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Variational Analysis in Bilevel Programming 

S. Dempe', J. Dutta2 and B. S. Mordukhovich3 

Dedicated to the memory of Professor S. R. Mohan 

Abstract. The paper is devoted to applications of advanced tools of modern 
variational analysis and generalized differentiation to problems of optimistic 
bilevel programming. In this way, new necessary optimality conditions are de­
rived for two major classes of bilevel programs: those with partially convex and 
with fully convex lower-level problems. We provide detailed discussions of the 
results obtained and their relationships with known results in this area. 

1 Introduction 

In this paper we intend to discuss the interplay of variational analysis and 
bilevel programming. The term Variational Analysis is of quiet recent origin, 
and most probably the monograph by Rockafellar and Wets [13] had led the 
popularization of the term. In modern optimization,· set-valued maps play a 
major role. Their role shot into prominence with the ad,;ent of nonsmooth 
analysis and nonsmooth optimization, since the role of the derivative in modern 
optimization is taken over by set-valued maps known as subdifferentials. Apart 
from that set-valued maps appear, for example, in the form of solution set 
maps in parametric optimization and play a very fundamental role in bilevel 
programming; see, e.g., Dempe [3]. Further, an important role in optimization 
is now played by derivatives and coderivatives of 'set-valued maps. For more 
details see Rockafellar and Wets [13] and the very recent two-volume monograph 
by Mordukhovich [9], [10]. 

On the other hand, bilevel programming grew out of the now classicai Stack­
elberg games (see [16]) where a leader and a follower intera.Ct so that both can 
achieve their tal'geted objectives. In the language of optimization this can be 
framed as a two-level optimization problem as follows: 

minF(x,y) subject to x EX, y E S(x), 
X 

where F : !Rn x !Rm --+ !R, X <;; !Rn, and where S : !Rn =l !Rm is the solution set 
mapping to the lower-level problem: 

min f(x, y) subject toy E K(x), 
y 
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where f : IRn x IRm ---> lR and K(x) is a closed set for each x. We denote 
the above optimization problem by (BP). So the idea is that the upper-level 
decision maker, or the leader, chooses a decision vector x and passes it onto 
the lower-level decision maker, or the follower, who then-based on the leader's 
choice x-minimizes his/her objective function and returns the solution y to the 
leader who then uses it to minimizes his objective function. 

If for each x the lower-level problem has a unique solution, then the problem 
(BP) is well defined. However, if there are multiple solutions to the lower-level 
problem for a given x, then the upper-level objective becomes a set-valued map. 
In order to overcome this difficulty, two different solution concepts have been 
defined in the literature. These are namely the optimistic solution and the 
pessimistic solution. 

For the optimistic case one first defines the function 

<Po(x) := inf{F(x,y): y E S(x)}. 
y 

Then the optimistic problem is: 

min <Po(x) subject to x EX. (1) 

Thus a pair of points (x, y) is said to be an optimistic solution to the bilevel 
problem (BP) if <Po(x) = F(x, Y) and xis the optimal solution (local or global) 
to (1). On the other hand, in the pessimistic case we define the function 

cPp(x) := sup{F(x,y): y E S(x)} 
y 

and formulate the pessimistic problem as follows: 

min¢p(x) subject to x EX. 

In this paper we concentrate on the optimistic bilevel programming problem. 
An important situation where an optimistic bilevel formulation can be used is, 
e.g., that between a supplier and a store owner of $orne commodities. Since 
both want to do well in their businesses, the supplier will always give his/her 
best output to the store owner who in turn would like to do his/her best in 
the business. In some sense, both would like to minimize their loss or rather 
maximize their profit and thus act in the optimistic pattern. It is clear that in 
this example the store owner is the upper-level decision maker and the supplier 
is the lower-level decision maker. Thus in the study of supply chain management 
the optimistic bilevel problem can indeed play a fundamental role. 

As it has been seen in Dutta and Dempe [5] and Dempe, Dutta and Mor­
dukhovich [4], in studying the optimistic formulation of the bilevel programming 
problem it is useful to concentrate on the following problem (BPO): 

minF(x,y) subject to x E X,(x,y) E gph S 
x,y 

If we consider global optimal solutions, then (BPO) is equivalent to the op­
timistic formulation of the bilevel problem (BP). This relationship is slightly 
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more subtle when we consider local optimistic solutions. If the solution set map 
is uniformly bounded around the optimistic solution of the problem (BP), then 
the optimistic solution is a local minimum for problem (BPO). The converse 
however need not be true. Hence we will concentrate our efforts to analyze the 
local optimal points of problem (BPO)'. 

