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Abstract 

The paper is devoted to the study of some classes of feedback control problems for linear parabolic 

equations subject to hard/pointwise constraints on both Dirichlet boundary controls and state dy-

namic/output functions in the presence of uncertain perturbations within given regions. The under-

lying problem under consideration, originally motivated by automatic control of the groundwater 

regime in irrigation networks, is formalized as a minimax problem of optimal control, where the 

control strategy is sought as a feedback law. Problems of this type are among the most important 

1Research of this author was partially supported by the USA National Science Foundation under grants 

DMS-0304989 and DMS-0603846 and by the Australian Research Council under grant DP-0451168. 

1 



in control theory and applications - while most challenging and difficult. Based on the Maximum 

Principle for parabolic equations and on the time convolution structure, we reformulate the problems 

under consideration as certain asymmetric games, which become the main object of our study in 

this paper. We establish some simple conditions for the existence of winning and losing strategies 

for the game players, which then allow us to clarify controllability issues in the feedback control 

problem for such constrained parabolic systems. 

Keywords: Asymmetric games; Convolutions; Parabolic systems; Pointwise control and state con

straints; Uncertainties; Minimax design; Feedback control 

1 Introduction 

This paper concerns feedback control design of state-constrained linear parabolic systems 

functioning under uncertain disturbances/perturbations. The original motivating example 

[8] came from a practical application: automatic control of the groundwater regime in irri

gation networks, where the main objective was to neutralize the adverse effect of uncertain 

weather and environmental conditions. We immediately note that this need not always be 

possible: obviously, for the system to be acceptable, we must be capable of handling the 

worst perturbations. In particular: 

• We must have enough irrigation capacity to keep the water supply up to the mini

mally acceptable level, even if there might be a drought for the entire period under 

consideration. 

• Conversely, even if it might rain for the entire period, we must be able to reduce the 

irrigation supply enough to avoid flooding. 

2 



Assuming it is possible to compensate adequately for adverse fluctuations in the weather, 

one might then seek to optimize the policy used. Problems of this type may be formulated 

as optimal control problems, unavoidably requiring the use of closed-loop feedback to obtain 

an appropriate control, since the external input (weather, etc.) is not known in advance. 

Indeed, we have minimax design problems, seeking to design the feedback to minimize some 

cost in the presence of possibly worst case external inputs. The particular control systems 

modeled in [8, 9] were parabolic partial differential equations with Dirichlet boundary con

trol. Among the important specific features introduced there in order to meet practical 

requirements we mention the following: 

• distributed uncertain perturbations - taking values within given closed areas with 

only bounds assumed to be known; 

• hard control constraints - pointwise constraints on the control functions (here act

ing through Dirichlet boundary conditions, offering minimal regularity for the linear 

dynamics); 

• hard state constraints- pointwise constraints on the acceptable values of the evolving 

state (with both perturbation and compensating control). 

Problems with such features are among the most challenging and difficult in control theory 

but, at the same time, are among the most important for applications. To the best of 

our knowledge, a variety of approaches and results developed in the theories of differential 

games, H00-control, and Riccati's feedback synthesis are not applicable to such problems; 

see, e.g., [1, 4, 3, 6] and also [9, 10, 11, 12] with the discussions and references therein. 

The approach developed in [9] for the case of one-dimensional heat/diffusion equations 

and then partly extended in [10, 11, 12] to multidimensional settings mainly concerns the 
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system reaction to extreme perturbations, which (as suggested above) would seem to provide 

the 'worst case' scenarios in the original environmental situation (8, 9]. In this way the 

structure and parameters of the control functions are computed by using the Pontryagin 

maximum principle (14] for ODE approximating systems of optimal control, with some 

further adjustment to the parabolic dynamics and the exclusion of unstable vibrations. 

Such an analysis assumes that Nature is not malicious. On the other hand, we will see 

that even if the control resources are adequate to maintain all the constraints in response to 

the nominal 'worst case' of extreme perturbations- corresponding to the afore-mentioned 

requirements- the necessary corresponding commitment of resources might preclude an 

adequate response to some other perturbations. Thus, without further analysis one may 

not be able to verify a capability to respond adequately to more subtle scenarios merely 

from consideration of responses to those extreme perturbations. This might leave it un

clear whether the constrained problem has any global policy solution, certainly a crucial 

precondition for subsequent optimization. 

