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OPTIMIZATION AND FEEDBACK DESIGN OF STATE-CONSTRAINED 
PARABOLIC SYSTEMS 

BORJS S. MORDUKHOVICH 1 

Dedicated to Michel Thera 

Abstract. The paper is devoted to optimal control and feedback design of state
constrained paraHolic systems in uncertainty conditions. Problems of this type are among 
the most challenging and difficult in dynamic optimization for any kind of dynamical sYs
tems. We pay the main attention to considering linear multidimensional parabolic' systems 
with Dirichlet boundary controls and pointwise state constraints, while the methods devel
oped in this study are applicable to other kit;1ds of boundary controls and dynamical systems 
of the parabolic type. The feedback design problem is formulated in the minimax sense to 
ensure stabilization of transients within the prescribed diapason and robust stability of the 
closed-loop control system under all feasible perturbations with minimizing an integral cost 
functional in the worst perturbation case. Exploiting certain fundamental properties of the 
parabolic dynamics, we determine the worst perturbations in the minimax control problem 
and efficiently solve the associated optimal control problems for approximating ODE and 
the original PDE systems with pointwise state constraints: In this way, using the transient 
monotonicity and turnpike asymptotic properties of the underlying parabolic dynamics on 
the infinite horizon, we compute optimal (in the minimax sense) parameters of the easily 
implemented while rigorously justified three, positional suboptimal structure of the feed
back boundary controls that ensure robust stability of the closed-loop and highly nonlinear 
parabolic control system uD.der consideration. 

Key words. dynamic optimization, parabolic systems, boundary controls, state con
straints, uncertainty conditions, feedback minimax design, closed-loop stability 

AMS subject classifications. 49K20, 49K35, 49N35, 93B50, 93D09 

Abbreviated title. Optimization and feedback design of parabolic systems 

1 Problem Formulation and Initial Discussions 

This paper concerns optimal control and feedback design problems for linear multidimen
sional parabolic systems with irregular boundary controls and uncertain distributed per
turbations of the parabolic dynamics subject to pointwise state and control constraints. 
Problems of this type are among the most challenging and difficult in dynamic optimiza
tion and control theory for any kind of dynamical/evolution systems governed by ordinary 
differential, partial differential, and functional differential equations and inclusions. 

The methodology developed in this paper largely involves a number of approximation 
techniques, which is in the mainstream direction of modern variational analysis and its 
applications to optimization and control; see, e.g., [13] and the references therein. Note 
that efficient techniques of variational analysis has been recently applied by Michel Thera 

1 Department of Mathematics, Wayne State University, Detroit, Michigan 48202 (boris@math.wayne.edu). 
This research was partly supported by the USA Nationa1 Science Foundation under grants DMS-0304989 
and DMS-0603846 and by the Australian Research Council under grant DP-0451168. 
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and his collaborators [1 [ to evolution variational inequalities related to dynamic optimization 
problems for partial differential equations and their important physical applications. 

The primary motivation for our study came from practical design problems of automatic 
control of the soil groundwater regime in irrigation engineering networks functioning under 
uncertain weather and environmental conditions; we refer the' reader to the author's paper 
[12] for the description of the original problem and its simplified one-dimensional modeling. 

In this paper we consider a more realistic model motivated by [12] while certainly being 
of independent interest for dynamic optimization, open-loop and closed-loop control, and 
robust stability with many other potential applications. Let us present a rigorous mathe
matical formulation of the problem to which we pay the main attention in this paper. 

The system dynamics in the problem under consideration is given by the multidimen
sional linear parabolic equation 

{ 

~~ + Ay = w(t) a.e. in Q := [0, T] x fl, 

y(O,x) = 0, x E fl, 
y(t,x) =u(t), (t,x) E I::= [O,T] x r 

(1.1) 

on the time interval [0, T] with controls u(-) acting in the Dirichlet boundary conditions and 
distributed perturbations w( ·) on the right-hand side of the parabolic equation. In (1.1 ), A 
is a self-adjoint and uniformly strongly elliptic operator on £ 2 (fl) defined by 

n a 8y 
Ay := - L - (ai;(x)-) - cy, 

.. I axi ax3· t,J= 

(1.2) 

where fl c !Rn is an open bounded domain with the boundary r that is supposed to be a 
sufficiently smooth ( n - 1 )-dimensional manifold in !Rn. 

The sets of admissible controls U and admissible perturbations W are given by 

U := { u E L""[O,TJI -a:::; u(t) :::; a a.e. t E [0, T] }, {1.3) 

W:={wEL""[O,TJI-(3:::;w(t):::;(3 a.e. tE[O,TJ} (1.4) 

with some fixed bounds a, (3 > 0 in the pointwise constraints (1.3) and (1.4). 
As is well known, the Dirichlet boundary conditions offer the least regularity properties 

of the parabolic dynamics being the most challenging in control theory for parabolic systems; 
see, e.g., [9, 13, 17]. By [10], for any feasible pair ( u, w) E U x W there is a unique generalized 
solution y E L2(Q) to (1.1). Fixing an arbitrary point xo E fl, observe by [2, Theorem 3.9] 
that we can evaluate y(t, xo) for a.e. t E [0, T]. 

The underlying requirement on the system performance is to stabilize transients y(t,xo) 
near the initial equilibrium state y(x, 0) ;; 0 with a given accuracy 'I > 0 during the whole 
dynamic process. This is formalized via the pointwise state constraints 

-'1:::; y(t,xo):::; 'I a.e. t E [0, T]. (1.5) 

A characteristic feature of the dynamical process described by (1.1) is the uncertainty 
of perturbations w E W: we can operate only with the bound (3 of the admissible region 
(1.4). Thus we can keep the system transients y(t, xo) within the prescribed stabilization 
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region (1.5) only by using feedback boundary controls u(·) depending on the current state 
position E = y(t, xo) for each t E [0, T]. 

To formalize this description, consider any function f: JR. --> JR. and construct boundary 
controls in (1.1) via the feedback law 

u(t) := f(y(t,xo)), t E [O,T]. (1.6) 

We say that such a function f defines a feasible feedback regulator if it generates controls 
u(t) by (1.6) belonging to the admissible set U from (1.3) and keeps the corresponding 
transients y(t, xo) of (1.1) within the prescribed constraint area (1.5) for every admissible 
perturbation w E W from (1.4). To estimate the quality of feasible regulators f•= f(E), 
impose the natural summability condition 

lf('Y(t))l E L1[0,T] whenever 7(t) E L2[0,T] 

on f and consider the (energy-type) cost functional 

J(f) :=max{ {T lf(y(t,xo))ldt}. 
wEW Jo 

(1.7) 

(1.8) 

The maximum operation in (1.8) reflects the required control energy needed to neutralize 
the adverse effect of the worst perturbations from (1.4) and to keep the state performance 
within the prescribed area (1.5). Finally, denote by :F the set of all feasible feedback 
regulators satisfying the su!llmability condition (1. 7) and formulate the minimax feedback 
control problem (P) as follows: 

,;,inimize J(f) over f E :F. (1.9) 
•, 

It has been well recogi:tized in control theory and applications that feedback control 
problems are the most challenging and important for any type of dynamical systems, while 
PDE systems provide additional difficulties and much less investigated in comparison with 
the ODE dynam)cs; see more discussions and references in [13]. Furthermore, significant 
complications come from pointwise/hard state constraints, which are of high nontriviality 
even for open-look control problems. We are not familiar with any constructive device 
applicable to the feedback control problem ( P) under consideration among a variety of 
approaches and results available in the theories of differential games, H00-control, Riccati's 
feedback synthesis, and other developments in general settings; see, e.g., [3, 7, 9] with the 
discussions and references therein. 