A major bottleneck in developing necessary optimality conditions for bilevel 
programs is that most of the standard constraint qu!ilifications (like, e.g., the 
Mangasarian-Fromovitz constraint qualification or the Abadie constraint qual­
ification) are never satisfied for bilevel programs; see, e. g., [15]. This problem 

' comes to light when the lower-level problem is replaced by its corresponding 
Karush-Kuhn-Tucker (KKT) conditions. This approach of replacing the lower­
level problem by KKT conditions seems to be rather adequate if the lower-level 
problem is convex in the variable y and satisfies some regularity conditions; 
see Dutta and Dempe [5] for more detailed discussions. The presence of the 
complementarity slackness condition actually brings forth this violation of con­
straint qualifications; see, e.g., Dempe [3]. Thus various approaches have been 
used to develop necessary optimality conditions in bilevel programming. The 
reader may consult the book by Dempe [3] and the references therein for various 
necessary optimality conditions in bilevel programming. Let us mention that 
the approach in Dempe [3] requires an explicit representation of the feasible set 
of the lower-level problems via equality and inequality constraints. Dutta and 
Dempe [5] consider the case when the lower-level feasible sets are not explic­
itly expressed via functional constraints but are convex sets depending on the 
parameter- x, and the lower-level objective function is convex in y for each x. 
In this setting, for smooth functions F and no constraint situation X = Rn, 
necessary optimality conditions are expressed as 

o E 'VF(x, fi) + Ngphs(x, Y), 

where (x, y) is a locally optimal solution of (BPO) and Ngphs(x, fi) is the ba­
sic/Mordukhovich normal cone to the graph of the solution set map S at the 
point (x, y); see Section 2. We can now shift our attention to variational analy­
sis, since in order to develop necessary optimality conditions, we need to focus 
on calculating the basic normal cone in the above expression when the lower­
level feasible set is explicitly defined, and also to see under what qualification 
conditions snch a computation is possible. Thus the approach in Dutta and 
Dempe [5] brings forth the fundamental role that variational analysis plays in 
bilevel programming. Our aim here is to present the state-of-the-art on the role 
of variational analysis in bilevel programming. 

This paper is planned is follows. In Section 2 we present some basic tools 
and facts from variational analysis, which are widely used in the sequel. In 
Section 3, which is one of the main sections of this paper, we aim to study 
bilevel programming problems with partially convex lower-level problems. The 
computation of the co derivative of the solution set map plays a major role in the 
analysis of the optimality conditions. This has been shown in [5], where results 
of coderivative computations from Levy and Mordukhovich [6] have been used. 
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We begin Section 3 with the explicit computation of the normal cone to the 
graph of a set-valued map defined as a solution set to a certain generalized 
variational inequality. Using this, we derive necessary optimality conditions for 
bilevel programs when the lower-level problem is partially convex, the feasible 
set does not depend on x, and X= !Rn. Then we move on to the case where X 
still equals !Rn while the feasible set of the lower-level problem depends on x. At 
the end of this section we consider the general optimistic bilevel programming 
problem (BPO), where X is a proper subset of !Rn and the lower-level feasible 
set depends on x. We provide examples where the qualification condition used 
hold and where they do not hold. It happens that the qualification conditions 
of Section 3 do not hold when the lower-level problem is linear. That leads us to 
consider the notion of partial calmness due to Ye and Zhu [18]. Then we move to 
Section 4, where we study the case in bilevel programming when the lower-level 
problem to be fully convex, which covers the case where the lower-level problem 
is linear. We derive necessary optimality conditions, which improve those in 
Section 3, at least for the fully convex lower-level problem. 

2 Tools from Variational Analysis 

In this section we briefly describe the basic tools of variational analysis needed 
in the sequel. We start with the variational geometry of constraint sets and 
describe various conic approximations associated with them. 

Let us begin with the notion of the regular normal cone or the Frechet normal 
·cone at a point x E C, where Cis a subset of !Rn. A vector v E !Rn is called a 
regular normal to C at x if 

(v, x- x) $ o([[x- x!l), 
. o([[x- x[[) 

where hmx~• [[x _ x[[ · = 0. The collection of all regular normals to C at x 

is a cone denoted by Nc(x). 
It is easy to show that if C is a convex set, the regular normal cone reduces to 

the standard normal cone of convex analysis (see, e.g., Rockafellar [14]). Though 
this definition of the regular normal cone might look as a natural generalization 
of the normal cone from the convex case to the non convex case, there are some 
serious pitfalls. One of the major drawbacks is that at points on the boundary of 
the set C the regular normal cone may just reduce to the trivial cone containing 
only the zero vector. To overcome this, a limiting procedure is employed, which 
leads us to the more robust notion of the basic normal cone. 