The present paper is intended to make a start at providing exactly the 'further analysis' 

addressing this possibility, seeking techniques verify the existence of admissible feedback 

policies - meaning causal policies which ensure satisfaction of the specified constraints in 

response to all admissible perturbations- as a necessary preliminary to optimization. Even 

this question of the existence of admissible feedback policies turns out to be more difficult 

than one might think, and we will be unable to obtain simple necessary and sufficient 

conditions for existence, much less address the optimization problem in this context. 

In this paper we suggest an approach to the minimax synthesis of (hard) constrained 

parabolic systems based on their reduction to asymmetric games whose dynamics are given 

by time convolutions; see Section 3. This approach, applying to the underlying parabolic 
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dynamics, is based on certain fundamental properties of such systems, partly on the classical 

Maximum Principle for parabolic equations. The reduction eventually allows us to clarify 

- via establishing conditions for the existence of winning and losing strategies of the game 

players - some important characteristics of feasible and optimal feedback controls and 

perturbations in the minimax problems under consideration. 

The rest of the paper is organized as follows. In Section 2 we consider the original 

motivating problem of automatic control of the groundwater regime in irrigation networks 

and formulate it as an asymmetric game via time convolutions. Following this interpretation, 

we introduce in Section 3 a general asymmetric convolution game of two players personalized 

as the fox and the hound. Section 4 is devoted to the analysis of the convolution game 

establishing necessary and sufficient conditions for the existence of winning strategies for 

the hounds. Finally, Section 5 contains various results and discussions related to the main 

thrust of the paper. These include: the reduction of a general class of linear parabolic 

equations to convolution systems, the justification of well-posedness of the convolution 

game, and the implication of the game analysis to the original irrigation problem. 

2 A Motivating Problem: Irrigation 

In this section we describe in somewhat more detail the groundwater management control 

problem of (8]. Here we will be directly controlling the supply in a pair of irrigation channels 

to regulate the groundwater level (GWL) in the seepage region between these channels- so 

called because of the seepage of water into the ground, approximately modeled as a diffusion. 

We treat this as spatially one-dimensional, neglecting effects parallel to the channels, which 

are taken at s = ±1. Letting u and w, respectively, be the deviations from the desired 

GWL and the averaged external input (difference between precipitation and evaporation), 
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these satisfy the linear parabolic equation 

Ut- au8 s = W on Q = QT := (O,Tj X (-1, 1) 

with the Dirichlet boundary condition, which we take as our control: the scaled difference 

z(t) between the channel water supply and a reference supply just sufficient to maintain 

the desired GWL in the presence of the nominal (averaged) input. It is a reasonable 

approximation to take the disturbance w = w(t, ·)to be spatially constant on n := (-1, 1) 

and subject to an given bound lw(t)l ~ (3 on [0, T]; soy = w/(3 is a function only oft, 

satisfying 

ly(t)l ~ 1 for 0 ~ t ~ T. (2.1) 

We take the supply rate to be the same in each of the channels; the possible deviation 

from the reference supply is necessarily bounded- for simplicity of exposition we assume 

symmetry in this bound. Appropriately choosing a, we will have u(t, ±1) =a z(t) with 

lz(t}l ~ 1 for 0 :::; t ~ T. 

Supposing the GWL is initially at its nominal level, our complete model is 

Ut- aUs8 = (3y(t) on Q = QT = (0, T] X ( -1, 1), 

u(t,-1) =u(t,1) =az(t), u(O,s) =0 

(2.2) 

(2.3) 

withy(·) unknown, subject to (2.1), and with control function z(·) to be chosen subject to 

(2.2); we may indicate the dependence of the solution on the inputs by writing u = uY,z(-, ·). 

Our control problem is to regulate the GWL in the presence of unpredictable fluctuations 

in precipitation/evaporation by choosing the supply rate - i.e., the control function z(·) 

- so as to ensure that the level never becomes either too high or too low. We take the 

fluctuation in water level as characterized by its value at the midpoint s = 0 and require 
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that our control ensure that the GWL stays within the prescribed tolerance: 

(2.4) 

We may view this as a game played against Nature. Thus, while we are not viewing Nature 

as a malicious opponent in the evolution of the disturbance w = (3y, we do approach this 

with a 'worst case' attitude, avoiding any unsupportably optimistic assumption that this 

disturbance will be of any special form conveniently favorable for the analysis of our control 

policy. In this way (2.4) is to be taken as an imposed state constraint. Furthermore, as there 

is no restriction on the external input y(·) other than (2.1), this is taken as a constraint on 

the control policy determining the response z(·). 

