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Abstract: In this paper we introduce and study enhanced notions of relative Pareto minimizers to
constrained multiobjective problems that are defined via several kinds of relative interiors of ordering
cones and occupy intermediate positions between the classical notions of Pareto and weak Pareto effi-
ciency/minimality. Using advanced tools of variational analysis and generalized differentiation, we establish
the existence of relative Pareto minimizers to general multiobjective problems under a refined version of
the subdifferential Palais-Smale condition for set-valued mappings with values in partially ordered spaces
and then derive necessary optimality conditions for these minimizers (as well as for conventional efficient
and weak efficient counterparts) that are new in both finite-dimensional and infinite-dimensional settings.
Our proofs are based on variational and extremal principles of variational analysis; in particular, on new
versions of the Ekeland variational principle and the subdifferential variational principle for set-valued and
single-valued mappings in infinite-dimensional spaces.
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1 Introduction

This paper is devoted to the study of mulliobjective/vector aptimization problems. We consider
general classes of such problems with set-valued objectives (cost mappings) and geometric con-
straints in infinite-dimensional spaces, while most of the results obtained seem to be new even for
conventional vector optimization problems in finite dimensions.

There are various notions of solutions to multiobjective optimization problemns; see, e.g., the
books [12, 13, 15, 16, 18] and the references therein. The classical ones relate to Pareto and weak
Pareto efficient points of sets. Recall that, given a subset = of a normed space Z partially ordered
by a closed and couvex cone @ via

<= n-n€0, (1.1)
the point z € 2 is a Pareto minimal/efficient point for this set if
(z-8)nE={z}. ' {1.2)
Assuining that int © # B, a weak Pareto efficient/weak minimal point of Z is defined by
(Z-imt@)N=E=0, nt® #£0. (1.3)

A visible disadvantage of weak minimal points (1.3) is the nonempty interior requirement on the
ordering cone ©, which seems to be a serious restriction from both viewpoints of optimization
theory and applications. In particular, various vector optimization problems can be formalized

!This research was partly supported by the USA National Science Foundation under grants DMS-0304980 and
DNMS-0603846 and by the Australian Research Council under grant DP-9551168.



by using convex ordering cones having empty interiors in both finite-dimensional and infinite-
dimensional settings; see, e.g., [10, 13, 18] with more discussions, examples, and references. In
such cases, the usage of appropriate relefive interior points of the corresponding ordering cones
seems to be reasonable provided, of course, that such points exist. ‘

Recall that the standard relative interior of © C Z, denoted ri ©, is the interior of © relative
to the closed affine hull of 8. It is well known that 1i© # §§ for every nonempty convex set © in
finite dimensions. However, it is not the case in many infinite-dimensional settings. In particular,
it is well known that the natural ordering cones in the Lebesgue spaces IF and L? for 1 < p < o0
and in a number of other classical infinite-dimensional spaces have empty relative interiors.

To improve this situation, some extensions of the relative interior notion have been introduced.
A major extension given by Borwein and Lewis [6] under the name of quasi relative interior of
© C Z, with the notation qri®, is defined as follows: qri@ is the collection of those z € © for
which the closed conic hull EGne(© — 2) of the set © ~ % is a linear subspace of Z. It is proved in
[6, Theorem 2.19] that qri© = @ for any closed and convex set © # @ in a separable Banach space.
Further properties and various applications of quasi relative interiors of convex sets in Banach
spaces can be found in [5, 6, 7, 8] and the references therein.

Another useful extension of the classical relative interior notion for convex sets in infinite
dimensions has been known under the name “intrinsic core” [14] (which may be confusing; see
(5]) and also under the name “pseudo relative interior” [5}, which seems to be confusing as well,
since “pseudo” means “false”. We prefer the name intrinsic relative interior of © C Z, denoted
iri ©, that is defined as follows: iri €@ is the collection of those z € © for which the conic hull
cone (O — z) is a linear subspace of Z. One obviously has the inclusions

e ciri@ C quig, (1.4)

which both hold as equalities if Z is finite-dimensional. Various properties of iri ©, including
verifiable conditions under which iri® # § in infinite dimensions, can be found in [5, 14]. Note
that iri © = i © in any Banach space if the affine hull of @ is closed.

Using the afore-mentioned notions of relative interiors, we introduce now the corresponding
notions of relative minimum points of sets that occupy intermediate positions between Pareto and
weak Pareto minimal/efficient points. Given a subset = C Z partially ordered by the closed and
convex cone {0} # © C Z, we say that z € = is a (primary) relative minimal point of = if

(Z-1O)NE=0, rie#£0, (1.5)

that 7 € Z is an intrinsic relative minimal point of = if
(z-wri@)NEZ =0, i #0, (1.6)

and that z € 5 is a guasi relative minimal point of Z if
(Z-—qri®)NE=0, qri© #0. (1.7)

Since both inclusions in (1.4) hold as equalities if 11© # @ by [5, Theorem 2.12], all the three
notions of minimal points in (1.5)-(1.7) agree if the set = admits a relative minimal point (1.5).
Furthermore, these notions imply the weak Pareto efficiency (1.3) provided that int® s 0. In
general, any quasi relative minimal point of = is an intrinsic relative minimal point of this set {but
not vice versa), and the existence of the latter does not imply the existence of primary relative



minimal points of = and the existence of weak efficient points of this set; the corresponding
counterexamples can be easily deduced from [5).

The major goal of this paper is to study optimal solutions to constrained multiobjective opti-
mization problems of the type:

minimize F(x) subject to = € £, {1.8)

where the appropriate concepts of “minimality” are generated by the geometric notions of (pri-
mary, intrinsic, quasi) relative minimal points of sets defined in (1.5)—(1.7); see below for the
exact definitions and more details. We consider the general setting of (1.8), where the objective
F: X = Z is a set-valued mapping between Banach spaces with a partial order {1.1) on Z, and
where (} ¢ X is an arbitrary closed set. However, most of the resulis obtained seem to he new
even for classical cases of standard vector optimization problems defined by smooth single-valued
mappings/functions in finite-dimensional and infinite-dimensional spaces.

We pay the main attention to establishing the existence of relative Pareto minimizers and
to deriving necessary optimality conditions for them. These topics have been considered in our
previons papers [3, 4] addressed to the conventional notions of Pareto and weak Pareto efficiency
for problem (1.8). The principal results obtained in this paper allow us to extend the corresponding
results of |3, 4} to the new notions of relative Pareto minimizers unifying also the previous results
and their proofs. Moreover, the existence theorem for relative Pareto minimizers established
below provides a new existence result for the case of weak minimizers under a refined version
of the subdifferential Palais-Smale condition. Likewise, necessary optimality conditions derived
in this paper give in addition new information for weak efficient and Pareto efficient solutions
for multiobjective problems with ne poinfedness assumption on ordering cones. Note that in the
case of Pareto minimizers (efficient solutions) we do not impose any interiority /relative interiority
requirements on the ordering cone in question and alternate the “sequential normal compactness
property” required for it in (3, 4] in infinite dimensions.

Our approach to hoth existence issues and necessary optimality conditions for relative Pareto
minimigers is based on advanced tools of wvariational analysis and generalized differentiation.
Besides using known results in this direction, which largely revolve around the extremal principle
of variational analysis and can be found in the recent books by Mordukhovich [17, 18], we establish
here new versions of the Ekeland variational principle and the subdifferential variational principle
for set-valued mappings. These extensions are certainly of independent interest, while they are
employed in the paper to deriving the main results on Pareto and relative Pareto minimizers,

The rest of the paper is organized as follows. In Section 2 we briefly review, for the reader’s
convenience, some hasic tools of generalized differentiation broadly used in the paper. Besides the
fundamentals from [17], they include the subdifferential constructions for set-valued mappings with
values in partially ordered spaces recently introduced in [3]. Here we also present the underlying
extremal principle for systems of sets, which plays a crucial role in our study.

Section 3 is devoted to extended wariational principles for set-valued mappings, which are
important for their own sake being crucial for establishing the subsequent results of the paper.
Namely, we derive new versions of the Ekeland variational principle and the subdifferential varia-
tional principle for mappings with values in partially ordered Banach spaces. The main difference
between the new versions established in this section and the most recent ones given in [3] is
the usage of the so-called limiting monotonicity condition imposed on the objective mappings,
which has not been previously recognized and used in variational principles for either set-valued
or single-valued case. We compare the new limiting monotonicity condition with the well-known
domination property previously used in [3].



Section 4 concerns the existence of relative Pareto minimizers to multiobjective problems. - The
main result here establishes the existence of intrinsic relative minimizers induced by (1.6) under
a refined version of the so-called subdifferential Poleis-Smele condition, which is new for hoth
single-valued and set-valued objectives. This major result implies the existence of relative Pareto
minimizers induced by (1.5) and provides also an essential improvement of the existence thecrem
for weak minimizers established in [3]. Our proof of the main existence theorem is based on
applying the afore-mentioned extremal and variational principles together with advanced results
of generalized differentinl celeulus. Furthermore, new calculus rules for vector subgradients allow
us to derive efficient specifications of the main existence theorem for multiobjective problems with
explicit constraints of various types; in Section 4 we present one result in this direction for the
case of general geometric constraints given by nonconvex sets.

Section 5 deals with deriving necessery optimality conditions for all the three kinds of rel-
ative Pareto minimizers induced by (1.5)-(1.7), as well as for their efficient and weak efficient
counterparts, in general classes of constrained multiobjective problem. Our approach is based on
reducing relative minimizers to eztremal systems of sets and then using the extremal principle
together with appropriate rules of generalized differential calculus as well as calculus results for
sequential normal compactness properties crucial in infinite dimensions. The results obtained in
the paper allow us to unify new necessary conditions for relative Pareto minimizers with improved
versions of the corresponding results obtained before for the conventional notions of Pareto effi-
ciency and weak efficiency. We discuss various particular cases and compare the new developments
with some other necessary conditions in multiobjective optimization known in the literature.

Throughout the paper we use the standard notation of variational analysis; cf. [17, 21]. Unless
otherwise stated, all the spaces under consideration are Banach with their norms denoted | - ||.
Given a space X, we consider its topological dual X* equipped with the weak* topology w* and
use the symbols IB and IB* for the closed unit balls in X and X*, respectively. Recall the symbol

Limsup F(z) 1= {.1:* e X*

- w*
J sequences zx — I and zj — z*
T—I

(1.9)
with a7 € Fay) forall ke N},

which stands for the sequential Painlevé-Kuratowski upper/outer limit of a set-valued mapping
F: X = X* in the norm topology of X and weak* topology of X*, where IV := {1,2,...}.

2 Basic Tools of Generalized Differentiation

In this section we define and briefly review some basic tools of generalized differentiation that are
largely used in what follows to derive existence theorems and necessary optimality conditions for
relative Pareto minimizers to the multiobjective optimization problems under consideration. More
specific constructions and facts of generalized differentiation needed for the necessary optimality
conditions are mentioned in Section 5. Except for the subdifferentials of set-valued mappings
recently introduced in {3], all the details, proofs, and further discussions can be found in {17}, We
also refer the reader to [9, 18, 21] for additional material and numerous applications of these and
related generalized differential constructions of variational analysis. '

In what follows we present the definitions and properties of the basic generalized differential
constructions held in the Asplund space setting, which is the main framework of their applications
in this paper. Some useful modifications and analogs in other {including arbitrary) Banach space
settings can be found in {17]. Recall that a Banach space is Asplund if each of its separable
subspace has a separable dual. This remarkable class has been comprehensively investigated in
geometric theery of Banach spaces and has been largely employed in variational analysis; see, e.g.,
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[9, 17, 18] and the references therein. It contains, in particular, every reflexive Banach space and
every Banach space with a separable dual. In this section we assume that all the spaces under
consideration are Asplund. Note that the product of Asplund spaces is Asplund as well.