The constructive approach presented in this paper is initiated in [12] for the case of 
the one-dimensional heat equation in (1.1). Further results in this direction have been 
recently obtained in [14] for the case of Dirichlet boundary controls and in [15] for similar 
problems with boundary controls acting in the mixed/Robin boundary conditions. This 
paper, dealing mainly with Dirichlet boundary controls (although the proofs and results 
can be extended to the case of controls in the Neumann and mixed boundary conditions), 
contains an extension of the feedback control results from [14] to the more general class 
of feedback regulators in (1.6) without imposing the nondecreasing requirement on f as in 
[14, 15] and also significantly simplifies-by using a new device-the proofs of the open-loop 
control results for approximating ODE problems with pointwisestate constraints. 

The rest of the paper is organized as follows. In Section 2 we formulate and discuss the 
basic (rather general) assumptions on the initial data of (P) and present some preliminary 
material on parabolic systems broadly used in proofs of the main results. 
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Section 3 deals with detecting the worst perturbations in the feedback control problem 
(P) and then solving auxiliary open-loop optimal control problems corresponding to (P) 
in the case of realizing the worst perturbations. It is justified, based on the fundamental 
Maximum Principle for the parabolic dynamics and the convolution representation of the 
transients that, for a large class of feedback functions r in (1.6), the worst perturbations 
happen to be the extreme ones in the admissible region (1.4). Considering further the result
ing open-loop parabolic control problem under the worst perturbations, we constructively 
approximate it by the corresponding ODE optimal control systems with state constraints 
and justify the possibility to determine an appropriate suboptimal control structure for 
the parabolic system on a sufficiently large time interval by· studying the first-order ODE 
approximation. The latter state-constrained optimal control problem is precisely solved by 
using appropriate tools of ODE optimal control. Finally in this section, we optimize the 
justified suboptimal open-loop control structure along the parabolic dynamicswith taking 
into account the imposed state constraints. 

In Section 4 we employ the open-loop control results from Section 3 and the underlying 
monotonicity property of the parabolic dynamics to justify the structure of three-positional 
feedback regulator in the Dirichlet boundary conditions of the original parabolic system and 
optimize its parameters in such a way that the obtained closed-loop control system ensures 
the required state performance within the prescribed constraint region under any admissible 
perturbation and, furthermore, provides the best resuit (in the sense of minimizi'f)g the cost 
functional) when the worst/maximum perturbations are realized. The resulting closed-loop 
control system is highly nonlinear and can loose its robust stability (stability in the large) 
maintaining the required state performance in a self-vibrating regime. Finally in Section 4, 
we establish efficient conditions for robust stability of the closed-loop system by developing 
a variational approach to robust stability that reduces the stability issue to a certain open-
loop optimal control problem on the infinite horizon. · 

2 Basic Assumptions and Preliminaries 

In this paper we consider the parabolic system (1.1), where the differential operator A in 
(1.2) is self-adjoint and uniformly strongly elliptic satisfying the properties: 

aij E C00 (cl!1), aij(x) = aji(x), x E !1, i, j = 1, ... , n, 
n n 

L aij(x)viVj:::: II L v?, X E !1, (v1, ... , vn) E IRn 
i,j=l i=l 

with some 11 > 0 and an arbitrary constant c E lR in (1.2). 
Consider further the homogeneous boundary value problem 

{ 
-A</>+A¢=0, 
<Plan= 0 

(2.1) 

(2.2) 

and recall that the number component A in the nontrivial pair (A,¢) satisfying (2.2) is an 
eigenvalue, while ¢ is the corresponding eigenfunction for the operator A under the Dirichlet 
boundary condition. From assumptions (2.1) we have the following properties: 

(a) the eigenvalues Ai, i = 1, 2, ... , are real and form a nondecreasing sequence that 
accumulates only at oo; 
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(b) the corresponding orthonormal system of eigenvalues {¢;(x)} C 0 00 (!1) is complete 
in the space L2(!1); 

(c) the first eigenvalue Al is simple and hM the positive eigenfunction ¢1(x); 
(d) c +A> 0 for any eigenvalue of A with an arbitrary constant c E lR from (1.2). 

The proofs of properties (a)-( c) can be found in [4, Theorems 8.37, 8.38]; the one for 
(d) is given in [14, Proposition 2.1]. 

To establish th~ main results of this paper, we need to add the only one extra hypothesis 
to the standard assumptions in (2.1): 

(H) The first eigenvalue Al of the operator A is positive. 

The general sufficient condition for the fulfillment of (H) is obtained in [14, Proposition 2.2] 
in terms of the initial data of A and the diameter d of the domain !1 c JRn: 

2nv 
c < -d2 , where d := sup llx1 - x2[[. 

X1,:x2EO 

Thus, by properties (a), (c) and assumption (H), we have 

0 < Al < A2 $ Aa $ ... $ .... (2.3) 

As mentioned above, for every feasible input pair (u,w) E L00 [0,T] x L00[0,T] the 
parabolic system (1.1) admits a unique generalized solution y E L2(Q). The next result, 
established in [14, Proposition 2.3] in full generality, gives a convenient spectral represe11r 
tation of this solution via a 'Fourier-like series involving the eigenvalues and eigenfunctions 
(A;,¢,) of the operator A. 

Proposition 2.1 (spectral representation of transients). Let (u, w) E L2{0, T] •X 

L2[0, T] in (1.1) under assu;-,ptions (2.1) on the strongly elliptic operator A, and let (Ai, cf>i) 
be the corresponding eigenvalues and eigenfunctions of A with the weights 

i"i :=in t/>;(x) dx, i = 1, 2, .... 

Then the unique solution y E L2 (Q) to (1.1) admits the spectral representation 

00 {t {t 
y(t,x) = t;~"i(Jo w(O)e-";6dO+(c+Ai) Jo u(O)e-";6de)e--";'¢;(x), (2.4) 

where the series in (2.4) strongly converges in the space L2(Q). 

Finally in this section, we present the following monotonicity property of the parabolic 
dynamics with respect to both boundary controls and distributed perturbations established 
in [14, Theorem 3.1] on the base of the classical Maximum Principle for parabolic systems 
[8] and an additional smooth approximation procedure dealing with irregular data (u, w). 