In this 'worst case' analysis we will view an inability to compensate for arbitrary admis

sible perturbations as being a definite failure for our control system. 

Observe that there are typically some other constraint requirements - assuming one 

could consider them without permitting violation of the state constraint (2.4). For example, 

we might wish to conserve the supplied water (minimizing the integral J y dt) or to simplify 

the regulatory effort (e.g., minimizing the variation in y). However, we will not address 

such concerns in this paper. 

The following statement justifies the possibility of describing the dynamics of (2.3) via 

time convolutions with nonnegative functions. 

Lemma 2.1. [Convolution Description of the GWL Dynamics.] Let u(·) be the 

solution to the parabolic partial differential equation (2.3). Then the dynamics for 

x(t) := uY,z(t, 0), 0 S t S T, 

are given by convolution: 

x(t) =lot [<p(t- r)y(r) + ry(t- r)z(r)] dr 

7 

(2.5) 



with appropriate nonnegative functions <p and rJ. 

Proof. This follows from the more general results established in Theorem 5.1, where the 

form (2.5) of these dynamics is justified with the expressions 

(2.6) 

Furthermore, the crucial fact of the positivity <p, rJ ~ 0 is derived therein from the Maximum 

Principle for parabolic equations .. We will also defer to the last subsection of Section 5 for 

our further investigation of specific characterizations for the appropriate <p and rJ in the 

particular GWL setting of (2.3). 

Thus we have effectively replaced (2.3) by (2.5) in modeling the control problem. In 

view of the comments above, we turn now to an analysis of this class of convolution games. 

3 The Fox and the Hound: a Convolution Game 

In this section we introduce the game 6, which is the focus of our subsequent analysis. We 

will be considering scalar systems with convolution dynamics- much as in (2.5), except 

that it is now convenient to reverse the sign of z. Thus for each t E 'I := 10, T] we have 

x(t) =lot [cp(t- r)y(r)- ry(t- r)z(r)] dr. (3.1) 

Note that the functions <p and rJ are given andy, z are to be inputs. One might well consider 

vector-valued versions of this, but for our present purposes it will be sufficient to restrict 

our attention, for simplicity, to systems (3.1) with <p, ry, x, y, and z scalar-valued although 

possibly infinite horizoned with T = oo. 

The fact that we have two input functions suggests thinking of (3.1) as the setting for 

a 'game'. We personalize this game somewhat by thinking of a fox and a hound, considered 
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as moving points f ( ·) and. h( ·) in IR, given by the above convolutions so 

f := cp * y and h := rJ * z in IR, 

i.e., controlled by providing the inputs y and z, respectively. Thus x = f- h in (3.1). 

We are here taking the functions cp and ry to be the (fixed) motion characteristics of the 

fox and hound, respectively. [We ignore any physical anomalies associated with this as an 

image- e.g., we permit x(·) to cross 0, with the fox and hound apparently passing through 

each other.] As an example, if the fox were to move by exerting a force F = F(t) and one 

had velocity-proportional friction, then her position f(t) would satisfy 

mf" = F- A.f'. 

If we write F = y Fo, where Fo is the maximum force available -so y = 1 means "full 

power ahead" and y = -1 means "full power reverse" - then, starting from rest, we would 

get f = cp * y with 

cp(r) = (Fo/A.) [1- e-(>.fm)r]. 

This would make our interpretation some sort of 'pursuit game' in which control lies in the 

acceleration rather than the velocity. The history dependence implicit in the convolution 

dynamics is here related to inertia. 

Apart from more detailed interpretation as in examples such as this and Lemma 2.1, we 

will be assuming throughout our discussion that 

cp and rJ are specified in L}
0
c(O, oo) with cp, rJ 2: 0, 

and that we are imposing the constraints 

ly(t)l :::; 1 and lz(t)l :::; 1 for all t E I= [0, T]. 
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It will be convenient in what follows ro label r.p and rJ as impulse response functions and 

to introduce their integral characteristics 

F(t) :=lot r.p(r) dr and H(t) :=lot ry(r)dr; (3.4) 

so r.p = F' and rJ = H'. Note that F and Hare nondecreasing by (3.2) and that the dynamics 

of (3.1) can equivalently be written as x = f- h with 

f(t) =lot y(t- r)r.p(r) dr =lot y(t- r) dF(r), 

h(t) =lot z(t- r)'YJ(r) dr =lot z(t- r) dH(r)~ 
(3.5) 

