function ¥(x) = de(z) with 2* = z}
and (x,y) = (@&, yx) thercin to get the cstimate

(b ue — &) < —(1— ek — gl + 0 (Mo an) @) oe —2xll, ke NN,
since do(yx) = 0. Dividing then each term of the above inequality by — |z — || # 0 for
all k € IN, we conclude that

< Tk — Uk

Fr, “rk _yk”> 2 1 — &k Q(T[mk,yk](:ﬁ))ﬁ

which gives 1 2 |lzglf > 1 — ek — 0(r(g, 4,](Z)). Passing to the limit in the latter cstimates
as k — oo and taking into account that ag, g — % and 7y, ,, 1(Z) — O, we arrive at (5.4).

Since 2}, € IB* for all'k € IN and the dual ball B* C X* is sequentially weak™ compact
in X* (by the Gétcaux smoothness of X), the sequence {z}} contains a subscquence that
woak™ converges to some ¥ € X*. Without loss of generality, assume that the sequence
{x}} itsclf converges to x* as k -+ co. To justify the outer regularity property (2.3), we
thus need to show that any weak® convergent scquence of yf € dde(xy), k € IV, has the
same weak* limit «*, i.c.,

Tp — Y .0 as k- 00 whenover yr € Ade(xr), ke N, (5.5}

19



and the sequence {y;} weak* converges in X*. Indced, by the obvious convexity of the set
Odo{xy) in (4.3), we have the inclusion (2}, + y;)/2 € Odg(ay) for all & € IN. Therefore,
the above relation (5.4) implics the norm convergence

lyill = 1 and |lzg + yell = 2 as & — oo, (5.6)

It easily follows from (5.6) and the equivalent dual description of the uniformly Gateaux
differentiable norm | - || from Proposition 5.1 that x} — yj ) 0 as k — oco. This justifies
(5.5) and thus completes the proof of the outer regularity assertion (i} of the theorem.

- Next we justify assertion (ii) of the theorem cnsuring the validity of the nontriviality
condition 0 & &'de(Z) for the outer limit (2.2) of the subdifferential (4.3) for the distance
function dg under the tangential relative interiority property (5.2) of the approximately con-
vex set © under consideration. Take any z* € &'dg(Z) and by the (scquential) construction
in (2.2) find sequences x, 2 & and xj, € Odeo(wy) such that x} S % as k — 00. We need to
show that z* # 0. To proceed, employ the tangentially relative interiority property of © at
7 from Definition 5.2 assuming without loss of generality that 2y = 0 thercin. In this way,
using the function (-} from Proposition 4.3 and the constants from Definition 5.2, select
t € (0,7) so small that 8(f) < n/4 and supposc in what follows that k € IV is so large that
lzx — z|| < t. Applying incquality (4.6) from Proposition 4.3 to dg with & = 2 and taking
into account that do(xz) = 0 and de(y) = 0, we get

{wh,y — ) < 9(7'[%;1](:1:))”3; — il for all y € ©n B(%;t). (5.7)

Since 7ig, ,{(Z) < max{llax — Zl, ly — 2} < ¢, ly — 2e]] £ 21, and 8(2) < 5/4 in (5.7), this
estimate yields that -

{ah,y — ) < 0t/2 for large k€ IN. (5.8)

‘Take further any point u € B{0;n) and'rcﬁrcscnt it by the tangential relative interiofity
condition (5.2) in Definition 5.2 as

w=z/t+ % for somec x €0 &N B(0jt) afd z€C.
Letting ¢y := = + @ = tH{u — z) + T € © N B(x;t), we get from (5.8) that
{wp, (w2} + T — x5 < Mt/2,

which immediately implics the estimate

{e}, wp — ) e, @ —xg)l 7
whuy < T L (g sy o < R XL,z =,
(T u) < r + (@, 2) + 5 = 7 +I§1€ﬁé",{|('ﬂkw)|+ 5
Since the latter also holds with u replaced by —u € B(0;#), we arrive at
X5, T - Tp T
ezl = sup g, w)] < max | {2}, 2)] + Bk—m + (5.9)
wé B{0;n) el t 2 :

for all large k € IN. Let us finally show that estimate (5.9) ensures that z* # 0 for the