Proposition 2.2 (monotonicity property of the parabolic dynamics). Let (u 1 ,wl) 
and (u2, w2) be admissible control-perturbation pairs from U x W such that 

u1(t) :2: u2(t) and w1(t);:::: w2(t) a. e. t E [0, T], 

and let Yl, Y2 E L2(Q) be the corresponding generalized solutions to the parabolic system 
(1.1). Then we have the relationship 

Yl(t,x) :2: Y2(t,x) a.e. (t,x) E Q. 
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' 3 Optimal Control under Worst Perturbations 

We start this section with determining the worst perturbations in the original minimax 
control problem (P). A conventional approach to minimax optimal solutions is to identify 
them with saddle points consisting, in the setting of problem (P), of interrelated pairs 
( u, w) of worst perturbations and optimal controls. However, we show in what follows that 
in our case the worst perturbations happen to be the extreme ones w = {3 and w = -{3 
among admissible perturbations in (1.4) for any feasible feedback law (1.6) defined by an 
odd function f(e). It is a significant observation allowing us to decompose the minimax 
feedback control problem and to develop an efficient approach to the minimax control 
design considering first the corresponding open-loop system reaction to the revealed worst 
perturbations. The underlying result for worst perturbations is partly due to tp.e specific 
structures of the cost functional and boundary controls in (P), related to each other, while 
largely due to the fundamental Maximum Principle for the parabolic dynamics. Our new 
result extends the previous one from [14] by avoiding the rather restrictive assumption on 
nonincreasing property of feedback f and providing a new proof based on the convolution 
representation of the transients recently obtained in [16]. 

Theorem 3.1 (worst perturbations). In addition to the standing assumptions of Sec
tion 2, suppose that a feasible feedback f E :F is an odd function. Then the worst perturba
tions w(t) providing the maximum value to the integml functional in (1.8} over all w E W 
are the extreme ones from the admissible area: 

w = {3 and w = -{3. (3.1) 

Proof. First observe that the admissible control, perturbation, and state constraint areas 
in (1.3)-(1.5) are fully symmetric with respect to the origin. To keep this symmetry in 
the feedback system (1.1) and (1.6) with the cost functional (1.8), we considerfeedback 
laws in (1.6) given by odd functions f = J(e) on JR. By [16, Theorem 5.1], the transients 
e(t) := y(t, xo) of (1.1) generated by admissible pairs (u, w) E U X W have the convolution 
representation for all t E [0, T]: 

e(t) = cp(t) * w(t) + 1/J(t) * u(t) := l cp(t- s)w(s) ds + l'I/J(t- s)u(s) ds, (3.2) 

where the functions 1/J and <p are positive on [0, T]-due to the Maximum Principle for the 
parabolic dynamics-and are independent of (u, w). It follows from (3.2) by the discussed 
symmetry of (P) that we can confine ourselves to considering only the one-sided case 

0 ::; w(t) ::; {3 and -a ::; u(t) ::; 0 a.e. t E [0, T], (3.3) 

since the other case is completely symmetric. 
To proceed further, fix an odd feedback function f E :F aJld, given an arbitrary pertur

bation w(t) from (3.3), get by (1.6) the corresponding boundary control u(t) in (1.1) formed 
via this feedback law f: 

u(t) = f(y(t,xo)) = f(W)) a.e. t E [O,T]. 

Then the cost functional (1.8) is written as 

(3.4) 
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due to the control constraints in (3.3). By the convolution representation (3.2), the state 
constraints (1.5) imposed on y(t,xo) = e(t) reduces to 

1T <p(t- s)w(s) ds + 1T '1/J(t- s)u(sj ds ~ 1), 0 ~ t ~ T. {3.5) 

Since both functions <p and '1/J are positive on [0, T], it follo,ws directly from (3.5) that the. 
bigger magnitude of a perturbation is, the more control of the opposite sign should be applied 
to neutralize this perturbation in the sense of ensuring the required state performance (3.5). 
Thus the maximum value of (3.4) subject to (3.3) and (3.5) corresponds to the maximal 
perturbation w(t) : {3 on [0, T], which requires the maximal control response to k"''P {3'.5) 
along the parabolic dynaroics (1.1). This justifies the desired conclusion for the extreme 
upper perturbation w : {3 and, by symmetry, for its lower counterpart w : -{3. 6 

, 
In the rest of this section we consider the specification of problem (P) under realizing 

the worst perturbations in the system. By the above discussions, it is sufficient to study 
only the one-sided case (3.3) when the worst perturbation is w : {3. Taking into account 
that in this case the control' systems does not involve any uncertainty, we associate with 
(P) as w : {3 the following open-loop optimal control problem (P): 

minimize J(u) := -1Tu(t) dt (3.6) 

along the parabolic system . 

{

. ~~ +Ay = {3 a.e. (t,x) E Q, 
, y(O,x) = 0, x E !1, 

y(t,x) = u(t) a.e. (t,x) E.E 

under the pointwise control and state constraints 

'\0 E L00 [0, T] with -a ~ u(t) ~ 0 a.e. t E [0, T], 

y(·,xo) E L2[0,T] with y(t,xo) ~ '7 a.e. t E [O,T]. 

_(3.7) 

(3.8) 

(3.9) 

Observe that (P) is a state-constrained Dirichlet boundary control problem, which was 
considered in [13, 17] and the references therein in more generality with deriving rather 

· complicated necessary optimality conditions involving Borel measures, which are difficult 
to apply to computing optimal or suboptimal controls. 

In what follows we develop another strategy to solve (P) that is based on its approx
imation by ODE state-constrained control problems and determining in this way an im
.Plementable suboptimal control structure to (P), which is then optimized along the state, 
constrained parabolic dynaroics (3.7). Let us use the spectral representation 

co {3 t 
y(t,xo) = 8~-'{>-, (e~'' -1) + (c+ A;) 1 u{8)e~•0de)e-~''¢,(x0) (3.10) 

of solutions to the parabolic system (3.7) at x = xo, which follows from Proposition 2.1. 
Taking any natural N = 1, 2, ... , replace series (3.10) by the finite N-sum 

yN(t,xo) = ~J.Li(~ (e~'' ~ 1) + (c+A;) 1' u(8)e~>'ede)e-~''¢;(xo) (3.11) 
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' for which yN(t,xo)---> y(t,x0) strongly in L2[0,T]. It is easy to see that yN(t,xo) in (3.11) 
is represented as the sum 

N 

yN(t,xo) = LYi(t), 0 ~ t ~ T, ' (3.12) 
i=l 

where each Yi(t), i = 1, ... , N, satisfies the corresponding ODE:· 

1ii = -AiYi+ l'i<l>i(xo)(,6 + (c + Ai)u(t)) a.e. t E [0, 1'], Yi(O) = 0. (3.13) 

To proceed, we observe that the original feedback control problems (P) as well as the 
open-loop optimal control problem (P) are formulated on the fixed time interval [0, TJ. In 
many applications the time duration T is large enough and can be taken conventionally as 
the infinite horizon, which allows us to involve t -+ oo in the asymptotic analysis. In the 
latter case the inequalities in (2.3) obviously ensure the dominance of the first terms in the 
exponential series and finite sums (3.10)-(3.12) as t-+ oo. 

Having this in mind, our special attention is paid to the case of N = 1 in (3.11)-(3.13), 
which provides an adequate ODE approximation of the PDE system under consideration on. 
sufficiimtly large time intervals and thus allows us to determine an appropriate suboptimal 
control structure in the open-loop problem (P) for the parabolic dynamics (3.7): Then we 
optimize parameters of this suboptimal structure along the initial parabolic system. 