While a considerable variety of interesting games might be described in this setting by 

adjusting the payoffs, our principal concern will be with the game in which the fox wins 

if she can ever 'escape'- i.e., get f(t) farther thane from h(t) at some timet < T so 

that lx(t)i > e. Conversely, the hound wins if he can 'track' successfully- i.e., keep h(t) 

no farther thane from f(t) during the entire interval I, maintaining this deviation bound 

throughout the interval so that 

lx(t)l :S e for all tin I= {0, T]; (3.6) 

there are no ties. We are then taking this game to have the payoff +oo to the fox (and 

-oo to the hound) if she can force (3.6) to fail. [We could have a variable payoff to the 

hound when he can maintain (3.6); such a variable payoff would provide the framework for 

subsidiary optimization with (3.6) as an imposed constraint. However, in focusing attention 

on whether the constraint can be maintained, we simplify by taking the winning payoff to 

the hound to be always +oo if (3.6) is maintained with corresponding payoff of -oo for the 

fox.] Thus, once we have introduced (3.1), (3.3), and (3.6), the game is completely specified 

by giving the relevant parameters£, T > 0 and the impulse response functions r.p, rJ E L1(I): 

we refer to this as Q5 = Q5(£, T;r.p,ry). 
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Note that the game Q) is asymmetric in its definition of a 'win', and our primary concern 

will be seeking a winning strategy for the hound. For this analysis we assume, in particular, 

the necessity for the hound of protecting against a 'worst case' y( · ): if the hound knew that 

the fox generated y stochastically with a known probability distribution, then he might be 

able to take advantage of this (e.g., to maximize his probability of winning). However, in 

a game-theoretic context, this would be making the unsupportably optimistic assumption 

that the fox might occasionally forego an assured win. 

4 Existence of Winning Strategies 

Our analysis of the game primarily addresses the two fundamental questions: 

• Does either player, the fox or the hound, have a winning strategy for the 

game? 

• How does the answer to the question above depend on the parameters 

e, T, cp, and ry? 

The first result provides verifiable conditions for winning the game expressed in terms 

of integral characteristics F and H from (3.4). 

Theorem 4.1. [Integral Conditions for Winning the Game.] The condition 

F(T) :::; 1! 

is sufficient for the hound to have an effortless ensured win. The condition 

F(t) :::; H(t) + e for every o < t < T (4.1) 

is necessary, but not sufficient, for the hound to have a winning strategy. 
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Proof. Note that the above assumption (3.3) ensures that 

if(t)J ~ F(t) ~ F(T) and Jh(t)J ~ H{t) ~ H(T) (4.2) 

-with strict inequalities unless y = ±1 and z = ±1, respectively. 

If F(T) ~ e, then taking z = 0 would be a winning strategy for the hound, since that 

gives x = f, and so ( 4.2) implies (3.6) - the hound can simply sit still, knowing that it is 

impossible for the fox to escape in time using any admissible y. However, in any other case 

the hound must use an active strategy to be able to win. 

If (4.1) were false, then taking y = 1 would be a winning control for the fox as a fixed 

strategy, since that gives f = F, and then (4.2) shows that x = f- g;:::: F- H; so the fox 

escapes- i.e., (3.6) fails- at the same t E (0, T) for which (4.1) would fail. Thus, (4.1) 

is necessary for the hound to have any chance at winning against the fox's extreme control. 

To see that ( 4.1) is insufficient to ensure a win for the hound, we need only provide a 

single example. Take T = 2, e = 1 and suppose that 

{ 

3 for 0 ~ t ~ 1, 
cp(t) = 

0 else; 
~(t) ~ { 

2 for 0 ~t ~ 2, 

0 else. 

These impulse response functions generate by (3.4) the integral characteristics 

{ 

3t for 0 ~ t ~ 1, 
F(t) = 

3 for 1 ~ t ~ 2 = T; 
H( t) = 2t for 0 ~ t ~ T. 