_ urt
weak™ limit of 2] — 2* as & — oo.
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Assuming the contrary and taking into account the compactness of ¢’ in X, we get

max |[{(x*,z){ — 0 as ko o0
ze(

from the weak® convergence 7}, % 0. Furthermore, it follows from the norm convergence
xy, — T and from the boundedness of {z}} in X* by the uniform boundedness principle that

[{xp - —0 as k — oo

The latter two relations allow us to conclude from (5.9) that ||z;|| < 2/3 for all large k € IV
that clearly contradicts the norm convergence (5.4) derived above. Thus x* # 0, which
completes the proof of assertion (ii) and of the whole theoren. A

Now we are ready to establish the main result of this section providing verifiable nec-
cssary optimality conditions for the original problem (1.1) on metric spaces with operator
constraints given by general nonsmooth mappings and approzimately convez sets in uni-
formly Géteouz smooth Banach spaces. This result is an efficient specification in the setting
under consideration of the general necessary optimality conditions of Section 3 obtained via
abstract outer-regular subdifferentials. To formulate the new result, we recall the following
well-known constructions of variational analysis; see, c.g., [18, Chapter 1].

Given a nonempty set © C X in a Banach space X and a point Z € ©, the Fréchet
normal cone to © at Z is defined by

lim supw < 0} : (5.10)

N(z;0) = {:L'* e Xt -
" el

via the standard upper limit of scalar functions. The weak contingent cone to © at T is
defined via the weak convergence “=5” on X by

Tw(z;0) = {U 1= X‘ 3 sequences g £ % and ag >0 (5.11)
such that ap(zp — &) Loy oas k— oo}. '

If the weak convergence in (5.11) is replaced by the norm convergence on X, construction
(5.11) reduces to the classical Bouligand-Severi contingent cone T'(x;©); see |18, Subsec-
tion 1.1.2] for more details, discussions, and references. We obviously have the inclusion

T(%; ©) C Toy(%;0),
whore the equality holds if X is finite-dimensional. Furthermore, the polarity inclusion

N(z;0) C {x" € X*| {z*,u) <0 for all ve& T(%;0)} (5.12)

is satisfied in arbitrary Banach spaces, where the equality holds in (5.12) if X is reflexive;
see [18, Theorem 1.10]. Observe that the Fréchet normal cone (5.10) is always convex while
ncither T, (T; ©) nor T(Z; ©) is even in finite dimensions.

Theorem 5.4 (necessary optimality conditions for operator-constrained prob-
lems on metric spaces with approximately convex constraint sets). Lef @ be a

21



local minimizer for problem (1.1} in the framework of Theorem 3.1. Assume in addiiion
that X is a Géteaur smooth Banach space, that the constraint set © C X is approzimately
conves around T = [(), and that © admits a tangential relative interior point at . Then
there are multipliers (A, x*) € IR x X* such that

{Az*)#£(0,0), A=0, z'eN(T;0), (5.13)
and.the strict derivate relation
M+ (a*,v) 20 for all (9,v) € Dy(p, f){w) (5.14)
z's.sa.tisﬁed. FPurthermore, the normal cone inclusion x* € N (& ©) in (5.13) implies that
(x*,v) <0 for all ve TW(F;0) (5.15)

via the weak contingent cone (5.11}, where the equivalence between x* € N(Z;0) and (5.15)
holds if the Banach space X is reflexive.

Proof. Theorem 5.3 tells us that the subdifferential dde in {4.3) of thc approximately
convex distance function dg, which encompasses the major subdifferentials of variational
analysis, is an outer-regular subdifferential of de around # under the assumptions made.
Thus we can apply the sequential version of Theorem 3.1 (equivalent to the topological one)
to the case under consideration in the uniformly Géteaux smooth space X. By assertion (ii)
of Theorem 5.3 the nontrivielity condition (3.1) with D'dg (%) = &'de(Z) holds, and thus
Theorem 3.1 cnsures the existence of multipliers (A, 2%) € IR x X* such that

(A, z*) # (0,0), A>0, z*econeddo(F), {(5.16)

and the sirict derivate relation (3.3)=(b.14) is satisfied. To complete the proof of the
theorem, it remans to show that the inclusion z* € conc &@de(Z) in (5.16) implics that
x* € N(%;€), which in turn yields (5.15).