By the afore-mentioned symmetry, it is sufficient to consider the following open-loop 
control problem (P,) approximating the PDE dynamics at x = xo: minimize the cost func
tional (3.6) over admissible controls u(t) satisfying the constraints in (3.8) and generating 
absolutely continuous trajectories y: [0, TJ ---> IR of the ODE system 

(3.14) 

subject to the pointwise state constraints 

y(t) ~ 7J for all t E [0, TJ. (3.15) 

Observe that the presence of the state constraints (3.15) places problem (Pi) among difficult 
problems for ODE control. Standard optimality conditions for such problems involve Borel 
measures that make them challenging for implementations and applications. In [14, 15], we 
developed an efficient while rather involved procedure to study (P,) by using a penalty-type 
approximation of state constraints and then by passing to the limit in optimality conditions 
for penalized approximating problems. 

Now we use a new device, which takes into account certain specific features of (Pi) 
and allows us to obtain the exact solution to this problem by a direct application of less 
conventional and less known results·of ODE control theory for state-constrained systems. 

Theorem 3.2 (exact solution to the state-constrained ODE control problem). 
Assume that both conditions 

(3.16) 

are satisfied and that the time duration T is sufficiently large: 

T > ln l'l<i>l(xo),6 
l'l<i>l(xo),6- A17J 

(3.17) 
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Define the switching time 'f E {0, T) by 

7 :=..!._In /'t</>i(xo)f3 
At 1't¢t(xo)f3- AJ1} 

(3.18) 

and consider the piecewise constant, two-positional control 

{ 

o if t e[O, r), 
, u(t) = v := At7J -l't<l>t(xo)f3 if t E ['F, T]. 

l't<l>t(xo)(c+ At) 
(3.19) 

Then control (3.19) is optimal to problem (PI), i.e., it .is feasible with respect to both con
.trol constraints (3.8) and state constraints (3.15) and gives the minimum value to the cost 
functional (3.6) subject to these constraints along the dynamical system {3.14). 

' 
Proof. We begin with observing that if either the first condition (3.16) is not satisfied, or it 
is satisfied while (3.17) is not, then the trivial control u(t) = 0 on [0, T] is feasible and hence 
optimal to (Pt); see [14]. F\Jrthermore, it is proved in [14] that if both above conditions 
are satisfied while the second one in (3.16) is ilot,then problem (Pt) does not have feasible 
controls. On the other hand, we can directly check, integrating (3.14) and using properties 
(c) and (d) ofthe operator kpresented in Section 2, that control (3.19) with the switching 
time (3.18) is well defined and feasible to (Pt) under the fulfillment of (3.16) and {3.17). 
Let us show that control (3.19) is actually optimal to (Pt) under the assumptions made. 

In what follows we empley optimality conditions of the Pontryagin maximum principle 
type for state-:-constrained control problems, which do not involve measures-or, more pre
cisely, the corresponding meas)lre multiplier reduces to a density. The conditions used below 
were initiated probably in [tl], with a he)lristic proof, and then were rigoro)lsly j)JStijied a11d 
developed in [11]; see also S)lrvey [5] for more details and discussions. ' 

Applying the necessary optimality conditions from [5, Theorem 4.1], we observe first 
that the state constraint (3.15) in (PI) is of order one and satisfies the regularity condition 

a(iJ) au =i't</>t(xo)(c+At)rfO 

by eq)lation (3.14), properties (c) and (d), and assumption (H) from Section 2. In this case 
the corresponding measure in the necessary optimality conditions is a density o(t)dt, and 

. hence the Hamilton-Pontryagin function in (PI) is 

H(y,p,o,u) = -u+p[ -AtY+I't<l>t(xo)(f3+(c+At)u)] +<l(y-1}), (3.20) 

where p E IR is the adjoint variable. By (3.20) the adjoint eq)lation is 

p = - aH = AtP- o 0 :$ t :$ T, ay , (3.21) 

with p(T) 2': 0, since the state constraint (3.15) is obviously active at t = T. FUrther, we 
form the switching function s(t) involving of the control coefficients in (3.20) as 

s(t) = -1 + p(t)l't<l>t(xo)(c +At), 0 :S:: t :S:: T. (3.22) 

By definition of the switching f)lnction and by the second assumption in (3.16) we have that 
the switching f)lnction vanishes 

s(t) = 0 for all t E [r, T] (3.23) 
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on each boundary arc, Le., on the part of the corresponding trajeci;ory that entirely lies on 
the state constraint boundary starting with the switching time T when the trajeci;ory hits 
the constraint boundary y(r) ='I· It follows from (3.22) and (3.23) that 

1 
p(t) = , T ::; t ::; T.' (3.24) 

l'l¢1(xo)(c + >.1) 

Furthermore, we have by differentiating the expression (3.22) for J(t) on [r, T] and by taking 
(3.21) and (3.23) into account that 

s(t) = l'l¢1(xo)(c + >.l)p(t) = l'lrpl(xo)(c+ >.l)(>.lp(t)- o,(t)) = 0, T ::;.t::; T, 

which yields >.1p(t) -o(t) = 0 on [r,T] and, by (3.24), allows us to calculate u(t) on [r,T]: 

AI 
o(t) = ( )( l > o, r::; t::; T. 

1'1"'1 xo c +AI 

Further, let us consider the corresponding interior arc of ( 3.14) under the state constraint 
(3.15), i.e., the part of y(t) for which y(t) <'I as 0 ::; t < T. Taking into account that o(t) = 0 
fortE [0, r) and using relationships (3.21) and (3.24), we get the Cauchy problem 

p = >. 1p on 0::; t < T with p(r) = ¢ ( ~( >. ) 
1'1 I Xo C + I 

for the adjoint arc p(t) on [0, r], which has the unique solution 

p(t) = 
1 e~l(l-T), 0::; t::; T. 

l'l¢1(xo)(c + >-1) 

The latter yields, by the switching function formula (3.22), that s(t) < 0 for 0 ::; t < T. 

By employing the minimum condition from [5, Theorem 4.1], we conclude that any optimal 
control u(t) to (P1) must satisfy the relationship 

s(t)u(t) = min s(t)u, 0 ::; t ::; T, 
-a:Su$0 

(3.25) 

which immediately implies that u(t) = 0 for 0 ::; t < r, since the switching function is 
negative on this interval. Observe that the minimum condition (3.25) does not give any 
information about optimal controls on [r, T], where the switching function s(t) vanishes. 
This means that [r, T] is a singular control interval, which [0, T) provides a bang-bang mode. 

It remains to find, in the framework of this procedure, optimal values of the switching 
time 'f and control u(t) on the singularity interval ['f, T]. It follows from the above arguments 
that the optimal switching time T = 'f can be found from the entry condition y('f) = .,.,, 
where y(t) is the solution to the state equation (3.14) with u(t) = 0. Integrating this 
system, we arrive at the expression (3.18) for 'f and easily check that 0 < 'f < T under the 
assumptions made. To determine u(t) on ['f, T], recall that it corresponds to the boundary 
arc y(t) = 'I on ['f, T]. Hence y(t) = 0 on this interval, and we get the constant value 
u(t) = v on ['f, T] from formula (3.19). 