Given a subset £2 C X closed around Z € {2, the prenormal/Fréchet normal cone to Q at ¥ is

N(z0) = {:c* e X*

. (x*amﬁﬂ-’)
limsup ——— < 0}, 2.1
T =1

where the symbol z 2 % stands for = — % with = € Q. The (basic, limiting, Mordukhovich)
normal cone to {1 at T is defined hy

N{(# Q) := Limsup N(z; Q) {2.2)

Q-
e

via the sequential Painlevé-Kuratowski outer limit (1.9) of the mapping N(;Q): X = X* In
contrast to (2.1), the basic normal cone {2.2) and the associated generalized differential construc-
tions for mappings and functions enjoy full calculis in the framework of Asplund spaces being
generally nonconver even in finite dimensions. This calculus is largely based on the extremal
principle of variational analysis; see {17, Chapters 2 and 3] for more details. For convex sets £,
both constructions (2.1) and (2.2) reduce to the normal cone of convex analysis.

Considering next a set-valued mapping F': X = Z with the graph

gph F = {(z,2) € X x Z| z € F(z)},
define its Fréchet coderivative at (%,Z) € gph F by
D*F(z,2) (") = {z* e X*|{z*,-2") € N((z 2);eph F)} (2.3)
and its basic/normal coderivative at (%, %) € gph F by

D F(z,5)(z") = {z" € X*

(z*,—2*) € N((z, £);gph F)}, (2.4)

where we omit 2 = f(Z) if I’ = f: X — Z is single-valued. Observe that both coderivative
set-valued mappings D"F(F,2): Z° = X* and D*F(%,2): Z2° = X™ are positively homogeneous
reducing to the single-valued adjoint derivative linear operator

Drr@ = {Vi@)r "}, D*f(@)={Vf(@)*z*} forall 2* € Z* (2.5)

provided that f is Fréchet differentiable at % for the first equality and stricily differentiable at
this point for the second one, i.e.,

lim flz) — flu) = (Vf(&),u — z)

2 U— T ”'1: - u“

= (,

which is automatic when f € C! around Z.

In this paper we are primarily dealing with set-valued and single-valued mappings whose range
spaces are partially ordered. Given such a set-valued mapping F': X =2 Z, assume that the order
“<" on Z is generated in (1.1} by a cone ® C Z, which is closed, conver, and proper, i.e., © # {0}
and © # Z. Consider the epigraph of F with respect to the above order by

epi F:= {(z,2)€ X x Z| z € F(z) + ©} (2.6)



and associate with F' its epigraphical multifunction £p: X =3 Z given by
Ep(z):={z € Z| z € F{x)+ ©} with gph&r = epiF, (2.7

where the ordering cone © is not mentioned in the epigraphical notation for simplicity. Using
coderivatives of the epigraphical multifunction (2.7), we can define appropriate extensions of
the subdifferential notion from extended-real-valued functions to vector-valued and set-valued
mappings with values in partially ordered spaces.

The following two constructions generated by the coderivatives (2.3) and (2.4) play a cru-
cial role in this paper. Given (Z,z) € epi F, the Fréchet subdifferential of F at {Z,%) and the
- basic/normal subdifferential of F' at (T, Z) are defined, respectively, by

BF(z,2) = {* € X*| z* € D*Ep(z, 2)(2*), ~2" € N(6;0), |2 =1}, (2.8)

OF(z,2) = {z" € X*| z* € D*Ep(®,2)(z"), —2" € N(0;0), ||2*|| =1} (2.9)

In the case of lower semicontinuous extended-real-valued functions ¢: X — {—o0, co] finite at Z,
the subdifferential (2.8) reduces to the standard Fréchet /viscosity subdifferential of ¢ at Z:

—~

Gp(Z) = {:J:* € X*

lim inf wlz) - ¢(z) __(I 2= %) 2 0},
o R

while (2.9) is the {basic, limiting) subdifferential by Mordukhovich:

Op(Z) = Limsup 5(,0(3;).

I
o(z) )

Finally in this section, let us formulate the fundamental eriremal principle of variational
analysis [17, Theorem 2.20] for the case of two closed sets Q3 and €5 in the Asplund space X.
We say that a point & € Q1 N Qy is locally extremal for the set system {€4,Qs} if there is a
neighborhood V of & such that for any € > 0 we can find a € ¢IB with

wn(Qe+a)nV =40 (2.10)

The Extremal Principle. Let T be a local extremal point of the set system {Q4, (o}, where both
QO and Qo are locally closed around T. Then for every € > 0 there ave

@ €GN (T+eB) and zf € Nz ), i=1,2,
- satisfying the relationships
L—e<|aill+ ol <1+e  [ai+z3) <e.

The extremal principle can be viewed as a nonconvex verialional counterpart of the classical
separation principle for convex sets. Tt plays in fact a fundamental role in variational analysis
similar to that played by the convex separation and Bishop-Phelps theorems in the presence of
convexity; see the books [17, 18] for more details and numnerous applications.



3 Enhanced Variational Principles for Set-Valued Mappings

The main goal of this section is to derive two variational principles for set-valued mappings with
values in partially ordered spaces. The first result is an extension of the set-valued version [3] of
the seminal Fkeland variational principle [11] and the second one extends the subdifferential varia-
tional principle established in {3] as a set-valued version of the subdifferential variational principle
for scalar functions suggested by Mordukhovich and Wang {20]; see also {17, Theorem 2.28].

Let F'1 X = Z be a set-valued mapping between Banach spaces, where Z is partially ordered
by a proper, closed, and convex cone © C Z. The major difference between the new versions
of the Ekeland variational principle and the subdifferential variational principle obtained in this
papet and the previous ones derived in [3] is the usage of the following limiting monotonicity
condition imposed on the mapping F. As usual, denote the domain of F by

dom F := {z € X| F{z) # 0}

and denote by Min E the collections of Pareto minimal/efficient points (1.2) of £ C Z with respect
to the ordering cone @ on Z that can be equivalently written as

MinE:={z¢ E| Z—z¢© whenever z€E, z # Z}. (3.1)

Definition 3.1 (limiting monotonicity condition). Given F: X = Z and ¥ € domF,
say that F' sofisfies the LIMITING MONOTONICITY CONDITION at Z if for any sequence of pairs
{(zg,2)} C gph F with ), — & as k — co we have the implication:

2oyt < 2 = 37 ¢ Min F(2) with 7 <z, ke V. (3.2)

The limiting monotonicity condition (3.2) was first used in the proof of Theorem 4.1 from [3] on
the existence of weak Pareto minimizers to multiobjective optimization problems with compact
constraint sets. Now we are going to employ this condition in deriving the afore-mentioned
variational principles. To proceed, we first need to recall the following known notions from set-
valued analysis and vector optimization regarding the ordering cone € C Z and the mapping
F: X = Z under consideration; cf. [3, 15, 16, 17}:

—B is pointed if ©N (—8) = {0}
—© has the normality property if the set (BB + @) N (B — ©) is bounded in Z.
—F' is epiclosed if its epigraph (2.6) is closed in X x Z.

—F is level-closed if its z-level sets
L(z):={z € X| v € F(z) with v <z} = {z € X| F(z)n (z - ©) # 0}

are closed in X forall z € Z.

—F is quasibounded from below if there is a bounded subset M C Z such that F(X) ¢ M +©.
Correspondingly, a set {2 C Z is quasibounded from below if the constant mapping F(z) = 2
enjoys this property.

—F has the domination property at ¥ € dom F' if

for every z € F{x) thereis » € Min F(x) with v <z, (3.3)

It is easy to see that the normality property of @ implies its pointedness property of this cone
but not vice versa. Also, every epiclosed mapping is level-closed, but the opposite may not be



true in the case of set-valued mappings, e.g., for F: R = IR given by F(z) := 0if z # 0 and
F(x)=(-1L1ifz=0

Ohserve further that every level-closed and single-valued mapping obviously enjoys the limiting
monotonicity condition (3.2). Let us present some sufficient conditions ensuring this condition for
set-valued mappings. Indeed, the next proposition shows that the demination property implies the
limiting monotonicity condition for broad classes of set-valued mappings F and ordering cones ©.

Proposition 3.2 (sufficient conditions for limiting monotonicity). Let F: X = Z be
level-closed, and let # € dom F. Then F satisfies the limiting monotonicity condition at & if it
has the domination property at this point and one of the following assumptions is fulfilled:

(a) The minimum set Min F(Z) s compact.

(b) F is quasibounded from below, © has the normality property, and © N IB is compact.

Proof. To justify the limiting monotonicity condition from Definition 3.1 under the assumptions
made, take a sequence {(xk,zr)} C gphF such that z, — T as k — o0 and 241 < 2z, for all
k € IN and define the sets

Ap =MinF(z) N (2 — ©) = {ve MinF(Z)| v < 2}, ke, (3.4)

which are obviously closed by the closedness of and © and the level-closedness of F. Furthermore,
we have the inclusions Ag.1 C Ag due to zi4; € 2z — @ as & € IV and the convexity of ©. Let
us show that Ay # 0 for all £ € IV. Indeed, fixing & € IN and using the monotonicity of the
sequenceqz }, we get the inclusions

Thpn € L{z) for all ne N,

which imply that # € £{z;) by the assumed level-closedness of F. Thus there is uy € F(Z)
satisfying uy < z;. Employing the domination property of I at T, we find some v, € F(Z)} such
that v, < ug < zi, which therefore justifies the desired nonemptiness Ay # @ for all k € IV,

Next we prove that any sequence {vp} C A, contains a subsequence converging to somne
z &€ Min F(Z) if the assumptions made in either (a) or (b) are fulfilled. Observing that {v;} C Ay
by the established set decreasing Agyq C Ay, it remains to justify the compactness of the set Ay
under the asswmptions made. It immediately follows from (a) due to the structure of A in (3.4).
To proceed in the case of (b), observe by the assumed quasiboundedness of F' from below that
there is a bounded set M C Z and hence a number m € IN such that

MinF(Z) c M +0 cmB+6.
Thus it follows from the structure of A; in (3.4} that
Ay € (mB +0) N (|21 B - ©),

which yields the boundedness of Ay due to the assumed normality property of the ordering cone ©.,
Since the set © N B is assumed to be compact in (b), we conclude by (3.4) that the boundedness
of A; implies its compactness. The latter ensures the existence of Z € Min F(Z) such that

£€ [ A forall ke V.
k=0
This gives by (3.4) that £ < 2z as k € £V, which justifies the limiting monotonicity condition for
F at # in case (b) and thus completes the proof of the proposition. TAN

The following simple example demonstrates that the limiting monotenicity condition for ¥
may be strictly better than its domination property in a finite-dimensional setting with all the
agsumptions in (a) and (b) of Proposition 3.2 satisfied.



Example 3.3 (limiting monotonicity strictly supersedes domination). Consider a set-
valued mapping F': R? = IR? defined by

(|1 s {:Lg|) ' if o =m0 #0,
F(z) = Flay, ) = { ({0} x [0, —1)) U ((=1,0] x {0}) if (z1,22) =0,
B ' otherwise.

Taking © = IR%, we can easily check that the F is level-closed, that the limiting monotonicity
condition is satisfied at & = 0, and that Min F{0) = {{—1,0)} is a compact set in IR%. Furthermore,
all the assumptions in (b) of Proposition 3.2 are obviously fulfilled. On the other hand, F does
not have the domination property at % = 0, since (0, -1) £ (-1,0).

In the rest of this section we utilize the limiting monotonicity condition in deriving enhanced
versions of the Ekeland variational principle and the subdifferential variational principle for set-
valued mappings. Let us first recall the notions of exact and approximate minimizers needed for
formulations and proving these results.