With e = 1 this gives the strict inequality F(t) < H(t) + e for all t E [0, 1), except for the 

equality at t = 1; i.e., (4.1) holds, and just running away (y = 1) does not enable the fox to 

escape from the hound who would take z = 1. 
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However, suppose that instead of simply running away straight ahead withy = 1, the 

fox were to double back at t = 1. Using the input function 

y(t) = { 1 

-1 

for t ~ 1, 

for t > 1, 

the fox has f(t) = F(t) = 3t for 0 ~ t ~ 1 as before, but now 

f(t) = lt 3z(s) ds = 3[(1- [t- 1])- (t -1)] = 9- 3t 
t-1 

for 1 ~ t ~ 2 = T. Even knowing this in advance, what could the hound do? One would 

have /(1) = 3 and, if z ¢. 1 on [0, 1), one would have h(1) < H(1) = 2, whence jx(1)j > 1 = £ 

-i.e., a win for the fox. Avoiding this by keeping y = 1 on (0, 1), one first considers the 

choice 

for 0 ~ t ~ 1, { 
so h*(t) = 

for 1 ~ t ~ 2; 

2t for 0 ~ t ~ 1. 

4 - 2t for 1 ~ t ~ 2. 

Comparing, we would have X* = f- h* = 5- 4t for 1 ~ t ~ T so lx*(t)i > e fort > 3/2 

-a win for the fox. Any other input choice z(·) with z = 1 on [0, 1) would necessarily give 

z 2:: z*, so h 2:: h* and the fox also escapes. 

Thus the fox has a winning pure strategy in this example, even though F and H do 

satisfy ( 4.1 ). Indeed, a modification of this example, changing the hound's impulse response 

function to 

{ 

2 for 0 ~ t ~ 1, 
ry(t) = 

7 for 1 ~ t ~ 2 = T 

shows, by a similar calculation, that ( 4.1) cannot even ensure the hound's success against 

the fox's extreme 'running away' strategy. 

The moral to be drawn from the scenario above is the importance of agility. For present 

purposes, we need not provide any technical definition of this vague notion of comparative 
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'agility' while observing the competitive disadvantage of a large tail for the impulse response 

function, which acts as a form of inertia. In particular, current variations of the trajectory 

h( t) may be dominated by residual effects of much earlier control actions z( 7) if the resource 

function ry(a) would be large even when the time difference a= t- 7 becomes large. 

Complementing Theorem 3.6, we now turn to a more positive result for a hound with 

his impulse response function ry: he can successfully track any fox whose impulse response 

function cp lies within a distance e from the segment in £ 1(0, T) joining rJ to the origin. 

Theorem 4.2. [Impulse Response Function Conditions for Winning the Game]. 

The L1-norm condition 

e;:::: min {ll<p- CrJIIl := {
1

icp(7)- CrJ(7)1 d7} 
O~c~l Jo (4.3) 

is sufficient, but not necessary, for the hound to have a winning strategy. 

Proof. Given (4.3), the hound can choose c E (0, 1] such that llcp- CrJIIl ::; e and then, 

taking into account Theorem 5.2 presented below, can use the control 

z(7) = cy(7). (4.4) 

With c::; 1, the given constraint IYI ::; 1 ensures that one always has lzl ::; 1, so this control 

is admissible. We then have from (3.1) that 

lx(t)l ::; 1t lcp(t- 7)y(r)- ry(t- 7)z(7)1 d7 

1t lcp(7)- CrJ(7)1·1y(t- 7)1 d7 

< 1t lcp(7)- CrJ(7)1 d7 ::; llcp- CrJII1 ::; e 

for each 0 ::; t ::; T- i.e., one has (3.6), and thus the control policy (4.3) is a winning 

strategy for the hound. 
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Conversely, it is necessary to have ll<p- C1JII1 :::::; £for the hound to use {4.4) as a winning 

strategy. Indeed, if the fox knew ( 4.4), she could simply choose 

y(t) = sgn [<p(t) - cry(t)], t E [O,T], 

giving x(T) = ll<p- crylh -and with ll<p- C1JII1 >£this would be a loss for the hound. 

On the other hand, there are strategies other than (4.4), and we now showthat it may 

be possible for the hound to have a winning strategy even with ( 4.3) false. To see that ( 4.3) 

is not a necessary condition to ensure a win for the hound, we need only provide a single 

example. Take e = 1, T = 3 with 

{ 

1 for 0 :::::; t :::::; 2, 
<p(t) = 

0 else; 

Thus for any 0 :::::; c :::::; 1 we have 

~(t) ~ { 
! else. 

1 for 0 :::::; t :::::; 2, 

ll<p- cryll1 = fo 3

i<p(r)- C1J(r)i dr = fo 2

i<p(r)- C1J(r)i dr + h3

i<p(r)- C1J(r)i dr 

2(1- c)+ (3- 2)~c = 2- ~c ~ ! > 1 = £; 

so ( 4.3) is false for this example. [Observe, parenthetically, that with the same £, <p, and rJ 

we would have ( 4.3) if we had taken T:::::; 8/3.] 