Thus, the above procedure allows us to compute the control function u(t) in (3.19) that 
satisfies the necessary optimality conditions from [5, Theorem 4.1]. Since these conditions 
are also sufficient for optimality in problem (P,), by the linear-convex structure of this 
problem (see [5, Theorem 8.2]), we complete the proof of the theorem. /':, 

Based on the discussions presented right before formulating Theorem 3.2, we can con
sider the optimal control found in this theorem as a first-order approximation of an optimal 
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solution to the open-loop control problem (P) for the state-constrained parabolic system 
(3. 7). Moreover, this approximation is fairly adequate, under the basic assumption (H) 
made in Section 2, when the time interval [0, T] is sufficiently large. 

We can do even better in what follows. Let us accept a two-positional control structure 
of the exact solution to problem (Pi) founded in Theorem 3.2 as a suboptimal structure of 
feasible controls to problem (P) and optimize its parameters along the original parabolic. 
dynamics. This leads us to the following parametric dynamic optimization problem (P) for 
the state-constrained parabolic system under consideration: 

minimize J(v, r) :=-loT u(t) dt 

over admissible Dirichlet boundary controls of the form 
' 

u(t) = { 0 ~f t E [O,r), 
-v 1f t E [r,T] 

I (3.26) 

(3.27) 

subject to the constraints on ·control recourses v and switching control times T given by 

{3.28) 

and the pointwise state constraints (3.9) on trajectories of the parabolic systein (3.7). 
The next theorem gives exact solutions to problem (P) in the case when the time interval 

[0, T] is sufficiently large and also in the asymptotic case of this problem when T = oo, i.e., 
when (P) is considered on .the infinite horizon [0, oo]. 

Theorem 3.3 (optimal parameters of open-loop suboptimal control for the s~ate
constrained parabolic system). In addition to the standing assumptio,;s of S~ction '2, 
impose the following conditions: 

0 <7!3- 'f/:::; min { a(l+ C')'), 
13~1:>-7) }, (3.29) 

where 'Y is the aggregate spectral parameter of the elliptic operator A from (1.2) defined by 

Let To > 0 be a unique solution to the equation 

_ f.l( ~ JJ;¢;(xo) ->.;t) 
"1-JJ"!-L..J >-· e ' 

i=l t 

(3.30) 

which exists under the assumptions made. Then for all T > To the equation 

f JJ;¢~(xo) e->.;T[(c + A;)('Yi3- 'f/)e>.;T- !3(1 + Cl)] = 0 
i=l ~ 

(3.31) 

has a unique solution T = 'f(T) E (0, T) and the boundary control 

{

0 iftE[O,r), 

uT(t) = 'f/- "!!3 := -v if t E [r T] 
1+C')' ' 

(3.32) 
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~ ' 
is feasible to (P) whenever 0 < T :<:: T(T). When T = T(T), the control u(t) := u7(T)(t) 

is optimal to problem (P) among any controls of type (3.32). Furthermore, T(T) l 'f"' as 
T ---> oo, where the asymptotically optimal switching time 'f"' is computed by 

T00 :=~In ,6(1 + Cl') 
AJ (c + .>.,)(/,6- 'rJ) 

(3.33) 

and is maximal among the switching times T ~ 0 generating controls (3.32) with T = oo, 
which all are admissible by the state constraints (3.9) along the parabolic system (3.7) on 
the infinite horizon [0, oo). 

Proof. Let u(t) be a boundary control of form (3.27) satisfying (3.28), and let y(t,x) be 
the corresponding trajectory of (3. 7) generated by this control. Denoting • 

y(t) := y(t,xo) on [O,r] and y(t;r) := y(t,xo) on [r,T] 

and employing Proposition 2.1, we have the representations: 

(3.34) 

y(t; r) = -y,6- (1 + C!')V + f: l'icP~(xo) e->-,t [(c + A;)ve>-'7
- iJ], t E [r, T[, 

i=l t 

(3.35) 

with y(r) = y(r; r). By -y,6- 7J > 0, the equation y(t) = 'r} in (3.30) has a solution t =To, 
which is unique by the monotonicity of y(t) in (3.34). Taking ~ow T > To and using the 
monotonicity of y(t; r) with respect tor that follows from Proposition 2.2, we conclude that 
the equation y(T; r(T)) = 7}, which reduces to (3.31) due to (3.35), has a unique solution 
T(T) E (0, T). Furthermore, the same monotonicity property and the explicit representation 
of y(t; r) in (3.8) imply under the assumptions made that y(t; r) :<:: 'rJ whenever t E [0, T] for 
every transient generated by the controls u7 (t) from (3.32) with r :<:: T(T). Thus T = r(T) 
is maximal among all T generating feasible controls to (13) with the control resource v. 
It follows directly from structure (3.26) of the cost functional in (P) that the Dirichlet 
boundary control V:(t) = u7 (t) is indeed optimal to problem (P) among any feasible controls 
(3.32) whenever T > To. 

It remains to consider the asymptotic case of problem (P) as T ---> oo and its behavior 
on the infinite horizon. Similarly to the prof of Proposition 2.2 based on the Maximum 
Principle for the parabolic dynamics, we conclude that the optimal switching time T(T) 
in (P) is strictly decreasing in T and it is obviously bounded from below. Thus T(T) 
converges as T ---> oo, and its limit 'f"' reduces to that computed in (3.33) due to the 
eigenvalue properties (2.3), which reflect the first eigenvalue dominance. 

Further. we observe directly from (3.35) that the control u 7 (t) from (3.32) with T = oo 
and r = T00 preserves the state constraints (3.9) for the corresponding transient in (3.34) 
and (3.35) whenever t ~ 0, i.e., this control is feasible to problem (P) on the infinite horizon 
[0, oo ). Furthermore, T00 is the maximal switching time T in (3.32) satisfying this property. 
First of all. we easily check that the state constraints (3.9) are satisfied on [0, oo) if T < 7'00 

in (3.32) with T = oo. Considering now any r > 'f"', apply the Fermat stationary rule to 
(3.35) on the open interval (r, oo) by differentiating y(t; r) in t. We check in this way that 
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the maximum of y(t; r) over ( r, oo) is bigger than ~ whenever T > 'F'. This completes the 
proof of the theorem. 6. 

Observe that the asymptotically optimal switching time 'F' in (3.33) can be computed 
directly from the condition of vanishing the first term in the series of (3.35): 

(c + AJ)ve>-1'- (3 = 0 

with v = v computed in (3.32). This justifies the simple and convenient first term rule to 
deal with the panlbolic dynamics under the basic assumption (H) as t __, oo. 