A vector v E !Rn is an element of the basic normal cone Nc(x) to the set C 
at x E C if there exist sequences {xk} with Xk E C and Xk-> x as well as {vk} 
with Vk -> v and Vk E Nc(xk)· In a more compact form this is written .as 

Nc(x) := limsupNc(x) 
x--.x 

in terms of the so-called Painleve-Kuratowski upper/outer limit. It is important 
to note that the basic normal cone is closed but needs not be a convex set. 
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Further, when the set C is convex, it reduces to the classical normal cone of 
convex analysis. 
Another concept, which is important for our study, is the notion of normal 
regularity of a set at a given point. The set C is said to be normally regular at 
x E c if f.rc(x) = Nc(x). 
Associated with the notion of the regular normal c;one is the notion of the 
regular/Frechet subdifferential of a function. Since in this study our functions 
are locally Lipschitz, we describe the regular subdifferential only for locally 
Lipschitz functions. 

Let f : Rn -> R be a locally Lipschitz function, and let x E Rn be given. 
The regular subdifferential i!JJ(x) of the function! at xis given by 

i!JJ(x) :={vERn : (v, -1) E f.repi1(x, f(x))}, 

where epi f denotes the epigraph of f. The regular sub differential also has a 
major drawback in the sense that there are points crucial, e.g., for optimization, 
where this subdifferential becomes empty. These are precisely the points where 
the regular normal cone to the epigraph of the function f reduces to the trivial 
coDe containing only the zero element. 

This trouble with the regular subdifferentia] is overcome by passing to the 
limit in order to obtain a more robust object called the basic subdifferential, 
which is given by 

af(x) := limsupfJJ(x) 
X-+X 

The above expression means that v E af(x) if there exist sequences {vk} and 
{xk} with Xk E C such that Vk -> v and Xk -> x .with Vk E i!JJ(xk)· Knowing 
the fact that every basic normal can be realized as the limit of regular normals, 
we have the equivalent representation of the basic subdifferential: 

af(x) ={vERn: (v, -1) E Nepit(x, f(x))} .. 

The basic normal cone and the basic subdifferential were first introduced by 
Mordukhovich [8] in 1976. For more details see Rockafellar and Wets [13] or the 
recent monographs of Mordukhovich [9], [10]. 

Set-valued maps arise naturally in optimization, and it is very important to 
look at their differential properties. A significant concept in this direction is 
the notion of coderivative by Mordukhovich (see, e.g., his book [9]). Given a 
set-valued map F: Rn =l Rm and a point (x,fi) E gph F, the coderivative ofF 
at (x, fi) is a set-valued map D' F(x, fi) : Rm =l Rn defined by 

D' F(x, fi)(y') := {x' ERn : (x', -y') E Ngphp(x, fi)}. 

We now consider the following optimization problem (P): 

minfo(x) subject to F(x) E U, x EX, (2) 

where fa : JRn ----+ lR and F : ~n ---+ IRm are smooth functions, U ~ lRm., and 
X ,;; Rn. The necessary optimality condition for (P) formulated in the next 
theorem can be found in Rockafellar and Wets [13] and Mordukhovich [9]. 
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Theorem 2.1 Consider problem (P) from (2}, and let x be a local minimum 
to (P). Assume that the following qualification condition (Q) holds at x : 

y E Nu(F(x)) with 0 E '11 F(x)T y + Nx(x) implies that y = 0. 

Then there exists y E Nu(F(x)) such that 

0 E '11 fo(x) + '11 F(xf y + Nx(x). 

Using this result, we can compute the normal cone to the feasible set C, which 
is explicitly given in the above theorem by 

C = {x EX : F(x) E U}. (3) 

However, the explicit computation of the normal cone can be done under certaln 
qualification conditions, and we present the full result in the next theorem. 

Theorem 2.2 Consider the set C given by (3), where F: JRn--> JR= is a smooth 
function and X is a closed set. Assume that the qualification condition (Q) of 
Theorem 2.1 holds at x. Then one has 

Nc(x) c U {"i!F(xf y + Nx(x): y E Nu(F(x)}. 