We have seen that the strategy (4.4) now fails. On the other hand, suppose the hound 

modifies this linear strategy and uses instead the piecewise constant control 

z(r) = { 
0 

y(r) on 

on [0, 1], 
(4.5) 

(2, 3]. 

Then we easily have 

lx(t)l = I !at y(r) drl:::::; 1 = e whenever 0 :::::; t :::::; 1. 
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For t E (1, 3] we observe that the conditions 1 :::; r ::=; t give t- r E [0, 2) and therefore 

c.p(t- r) = ry(t- r). Thus for t E (1, 3] we have 

Jx(t)J = 111 

c.p(t- r)y(r) dr + [t [c.p(t- r)- ry(t- r)]y(r) drl 

= 111 

c.p(t- r)y(r) drl :::; 1 =e. 

This shows that (4.5) is now a winning strategy: using it, constraint (3.6) always holds for 

the entire interval [0, 3], and so the hound wins. 

At this time it remains an open problem to find verifiable conditions on the parameters 

e, T, c.p, and ry, which are both necessary and sufficient for the hound to win. Even though we 

have only exhibited a single winning strategy for those cases where we have shown existence, 

it is important for questions of possible subsidiary optimization that we would expect the 

basic constraint (3.6) to provide uniqueness of the control policy only in very special cases. 

5 Further Results and Discussions 

In this section we present various results supporting and justifying the above game convo-

lution approach and illustrating its applications to feedback control of parabolic systems. 

We split our discussions into three subsections. 

5.1. Autonomous Linear Systems and Convolutions. The classical variation of pa-

rameters formula is the source of our convolution formulation so this is a quite general result 

for autonomous linear problems. Let us begin our considerations with the abstract linear 

autonomous state equation 

it= Au+w, with u(O) = 0, (5.1) 

imposing homogeneous initial conditions and input. Assuming further that the linear oper-

ator A is the infinitesimal generator of a Co semigroup S(-) on the state space X, we have 
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the standard semigroup convolution representation 

u(t) =lot S(t- r)w(r) dr (5.2) 

for mild solutions ofthe abstract differential equation (5.1); see, e.g., [2, 13] as general 

references for such semigroup formulations. 

If we now have the scalar linear observation 

x(t) = b, u(t)) 

for some suitable linear functional 'Y and take the input w to have the form 

n v 

w = LYi(t)wj + L z(t)wj (5.3) 
j=l j=l 

for fixed elements Wj and Wj in X, then substituting (5.3) into (5.2) and the latter into 

x = ("f, u) gives 

(5.4) 

with the impulse response functions 

ru(t) := ("/, S(t) Wj)· (5.5) 

In particular, we have from (5.4) that I.Pi = ('Y,ui•0), where ui,O = S(·)Wj is the solution to 

j = 1, ... ,n. 

Introducing Fj and Hi much as in (3.4) (so, e.g., Fj corresponds to taking Yi = 1 with 

Yk = 0 for all k =f. j and with Zj = 0 for all j -giving I.Pj = dFj/dt), we can write these 

functions also in terms of solutions: 

(5.6) 
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where Ui,O and U0•i are the solutions to (5.1) with w = Wj and w = Wj, respectively. 

We will also be interested in considering similar cases in which one might not have Wj or 

Wj in the state space X or in which the observation functional 1 may not be in X*. Whether 

this might lead to a successful model would depend on details of regularity theory for the 

particular spaces and operators involved. In particular, wewish to treat boundary control 

and point observation for parabolic partial differential equations, relying on the considerable 

smoothing provided by the corresponding analytic semigroups. This is given in the next 

theorem, which directly relates to our original motivations and justifies the possibility to 

reduce feedback control problems for linear parabolic systems to the convolution game 

studied in Sections 3 and 4. 