The results obtained above describe the best possible reaction of the control systerri to 
keep the required state constraints under the realization of the upper /maximal case of the 
worst perturbations w(t) = (3 on [0, T]. Due to the full symmetry of the initial problem (P) 
discussed in Section 2, the lower case w(t)'= -(3 of the worst perturbations on [O,TJ can 
be considered similarly by using open-loop Dirichlet boundary controls 

u(t) = { 

for the linear parabolic system 

0 if t E [O,r), 
v E [O,aj if t E [r,Tj 

ot + Ay = -(3 a.e. (t, x) E Q, 

{ 

{}y 

y(O,x) = 0, x E fl, 
· y(t, x) = u(t) a.e. (t, x) E r: 

subject to the pointwise state constraints 

(3.36) 

(3.37) 

y(·,xo) E L2[0;T] with y(t,xo) ::0: -1) a.e. t E [O,T]. •, (3.38) 

Then, taking into account the sign changes in (3.36)-(3.38), we have exactly the 
formulas for computing optimal parameters (v, 'f(T), 'F') in the open-loop problem 

·;,inimize loT u(t) dt over constraints (3.36)-(3.38) 

and its asymptotic infinite horizon version. 

same 

(3.39) 

Finally in this section, we conclude from the results of Theorem 3.3 and their counter
parts for the lower case of the worst perturbations that the passage to the infinite horizon 
allows us to significantly simplify optimal solutions to the open-loop control problems under 
consideration and to arrive at the convenient analytic formulas for computing their optimal 
parameters. The discovered phenomenon reveals a certain turnpike property, which hap
pens to be a characteristic feature of such state-constrained control problems governed by 
the parabolic dynamics. 

4 Feedback Control Design and Robust Stability of the Closed
Loop Parabolic System 

The last section of the paper is devoted to the construction and justification of a suboptimal 
feedback regulator for the original minimax feedback control problem (P) and then comput
ing the range of parameters of this regulator, which ensures robust stability of the designed 
closed-loop control system. 
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• 
Recall that the purpose of feedback controls in (P) is to keep transients within the given 

state constraint region (1.5) for all uncertain perturbations w E W from (1.4) subject to 
the imposed constrains on controls in such a way that the cost functional (1.8) is minimized 
under the realization of the worst perturbations. The results obtained above for computing 
(sub )optimal open-loop controls in the case of the worst perturbations allow us to justify 
the following suboptimal structure f "'f({) of feedback controls (1.6) acting in the Dirichlet 
boundary conditions of the parabolic system (1.1): 

{ 

-v if C2: u, 
f({)"' 0 if -u<{<u,. 

v if { ::; -()' 
(4.1) 

describing a three-positional feedback regulator with the "dead region" ( -0', 0' )~ Observe 
that the feedback control law f({) in (4.1) is given by an odd function satisfying all the 
requirements of Theorem 3.1. 

The feedback control design, in the minimax sense of problem (P), reduces therefore to 
computing appropriate parameters (v, u) in (4.1) such that the resulting closed-loop control 
system keeps the state position { "' y(t, xo) under observation within the admissible state 
constraint area (1.5) for all uncertain perturbation wE W and then ensures the minimum 
value of the cost functional (1.8) under the realization of the worst perturbations. 

The next theorem provides in the exact calculation of the optimal value u(T) on the 
given time interval [0, T] and fully describes its limiting/asymptotic behavior as T -> oo, 
which corresponds to problem (P) on the infinite horizon. 

Theorem 4.1 (optimal parameters of the three-positional regulator in the mini
max feedback control problem for the parabolic system). Let the feedback boundary 
control regulator f(O in (1.6) and (1.1) have the suboptima·l three-positional structure (4.1) 
justified above for the minimax problem (P) under assumptions (3.29), let To be a unique so
lution to equation (3.30), and let the control resource v be computed in (3.32). The following 
assertions hold: 

(i) For any T > To the feedback control (4.1) is feasible to (P) on the time interval [0, T] 
whenever 0 < a ::; a(T) with 

a(T) '"' ,6 (I'_ f Jl;¢~(xo) e-!.;r(T)), 
i=l z 

(4.2) 

where 7(T) is a unique solution to the transcendental eqv.ation (3.31). Moreover, the dead 
region (- a(T),a(T)) is optimal to problem (P) with the feedback control structure (4.1). 

(ii) We have u(T) l 0' as T-> oo, where the number 0'00 
-;;,: 0 is computed by 

0""' '"' !3(1' _ ~ f";¢;(xo) [(c + .>'l)(/'!3- '7)] ~) 
~ .\; /3(1 + q) 
i=l 

(4.3) 

being in fact positive v.nder the condition 

" ,6(1+q) 
/';> - '7 < ' . c+ "'1 

(4.4) 

In this case the three-positional regulator (4.1) with the resource v E (0, a] computed in 
(3.32) is feasible to (P) on [0, oo) whenever 0 < o ::; 0""', while the dead region (- 0""', 0'00

) 

is optimal to (P) with the feedback control structure (4.1) on the infinite horizon [O,oo). 
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Proof. Due to Proposition 2.2 on the monotonicity of transients with respect to controls 
(and thus with respect to switching times r) and also due to the time-monotonicity of 
y(t) in (3.34), the feasible and optimal values of u asserted in the theorem directly relate, 
concerning the worst perturbations, to the corresponding values of y(t) at To and r(T) 
determined in Theorem 3.3 and its proof. On the other hand, these values of u found for 
the cMe of the worst perturbations occur to be appropriate for any perturbations from the 
admissible area (1.4) due to the extremality of the worst perturbations by Theorem 3.1 and 
due to the monotqnicity of transients with respect to perturbations by Proposition 2.2. In 
this way we arrive at all the conclusions of assertion (i). 

Regarding assertion (ii) of the theorem, we can observe that the value of 0""' ~n ( 4c3) 
corresponds to 0""' = y(T"") with y(t) from (3.34) and the asymptotically optimal switching 
timeT"" computed by (3.33) due to the above arguments based on the monotonicity results 
of Proposition 2.2. The limiting conclusion O'(T) L 0""' as T _, oo and the other conclusions 
in (ii) can be checked directly employing by the transient monotonicity. 6 

For further simplifications and developments of the results obtained, impose the follow
ing assumption: 

00 
Jl;</J;(xo) -"'-2:::: ·.x. e ..\1 <0 whenever 8?-1, 

i=2 l 

(4.5) 

which surely holds for various standard parabolic equations in the presence of symmetry, in 
particular, for the multidimensional heat equation defined on rectangulars, balls, etc.; see, 
e.g., [4, 8] and the references therein. 

Taking now the first term · 

O'r :=!3("1- /lt<l>r(xo)(c+.Xr)b/3-"1)) 
-'r/3(1 +q) 

(4.6) 

in the series (4.3), we have under assumptions (4.4) and (4.5) that 0 < 0'1 < 0""' and thus 
conclude from Th'eorem 4.1(ii) that the three-positional feedback regulator (4.1) with v = v 
and u = O'r is feasible to problem (P) on the infinite horizon. 

Let us consider next the closed-loop control system 

{ 

8y 
{it + Ay = w(t), x E !1, t ::0: 0, 

y(O,x) = 0, x E !1, 
y(t,x)=f(y(t,xo)), x E8!1, t::O:O, 

(4.7) 

where f = J(O is a (discontinuous) three-positional feedback regulator with parameters 
(v,u) given in (4.1). Our goal in what follows is to derive efficient conditions ensuring 
the robust stability of system (4.7) and (4.1) in the sense precisely defined below and then 
to combine these conditions with the relationships on ( v, u) established above from the 
viewpoint of minimax (sub)optimality in the feedback control problem (P) for the parabolic 
system (4.7) subject to the control and state constraints. In this way we arrive at the reliable 
feedback control design ensuring the required suboptimal performance of the closed-loop 
control system in a stable regime acceptable for applications. 