Furthermore, if the set X is normally regular at x and the set U is normally 
regular at F(x), then equality holds in the above expression. 

The two theorems presented in this section play a fundamental role in the next 
section. We show there how to use these theorems to derive necessary optimality 
conditions for bilevel programs with partially convex lower-level problems. 

3 Partially convex lower-level problems 

In this section we consider partially convex lower-level problems in the bilevel 
programs (BPO) of our study. By a partially convex lower-level problem we 
mean that y >--> f(x, y) is convex in y for each x E X and the set K(x) is 
convex for each x. For simplicity of the presentation we assume the upper­
level objective function to be smooth, i.e., with its data to be continuously 
differentiable. Furthermore, we assume that the lower-level objective function 
is twice continuously differentiable. 
Our first step is to provide an explicit computation of the basic normal cone 
to the graph of a set-valued map defined as a solution set of a generalized 
variational inequality. This will play a fundamental role in the subsequent 
study, since~as we have discussed in Section 1-deriving necessary optimality 
condition for optimistic bilevel programming is based on computing the normal 
cone to the solution set of the lower-level problem. Let us begin with considering 
a set-valued map S : lRn :::::;JR= given by 

S(x) = {y E IRm : 0 E G(x, y) + M(x, y)}, 
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whereG : Rn X Rm ---> JRd is a smooth single-valued map and M : Rn X Rm =lllld 
is a set-valued map of closed graph. We first concern a more simpler version, 
where the set-valued map does not depend on x, i.e., M(x, y) = M(y). Thus we 
concentrate on calculating the coderivative of the set-valued map S : Rn =llllm 
defined above. This is done through the following result. 

Theorem 3.1 ConsiderS : Rn =llllm given by 

S(x) = {y E Rm : 0 E G(x, y) + M(y)}, 

where G : Rn X Rm ---> JRd is smooth map and M : Rm =l JRd is closed-graph. 
Taking (x, y) E gph S, impose the qualification condition: 

-\I,G(x,y)T z = 0 and w- 'VyG(x,y)T z = 0 

with (w, z) E Ngph M(fi, -G(x, y)) implies that w = 0 and z = 0. Then one has 

Ngph s(x,y) ~ {(x•,y•) ERn x Rm: x• = -\I,G(x,y)Tz, 

y• =iii- \1 yG(x, yfz, (iii, z) E Ngph M(fi, -G(x, y))}. 

Equality holds in the above expression if any of the following two additional 
conditions are satisfied: 

i} The graphical set gph M is normally regvlar at (y, -G(x, y)). 

ii) The matrix \1 ,G(x, y) is of full row rank. 

Proof: To begin with, let us observe that the incl~sion y E S(x) implies that 
-G(x, y) E M(y). Put then 

F(x,y) := (y, -G(x,y}f. 

Thus we can equivalently rewrite S(x) as 

S(x) = {y E Rm : F(x, y) E gphM}, 

which means that 

gphS = {(x,y): F(x,y) E gphM}. 

Observe that the qualification condition imposed in the theorem can be equiv­
alently written as 

['VF(x,yjT(w,z) = 0, (w,z) E Ngph M(F(x,y)] =} [w = 0, z =OJ, 

where \1 F(x, y) stands for the Jacobian ofF at (x, y). It is easy to see that 

\1 F(x, ii) = ( -\1 x~(x, ii) ~ \1 yG(x, ii) ) . 
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Thus we have 

'"'F(- -)T ( 0 -\lxG(x,yjT ) 
v x,y = 1 -\lyG(x,y)T . 

The above observation allows us to apply Theorem 2.2 and conclude that 

Ngph 8 (x,y) ~ {(x*,y*) E JRm x JRn: (x*,y*) = \lF(x,yjT(w,z), 

(w, z) E NgphM(F(x, fi))}. 

This immediately gives 

Ngph s(x,y) ~ {(x*,y*) E JRn x JRm: x* = -\lxG(x,y)Tz, 

y* = w- \1 yG(x, y)T z, (w, z) E Ngph M (fi, -G(x, y))}. 

If gph M is normally regular at (fi, -G(x, y), we conclude from Theorem 2.2 
that the equality holds. If furthermore \1 xG(x, y) has full row rank, then the 
qualification condition is automatically satisfied, and the equality follows by 
application of Exercise 6. 7 (page 202) from Rockafellar and Wets [13]. 0 

Remark 3.1 The above theorem estimates the normal cone to the graph of 
the set-valued map S defined as the set of solutions to a generalized variational · 
inequality. This estimate naturally allows one to provide an estimation for the 
coderivative of S. It is not hard to see that 

D'S(x,y) ~ {x* E JRn: 3v* E lRd,x• = \lxG(x,yfv*, 

-y* = \1 yG(x, y)T v* + D* M(y, -G(x, y)(v*)}. 