Definition 3.4 (ininimizers and approximate minimizers to set-valued mappings). Let
P X = 7 toke values in the Banach space Z portiolly ordered by o proper cone © C Z. Then:

(i) We say that the pair (%,2) € gph F' is @ MINIMIZER to the mapping F if Z is a minimal
point of the image set F(X) :=J,ex F (=), ie.,

(z—©) N F(X) = {z}. (3.5)

(ii) Given £ > 0 and & € ©\ {0}, we say that the pair (T,Z) € gph F' is an APPROXIMATE
gE-MINIMIZER to F if

z+ef Lz forall z€ Fz) with ©# T.

(iii) Givenc > 0 and £ € ©\{0}, we say that the pair (Z,Z) € gph F' is a STRICT APPROXIMATE
c£-MINIMIZER fo F if there is a number 0 < € < ¢ such that (%, £) is an epprozimate EE-minimizer
to this mapping. '

The next result provides an essential extension of the most recent version of the Ekeland
varietional principle for the case of set-valued mappings F': X = Z established in [3] under the
domination property of F' and the compaciness of the minimal sets Min F'(z). Now we replace
these assumptions with the limiting monotonicity condition discussed above. Furthermore, we
skip the pointedness assumption on the ordering cone © in [3] by choosing the initial direction £
from © \ (—©), which reduces to the choice of 0 # £ € © when © is pointed. The proof of the
new result requires signification modification in comparison with that of [3, Theorem 3.2).

Theorem 3.5 (enhanced version of the Ekeland variational principle for set-valued
mappings). Let F: X = Z be a set-valued mapping between Banach spaces, where Z is partially
ordered by a proper, closed, and convez cone © C Z with © \ (—0) # B, i.e., © is not o linear
subspace of Z. Assume furthermore that F' is quasibounded from below, level-closed, and satisfies
the limiting monotonicity condition on dom F. Then for anye > 0, A > 0, £ € ©\ (-0), and
(zo,z0) € gph F there is (T, 2} € gph F satisfying

2-z+ -2l <O, zeMinF(@), and (3.6)

z—ZI+ §|E'c —F|§ £ 0 for all {z,2) € gph F with (z,2) # (T,2). (3.7
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If furthermore (o, z0) 45 an approzimate ef-minimizer to F, then & can be chosen such that in
addition to {3.6) and (3.7) we have

I - zol] <X (3.8)

Proof. Note first that it is sufficient to prove the theorem in the case of ¢ = A = 1. Indeed,
the general case can be easily reduced to this special case by applying the latter to the mapping
F(z) :=e~1F(x) on the Banach space X equipped with the equivalent norm A~ - ||.

Having this in mind, iniroduce a set-valued mapping T': X x 2 = X defined by

T(z,z):= {y € X|Jv e F(y) with v—z+ |z —yl|¢ <0} (3.9)
and observe that T enjoys the following properties:
o The sets T(z,z) are nonempty for all z € F{z), since x € T'(z, z).
o The sets T'(x, z) are closed for all z € F(z}, since the mapping F is level-closed.

e The sets Tz, ) are uniformily bounded for all z € F(z}, since the mapping I is quasibounded
from below. Indeed, the latter property yields

T(z,2) C{ye X|llz—ylé€z- M -0}

e We have the inclusion _
T(y,v} C T(z,z) if yeT(x,2) and v e Fy) with v—z4+{y—=z[|¢ <0 {3.10)
Indeed, pick v € T(y,v) and by construction of T find w € F(u) satisfying
w— v+ |lu—yll§ <O.
Summing the latter inequality with the one in (3.10) and taking into account that
. (e = ull = [l —yll - lly —=[)§ <0
by the triangle inequality and t]le choice of £ € ©, we have

w—z+tz—ulf =(w-vtlu-ylg)+ (v- 2+ iy - lE)
F(llz = uf = llu -yl - ly - =l)€ <0,

which implies that v € T'(x, z).

Now we inductively construct a sequence of pairs {(xg, 2x)} C gph F by the following iterative
procedure: starting with (zg, zo) given in theorem and having the k-iteration (wy, zx), we select
the next one {rpy1, 2e41) by

iyt € T(:I:ks Zk), 1
[2k4r ~ @l > sup |z -l - (B+1)77, (3.11)

2€T(2g,24)
zp+1 € Fzis1)y  zi+1 — 2k + [ Zep — 2el|€ <0,

where k& € {0} UIN. It is clear from the construction and afore-mentioned properties of T'(z, 2) in
(3.9) that the iterative procedure {3.11) is well defined. Summing up the last inequality in (3.11)
from k& = 0 to n, we get

Tt

tnf € 20 — Znp1 — O C 20— M — © with 2= Y [lwpys — 2kl (3.12)
k=0

10



Let us prove, by passing to the limnit as n — oo in (3.12) and using the assumptions made, that

(o n]
> ks = 2l < oo (3.13)
k=0

Arguing by contradiction, suppose that (3.13) does not hold, i.e., the increasing sequence {t,}
tends to cw a8 n — oco. By the first inclusion in (3.12) and the boundedness of the set M taken
from the quasiboundedness of F' from below we find a bounded sequence {v,} C 20 — M satisfying

thE — vy € —0, i.e.,ﬁ—%’i € -0 forall ne V.

Passing to the limit as = — oo in the latter inclusion and taking into account the closedness of
©, the boundedness of {v,} and that t, — o0 as n — oo, we arrive at £ € ~©. This contradicts
the choice of £ € ©\ (—O} and thus justifies (3.13).

Further, it follows from (3.11) that diam T(xy 1, 2141} < diam T(xy, z;) and that

diamT(zg, 26) €2 sup  |lo — 2l < 2|k — @l + (b + )7V, ke IV
2€T(T ), 2k)

hence diam Tz, 2i) | 0 as & — oo due to (3.13). This allows us to conclude, by the completeness
of the Banach space X, that the sets T'(xy, 2} shrink to a singleton:

T(zy, z) = {Z} with some T € dom F. - (3.14)

8B

k=0

H

Note that, since z; € L(2q) for all & € IV by the constructions above and since F is agsumed to
be level-closed, we have & € £(2p), which verifies that T € dom F in (3.14).

Next we justify the existence of z € Min F(F) such that the pair (T, Z) satisfles the major
relationships {3.6) and (3.7). Observe from the third line in (3.11) and from (3.14) that we have

Ty — F as k— o0 and z, € F(zy) with 241 < 2, ke V.

This ensures, by the assumed Limiting monotonicity condition (3.2) for the mapping £ on its
domain, the existence of z € Min F (&) such that z < z; for all k € IN. Let us prove that the pair
(%, ) € gph F satisfies the desired relationships (3.6) and (3.7).

In fact, the inclusion in (3.6) immediately follows from the choice of 2 To proceed further,
fix £ € {0} UV and sum up all the inequalities in the third line of (3.11) from &k to (k+n —1) as
n € IV with that of Z — z, < 0. Taking into account the triangle inequality for the norm function,
we get in this way that

Z— 2+ ||tk — Tha]l§ £0, forall k€ {0}JUIN and ne IV,
The passage to the limit in the above inequalities with zp4n — T as n — oo gives
Z -z + ||z — Z|€ <0 whenever k€ {0} UV, (3.15)

which particularly justifies the inequality in (3.6), In the case of £ = A = 1 under consideration,
for & = 0. To prove {3.7) in this case, assume the contrary and thus find a pair (z, 2) satisfying

(r,z) € gph F with (z,2) # (£,Z) and z—z+ ||z - F||€ < O. (3.16)

11



If # = 7 in (3.16), we obviously have z < Z, which contradicts the choice of Z € Min F(%). If
x # &, then we have by suiming up the two inequalities (3.15) and (3.16) and combining the
result with the triangle inequality that

z=—zp+|le—apll€ £0, le, € T(xg,z) foral ke {0}V

This means that = from (3.16) belongs to the set intersection in (3.14). Thus # = Z by (3.14),
which fully justifies (3.7) as ¢ = A = 1 and hence in the general case as well.

To complete the proof of the theorem, it remains to estimate || — xol| when (xo, 20) is chosen
as an approzimate c£-minimizer to F. Arguing by contradiction, suppose that (3.8) does not
hold, ie., ||Z — o] > A. Since Z € T'(xg, 20} and 0 < £, we have '

£
z'—zn+a‘£§2—20+X||:T:—$01|550

and immediately ohserve that the latter contradicts the choice of (xzy,2)) as an approximate
ef-minimizer to F. Thus (3.8) holds, which completes the proof of the theorem. VAN

Our next result is an improvement of the subdifferentiol variational principle for set-valued
mappings established in [3, Theorem 3.5] as an exteusion of the corresponding scalar result by
Mordukhovich and Wang. The new version of the subdifferential variational principle is derived
under the limiting monotonicity condition imposed on the cost mapping F: X = Z with no
pointedness assumption imposed on the ordering cone ® ¢ Z in contrast to the domination
property of F, the compactness of the minimal sets Min F(z), and the pointedness requirement
on © needed in [3]. Similarly to {3, 17, 20}, the proof of the subdifferential variational principle
given helow is based on the eztremal principle presented at the end of Section 2, and hence it
requires the Asplund property of the Banach spaces in question.

Theorem 3.6 (enhanced version of the subdifferential variational principle for set-
valued mappings). Let F: X = Z be a set-valued mapping between Asplund spaces, which is
epiclosed with respect to the ordering cone © C Z in addition to the assumptions of Theorem 3.5,
Then for anye > 0, A > 0, £ € @) (-0) with ||§|| = 1, and e strict approzimate &-minimizer
{xg, z0) € gph F to the mapping F, there is (Z,Z) € gph F' such that ||Z — xo)| < A and

IRz, 2N -EJB* £ 0. (3.17)

Proof. Note first that we impose the requirement ||£|| = 1 in the formulation of the theorem
to get a “nicer” subdifferential condition (3.17). As follows from the arguments below, condition
(3.17) can be replaced by the modified subdifferential condition

OF(z,2) N SIEIB" #

if € is selected arbitrarily from &\ (—©), with no change in the proof.

Since the proof of this theorem is similar to the one given in [3, Theorem 2], based on the
extremal principle from Section 2 and the new wversion of the Ekeland variational principle from
the above Theorem 3.5, we provide only the sketch of the proof highlighting the main changes in
comparison with [3], where the reader can find more details.

Take the pair (xg, 20) € gph F from the formulation of the theorem that is a strict approximate
g€-minimizer to the mapping F. Thus there is a positive number & < £ such that (o, zp) is an
approximate £-minimizer to this mapping. Put

X::E;“E,\ with 0 < X < A (3.18)
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and apply the enhanced Ekeland variational principle from Theorem 3.5 to the mapping F' and
its approximate Z&-minimizer (o, 2p) with the chosen parameters £ and X By (3.6)-(3.8) we find
(i, T) € gph F satisfying the relationships

7€ MinF(a@), |lzo—1 <X, and (3.19)

r—T+ %Haz — 4l £0 for all (z,2) € gph F' with (z,2) # (4,7). - (3.20}
Consider a single-valued Lipschitz continuous mapping g: X — Z given by
E
glz) = :!Iﬂ: - allg (3.21)

and construct the following two closed subsets of the Asplund product space X x Z by
Q ==epiF and g:=gphyg. (3.22)

We claim that (u, ) is an extremal point of the set system {{2;,§2z} from (3.22} in sense defined
in Section 2. Indeed, the condition (G,7) € ) N is obvious, and by (2.10) we need to check
the existence of a sequence {az} C X x Z such that a; — 0 as k — oo and Q; N (2 +a)} = ¢ for
all k € IN. To proceed, select an arbitrary vector ¥ € © \ {0} and show that

0N (Qz+(0,~k7'9)) =9 forall kelV, (3.23)

i.e., (2.10) holds with a}; = (0,—k718). By the contrary, suppose that (3.23) does not hold for
some fixed k € IN. Then by the constructions of ; and Qg in (3.22), there is (z, v) satisfying

v=g(z) — k™' and (z,v) €epiF. (3.24)

Using the epigraph definition (2.6), find z € gph F and @ € © with v = 2+ # and substituting the
latter into (3.24) we arrive at the relationships

z=v—9=g(:ﬁ)—k“119u€_ég($),

since — < 0 and —¢ < 0. Taking into account the construction of g in (3.21), condition (3.20)
implies now that (z,z) = (4,7). By (3.24) we have therefore that

v=z+0=0+0=g@) -k W=0-kW¢gs-0

where the latter relationship holds due to ¢ € Min (@) in (3.19) and v # @. This gives ¢ ¢ ©,
which contradicts the above choice of ¢ and thus justifies that the reference point (&, 7) is extremal
for the set system {3.22).