Note that the minimax design results developed above establish relationships between 
parameters of the parabolic dynamics, feedback boundary controls, perturbations, and im
posed constraints under which the closed-loop control system (4.7) allows us to keep the 
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' transients at the point of observation within the prescribed state constraint area for any 
admissible uncertain perturbations with the optimal effect in the worst perturbation Clllle. 
However, the minimax control design procedure developed above does not address stability 
issues for the resulting closed-loop control system that are of crucial importance for prac
tical applications. Let us indicate the following two major sources that can cause possible 
instability of the closed-loop control system given by (4.7) and (4.1): 

(1) The closed-loop control system described by (4.7) and (4.1) is highly nonlinear, 
despite the linearity of its parabolic dynamics. Of course, the source of nonlinearity is the 
discontinuous three-positional regulator (4.1) in the Dirichlet, boundary conditions of (4.7). 

(2) The parabolic dynamical system (4.7) is of distributed parameters. The most visible 
manifestation of the distributed parameter nature in ( 4. 7) is that the control ~cts in the 
boundary conditions while the feedback is formed by observing the current state position 
~ = y(t, xo) at the intermediate point xo E !1 of the space domain. The latter generates 
delay in the closed-loop control parabolic system that significantly affects stability. 

We can easily see that if the current state position ~ = y(t, xo) lies inside the dead 
region (-a, a) after terminating all the perturbations, then the closed-loop control system 
( 4. 7) with the three-positional regulator ( 4.1) maintains the starting stationary equilibrium 
regime y = 0 as t -> oo. This signifies stability in the small of the initial equilibrium state 
y = 0 in this system for any dead region (-a, a) as a > 0. However, the latter property 
is not sufficient for the acceptable functioning of the nonlinear control system given by 
( 4. 7) and ( 4.1) with distributed parameters. We need in fact robust stability, or stability 
in the large, of the equilibrium state y = 0 for the closed-loop system under consideration, 
which in our case means that y(t, xo) -> 0 as t -> oo even if the current state { of (4.7) 
is outside the dead region of (4.1) after terminating all theperturbations. The presence of 
perturbations w(t) on some finite interval [0, T] is clearly irrelevant to this stability issue, 
which is an internal property of the parabolic dynamics generated by the elliptic operator 
A from (1.2) on the infinite horizon and the three-positional feedback regulator (4.1) in the 
Dirichlet boundary conditions of ( 4. 7). 

It has been well recognized in the literature that stability in the large (or robust stability) 
issues are among the most challenging in stability theory for nonlinear dynamics, even in 
the case of finite-dimensional control systems governed by ordinary differential equationS. 
\f\Te are not familiar with any results in this direction for the parabolic systems studied in 
this paper. To derive efficient conditions for stability in the large of the equilibrium state 
y = 0 in the closed-loop control system (4.7) with the three-positional feedback regulator 
(4.1), we develop a variational approach to such robust stability, which is largely based 
on the monotonicity properties of the parabolic dynamics discussed above and reduces the 
stability issue to solving an open-loop optimal control problem for the initial system (1.1) 
on the infinite horizon. 

To proceed, observe from the structure of the closed-loop control system under consid
eration that the required robust stability of its stationary equilibrium state y = 0 can be 
lost if the dead region in ( 4.1) is not sufficiently wide. Indeed, in such cases the transients 
~ = y(t, x 0 ) would move back and forth between the dead region boundaries under switch
ing control positions in (4.1) with no external perturbations, just by inertia of the control 
system that relates to a certain time-delay. This means that the closed-loop control system 
given by (4.7) and (4.1) may start functioning in a non-acceptable self-vibrating regime as 
t -> oo thus signifying instability in the large of the initial equilibrium stare y = 0. We 
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intend to find efficient and verifiable conditions that exclude such instability. 
It follows from the above discussions that the unstable self-vibrating regime will not 

occur if the transient y(t, xo) starting at one boundary of the dead region does not reach 
the other boundary whenever t > 0 under the control switching in ( 4.1) with no external 
perturbations. Moreover, the limiting stability resource of the system relates to the minimal 
width of the dead region ensuring the afore-mentioned property. This allows us to derive 
efficient stability conditions by solving an open-loop optimal control problem for (1.1) on 
the infinite horizol' as is done in the proof of the next theorem. 

Theorem 4.2 (robust stability of the closed-loop parabolic control system). J,et 
(4.7) be a closed-loop parabolic system under the standing assumptions of Section 2, and 
let ( 4.1) be a three-positional feedback regulator in the boundary conditions of ( 4. 7) with 
arbitrary parameters v > 0 and a > 0. Then the closed-loop control system given by (4.7) 
and (4.1) exhibits robust stability in the abo~e sense if its parameters satisfy the relationship 

a :::0: v(1 + c-y) + v +a f: J";</>;(xo)(c + .\;) (-v-) :?,-, (4.S) 
2 . 2 . ~ v+a 

t=l . 

if where the right-hand side is always positive. Furthermore, if the additional assumption 
( 4.5) is satisfied, then the stability condition can be simplified as 

a :::0: 2~1 [1'1 </>1 (xo)(c + .\1) - .\1 (1 + c-y)], (4.9) 

where the right-hand side in (4.9) is always greater than the one in (4.8) wheneverv,a > 0. 

Proof. Developing a variational approach to robust stability, we consider the following 
open-loop control system on the infinite horizon: . 

8y 

{ 
81 

+ Ay = o, x E n, t > o, 
y(O,x) = 0, x E !1, 
y(t,x) = u(t), X E 8!1, t > 0, 

with piecewise co~stant Dirichlet boundary controls given by 

u(t) = { h + tlh if 0 :S: t :S: T, 
h If t > T, 

(4.10) 

(4.11) 

where h and tlh are some positive numbers (to be specified later) while T is a control 
switching time to be determined. Employing Proposition 2.1 on the spectral representation 
of the trajectories y,(t,x) for system (4.10) generated by controls (4.11) and taking into 
account the relationships 

f: J';</>;(x) = 1 in £ 2 (0, T) and f: l'i¢~(xo) = "f, 
i=l i=l t 

we get the explicit formulas for y,(t,xo) used in what follows: 

00 {' 

YT(t, xo) = 8!';</>;(xo)(c + .\;)e-"'' Jo u(B)e"'" dB 

= ~ J';¢;(xo)(c + .\;)e-"'' ( 1T (h + tlh)e"'" dB+ [he"'" dB) 

= (1 + 'Yc)h + f: J';¢;(xo;(c + .\;) [ tlhe"'T - (h + tlh)] e-"•'. 
i=1 ~ 
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It is easy to see from ( 4.12) that 

y,(t,xo)--> (1 + c-y)h as t--> oo whenever T > 0. (4.13) 

However, the transient y(t,x0 ) may intersect the stabilization level (4.13) if the switching 
time T is not properly chosen. We intend to find efficient conditions under which the latter 
situation does not occur. These conditions, being of certain interest for their own sake, 
ensure the required robust stability of the closed-loop system (4.7), (4.1) when the control 
levels h and ~h in ( 4.11) are appropriately specified. '· 

To proceed, Consider the following auxiliary dynamic optirn,ization problem for the parabolic 
system (4.10) on the infinite horizon: 

{

minimize J(r) := (1+c-y)h-y,(r,xo) 
subject to (4.10), (4.11), and the state constraint 
y,(t, x 0 ) < (1 + q)h for all t > 0. 