Of course, this estimate holds under the assumptions of Theorem 3.1, wlth 
equality holding under the same conditions as in Theorem 3.1. 

Let us note that the conclusions of Theorem 3.1 can be easily extended to the 
case when the set-valued mapping M depends on both x andy. To proceed, we 
need to modify the qualification conditions in order to derive the corresponding 
estimate, which is slightly different from the previous one due to the change in 
the dependence pattern of M. We present the result below with no proof. 

Theorem 3.2 Consider the set-valued map S : JRn =l R.m defined by 

S(x) = {y E JRm: 0 E G(x, y) + M(x,y)}, 

where G : ]Rn x ]Rm --> JR" is smooth and M : lRn --> ]Rm ::::; JRd is closed-graph. 
Given (x, fi) E gph S, assume the qualification condition: 

u- \1 xG(x, yf z = 0, and w - \1 yG(x, fi)T z = 0 

with (u,w,z) E NgphM(x,fj,-G(x,y)) implies that u = 0, w = 0 and z = 0. 
Then one has the inclusion 

Ngph s(x,y) ~ {(x*,y*) E lRn x lRm: x* = ii- \lxG(x,yfz, 

y* = w- \1 yG(x, gfz, (u, w, z) E N 9ph M(x,fi, -G(x, y))}. 

Equality holds in the above expression if gphM is normally regular at (x, fj, -G(x, fi). 
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Theorem 3.1 allows us to derive necessary optimality conditions for bilevel 
programs (BPO) with partially convex lower-level problems. It is important to 
observe that, since the lower-level problem is partially convex, we can equiva­
lently represent S as 

S(x) = {y E Rm: 0 E 'Vyf(x,y) + NK(y)}. 

It is convenient in what follows to define NK(Y) for ally E Rm extending it to 
y 'f. K by NK(Y) = 0. 

Theorem 3.3 Consider problem (BPO) with X = JRn and K(x) = K for all 
x. Let (x,y) E gphS be a local optimal solution to (BPO), and let the following 
qualification condition hold: 

-('v;.f(x, g)? z = o, w- C'V;.f(x, y)f z = o 

with (w,z) E NgphNK(y,-'Vyf(x,y)) implies thatw = 0 and z = 0. 

Then there exists (w,z) E NgphNK(y,-'V.f(x,y)) such that 

i) '\7 xF(x, ii) = ('\7~.f(x, y)fz, 

ii) -'V.F(x,y) = w- ('\7~vf(x,!J}fz. 

Proof: Since (x, y) is local optimal to (BP) with X = Rn, we have 

0 E \1F(x,y) + Ngphs(x,y), 

which implies that 

-(\7 xF(x, y), \1 yF(x, ii)) E Ngphs(x, y). (4) 

Now setting G(x,y) = Vyf(x,y) and NK = M, we see that the qualification 
condition in the theorem is the same as in Theorem 3.1. Thus applying Theorem 
3.1, we get the inclusion 

Ngph s(x,!l) ~ {(x',y*) ERn x Rm: x* = -v;.f(x,yfz, 

y* = w- v;.f(x, !J)rz, (w, z) E Ngph NK(!l, -\1 .f(x, y))}. 

Combining the above estimate with (4), we arrive at the desired result. D 

Remark 3.2 Note that the above theorem is also derived in [5] by using The­
orem 3.1 from Outrata [12]. Here we give a direct proof of this result, focusing 
more on structural and computational issues. Observe further that the qualifi­
cation condition in the above theorem holds true if we assume that \1~yf(x, y) 
is of full row rank. To illustrate this, consider the function f(x, y) := (y, Ax), 
where (x,y) ERn x Rm and A is am x n matrix of full row rank m. We have 
\1~vf(x,y) =A, and hence the qualification condition of the above theorem is 
clearly satisfied. 
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Next we turn to the case where the feasible set of the lower-level problem 
needs not to remain constant for each x, assuming nevertheless that X = lFtn. 
In this case, the solution set to (BPO) is given by 

Setting NK(x,y) := NK(x)(Y) if y E K(x) and NK(x,y) := 0 otherwise, we 
rewrite S ( x) as 