Next let us apply to the system {}1,$9, (4,7)} the extremal principle formulated in Section 2
imposing the sum norm |j(z, z)| := ||z|| + ||z|| on X x Z that generates the dual norm

|(z*, 2*)|| = max {||=*], }|z*||} for (z",2%)e X*xZ"

on X* x Z*. In this way for any v > 0 we find elements {z;, z;, 7, 27) € X x Z x X* x Z* with
i = 1, 2 satisfying the relationships

(s, Zz) E U x Qo ~al+ -0 <w, i=1,2,
(1‘7‘*1 e N( 'E?,uz‘i 'Q')’ 3:1 2

1

5 r/<111a,x{”:17 4=} < ;-l-y i=1,2,
max { |z} + 23|, |27 + 2301} < v

(3.25)

13



It follows from the Lipschitz continuity of the mapping g in (3.21) with constant £ = £, /7\ and the
coderivative estimate from [17, Theorem 1.43] that

] < %;p;u and hence 23 £ 0
by (3.25) with v > 0 sufficiently small. The latter yields by the extremal principle (3.25) that

: =il _ <
21| #0 and =+ < —;
. e
see more details in the similar setting of [3, Theorem 3.5]. Furthermore, from the second line in
(3.25) with i = 1 we find 2] € F(z) with

(z1,%) € gph F, (z},—z}) € N((z1,71);epi F), and — 2z} € N(0;©). (3.26)

Denoting finally (Z, Z) := (z1,21), =™ := z7/||2][, and 2" := z{/|jz7|| and taking into account the
Fréchet subdifferential construction (2.8}, we get the desired subdifferential condition (3.17) from
the relationships in (3.26). To complete the proof of the theorem, it remains to observe that the
estimate ||T — x| < A follows from the second inequality in (3.19), the first line in (3.25) for i = 1,
and the choice of X in {3.18). YA

4 Existence of Relative Pareto Minimizers

This section is devoted to deriving verifiable conditions that ensure the existence of relazed Pareto
minimizers to general multiobjective problems. Our primary multiobjective problem is minimizing
a set-valued mapping F': X = Z with values in a partially ordered space. This includes the case
of F(z) = 0 for some = € X and thus implicitly involves the constraints = € dom F. On the other
hand, explicit constraints the type = € {1 and their specifications can be reduced to minimizing
such mappings by imposing F(z) = § for = ¢ 1. We employ this device to study the existence
issues in constrained multiobjective optimization at the end of this section.

Let us first define the new notions of relared minimizers to set-valued mappings F: X = Z
with dom F' £ () studied in this and next sections. These notions are generated by the cor-
responding definitions of relative/intrinsic relative/quasi relative interior minimal points of sets
from Section 1. Observe that they are defined similarly to weak Pareto minimizers to F, which
are those (T, 2} € gph F satisfying

{z-int©®)NF(X) =0 provided that int® # 0. (4.1)

Recall that our standing assumptions imposed on the ordering cone © C Z is that © is proper,
close, and convex (while may not be pointed) in the Banach space Z.

Definition 4.1 (relative Pareto minimizers to multiobjective problems). Given a map-
ping F': X = 7 with the range space Z partially ordered by a cone © C Z, we say that:
(1) (%,%) € gph F is a (PRIMARY) RELATIVE MINIMIZER to F' if

(z2-1i@)NF(X) =0 provided that 1i® # §. (4.2)
(ii) (Z,2) € gph F' is an INTRINSIC RELATIVE MINIMIZER fo F' if

(-iri®)NF(X) =0 provided that iri© # . (4.3)
(iil) (%, %) € gph F is 0 QUASI RELATIVE MINIMIZER to F' if

(2-qri@)NF(X) =0 provided that qri© # . (4.4)
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According to the discussions in Section 1, all the three relative Pareto minimizers to F' from
Definition 4.1 agree if 1i© £ 0. Furthermore, they all are weak Pareto minimizers {4.1) when
int © s 0. At the same time, all the relative minimizers (4.2)~(4.4) make sense when int © = {,
and both intrinsic relative minimizers {4.3) and quasi relative minimizers (4.4) make sense when
ri © = §. Recall that all the relative Pareto minimizers from Definition 4.1 are surely well defined,
in contrast to weak Pareto minimizers (4.1), when the space Z is finite-dimensional while quasi
relative minimizers (4.4) are well defined in every separable spaces Z for any ordering cones @ ¢ Z.

The main result of this section ensures the existence of intrinsic relotive minimizers (4.3)
provided that iri©@ s #, and hence the existence of primary relotive minimizers (4.2) provided
that i © # 0, under verifiable conditions involving subdifferentials of set-valued mappings. Note
that the result obtained below establishes a new existence theorem even in the case of weak Pareto
minimizers (4.1) with int © # @ for general set-valued mappings between Asplund spaces. In the
next section we derive pointwise necessary optimality conditions for all the types of (localized)
relative Pareto minimizers introduced in Definition 4.1 as well as for their Pareto/efficient and
weak Pareto counterparts.

The principal condition ensuring the existence of weak minimizers to mappings F: X = Z
hetween Asplund spaces in our previous work {3] was the following basic subdifferential Palais-
Smale condition: every sequence {z;} C dom F such that

there are z, € F(z) and zj € OF (zg, z;) with |23l = 0 as k > oo (4.5)

contains a convergent subsequence, provided that {z;} C Z is quasibounded from below. In {4.5),
we use the basic/normal subdifferential of F' at (2, z;) defined in {2.9). In the case of smooth
around zz, or strictly differentiable at zy, real-valued functions £ = ¢: X — IR, the subdifferential
Palais-Smale condition (4.5) reduces to the classical one due to dp(zr) = {Ve(ze)}, ke IV, in
this case; see the second formula in (2.5).

In this paper we introduce and employ a new version of the subdifferential Palais-Smale
condition involving the Fréchet subdifferential (2.8} of F' instead of the normal one as in (4.5).

Definition 4.2 (refined subdifferential Palais-Smale condition for set-valued mappings).
A set-valued mapping F': X = Z satisfies the REFINED SUBDIFFERENTIAL PALAIS-SMALE CON-
DITION if every sequence {zy} C dom F such that

there are z; € Fxy) and z} € OF (zy, 2) with [lzf]} = 0 as k — oo (4.6)
contains a convergent subsequence, provided that {zx} C Z is quasibounded from below.

Since we always have OF (%, Z) C 8F (&, £), the refined Palais-Smale condition (4.6) improves
the previous one (4.5). Furthermore, the refined Palais-Smale condition (4.6) reduces to the
classical one for functions ¢: X .— IR merely Fréchet differenticble at z), in contrast to the
required strict differentiability of ¢ in the case of (4.5); cf. the two formulas in (2.5).

The foliowing major result ensures the existence of intrinsic relative minimizers to set-valued
mappings under the refined subdifferential Polais-Smale (4.6) and the limiting monotonieity (3.2)
conditions imposed on the mapping under consideration. Its proof (which is significantly more
involved in comparison with {3, Theorem 4.3]) employs all the three variational principles derived
and discussed above: the enhanced versions of the Fkeland variational principle and the subdiffer-
ential variational principle for set-valued mappings established in Theorem 3.5 and Theorem 3.6,
respectively, as well as the extremal principle for systems of closed sets in Asplund spaces formu-
iated in Section 2, which is used in the proof below in the equivalent form of the fuzzy intersection
rule for Fréchet normals from [17, Lemma 3.1].
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Theorem 4.3 (existence of intrinsic relative minimizers to set-valued mappings). Let
F: X = Z be a mapping between Asplund spaces that is epiclosed, quasibounded from below,
and satisfies the limiting monotonicity condition on dom F'. Assume furthermore that the refined
subdifferential Palais-Smale condition from Definition 4.2 holds and that @\ (-9} # 0, ie, O is
not a linear subspace of Z. Then F' admits an intrinsic relative minimizer provided that iri © # .

Proof. To justify the existence of intrinsic relaxed minimizers to F', we first inductively apply the
new version of the Ekeland variational principle for set-valued mappings to generate a sequence
{(z,2,)} C gph F, k € IN. Then we prove that the chosen sequence {z,} contains a subsequence
converging to an intrinsic relative minimizer to F'. The [atter arguments are rather involved based
on applying the above version of the subdifferential variational principle, the refined version of
the subdifferential Palais-Smale condition, the afore-mentioned fuzzy intersection description of
the extremal principle, and the limiting monotonicity condition. Detalls follow.

To hegin with, pick an arbitrary pair (zg, z0) € gph F' and element £ € ©\ (—0) with ||§]| =1
and then inductively generate a sequence {(zy,zz)} C gph F by using the set-valued version of
the Ekeland variational principle from Theorem 3.5. To proceed, we fix £ € IV and having the
(k — 1)-iteration (zk_1, zx—1), applty Theorem 3.5 with the parameters ¢ = k2 and A = k1 to
get the next iteration (zy, zr) € gph F satisfying the relationships

z, € Min F'(zg), 2 < 2z, and 4.1

2=z +k Mz — x| £0 for all (z,z) € gph P with (z,2) # (zp,20), kEN.  (4.8)

Suppose now that the chosen sequence {x;} contains a subsequence converging to some point
i € doin F; we show that it is the case a bit later. Without loss of generality, assume that zp — %
as k — oo for the whole sequence {x;} and get from (4.7) and the limiting monotonicity condition
of Definition 3.1 that

thereis 3 € F(&) with z < z; forall ke IV. (4.9)
Let us prove that the pair (&, £} is an intrinsic relative minimizer to F. Indeed, taking an
arbitrary pair (z,2) € gph F with (z,2) # (%, 2) and employing (4.8) and (4.9), we have by
elementary transformations that
z—Z4+ k7 z -z €2z — 2+ Z\(—0O) forall ke NN,
which easily implies the inclusion
p—Z+k Tz —zll¢ €O+ Z\ (-0O).
The latter gives, by the convexity of the ordering cone 9, that
z-w2~i—k"1|i:c—a;k||§€Z_\(<~(-})), ke IN. {4.10)
Our next goal is the show, by passing to the limit in (4.10) as & — oo, that
z—z€ Z\ (—ri©) provided that iri® # 0. (4.11)

Arguing by contradiction, suppose that (4.11) does not hold, i.e., z — z =: § € —iri ©. Employing
the definition of intrinsic relative interior, we have that the cone

cone (@ 4 68) is a linear subspace of Z. (4.12)
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Since £ € © and £ + 6 € cone (@ + 8), we get from {4.12) that —€ — 8 € cone(© + 8) as well.
Taking now into account the definition of the cone generated by a set and the convexity of ©, we
find a positive number ¢ < 1 such that

tH{—E—-0)c© 48 forall teioi

Since © is a cone, the last inclusion implies that

t t
9 —© for = [ , ——z] 413
+7£€ -0 forall 7 1+t€01+t (4.13)
Note that k= 1|z — 2|l — 0 as k — oo, and so we have k™ !||z — 24| € [0,£/(1 +1)] for k sufficient
large. Substituting this into (4.13) and observing that & = z — Z by definition, we arrive at

r— 24k z e € o,

which contradicts (4.10) and therefore justifies the inclusion (4.11). Since the pair (z,z) € gph F
was chosen arbitrarily in the arguments above, relationships {4.11) clearly implies that of (4.3)
and thus justifies the intrinsic relative minimality of (%, £) to the mapping F.