(4.14) 

The meaning of this problem is to find an optimal switching time T = :[ > 0 in (4.11) 
such that the corresponding trajectory y,(t,xo) of system (4.10) lies striGtly below the 
stabilization level ( 4.13) for all t > 0 and that the distance between the stabilization level 
( 4.13) and the underlying switching level 

y(:[, xo) := Y:z:(:[, xo) 

is minimal in comparison with any other switching time T satisfying all the constraints in 
(4.14). According to the above disc.ussions on robust stability, solving the optimal control 
problem ( 4.14) leads us to required robust stability conditions. 

It follows from the monotonicity property of Proposition 2.2 that 

y71 (t,xo) :S y,,(t,xo) whenever t > 0 and TJ :S r2 

for the transients y,(t, x 0 ) generated in ( 4.12) by the switching controls ( 4.11). This implies 
that the optimal switching time:[ to (4.14) is the largest one under which the corresponding 
transient y,(t, xo) does not intersect the stabilization level (1 + c-y)h for all t > 0. The 
exact solution to the open-loop control problem (4.14) on the infinite horizon is given in 
Theorem 3.3. It is provided by the first term rule, i.e., by vanishing the first term in the 
last series of ( 4.12). By this result we have the rigorously justified formula for the optimal 
switching time to (4.14): 

1 (h+~h) :[ = )'1 ln ~h > 0 whenever v, r:r > 0, 

and hence the exact optimal value of the cost functional in this problem is computed by: 

Q: = 1(:[) = (1 + c-y)h- y(z:, xo) 

= -M(1 + q) + (h + M) ~ !-';¢;(xo;;c +A;) (h ~~h)'?,- > 0. (4.15) 

Imposing the additional assumption (4.5), we get the feasible first-order approximation 

( 4.16) 
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to (4.15), which occurs to be independent of the control level h in (4.11). 
According to the description of the instability phenomenon given before the formulation 

of Theorem 4.2, robust stability of the closed-loop control system given by (4.7) and (4.1) 
is ensured if the width of the dead region 2CT is not' smaller than the value 12. in (4.15) with 
h = CT and D.h = v. Substituting these data into (4.15), we arrive at the stability condition 
(4.8) of the theorem. The explicit first-order approximation condition (4.9) corresponds 
to substituting the above values of hand D.h into formul~ (4.16) for 12_1 via the sufficient 
stability requirem~nt 2u 2: 12_1. This completes the proof of the theorem. 6 

Finally, we combine the feedback control results derived in Section 6 from the viewpqint 
of controllability and minimax optimality with the robust stability conditions obtained 
in this section; thus we establish optimal relationships between all the parameters of the 
feedback control system that ensure its required behavior from the viewpoints of feasibility, 
minimax (sub )optimality, and robust stability. 

Theorem 4.3 (optimal parameters of the stable feedback control design). Con
sider the closed-loop control. parabolic system (4.7) with uncertain perturbations w E W 
from (1.4) and with the there-positional feedback regulator (4.1) in the Dirichlet boundary 
conditions. In addition to the standing assumptions of Section 2, suppose that. 

0 < 1!1- 11 <min { a(1 + c-y), ,6~1: :
1

1 )} (4.17) 

and that a0 ::;:: ~. where~> 0 is computed by (4.3) and where 

uo : = 1!1- 'I+ 17(1 + c-y) f J";</Ji(xo)(c +A;) ( 1!1- 11 ) ~ 
2(1 + c-y) i=l A; 1!1- 11 + 17(1 + c-y) 

+ '1-1,6 > 0 . . 
2 . 

Then the feedback control system given by ( 4. 7) and ( 4.1) with the control resource v = v 
computed by 

- ,,e- 'I 
v=---

1 + c-y 
(4.19) 

and the dead region parameter CT > 0 belonging to the nonempty interval 

ao :::; u :S aoo (4.20) 

is reliable on the infinite horizon in the sense that it is feasible by all the constroints in (P) 
on [0, oo) for any perturbations w E W enjoying simultaneously robust stability. 

If in addition the first-order approximation assumption (4.5) and the inequality 

(4.21) 

are satisfied, then we have 

CT
0 < CT~ := 2A;~~:I) [l"r¢r(xo)(c+>-r)- Ar(1 +qJ] :Slrr (4.22) 

with a1 E (0. a) computed in (4.6), and the feedback control system given by (4.7) and (4.1) 
with the control resource v = v from (4.19) and the dead region parameter <T > 0 satisfying 

af S a ::; Cf1 ( 4.23) 

is reliable on the infinite horizon in the sense described above. 
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Proof. To a large extend, this theorem unifies and summarizes the feedback control design 
and robust stability results derived above. 

Indeed, Theorem 4.2 ensures robust stability of system ( 4.7) with the three-positional 
regulator (4.1), where vis computed by (4.19) and where u 2': u0 with u0 computed by 
(4.18). This follows from the observation that the value of u0 in (4.18) is in fact obtained 
by substituting v from (4.19) into the right-hand side of (4.8) and by replacing u with 71 
therein. Further, we easily conclude that u0 satisfies inequality ·(4.8) whenever 0 < u $7J 
in the right-hand side of it, which is the case under consideration. The other statements in 
the first part of the theorem follow directly from Theorem 4.1. 

To justify the last part of the theorem, under conditions (4.5) and ( 4.21 ), we first observe 
that the value of u? in ( 4.22) is obtained by substituting v from ( 4.19) into the right-hand 
of (4.9). Furthermore, condition (4.21) easily follows from uf $lf1 by substituting there u1 
from (4.6) and u? from (4.22). Thus the feasibility of the three-positional regulator (4.1) 
with v = v from (4.19) and u from (4.23) follows from Theorem 4.1 due to 

while the corresponding robust stability of the closed-loop system given by (4.7) and (4.1) 
with u from (4.23) follows from the last part of Theorem 4.2. /::; 

Observe finally the first order reliability condition (4.21) can be surprisingly rewritten 
in the very simple form1f1 2 ry/3 via just the first-order suboptimality value lf1 computed 
by ( 4.6). Note that the equality therein can be used as an additional equation for shape 
optimization to determine, e.g., the optimal parameters of the domain 0: ensuring a stable 
feedback control design under the other given data of the minimax problem (P) and the 
feedback regulator (4.1). 

Acknowledgment. I am gratefully indebted to Helmut Maurer for drawing my at
tention to the possibility of applying the approach developed in [5, 6, 11 J to solve the 
state-constrained optimal control problem (J\) in Section 3. 
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