Theorem 3.4 Consider problem (BPO ), where X = lFtn and the feasible set to 
the lower-level problem varies with each x. Let (x, y) E gphS be a local optimal 
solution to (BPO ), and let the following qualification condition hold: 

u- "il;.f(x, yf z = o, w- \?;.f(x, yf z = o 

with (u,w,z) E NgphNK(x,y,-\?yf(x,y)) implies that u = O,w = O,z = 0. 
Then there exists (u,w,z) E NgphNK(x,y, -\?.f(x,y)) such that 

i) -\7 xF(x, y) = u- \?~yf(x, y)Tz, 

ii) -\?.F(x,y) = w- \?~.f(x,y)Tz. 

Proof: Since (x, y) is a local optimal solution to (BPO), we have 

Now the result follows from Theorem 3.2 by setting G(x,y) := \?yf(x,y) and 
~:=M. D. 

Remark 3.3 Note that the problem of Theorem 3.4 was studied in [5, Theo­
rem 4.1], while our approach here is different. 

The next most relevant question is about necessary optimality conditions for 
the constrained case x EX in (BPO). Here is the result in this case. 

Theorem 3.5 Let (x, y) E gphS be a local optimal solution to (BPO ), and let 
the following qualification condition be satisfied: 

u- \?~.f(x, y)T z + 1 = o, w - \?;.f(x, y)T z = o 

~i::: lu;, w;, ~' ~:: gphNK (x, y,- \7 yf(x, y)) and 'Y E Nx (x) implies the equalities 

Then there are (u,w, z) E NgphNK (x, y, -\?.f(x, y) and 1 E Nx(x) such that 

i) -\?xF(x,y) =u- \?;.f(x,y)Tz+'i, 

ii) -\7 yF(x, y) = w- \?~.f(x, y)T.z. 
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Proof: Observe that problem (BPO) can be equivalently rewritten as 

minF(x,y), subject to (x,y) E C, 
x,y 

where the set C is given by 

C = {(x,y) EX x IRm: H(x,y) E gphNK} with H(x,y) = (x,y,-\lyf(x,y))T. 

It is well known that Nxxl!l.=(x,y) = Nx(x) x Nl!l.=(iJ), and thus 

Nxxl!l.=(x,y) = {('1',0): 'l' E Nx(x)}. 

Therefore, the qualification condition of the theorem is equivalent to 

[ 0 E \1 H(x, y)T q + Nxxl!l.= (x, y), q = (u, w, z) E NgphNK (x, y,- \1 .f(x, y))] 
==? [u=O,w=O,z=OJ. 

Observe further that 

Thus the qualification condition of this theorem reduces to the qualification 
condition of Theorem 2.1, and the result follows. 0 

Remark 3.4 We would like to note that in Dutta and Dempe [5] the optimistic 
bilevel programming problem with partially convex lower-level problems was not 
considered in its full generality as it is done in the ,above Theorem 3.5. 

It is tirile to present an illustrative example for the reader convenience. 

Example 3.1 Consider the optimistic bilevel programming problem in a two­
dimensional setting: 

min(x- 1 )2 + y2 subject to x > 0, y E S(x), x,y 

where S denotes the solution set mapping to the following lower-level problem: 

minx2y subject to y ~ 0. 
y 

Observe that S(x) = {0} for all x > 0, and that the only solution to the above 
optimistic bilevel programming problem is (1, 0). It is clear that v;.f(1, 0) = 2. 
Let us check that the qualification conditions of Theorem 3.5 is satisfied. To 
proceed, observe that the lower-level feasible set is [0, +oo), which is thus a 
convex set independent of x. Note that the vector u actually does not appear 
in the qualification condition of Theorem 3.5. Hence we may just set u = 0 
throughout in this particular case. Since X= IR+, we get Nx(1) = {0}, which 
easily yields z = 0 and w = 0. It is easy to check furthermore that the necessary 
condition of the theorem holds with w = 0 and z = 0. Observe finally that y = 0, 
since Nx(1) = {0}. 
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One of our primary goals of this section is to highlight the fact that neces­
sary optimality conditions for optimistic bilevel programs with partially convex 
lower-level problems can be basically deduced from Theorem 2.1 and Theo­
rem 2.2, which are indeed fundamental results in optimization theory. An inter­
esting fact that emerges here is that the second-order partial derivatives of the 
lower-level objective function naturally appear in the first-order optimality con­
ditions for this class of bilevel programs. Another observation that emerges here 
is that the qualification conditions in the above results do not work if the lower­
level problem is a linear optimization problem. This issue is addressed in the 
next section, where we discuss the property of partial calmness that automati­
cally holds when the lower-level problem is linear. Further, in the next section 
we approach necessary optimality conditions in bilevel programs by using the 
idea of optimal value functions. 