To complete the proof, it remains to justify the claim announced above: the chosen sequence
{x,} contains a convergent subsequence. To prove this convergence, we inductively construct
another sequence {Z} C dom F such that ||Z; — x| — 0 as k — oo and that the refined Palais-
Smale condition (4.6) can be applied to this new sequence. To proceed, define for each k € IV a
set-valued mapping Fr.: X = Z given hy

Fi(z) = F(z) + gu(z) with gp(z) == k7 Y|z — zx i€ (4.14)

and conclude from (4.8) that (zg,z;) is a strict approzimate k=2€-minimizer to Fi. Fix k € IN
and apply the subdifferential variational principle for set-valued mappings from Theorem 3.6 to
the mapping F in (4.14) and its strict approximate sf-minimizer (zy,z2;) with ¢ = k72 and
XA = k71, Taking into account the structure of Fy, in (4.14) and the subdifferential construction
(2.8), we find (T, 2, U, ¥5, %) € X X Z X Z x X* x Z* satisfying the following relationships:

o€ F(@), B=0c(®), (i %k +0%) €gph e,  [[E — el < k71,
| ) R (4.15)
(5, ~Z) € N((&n, 2o + W )iepi Br), —ZF € N(0; 9), Izl =1, ||| <kt

Cousider now the Asplund product space X x Z x Z equipped with the usual sum norm on
the product (and hence by the corresponding mazimum on the dual space X* x Z* x Z*) and
form the following two subsets of the product space:

0 = {(:r:,z,v)éXxeZ' (m,z)EepiF}, (4.16)

Qg o= {(2,2,9) € X x Z x Z| (z,v) € gphg}. (4.17)

It is easy to see that (Tr, 2, T ) € 1 N Qo and that hoth sets £; and s are locally closed around
this point by tle epiclosedness of F and the Lipschitz continuity of g,. Observe also that

(z,2,9) € YN Qg = z € Fz) + 8, v=gu(z),
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and thus (z,z +v) € epi F;. We have furthermore from the second line of (4.15) that

lim sup (& —2 —Bh), (7,2, v) — (B, 2, Ti)

(2,2,0)—(E o Z 58) | (2, v) — (&, Z, ) |
(z,2, )€1 Ml

(Fh =20 (%, 2) — (T T + )

< limsup U R <0,
(myz)_‘(ik',ysl'."'gk) “(m’ z) . (‘T‘.ka zk + Uk)”
(z,2)Eepi Fi.
which implies the inclusion
@ % —%) € N(@0 2,0 N Qg), ke N, (4.18)

Next we are going to express Fréchet normals to the intersection {3y MQy in {4.18) via Fréchet
normals to 9 and {2y and then, by taking into account the structures of these sets, to arrive
at the desired conclusions in terms of the mapping F under consideration. Applying to the set
intersection £21 N s the fuzzy intersection rule from [17, Lemma 3.1] equivalent to the eztremal
principle and using the particular structures of the sets {13 and £33 in (4.16) and (4.17), we find
t > 0, {wir, Ziks vit) € Oy, and (&, 25, V5,) € X* x Z* x Z* for i = 1, 2 satisfying the relationships

( (z1,21) €epiF, vz =gil(wa), |lm1— Tl < k7Y,
(@h, —27) € N((x1, m)epi F), —2f € N(0;©), 33 € D*gelza)(25),

(4.19)
ll¢25 — 2t~ asll S k70 NieZg - gl S kT tE - sl <K

1=k~ <max {¢, ||(23,0,235)[|} < 1+ &7,

where for the time heing we drop the index “£” in the above i-sequences to simplify the notation.

Working with (4.19), we first observe that ¢ must be nonzere therein. Arguing by contradiction,
suppose that it is not the case, i.e., ¢ = 0. Then it follows from the third line of (4.19) that
23] < k™. Taking now into account that the mapping gi in (4.14) is Lipschitz continuous
with modulus k™! and employing the coderivative estimate for Lipschitzian mappings from [17,
Theorem 1.43], we get from the second line of (4.19) that

=3l < &~z (4.20)

and therefore @} < k~2. This contradicts the nontriviality condition on (x5, 0, 23) in the last
line of (4.19) and thus justifies that ¢ > 0.

To proceed further, we consider the following two possibilities of realizing the mazimum of
the expression {t, [|(z3,0,25)||} in (4.19):

Case 1. If max {¢,]|(z3,0,25)||} =t, then the the last line in (4.19) becomes
l-k'<t<1+k7h

Substituting the upper and lower bounds of ¢ from the above estimates into the inequalities in
the third line of (4.19) and taking into account the triangle inequality, estimate (4.20), and that
IZ]l = 1 while ||Z}i] < &~ in (4.15), we aitive at the relationships

-2kt < ||| €142k for i=1,2 and hence
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l=i, o CERN+ =3l + 571 (O + Uk 4+ k(1 + 2571 4 k7

=l (B - (1-2k1)
' ' (4.21)
3k 43k
T 1-2kt
Case 2. Assuming now that
max {t, [|(x3,0, 23)||} = l|(=3,0, )|
and using that ||(x3,0,23)|| = {23l by estimate (4.20) and the “maximum” dual norm on the

product X* x Z* x Z*, we get from the last line of (4.19) the lower and upper estimates for [|z5:
1-kt <z <1+ 57" (4.22)

Substituting these estimates into [tz — 2}| < &~! from (4.19) and taking into account that
|ZZ]| = 1 by (4.15), we obtain the lower and upper estimates for ¢:

t2 izl -k 1>21-2k" and t < |23+ A7 < 14267 (4.23)
Then the third line of (4.19) and the lower estimate of ¢ in.(4.23) yield that
5l 2 t—k 21360 (4.24)

Let us finally estimate the ratio [|z7(|/||#7||. Using the inequality {|£Z} — =} — #}|| < &~ from the
third line of (4.19) and the one {|F}|| < k™! from (4.15) together with (4.20), the upper bound for
t in (4.23), and the lower bound of || 2]|| in (4.24), we get

=3 (T + el + 571 (2% DE T+ A+ R+
S . < 1
=11 =71 | 1- 3k

(4.25)
kTN 4+ k1)
1—-3k-1

which ends our consideration in Case 2. Thus in both Case 1 and Case 2 we have similar (while
different) estimates of the the ratio ||x3}|/||2f| in (4.21) and (4.25), respectively.

Continuing now the proof of the theorem simultanecusly for the above cases of realizing the
maximum in the last line of (4.19), we denote

F1i= and z} = with [|Z]]| =1 (4.26)

A
27l

and, by the first two lines in (4.19) concerning (1, 21,7}, z7) and by definition (2.8) of the Fréchet
subdifferential of I, have

@] € BF (z1, z1} with (zq,21) € epi . (4.27)

Let us show that we can get relationships similar to (4.27) while replacing (z1,21) € epiF by
sotne (x,z1) € gph F, i.e., we can find z such that

% € BF(z1,7) with (z1,%) € gph F. (4.28)
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The latter is needed for the subsequent application of the refined subdifferential Palais-Smale
condition from Definition 4.2, which deals with points of the graph.
To proceed, we write (4.27) in the normal cone form:

(#,~7) € N((e1, 2 epi F) with — % e N(0;0), {F]=1
and observe by definition (2.1) that for any + > 0 there is # > 0 such that
(&1, -2, (v, 2) = (21, 21)) <l(=,2) - (21, 20)]] (4.29)

for all (x,2) € epi F with = € 1 +nJB and 2z € 21 +nB. By definition (2.6) of epi I with respect
to the ordering cone ©, we have

z €7+ 8 forsome 73 € F(z;) andf € @, (4.30)

Takiﬁg further an arbitrary vector (u,v) € epi F' with u € 1 4+ nIB and » € 21 + 5B, ohserve by
the above ordering that

v="7-+8 forsome € F(u) and 4 € ©. (4.31)
Consider now a vector Z € Z defined by
Zi=v+ (2 — 5)
and derive from (4.30) and (4.31) and from the convexity of the cone © that
[F=5+6+0, Te€F(u)]=> (ﬁ,z) €epiF.

Since ||Z — z1|| = |jv — Z [} < n by the choice of Z, we have (u,%) € epi F with u € x; + 7B and
Z € z1 +niB. Substituting (u,z) into (4.29) gives

(("E’{v—:"’h’f):( ~) Tl 21 ><.-),”(u (Ilazl)”a

and lhence, by Z — z1 = v — 2}, we get that
(@, -21), (0, 0) = (21, 7)) < 7w, v) = (21, 21)]),

which implies (Z},-%]) € N ((:cl,%"l);epi FYy with (x1,71) € gph F. Taking into account that
-2} € N(0;0) with ||Z}]| = 1, we arrive at the required relationship (4.28) by definition (2.8) of
the Fréchet subdifferential for set-valued mappings.

Now add the index “k” to indicate the sequences {xir,Z1x) and (Z],,Z],), k¥ € IN, defined in
(4.26) and (4.28). Using estimates (4.21) and (4.25) as k — oo, we get therefore

(z1k, Z1x) € gph F and T, € BF (T, %1x) as k€ IN with 116 = 0 as £ — oo, (4.32)

Employing finally the refined subdifferential Palais-Smale condition of Definition 4.2, we get from
(4.32) that the sequence {xy;} contains a convergent subsequence. Since

ek — 2kl € |2r = Tel + |Zk — 2zl Sk + &7 forall ke N

hy {4.15) and {4.19), we conclude that the sequence {z;} constructed in (4.7) and (4.8) also
contains a convergence subsequence. This completes the proof of the theorem. TAN

Next we present efficient consequences of Theorem 4.3 enduring the eristence of relative min-
imizers and weak minimizers to set-valued mappings.
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Corollary 4.4 (existence of primary relative minimizers). Suppese in addition to the
assumptions of Theorem 4.3 that ri® # 0. Then there is a relative minimizer to the set-valued
mapping F': X = Z under consideration.

Proof. Since ri® C iri ©, Theorem 4.3 ensures the existence of intrinsic relative minimizers to
F provided that 11© # 0. Furthermore, the latter assumption implies that (primary) relative
minimizers and intrinsic relative minimizers agree for any F as discussed above. VAN

Corollary 4.5 (existence of weak Pareto minimizers). Suppoese in addition fo the assump-
tions of Theorem 4.3 thet int® # 0. Then there is o weak Pareto minimizer to the set-valued
mapping F: X = Z under consideration.

Proof. Theorem 4.3 guarantees the existence of an intrinsic relative minimizer to F provided
that # # int © C iri ©, which is surely a weak Pareto minimizer to this mapping. AN

Remark 4.6 {(comparison with known existence theorems). We are not familiar with
any existence theorems for primary relative minimizers and intrinsic relative minimizers to set-
valued mappings and their specifications in either finite-dimensional or infinite-dimensional spaces.
Regarding Corollary 4.5 on the existence of weak minimizers, let us mention the following three
advantages of this result in comparison with our previous one in [3, Theorem 4.3]:

» As we discussed, the refined subdifferential Palais-Smale condition from Definition 4.2 is strietly
better than the basic one (4.5) introduced in [3] and used in the proof of Theorem 4.3 therein.

o We improve the domination property used in [3, Theorem 4.3] by the more relaxed lkmiting
monotonicity condition in the new Corollary 4.5.

 The pointedness requirement on the ordering cone © from [3, Theorem 4.3], which is equivalent
to say that the cone @ does not contain a linear subspace, is superseded now by the essentially
more general condition © \ (—©) # @, which means that © itself is not a linear subspace of Z.
Note that there are various ordering relations, important for both the theory and applications,
which are generated by convex and non-pointed cones; see, e.g., [18, Example 5.57] regarding
lezicographicel multiobjective optimization.