Theorem 5.1. [Convolution Representation of Linear Parabolic Systems]. Let 

n be a bounded region in JR.m with sufficiently smooth boundary 80, let A(·) be a smooth 

positive definite symmetric matrix-valued function on the closure of 0, and fix s* E 0. We 

consider a parabolic partial differential equation on Q = Qr = (0, T] x n with Dirichlet 

boundary conditions and homogeneous initial conditions: 

n 

Ut = \1· A\lu + LYi(t) Wj, 

j=l 

II 

ul = "'y·(t)w· an ~ J J• 
j=l 

u(O, ·) = 0 (5.7) 

and observe x(t) = u(t, s*). Then, subject to some regularity considerations for Wj, Wj, the 

point observation x( ·) is given by (5.4) with 

where Ui,O and uo,j are the solutions, respectively, to the particular cases of (5.7): 

Ui·0
1 = o, Ui·0 (o, ·) = o; an 

U0·il = w· U0•i(O, ·) = 0. an J• 

(5.8) 

Finally, <pj and 'f'/j are nonnegative when Wj and Wj are nonnegative. 
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Proof. Equations such as (5.7) can equivalently be interpreted by a variety of methods 

depending on the geometry of nand the regularity assumed for Wj, Wj. It is well known (see, 

e.g., [5] -especially the estimate in Theorem 16.3 of Chapter IV, regarding localization) 

that if Wj is in H-1(Q) and moderately smooth nears* and if Wj is in L2(an), then (5.7) 

is solvable- say, for YJ and Zj in L00 (0, T)- and will be smooth enough to permit point 

evaluation at s*. Note that these conditions can be substantially weakened, but are adequate 

for our present purposes. Indeed, we need only look at the regularity for the solutions UJ,O 

and U0•J to (5.8). The representation (5.4) and its consequences discussed above are then 

immediate. 

We now employ the Maximum Principle for parabolic equations to verify the nonneg-

ativity asserted in the theorem. While one could also work with the classical Maximum 

Principle for smooth classical solutions and then use density arguments, we here work with 

the weak formulation of (5.7) by employing arguments requiring minimal regularity, based 

on the following result by Stampacchia [16]: if 

u-(t, s) := u(t, s) 1\0 =min { u(t, s), 0}, 

then (writing a* for an arbitrary first partial derivative) one has 

where u- = 0, 
(5.9) 

where u- =/: 0 

almost everywhere - e.g., one has a.e. that \lu_ · \lu = l\lu-12 . We now fix j and, 

assuming Wj ~ 0, we let u be a weak solution to 

Ut = \1 · A\lu, u(O, ·) = 0 

with Zj(·) ~ 0. With u- as test function, the weak version of this is: 
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since we have u;::: 0 on an sou-= 0 there. From (5.9) we have 

since A was assumed positive definite. We also have 

Integrating this (while noting that u-(o) = 0) gives 

which means that u;::: 0 on Q. Thus, in particular, one evaluates at s* to obtain 

whenever z1 ;::: 0 on [0, t] (provided that w1 ;::: 0). [It is easy to choose Yj to have a 

counterexample to this if 'T/j < 0 on any set of positive measure.] Therefore, we can conclude 

that 'f/j 2:: 0 as asserted in the theorem. 

The justification that cpj ;::: 0 when· Wj 2:: 0 is essentially similar. We now let u be the 

solution to the parabolic homogeneous initial boundary problem 

ul =0, an u(O, ·) = 0; 

so the weak form of this gives 

with the right hand side being nonpositive as u- :s; 0 and Yj(t)wj 2:: 0. Again we have 

u- = 0 on Q and use this (for each Yj ;::: 0) to conclude that cpj ;::: 0. 

5.2. The Information Structure of the Game. We should clarify the information 

structure of the game from the viewpoint of the hound, noting that if <5 may be viewed 
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as 'a game with perfect information' (like chess), then only deterministic strategies are 

relevant - we need not then consider probabilistic mixed strategies. As a worst case, we 

may attribute to the fox perfect causal information about both inputs y(·) and z(·)- but, 

since only causally determined strategies can be admissible, we must ask what information 

the hound will have available at each r in determining his response. 

We begin with the assumption that the hound knows (and remembers) his own input z( ·) 

- hence can compute the resulting motion h = 'TJ * z - and has observed (and remembers) 

the relative position x(·) = J(-)- h(·) up to that time. However, it is clear that the future 

evolutions off and h beyond T include some history dependence-this was much of the point 

of our discussion of 'agility' following Theorem 4.1 - and, in constructing z(·), it would 

seem desirable for the hound also to know at least the past history of the fox's input y 

that has not been provided directly. The next result justifies this, in a sense justifying the 

well-posed ness of the game under consideration by, e.g., validating the use of such strategies 

as (4.3). 

Theorem 5.2. [Well-Posedness of the Game]. Let <p and 'TJ be given in L1{0, T] with 

<p ¢. 0 near 0. Then the histories of z and of 

on any subinterval [0, r] as T :::; T uniquely determine the past history of y on [0, r]. 