4 Fully convex lower-level problems 

Now we investigate problem (BPO) under the assumption that both the lower­
level and the upper-level objective functions are convex with respect to both x . 
andy, and that gph K is also a convex set. Denote the optimal value function 
of the lower-level problem by 

cp(x) := min{f{x, y) : y E K(x)}. 
y 

Then problem (BPO) is equivalent to the following problem (VPO): 

minF(x,y) subject to f(x,y) :S cp(x), y E K(x), x EX. 
x,y 

Usual constraint qualifications as, e.g., the Mangasarian-Fromowitz one (in its 
nondifferentiable version) are not satisfied at each feasible point of (VPO); see 
Ye and Zhu [18]. 

Following Ye and Zhu [18], we say that problem (VPO) is partially calm at 
a given point (x, y) if there is a constant M > 0 and an open. neighborhood D of 
the triple (x, y, 0) such that for each feasible point (x, y, u) E D of the problem 

minF(x,y) subjecttof(x,y)-cp(x)+u=O, yEK(x), xEX 
x,y 

we have the relation 

F(x, y)- F(x, Y) + M[ul ~ 0. 

By [18], partial calmness is satisfied for problem (VPO) if, in particular, all 
optimal solutions to the lower-level problem are weak sharp minima in the sense 
of Burke and Ferris [2]: for fixed x there exists a > 0 snch that 

f(x, y) 2 f(x, y) + o: dist(y, S(x)), 
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whenever y E K(x), where dist(y, S(x)) denotes the Euclidean distance of a 
pointy to the set S(x) and where y E S(x). It has been shown in [2] that optimal 
solutions to linear programming problems are weak sharp minima ( cf. also Man­
gasarian and Meyer [7]) whenever the problem has an optimal solution. Also, 
optimal solutions to quadratic programming problems are weak sharp minima 
provided that a certain relatively weak assumption i~ satisfied; see Burke and 
Ferris [2], Ye and Zhu [18]. Note that the assumption of partial calmness can 
be replaced by other assumptions; see Ye [17] for more discussions. 

The main feature of partial calmness is the validity of an exact penalty 
function approach to problem (VPO): 

Theorem 4.1 {[18, Proposition 3.2}) Let (x, Y) be a local optimal solution to 
(VPO). Then, problem (VPO) is partially calm at (x,y) if and only if there 
exists A > 0 such that (x, y) is a local optimal solution to the problem 

minF(x, y) + A(j(x, y)- <p(x)) subject toy E K(x), x EX. (5) 
x,y 

This is a significant tool in the proof of the next theorem, where the symbols 
a, ax, a. denote, respectively, the subdifferential, the partial subdifferential 
with respect to X and to y of COTIV€X functions in the s€nse of Conv·ex analysis. 

Theorem 4.2 Consider problem (VPO) under the assumptions that: 
i} K(x) = {y: g(x,y) :": 0}, X= !Rn, g: !Rnx !Rm-+ JRP; 

ii) all functions F, f, gi are convex on IRn X Rm, i .= 1, ... ,p; 

iii) the point (x, y) is a .local optimal solution, ·problem (VPO) is partially 
calm at (x, y), there exists a compact set C such that {(x, y) : g(x, y) :0: 0} ~ C, 
and there is a point (x, fj) with g;(x, fj) < 0, i = 1, ... ,p. 

Then there exist A > 0, A;, f";, and a point y E S(x) such that the following 
conditions are satisfied: 

p 

0 E axF(x, y) + A(axf(x,Y)- axf(x, YJ) + L(f";ax9i(x, Y)- AA;axg;(x, YJ), 
i=l 

p 

o E a.F(x, y) + Aa.f(x, y) +I: '"'a.9,(x, y), 
i=l 

p 

o E a.f(x,YJ + LA,a.9,(x,YJ, 
i=l 

A; :2: 0, A,g,(x, YJ = 0, i = 1, ... ,p, 

'"' :2: o, '"'g,(x, Y) = o, i = 1, ... ,p. 