As mentioned above, the multiobjective problem of minimizing a general set-valued mapping
F: X = Z implicitly contains constrains given by z € dom F'. Furthermore, we can easily reduce
problems with ezplicit constrainis of the type

minimize F(z) subjectto z € QC X (4.33)

and their specifications to minimizing the restriction of F' to the set {I defined by

| F=) if zefl,
Fale) = { f otherwise. (4.34)
Observe that problem (4.33} can be represented in the equivalent unconstrained form
minimize Fo(z) = F(x) + A(z; Q) (4.35)

involving the summation of the original cost mapping F with the indicator mapping of the set
t C X defined by A(z; Q) :=0if x €  and A(z; Q) := @ otherwise.

To establish the existence of optimal solutions (Pareto-type minimizers under consideration)
for the constrained problem {4.33), we can apply Theorem 4.3 to the summation mapping Fp, in
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(4.35) and then to proceed by using a subdifferentiol sum rule in the settings {4.5) and (4.6) of both
Palais-Smale conditions to derive verifiable existence results in terms of the initial data F' and
1 of the constrained problem (4.33). From this viewpoint, the basic subdifferential Palais-Smale
condition (4.5), being generally more restrictive than the refined one {4.6), has visible advantages
in comparison with (4.6) due to the much more robust pointwise calculus available for the limiting
constructions (2.2), (2.4), and (2.9) in comparison with their Fréchet-like counterparts; cf. [17].

Employing this calculus in the way developed in {18, Chapter 5] and [4, Section 3], we can derive
the corresponding consequences of Theorem 4.3 and its Corollaries 4.4 and 4.5 to the existence
theorems for multiohjective problems with geometric constraints as in {4.33) and with other types
of constraints—functional, operator, and particularly of the eguélibrium type considered in [4,
Theorem 3.4] for the case of weak Pareto minimizers. Note that the latter paper in the only
one, to the best of our knowledge, where the generalized differentiol ecalculus has been emploved
for deriving existence theorems in optimization problems (with either scalar or vector/set-valued
objectives), in contrast to more conventional settings of necessary optimality conditions as in
numnerous publications; see, e.g., the book [18] and the references therein. This approach, which
we are not going to develop here, can be well applied in the similar way for establishing verifiable
existence theorems of relative Pareto minimizers to constrained multiobjective problems involving
the new Theorem 4.3 under the bosic subdifferential Palais-Smale condition {4.5).

In what follows we intend to explore in more detail the possibility to employ in constrained
multiobjective problems the above Theorem 4.3 under the refined Palais-Smale condition (4.6)
in terms of the Fréchet-type subdifferential (2.8). It has been well recognized that Fréchet-type
subdifferential constructions possess generally a poor pointwise calculus, even in simple finite-
dimensional settings. Nevertheless, it has been recently discovered [19] that such a pointwise
calculus can be developed under appropriate assumptions for some classes of extended-real valued
functions. Quite recently, certain vector counterparts of these results have been derived in [1].

Given a single-valued mapping f: X — Z between Banach spaces with the ordering cone 6
of Z, observe that its Fréchet subdifferential (2.8) can be represented as

6f(z)= ]  Bfa)z), where 8f(2)(2*) == D &z, £(@)) (). (4.36)
_ZES*IHLﬂfe)

It follows from [1, Theorem 5.3] that

Af +A)E) () C N [N@EQ) -9 (4.37)
vEB(~FHE)(2*)

o~

provided that 8(— f}(Z)(2*) # 0 and that there is a neighborhood U of & as well as nonnegative
numbers { and m such that

1F(u) = F(@) < Ulw — Z| + m|(z*, f{u) - f(&))] for all we U. {4.38)

Note that condition (4.38) automatically holds if either Z = IR, or the mapping f is upper
Lipschitzian at & that corresponds to m = O in (4.38) and is surely fulfilled when f is locally
Lipschitzian around this points.

The next theorem ensures the existence of intrinsie relative minimizers to the constrained mul-
tiobjective problem (4.33) as well as the existence of relative Pareto and weak Pareto minimizers
to (4.33) under additional assumptions.
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Theorem 4.7 (existence of relative and weak Pareto minimizers to constrained mul-
tiobjective problems). Let the mapping f: X — Z and the ordering cone 6§ C Z satisfy
the general assumptions of Theorem 4.3, and let @ C X be closed. Assume in addition that
O(—F)(x)}(2*) # B and condition (4.38) holds for any z €  and 2* € —N(0;0) with ||z*]| = 1
and that every sequence {xy} C 2 with

Aaf € N [N(ag Q) —v] with — 2 € N(0;©), izt =1, k€ IV,
ved(— ez} (4.39)

and ||zijl -0 as k— oo

contains a convergent subsequence. Then problem (4.33) admits an intrinsic relative minimizer
provided that ir1© # 0. Furthermore, this problem edmits a primary relative Pareto minimizer if
vi® # 0, and it admits o weak Pareto minimizer if int © # 0.

Proof. Considering the equivalent unconstrained form (4.35) of problem (4.33), it is easy to see
that the restriction mapping fq from (4.34) satisfies all the agsumptions of Theorem 4.3 except
the refined subdifferential Palais-Smale condition from Definition 4.2, which should be verified.
To do it, take sequences {z}, {x}} satisfying (4.6) for F' = fq and by (4.36) find {2} such that

Ty € g[j + AW (e} (25), —2% € N(0;©), ||zl =1 with fjzi — 0 as k- 00, (4.40)

which implies that {z;} € € for all k¥ € IN. Employing now the subdifferential sum rule (4.37) in
(4.40) under the assumptions made in the theorem, we get

Ty € N [N(zps @) —v] with ||zf]] =0 as k — oo,
ved(— f)me)(2})

where —z; € N(0;0) and |[z;|| = 1 for all &k € IN, Le., the triple {z, 2}, 2} satisfies (4.39). Thus
the sequence {z;} C Q contains a convergent subsequence, which verifies the refined Palais-Smale
condition (4.6) for the restriction mapping fq and hence ensures the existence of intrinsic relative
minimizers to (4.33) provided that iri @ # 0. The existence of primary relative Pareto minimizers
and weak Pareto minimizers to (4.33) provided that ri® # @ and int© 5 @, respectively, is
justified similarly to the proofs of Corollaries 4.4 and 4.5. AN

© The major assumptions of Theorem 4.7 are automatically fulfilled and/or significantly simpli-
fied when the cost mapping f is Fréchet differentiable on €.

Corollary 4.8 (existence of relative and weak Pareto minimizers to constrained mul-
tichjective problems with Fréchet differentiable objectives). Let the mapping f: X — Z
and the ordering cone 8 C Z satisfy the general assumptions of Theorem 4.3, let @ C X be closed,
and let f be Fréchet differentiable on 2. Assume also that every sequence {xy} C §2 such that

3 € Vilzr)*zl + Nz Q) with — 25 e N(0;0), ||21]| =1, end (|2}]| -0  (441)

as k — oo contains a convergence subsequence. Then problem (4.33) edmits an intrinsic rela-
tive minimizer provided that 1© # . Furthermore, (4.33) admits a primaory relative Pareto
minimizer if ri© # 0, and it admits o week Pareto minimizer if int © + 0.

Proof. It.easily follows from (2.5) and {2.8) that
H-fle)(z") = { - VI(@)="} #0
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for all = and z* under consideration. Furthermore, we can directly check that the Fréchet dif-
ferentiability of f implies property (4.38) on €. Thus all the assumptions of Theorem 4.7 are
satisfied, and condition (4.39) reduces to (4.41) for Fréchet differentiable objectives. This justifies
the conclusions of the corollary under the corresponding requirements on . JAN

5 Necessary Conditions for Pareto and Relative Pareto Minimiz-
ers in Multiobjective Optimization

In this section we establish necessary optimality conditions for all the three types of (Jocalized)
relative Poreto minimizers to multiobjective prohlems introduced in Definition 4.1. The results
obtained in what follows provide also new necessary conditions for Parefo minimizers (efficient
solutions) and weak Pareto minimizers in comparison with the previous ones from (3], where
these notions have been studied for pointed ordering cones satisfying the additional “sequential
normal compactness” assumption (see below) imposed in the case of Pareto minimizers in infinite
dimensions. Here we derive necessary conditions in both settings of poinfed and non-pointed
ordering cones, where the results of the latter type occur to be of a different structure in comparison
with those for the pointed case of efficient solutions.

Recall that the localized versions of all the minimizers under consideration are defined in the
samme way as for the global ones, where instead of all z € X (or z € {1 for the constrained problems)
we consider only those points that belong to a neighborhood of the reference solutien. Thus the
pair {#,%) € gph F is a local primary/intrinsic/quast relative minimizer to F: X = Z if there is
a neighborhood U of # such that

(- ©)NF(U) =0 provided that © # ¢, (5.1)

where~6 stands for 1€, iri©, and qri ©, respectively. For local weak minimizers we have (5.1)
with © = int ©. Note that the notion of local Pareto minimal/efficient solution to F' defined as

(z-©)nF(U)={z}
by (3.5) can he equivalently written in the form
(z -0\ {0}) NF(T) =0 (5.2)

similar to (5.1). This allows us to unify the proofs of necessary optimality conditions for all the
local minimizers studied in the paper.

In what follows we establish in the unified way necessary conditions for all the types of relative
Pareto minimizers from Definition 4.1 deriving also new resuits for local Pareto minimizers and
weak minimizers to multiobjective problems. The results derived helow are given in the same
forms (different in the cases of pointed and non-pointed ordering cones) for all the types of local
minimizers under consideration. Nevertheless, they are independent for the cases of gquasi rela-
tive, intringic relative, and conventional/efficient Pareto minimizers. The necessary conditions
obtained for primary relative and weak Pareto minimizers can be treated as specifications of these
for quasi relative and intrinsic relative ones while, on the other hand, they are derived under much
easier verifiable assumptions on the initial data due to available characterizations of the general
“sequential normal compactness” requirement on © for the case of primary relotive minimizers
and due to the unconditional fulfillment of it for the case of weak efficiency. Emphasize again that
the results obtained for efficient Pareto solutions do not impose any nonempty interior/relative
interior assumptions on the ordering cone © provided that ©\ (—9) # 0.
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Our approach is based on reducing local Pareto/relative Pareto/weak Pareto minimizers to
local extremal points of the corresponding set systems and then employing the extremel principle.
As in Section 4, we first derive necessary optimality conditions for minimizing general set-valued
mappings with no explicit constraints and then proceed to multiobjective problems with explicitly
given constraints by using appropriate rules of subdifferential/coderivative calculus.

To obtain in this way verifiable qualification and optimality conditions in multiobjective op-
timization, we involve certain normal compactness properties of sets and mappings, which are
eutomatic in finite dimensions while are unavoidably needed in infinite-dimensional spaces due to
the natural lack of compactness therein. Among the major advantages of the underlying sequen-
tial normal compactness (SNC) properties presented below we emphasize extensive SNC calculus
results ensuring the preservation of these properties under various operations and describing hroad
classes of sets and mappings in infinite dimensions for which these properties are satisfied; see the
books [17, 18] for more details, discussions, and applications. In what follows these properties are
used in the framework of Asplund spaces, and so the given definitions are specified to this setting;
cf. the afore-mentioned hooks for appropriate modifications in general Banach spaces.