Indecd, it follows dircctly from the outer robustness property (2.2} of the subdifferential
“(43) at 7 = T that e (T) C Bdis(E).-Since the subdifferential (4.3) for-the-approximate -
convex function ¥ = dg reduces to the Fréchet subdifferential of dg at %, we get from [18,
Corollary 1.96] that x* € N(i;0) for the Fréchet normal cone defined in (5.10). Further-
morc, incquality {5.15) in arbitrary Banach spaces X and its equivalence to ¥ € N{%;©) in
(5.13) if X is reflexive follow from the polarity inclusion (5.12) and from the casc of equality
therein mentioned above. This completes the proof of the theorem. AN

We conclude this section with several remarks discussing some specifications and exten-
sions of the major results obtained in the paper.

Remark 5.5 (multiplier rule in the case of convex constraint sets). If the con-
straint set © in (1.1) is convez, then condition «* € N(%;2) in (5.13) reduces to

(x¥, 0 — %) <0 forall ze0.

This follows from the fact that in the convex case the normal cone (5.10) agrecs with the
classical normal cone of convex analysis. This version of Theorem 5.4 significantly extends
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the main result of [15] obtained in the case when the cost function ¢ is continuous and
the space X has a strictly convex/norm-rotund dual (instcad of weak* rotundedness as
in Theorem 5.4} and the set © is convex and finite-codimensional with closed span and
noncempty rclative interior. The latter assumptions imply the tangential relative interior
condition (5.2) as discussed after Definition 5.2. Note that the proof of the nontriviality
condition (A, 2*) # (0,0) in [15] is based on Lemma 3.6 from Chapter 4 in [14], which cannot
be applicd in the sctting of Theorem 5.3.

Remark 5.6 (nontriviality condition under sequential normal compactness)}. The
nontriviality condition (A, *) # (0,0} in Theorcm 5.4 bascd on asscrtion (ii) of Theorem 5.3
holds in fact under the replacement of the tangential relative interiority assumption (5.2)
by generally less restrictive sequential normal compactness (SNC) property of © at & € ©
formulated via the normal cone (5.10) as follows:

[} € N(24;©) with @ — 2, 27 2 0] = |2}l = 0 as k — oo. (5.17)

This property is automatic in finite dimensions while playing a crucial role in variational
analysis and its applications in infinite-dimensional spaces; see [18, 19] for a comprehensive
theory and numecrous applications. It has been well recognized that the SNC property (5.17)
is implied in arbitrary Banach spaces by certain Lipschitzian requirements imposed on the
sct in question, in particular, by the compactly epi-Lipschitzian (CEL) property of @ around
z in the sense of Borwein and Stréjwas that follows from (5.2); see [18, Subsection 1.1.4]
and [9] for more details and refercnecs.

Remark 5.7 (case of approximately convex constraint sets AT versus AROUND the
reference point). Some modifications of the proofs given in Proposition 4.3, Theorem 5.3,
and Theorem 5.4 allow us to justify the necessary optimality conditions of Theorem 5.4 un-
der the assumption that the constraint set O is approximately convex only af (versus around)
the reference point . The main idea behind these changes is to keep the subdifferential
" construction (4.3) via the classical dircctional derivative ¥'(Z;%) at Z for a locally Lips-

 chitzian function ¢ while replacing /(z; v) by the robusi Clarke’s generalized” ditéctional

derivative #°(x;v) of ¥ at points nearby. This robust approximation allows us to conduct
the limiting procedure in the proof of Theorem 5.3 and consequently in Theorem 5.4.

Remark 5.8 (extensions to other classes of regular functions and sets). Approx-
imatc convexity is not the only type of nice/regular behavior of functions and scts. Other
classes of functions and scts cxhibiting locally nice convex-like properties have been exten-
sively studied and applied in variational analysis and optimization; see, e.g., (2, 4, 19, 22, 23]
and the references therein. Recently many of such notions have been unified in [22] under
the name of @-regularity. The latter notion postulates a property of type (4.6) from Propo-
sition 4.3(1i) with respect to Fréchet subgradients. The class of -regular functions contains,
in particular, all proz-regular functions that arc highly important in many aspects of vari-
ational analysis and its applications. As the reader can observe from the proofs presented
above, the methods developed in this paper allow us to modify and extend the major results
obtained to the case of p-regularity.
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