Proof: By our assumptions on the lower level problem, the optimal value func­
tion <p(-) is convex, and hence it is locally Lipschitzian; see [14]. Thus (VPO) 
is a problem of Lipschitzian programming. By partial calmness, the local opti­
mal solution (x, y) is also a local optimal solution to the Lipschitz optimization 
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problem {5) for some A > 0. Applying to this problem the generalized multiplier 
rule from [10, Theorem 3.21 (iii)] together with the calculus rules for the basic 
sub differential from [9, Theorem 2.23 (c)], we obtain the existence of multipliers 
(Ao, f.'l, ... , f.Lp) such that >.a~ 0 and 

f.L; ~ o, f.L;g;(x,Y) = o, i = 1, .. . ,p, {6) 

p 

0 E Ao8F(x,y) + AoA(8f(x,Y)- 8x<p(x) x {0}) + 2>;8g,(x,Y). 
i=l 

Observe that we have in fact Ao > 0, i.e., we can set Ao = 1 by the Slater­
type qualification conditions assumed in the theorem. Using the important 
relationship between partial and full subdifferentials in convex analysis 

8B(x, y) ~ 8xB(x, y) X 8yB(x, y), 

we obtain the inclusions 

p 

0 E 8Fx(x, Y) + A(8xf(x,Y)- 8x<p(x)) + .L>;8xg;(x, Y), (7) 
i=l 

p 

o e 8yF(x, y) + A8yf(x, y) + 2><8yg;(x, y). 
i=l 

By the symmetry property 

8( -<p)(x) ~ -8<p(x) 

and the estimate 

p 

U {8xf(x,y) + :~::><axg;(x,y)} 
yES(X} >.EA(X,y) i=l 

given, e.g., in [11] with 

A(x,y) ={A;~ o: A;g;(x,y) = o, i = 1, ... ,p, 
p 

o e 8yf(x,y) +I: 8yg;(x,y)}, 
i=l 

we transform (7) to 

0 E 8Fx(x, y) + A(8xf(x, Y)- (8xf(x, fj) 
p p 

+I: A;8xg;(x,if))) +I: f.L;8xg;(x,Y) 
i=l i=l 

{8) 

{9) 

{10) 

for some 'if E S(x) and (A1 , ... , Av) E A{x, fj). Conditions {10), (8), (9), (6) 
together with (A,, ... , Av) E A{x, if) are the desired necessary conditions, which 
thus completes the proof the theorem. D 
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Corollary 4.1 If the compactness assumption of the theorem is replaced by the 
inner semicontinuity assumption that for each point (x, fj) E gph S and any 
sequence { xk} with S(xk) i' 0 converging to x there is a sequence {yk} with 
yk E S(xk) converging to fj, then we obtain by {11, Corollary 4] the inclusion 

p 

a<p(x)~ U {axf(x,y)+LA;a±g,(x,y)}. (11) 
i<EA(x,y) i=l 

Replacing the formula for the subdifferential of <p at x in the above proof, we 
can take 'if = y in the assertion of the theorem. IJ, moreover, the functions 
f, g;, i = 1, ... ,p, are continuously differentiable, the following necessary opti­
mality conditions result from Theorem 4.2: 

There exists A> 0, .\i, Jli, i = 1, ... ,p, satisfying 

p 

0 E BxF(x, Y) + L(l'i- AA;)\7 xg;(x, Y), 
i=l 

p 

o E a.F(x, Ii) +A V' .f(x, Ii) + L l'i V' .g,(x, Y), 
i=l 

p 

o E V' .f(x, Ii) +LA; V' yg;(x, Y), 
i=l 

A;;:::: o, A,g,(x, Ii) = o, i = 1, ... ,p, 

I'• 2: o, l',g,(x, Y) = o, i = 1, ... ,p. 

For a related result, obtained using different assumptions and a different method, 
we refer to [17, Theorem 4.1]. 

Optimal solutions to linear programming problems are weak sharp as shown 
by Burke and Ferris [2]. Moreover, the solution set map to linear programming 
problems of the type 

mincT y, subject to Ay:::; x 

with right-hand side perturbations x is lower semicontinuous by [1, Theorem 
4.3.5] and hence also inner semicontinuous. This allows us to deduce the follow­
ing simple necessary optimality conditions. 

Corollary 4.2 Consider the bilevel linear programming problem (VOP) with 

<p(x) = min{cT y: Ay:::; x} 
y 

and X = lRn. Assume for simplicity that F is continuously differentiable. If 
(x, y) is a local optimal solution of this problem, then there exist multipliers 
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>. > 0, p. 2': 0, {3 2': 0 such that 
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