Recall that a set @ C X is sequenticlly normally compact (SNC) at z € §2 if for any sequences

@ > T and xy 2 0 with T} € N(21;9), k € IN, we have lzz] — 0 as & — 0. A set-valued
mapping F: X = Z is SNC at (%, %) € gph F if its graph is SNC at this point. Further, we say
that F': X = Z is portielly SNC (PSNC) at (Z, £) if, sequentially,

(2 2) 55 (2,2), <1 550, N2l = 0, (h20) € B (@, 21 8ph F)| = okl = 0 v k- oo,

The PSNC property is automatically implied by robust Lipschitzian behovior of set-valued and
single-valued mappings; in particular, when F' is Lipschitz-like/Aubin around (Z, £) with some
modulus £ > 0, i.e., there are neighhorhoods U of  and V of Z such that

Flz)NV C F(u) + f||x — ul|B for all z,ueU. . (5.3)

The latter property of F is fundamental in nonlinear and variational analysis; it is in fact equiv-
alent to the two other underlying properties for the inverse mapping F~! known as linear open-
ness/covering and metric regulority around (, T).

The next theorem can be viewed as a far-going extension of the Fermat rule/stationary prin-
ciple to minimizing set-valued mappings with no explicit constraints for all the types of Pareto,
week Pareto, and relative Pareto minimizers under consideration. We derive necessary conditions
of two different kinds—coderivative and subdifferential, where the pointedness requirement on the
ordering cone is needed only for the subdifferential case of efficient solutions.

To formulate the theorem, recall that a linear subspace of Z is finite-codimensional if it is
complemented in Z by a finite-dimensional space.

Theorem 5.1 (generalized Fermat rules for Pareto/relative Pareto/weak Pareto min-
imizers to multiobjective problems with no explicit constraints). Let F: X = Z be a
set-velued 'fnapping between Asplund spaces such that its graph is locally closed around the ref-
erence point while the image space Z is partially ordered by o closed, convexr, and proper cone
© C Z. Then the CODERIVATIVE condition

0 D*F(%,z)(z") with some — 2" € N(0;0) and |27 =1 (5.4)
is necessary for the local optimality of (%, 2} € gph F to F in each of the following senses:

e (T,%) is @ local PARETO MINIMIZER/EFFICIENT SOLUTION provided that @\ (—©) # 0 and that
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either © is SNC at the origin or F~! is PSNC at (%, %).

* (7, %) is o locol QUASI RELATIVE MINIMIZER provided that either © is SNC at the origin or F-1
is PSNC at (z,Z).

e (T, %) is a local INTRINSIC RELATIVE MINIMIZER provided that either © is SNC at the origin or
F~! is PSNC at (2,7).

e (Z,2) is a local PRIMARY RELATIVE MINIMIZER provided that either the affine closure of © is
finite-codimensionel in Z or F~1 is PSNC at (Z, 7).

o {Z,2) is o local WEAK PARETO MINIMIZER.
Furthermore, we also have the SUBDIFFERENTIAL necessary optimality condition

0 € 8F(z, %) (5.5)
in each of the above cases of (efficient, quasi relative, intrinsic relative, primary relative, weak)
local minimizers (T, 2) provided thot the epigraph vs. graph of F is closed around (Z, Z) ond that:

e PSNC assumption on F~! at in the assumptions ebove (%, %) is replaced by the PSNC assumption
on the inverse mapping 8;1 to the associated epigraphical multifunction (2.7) at this point;

e the ordering cone © is assumed to be pointed in the case of efficient solutions.
Proof. Arguing in the unified way, take any local minimizer (%, 2) € gph F' to F considered in

theorem and reduce it to a local extremal point of some system of sets in the product space X x Z.
Namely, define the sets

Qi=gphF, Qo: =X x(2~-9), (5.6)

which are locally clesed around (Z, Z) due to the closedness assumptions impaosed on F and ©,
We obviously have (F,2) € {1 N Q2. To verify the local extremality of (Z, 2) for {05, Qa}, let us
show that there is a sequence {c;} C Z with ¢y — 0 as k — oo such that

Q0+ 0,e))N(Ux2Z)=0, ke, (5.7)

where U7 is a neighborhood of # from its local minimality property. This gives the required
extremality relation (2.10) with a ;= (0, € X x Z.

We construct an appropriate sequence {¢;} in (5.7) by putting ¢, := ¢/k as k € IN, where
0 # ¢ € Z is selected in the following way for each type of local minimizers considered in the

theorem-—this can be done by definition of the corresponding minimizer and due to the assumption
O\ (—0©) # 0 of the (efficient) Pareto case:

e c € —~O\ (—0) if (7, ) is a local Pareto minimizer;
ece —qui@if (T,7) isa local quast relative minimizer,
e ¢ € —iri® if (, 2) is a local intrinsic relative minimizer,
o c € —110 if {7, Z) is a local primary relative minimizer,
e c & —Int @ if (%, 2) is a local weak Pareto minimizer.

Arguing by contradiction, suppose that (5.7) does not hold, i.e.,

there is (z,2) € U x Z with (z,2) € Q1N (2 + (0, cx))- {5.8)

Then, by the construction of sets {5.6), we find some (z, z,0) € X x Z x Z such that

zelU z€ Flw)+0 with #€© and 2€2-0+¢, kelV.
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This implies, by the convexity property of the ordering cone 9, that
z—0¢cF{U) and z—8€z-0-O4c, CZ-0+¢, kelV (5.9)

In the case of efficient /Pareto minimizers the latter gives, by their description in (5.2} and the
choice of {¢} in this case, that

F-04ca=2-0+(c/k)c(z-0-O\{-0})) C(z-(O\{0})), ke N. (5.10)

In all the cases of the relative minimizers under consideration, as well as for weak efficient solutions
to F, we have by the choice of {ct} that

F-O0+c=2-O+(c/k)Cc(3-0-6)c(z-9), keN, (5.11)

where © stands for either qri®, or iri®, or ri®, or int® in the corresponding cases of local
minimizers. The last inclusion in (5.11) is obvious in the case of weak minimizers while follows
from [5, Lemma 3.1] in all the cases of relative ones. Combining the relationships in {5.8)—(5.11),
we have z — f € (2 — ©)N F(U) for relative and weak minimizers and z — 6 € (2—©\ {0}) N F(U)
for local efficient solutions to F. This surely contradicts (5.1) and (5.2) and thus justifies by (5.7)
the focal extremality of the point (Z, Z) for system {Q3,0} in all the cases under consideration.

Equip now the space X x Z with the sum norm ||(z, 2)| := ||z]| + l]z|j and observe that it is
Asplund as a product of Asplund spaces. Then applying the extremel principle to the set system
{1,822} in (5.6) and taking into account their particular structures and the maximum form of
the dual norm on X* x Z*, for any sequence ¢ | 0 as k — oc we find {(z4, 2i}} € X % Z and
{(z5,25)} C X" x Z* as i = 1,2 satisfying for all & € IV the following relationships:

(T1h, 21k) € gPh F, (%o, 206) € X x (2 -09),  [(zig, 2a) — (F, 2)}| < &, (5.12)
(%15 —2ik) € N{(z1k, 208 ); 200 F), 0=, € N(was X), 2, € N(F - 22150),  (5.13)

max {||l=Tell, 123k + 23/} < e, and 1-—ep < max {{lafell H2fill} + 25/l 1 +ex (5.14)

By the second relationship in (5.14,) the sequences {(z, 2}.)} are bounded in X*x Z* fori =1, 2,
and hence—hy the Asplund property of X x Z--they contain week* converging subsequences; see,
e.g., [14, 17]. Using the first relationship in (5.14), we get without loss of generality that

lelell = 0, 25 %5 2% and 23, %5 —2* as k — oo, (5.15)
where the weak™ limit z* € Z* satisfles the inclusions
(0,—2") € N((z,%);gph F) and -:*€ N(0;0) (5.16)

obtained by passing to the limit in relationships (5.12) and (5.13) as k — co due to construction
(2.2) of the basic normal cone via the sequential outer limit (1.9) of Fréchet normals.

Next we show that z* # 0 in (5.16) if either © is SNC at the origin or F~1 is PSNC at (%, z)
for all the types of the local minimizers under consideration. Assume by the contrary that z* =0
having then from (5.15) that

2,50 and 25, %50 as k- oo, (5.17)
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If © is SNC at the origin, then the second expression in (5.17) immediately yields that |25, || — O
and therefore ||z5,|| — 0 as k — oo by the first relationship in (5.14). Combining the latter with
(5.15), we thus contradict the nontriviality/second expression in (5.14). Suppose now that F—!
is PSNC at (2z,%). Using the first inclusjon in (5.13) and the convergence ||z, {| — 0 in (5.15), we
conclude from the imposed PSNC property that ||2},[i — 0 as k — oco. This gives [|25,|| — 0 as
k — oc and also contradicts the second expression in (5.14). Therefore z* s 0 in (5.16), which
yields the coderivative condition (5.4) by normalization and by definition of the codetivative (2.4).
Thus we arrive at the conclusions of the theorem regarding the coderivative necessary condition
for the cases of Parefo minimizers, quasi relative minimizers, and intrinsic relative minimizers.

The case of primary relative minimizers requirers that ri® # 0. The latter allows us o
fully characterize the SNC property of ©. Indeed, Theorem 1.21 from [17] tells us that the SNC
property of a convex set with nonempty relative interior in a Banach space is eguivalent to the
finite codimension of its affine closure; cf. also [8, Theorem 2.5] for the same characterization,
with a completely different proof, of the generally more restrictive compactly epi-Lipschitzian
property of closed and convex sets with nonempty relative interiors, that happens to be equivalent
to the SNC property for such sets. This justifies the coderivative necessary condition (5.4) of the
theorem in the case of primary relative minimizers.

If (7,%) is a weak Pareto minimizer to F, then int® # §. In this case the convex ordering
cone © is automatically SNC. Indeed, it is well known (see, e.g., [17, Proposition 1.25}) that the
nonempty interior property of a convex set is equivalent to its epi-Lipschitzian property, which
implies the SNC one by [17, Theorem 1.26]. Thus the coderivative result (5.4) wnconditionally
holds for weak Pareto minimizers to general set-valued mappings.

To complete the proof of the theorem, it remains to justify the subdifferential necessary condi-
tion (5.5} for all the local minimizers under consideration. Given F': X = Z and its epigrephical
multifunction £p: X = Z from (2.6), define the auxiliary set-valued optimization problem:

minimize Ep(x) = F{z)+©, =zcX. (5.18)

It is clear that every local optimal solution to (5.18) in each of the above-mentioned sense is a
local optimal solution in the corresponding sense to the mapping F. For our purposes we need
and prove the opposite implication ensuring that a local minimizer to F is a local minimizer in
the same sense to the epigraphical multiobjective problem (5.18). For the case of Pareto/efficient
minimizers this follows from [15, Lemma 3.14] under the assumption that the ordering cone © is
pointed. We show below that the same holds for all the other local minimizers under consideration
with no pointedness assumption. The latter follows from the fact that the underlying minimization
relationship {5.1) for F yields the one

(zZ-O)N(FU)+0)=0 (5.19)

for (5.18), where 3} stands, 1‘espectivelyL for each of qri@, iri @, ri @, and int ©. Indeed, assuming
the negation of (5.19), we get z € (Z — ©) N (F(U) + ©) and thus find

welU, veF(u), and 8€© suchthat z=v+8Cz— 0.
This gives the relationships

v=:-6c3-0-OC:-0-0c:-0

for all the cases of © under consideration, where the latter inclusion is trivial for © = int © while
follows from the afore-mentioned resuit in [5, Lemuma 3.1] for the cases of (primary, intrinsic, and
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quasi) relative minimizers: O =r1i®, O =ini ©, and 0= qri ®. Hence we get v € (2 — é) nED,
which contradicts (5.1} and thus justifies (5.19) for the weak and relative minimizers.