Proof. Take <p7 and 'T/r to be the restrictions of <p and 'TJ to [0, r], respectively, that are 

taken to vanish outside [0, r] (since anything else is irrelevant up to time r) and similarly 

define y7 , and Z7 • Hence x7 (·), defined by the convolutions 

Xr = 'Pr * Yr - 'T/r * Zn 
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coincides with x = r.p * y - ry * z on .(0, r]. Taking the Fourier transforms [15] of these 

functions (denoted by 'hat' as usual), the above convolutions become simply products. 

Thus, rearranging slightly, we have 

Note that 'r/r, Zr, Xr are known at timeT (by prescription, memory, and observation); so the 

product fj:,. £;. is also known. Since <fir and Yr have compact support {0, r], each of the factors 

<{i; and fr is entire analytic (by the Paley-Wiener Theorem; see, e.g., [15]) with <{i; "t 0 -

hence vanishing at most at isolated points - so fr is uniquely determined. Hence, inverting 

the Fourier transform, Yr is also uniquely determined as asserted. Note that this argument 

is independent of the horizon T, we might even take T = oo. 

Thus, despite the nominal asymmetry of the suggested information structure, we may 

actually assume that at each r E [0, T] both the fox and the hound have. perfect causal 

information knowing both input functions y and z on [0, r] - as well, of course, as knowing 

the impulse response functions r.p and ry. 

We may remark, in this connection, that we are here assuming exact observation and 

computation, ignoring for now any concern for continuity of the maps Zn Xr H Yr whose 

existence has been assured by Theorem 5.2. However, our discussion has justified the 

admissibility of strategies such as (4.4) or (4.5). 

5.3. The Irrigation Problem: Reprise. We now wish to compute more specifically the 

functions r.p and ry for the special case of (2.3), which came from the original motivation. 

As a particular case of our discussion in Subsection 5.1, we already know that H(·) for 

(2.3) can be obtained as a U0•1(-, 0), where U0•1 is the solution to 

U0
'
1 

- aU0•1 = 0 on Qr t u ' 
U0•1(t, -1) = U0•1(t, 1) = 1, 
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This function has singularities only at (0, ±1) - it is analytic on QT = (0, T] x ( -1, 1) 

and coo across t = 0 (while taking U0•1(t, ·) = 0 for t < 0). As t --t oo we would have 

the monotone increasing convergence of U0•1 to the steady state solution= 1. The function 

rJ = H' is positive and unimodal, decaying exponentially to 0 as t --t oo; we have 

rylkl(o) = 0 for k = 0, 1, ... and fooo ry(r) · r =a. 

For later purposes we now introduce the solution V to 

V(t, -1) = V(t, 1) = t, V(O,·)=O 

and, differentiating this with respect tot, observe that Vt = U 0•1 since it satisfies the same 

equation. Thus 

aV(t,1)= fotH(r)dr. 

We know, similarly, that F(t) = {3U 1•0 (t, 0), where U1•0 is the solution to 

U l,O Ul,O _ 1 n 
t - a ss - on '>It-T' 

again this is analytic on QT = (0, T] x ( -1, 1) although not coo across t = 0. Defining now 

W := t- U1•0 , we see that 

with W(t, ±1) = t- 0 = t and W(O, ·) = 0. Comparing, we then observe that W satisfies 

the same system as V by showing that U1•0 = t-V. Evaluating at s = 0 and differentiating, 

the latter implies that 

<p(t) = F'(t) = /3[1- H(t)ja] and 'f}(t) = -(afj3)<p'(t). (5.10) 

Thus we get from this that <p(O) = /3 with <p decreasing exponentially to 0, and then 

<p[k] (0) = 0 for all k = 1, 2, .... 
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What then are the implications for the groundwater management control problem of 

Section 2, which motivated our analysis? It is clear that 15(£, T, <p, ry) -with the functions 

<p and rJ we have just computed - corresponds precisely to the groundwater management 

problem, except for a formal sign reversal for the interpretation of the control function z. 

The information we have just gathered about <p, rJ and their relation shows that <p is com

paratively more agile than rJ in the sense of Section 4, so we expect considerable difficulty 

regarding the feasibility of this control problem without a substantial tolerance e. It would 

certainly be of interest to determine numerically the minimal e for which condition (4.3) 

would hold here, with its dependence on T and a/ {3. 
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