We conclude therefore that any local minimizer (Z,Z) to F considered in the theorem is
also a local minimizer in the same case to the epigraphical problem (5.18) under the assump-
tions made. Applying finally to problem (5.18) the necessary optimality conditions justified in
the first/coderivative part of the theorem and taking into account definition (2.9) of the basic
subdifferential for F, we arrive -at the subdifferential optimality condition (5.5) for all the local
minimizers under consideration. This completes the proof of the theorem. A

As we have already discussed in Section 4, the multiobjective preblem of minimizing a general
set-valued mapping considered in Theorem 5.1 implicitly incorporates various constraints via the
actual resiriction = € dom F' of the set of feasible solutions. For example, to study in this vein
the constrained set-valued optimization problem

minimize F(z) subject to z € {5.20)

with explicit geometric constraints given by an arbitrary nonempty set ¢ € X, we reduce it to the
(formally) unconstrained problem of minimizing the restriction mapping Fo(z) = Fz) + Ax; Q)
as in (4.34} and (4.35). To derive in this way verifiable necessary optimality conditions for the
* constrained problem (5.20), we need to apply calculus rules to the summation mapping F+A(-; 2)
that allow us to express the generalized differential and SNC assumptions and conclusions of
Theorem 5.1 in terms of the initial data of problem (5.20). Full calculi for both generalized
differential constructions and SNC properties under consideration are available in Asplund spaces;
see [17, Chapter 3], where calculus results of both types are derived from the extremal principle.

To obtain the strongest results in this direction for the constrained problem (5.20), we need to
involve two more coderivative/subdifferential counstructions for set-valued mappings in addition
to those presented in Section 2. Given F: X = Z and (%,7) € gph F, recall that the mized
coderivative of F at (%, Z) is defined by

gphl” , _ _ w*
J sequences (zg,zx) — (3,%), 2} — ¥, 2 — 2

with (zf,~2f) € N((zr, 2);gph F), ke IN}-

aE(E, 2)(2%) = {w* € X

(5.21)

Taking into account the basic normal cone definition (2.2), we easily observe that the only dif-
ference hetween the mixed coderivative (5.21) and the basic/normal coderivative (2.4) is that
the strong convergence of ||z} ~ 2*|| — 0 is employed in (5.21) instead of the weak® sequential

w* . . * . . .
convergence 2~ z* in (2.4}, while the weak* convergence z} %, 2* is used in both cases. This
immediately implies the inclusion

Dy F(z,2)(z") C D*F(z, 2)(2%) forall 2* € Z7, (5.22)

where the equality holds when dim Z < oo. By (2.5), the equality holds in (5.22) as well when
the mapping in question is strictly differentiable at Z; it also holds in some other cases listed in
(17, Proposition 4.9], while in general the inclusion is strict in (5.22) even for single-valued and
Lipschitz continuous mappings from IR to a Hilbert space as in [17, Example 1.35}. A significant
advantage of the mixed coderivative is that

Dy F(z,2)(0) = {0} (5.23)

when F' exhibits robust Lipschitzian behavior expressed in the general way (5.3) as the Lipschitz-
like/Aubin property of F' around (%, ).
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In what follows we also need the construction
O F(%,2) .= D};Er(Z, 2)(0) (5.24)

of the singular subdifferential of mappings with values in partially ordered spaces defined via
the mixed coderivative (5.21) of the corresponding epigraphical multifunction £ from (2.6}; cf.
[3, 17] for related discussions and properties. :

The uext theorem presents necessary optimality conditions for local minimizers of all the types
under consideration in the multiobjective problem (5.20) with general geometric constraints.

Theorem 5.2 (necessary conditions for local minimizers to constrained multicbjective
problems). Let F': X = Z be a set-valued mapping between Asplund spuces with the image space
Z partially ordered by a closed, convex, and proper cone @ C Z. Suppose that the constraint set
Q2 C X is locally closed eround the reference local minimizer (&,%) to (5.20). The following
assertions hold:

(i} Assume that the graph of F' is locolly closed around (%, 2) , that the quelification condition
DiF(2,2)(0) 0 (- N(%:Q) = {0}  (5.25)

is sotisfied, and that either F' ©s PSNC of (%,%) or Q is SNC al T, both the qualification condition
(5.25) and the PSNC property of F are automaticolly satisfied if F' is Lipschitz-like around (Z, 7).
Then there exists —z* € N(0;0) with || z*|| =1 such that

0 € D*F(z, 2)(z*) + N{z; Q) (5.26)

in each of the following cases of local minimizers to (5.20);

o (Z, %) is a local PARETO MINIMIZER/EFFICIENT SOLUTION provided that © \ {(--©) # 0 and that
either © is SNC at the origin or Fy' is PSNC at (3, 7).

» (%, ) is a local QUASI RELATIVE MINIMIZER provided that either © is SNC at the origin or Fg?
is PSNC at (Z,%).

e (Z,2) is o local INTRINSIC RELATIVE MINIMIZER provided that either @ is SNC at the origin or
Fylis PSNC at (Z,7). ‘

e (#,%) ts @ local PRIMARY RELATIVE MINIMIZER provided that either the affine closure of © s
finite-codimensional in Z or Fﬁl is PSNC ot (%, %).

s (T, Z} 45 a local WEAK PARETO MINIMIZER.

(i) Assume that F is epiclosed around (&, 2), that the qualification condition
O°F(z,7)n ( — N(z; Q) = {0}

18 sutisfied, and that—ijust in the case of efficient solutions—the ordering cone © is pointed. Then
we have the subdifferential necessary optimality condition

0 € 8F(z,2) + N(0; ) (5.27)

for all the local minimizers considered in assertion (i) provided that the essumptions on F in (i)
are replaced by the corresponding assumptions on its epigraphical multifunction £,
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Proof. To justify assertion (i}, we reduce the constrained problem (5.20) to the equivalent
multiobjective problem (4.35) with no explicit constraints by using the restriction mapping Fg
from (4.34). Applying now Theorem 5.1 to the mapping Fy for all the types of local minimizers
under consideration, we find 2* € —N(0; ©) with ||z*| = 1 such that

0 € D*Fq(z,2)(z*) = D*(F + A( Q)(Z, 2)(2"). (5.28)
Then we use the coderivative sum rule in (5.28) from [17, Proposition 3.12], which gives
D*(F 4+ A ) (7, 2)(z*) C D*F(z, 5)(2") + N(z; Q) (5.29)

under the qualification condition (5.25) and the SNC/PSNC requirements on (F, 2} imposed in
the theorem. Substituting (5.29) into (5.28) and taking into account the assumptions of Theo-
rem 5.1 made for each type of local minimizers under consideration, we arrive at the corresponding
conclusions of assertion ().

To prove assertion {ii), observe that the assumptions therein ensure that every local minimizer
(7, £) to (5.20) is a local minimizer of the same type to the epigraphical problem

minimize Ep(z) subject to x € ; {5.30)

see the proof of Theorem 5.1. Applying now the results of assertion (i) to problem (5.30) and
using the ahove definitions of the basic and singular subdifferentials to F at (%, Z) from (2.9} and
(5.24), respectively, we arrive at the subdifferential condition (5.27) under the assumptions made
in (ii). This completes the proof of the theorem. FAN

Observe that while the qualification and optimality conditions obtained in Theorem 5.2 are
expressed directly via robust pointhased constructions for the initial data (F, @, £1), the assump-
tions imposed in the cases of Pareto and relative Pareto minimizers involve the PSNC property of
the mapping Fg ! and its epigraphical counterpart that are not automatic when dim Z = cc. The
next result presents necessary optimality conditions for (5.20), where the PSNC requirements are
specified given in terms of F and Q but not via their combination Fg. This is a consequence of the
SNC calculus developed in [17]. For simplicity, we formulate a corollary of Theorem 5.2 only for
the case of assertion (i) therein. Note that the qualification condition imposed in this corollary is
tore restrictive (in the case of dimZ < o) than the one (5.25} in the theorem, but it allows us
to establish the required result entirely in terms of the initial data.

Corollary 5.3 {optimality conditions for constrained multiobjective problems under
specified assumptions). Let the qualification condition {5.25) in Theorem 5.2(i) be replaced by

D*F(z,2)(0) N ( — N(z;0)) = {0}, (531)
and let the PSNC assumption on F L be replaced by
e either F! is PSNC ot (Z,%) and © is SNC at &;
e or F' is SNC at (7, 2).
Then condition (5.26) with some 2* € —N(0; ) and ||27| = 1 is necessary for optimality in the

all coses of local minimizers under consideration.

Proof. To justify this statement, we need to check that the qualification condition (5.31) and
either one of the alternative assumptions made in the corollary imply that F; ! is PSNC at (%, 7).
To proceed, observe that the PSNC property of the mapping Fg, Lat (z,Z) is equivalent to the
PSNC property at this point of the set gph Fy in the product space X x Z with respect to Z in
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the sense of [17, Definition 3.3]. Since gph Fy 1= gph F N (Q x Z), we apply the intersection rule
for the PSNC property from [17, Corollary 3.80] to the sets Q4 := gph F" and Q9 := Q2 x Z, which
gives us the required result due to the specific structures of £ and Qs. JAY

Remark 5.4 (comparison with related necessary optimality conditions in multiobjec-
tive optimization). Being new for the cases of relative minimizers under consideration, the
necessary optimality conditions ohtained in this section give significant improvements over recent
results concerning Pareto/efficient minimizers and weak minimizers to multiobjective problems.
Note that necessary optimality conditions for Pareto minimizers close to assertion (i) of Theo-
rem 5.2 are obtained in [23, Theorem 4.1] under a stronger qualification condition in comparison
with (5.25) assuming also that the ordering cone © satisfies a certain “dual compactness” require-
ment, which surely implies the SNC property of © imposed in Theorem 5.2, with no alternative
assumptions on F in [23] when © fails to be dually compact. In [4, Theorem 4.1 and Remark 4.2)]
(ef. also [3] for single-valued objectives), we derive necessary optimality conditions of the subd-
ifferential type (5.27) as in assertion (ii) of Theorem 5.2 for Parete and week Pareto minimizers
assuming that the ordering cone © is pointed and SNC at the origin, with no alternative require-
ments on F if it is not the case.

It is worth mentioning that the notions of local minimizers under consideration can be treated
as particular cases of local extremal points of sets (which has actually been shown in the proof of
Theorem 5.1), and thus the results of [18, Section 5.3] concerning the generolized order optimality
as well as the one defined by closed preference relations are applicable, under appropriate assump-
- tioms, to deriving necessary optimality conditions for the local minimizers considered in this paper
to problems with single objectives. However, the results that could be derived in this way from
[18, Theorem 5.59 and Theorem 5.73] require more restrictive assumptions in comparison with
those in Theorem 5.1 and Theorem 5.2 obtained above.

Remark 5.5 (necessary optimality conditions for multiobjective problems with struc-
tural constraints). We pay the main attention in this section to problemns with general geometric
constrainis just for brevity and simplicity. As it has been demonstrated in [2, 3, 4, 18], results
obtained for single-objective and multiobjective problems with geometric constraints can be di-
rectly employed in deriving necessary optimality conditions for various classes of problems with
structural constraints of functional, operator, equilibrium, and other types. This is based on well-
developed calculi of the generalized differential constructions and SNC properties involved in the
necessary optimality and qualification conditions of the results established in this paper and in
the afore-mentioned publications. We also refer the reader to the papers [22, 23], where necessary
optimality conditions for multiobjective problems with various constraints are derived by using
somewhat different approaches hased nevertheless on the ideas close to the ertremal principle.

Remark 5.6 (suboptimality conditions for multiobjective problems}. This section is
addressed to deriving necessary optimality conditions for different kinds of local minimizers to
multiobjective problems. Having in hand the subdifferential variational principle established in
Theorem 3.6 and following the lines developed in [18, Subsection 5.1.4] and in {3, 20] in single-
objective and multiobjective frameworks, we can also derive suboptimality (or e-optimality) con-
ditions for approrimately optimal solutions to the multiobjective problems under consideration
that are naturally given in “fuzzy” forms while do not require the eristence of minimizers.
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