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OPTIMAL CONTROL OF NONCONVEX DIFFERENTIAL INCLUSIONS1 

B. S. MORDUKHOVICH 2 

Abstract. The paper deals· with dynamic optimization problems of the Bolza and Mayer types 
for evolution systems governed by nonconvex Lipschitzian differential inclusions in Banach spaces 
under endpoint constraints described by finitely many equalities and inequalities with generally 
nonsmooth functions. We develop a variational analysis of such problems mainly based on their 
discrete approximations and the usage of advanced tools of generalized differentiation. In this way 
we establish extended results on stability of discrete approximations and derive necessary optimality 
conditions for nonconvex discrete-time and continuo~-time systems in the refined Euler-Lagrange 
and Weierstrass-Pontryagin forms accompanied by the appropriate transversality inclusions. In 
contrast to the case of geometric endpoint constraints in infinite dimensions, the necessary optimality 
conditions obtained in this paper do not impose any nonempty interiority/finite codimension/normal 
compactness assumptions. 

Key words. variational analysis, dynamic optimization and optimal control, .differential inclu
sions, infinite dimension, discrete approximations, generalized differentiation, necessary optimality 
conditions 

AMS subject classification. 49J53, 49J52, 49J24, 49M25, 90030 

1 Introduction 

The paper is devoted to the study of dynamic optimization problems governed by differential 
inclusions in infinite-dimensional spaces. We pay the main attention to variational analysis 
ofthe following generalized Bolza problem (P) for differential inclusions in Banach spaces 
with endpoint constraints described by finitely many equalities and inequalities. 

Let X be a Banach state space with the initial state xo E X, and let T := [a, b] C IR be 
a fixed time interval. Given a set-valued mapping F: X x T =t X and real-valued functions 
'Pi: X --t IR as i = 0, ... , m + r and {): X x X x T --t IR, consider the problem: 

(1.1) minimize J{x] := <po.(x{b)) + 1b {){x(t),:i;(t),t) dt 

subject to dynamic constraints governed by the differential inclusion {1] 

(1.2) :i:{t) E F(x(t), t) a.e. t E {a, b] with x(a) = xo 

with functional endpoint constraints of the inequality and equality types given by 

(1.3) if7i(x{b)) :::; 0, i = 1, ... , m, 

(1.4) 'Pi(x(b)) =0, i=m+1, ... ,m+r. 

1 Research was partially supported by the USA National Science Foundation under grants DMS-0304989 
and DMS-0603846 and by the Australian Research Council under grant DP-0451168. 

2Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA; 
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Dynamic optimization problems for differential inclusions with the finite-dimensional 
state space X = JRn have been intensively studied over the years, especially during the 
last decade, mainly from the viewpoint of deriving necessary optimality conditions; see 
[3, 8, 11, 13, 15, 17] for various results, methods, and more references. Dynamic optimization 
problems governed by infinite-dimensional evolution equations have also been much investi
gated, motivating mainly by applications to optimal control of partial differential equations; 
see, e.g., the books {7, 9] and the references therein. To the best of our knowledge, deriving 
necessary optimality conditions in dynamic optimization problems for evolution systems 
governed by differential inclusions in infinite-dimensional spaces has not drawn attention in 
the literature till the very recent time. 

In [13], the author developed the method of discrete approximations to study optimal 
control problems of minimizing the Bolza functional (1.1) over appropriate solutions to 
evolution systems governed by infinite-dimensional differential inclusions of type (1.2) with 
endpoint constrains given in the geometric form 

(1.5) x(b) E Q C X 

via closed subsets of Banach spaces satisfying certain requirements. The major assumption 
on n made in [13] is the so-called sequential normal compactness {SNC) property of Q at 
the optimal endpoint x(b) E n; see [12] for a comprehensive theory for this and related 
properties, which play a major role in infinite-dimensional variational analysis. Loosely 
speaking, the SNC property means that n should be "sufficiently fat" around the reference 
point; e.g., it never holds for singletons unless X is finite-dimensional, where the SNC 
property is satisfied for every nonempty set. For convex sets in infinite-dimensional spaces, 
the SNC property always holds when int n f=. 0. Furthermore, it happens to be closely 
related (13] to the so-called "finite-codimension" property of convex sets, which is known to 
be essential for the fulfillment of an appropriate counterpart of the Pontryagin maximum 
principle for infinite-dimensional systems of optimal control; see, e.g., (7, 9]. 

In this paper we show that the dynamic optimization problem (P) formulated above, 
with the functional endpoint constraints (1.3) and (1.4), admits necessary optimality condi
tions in the extended Euler-Lagrange form accompanied by the corresponding Weierstrass
Pontryagin/maximum and transversality relations with no SNC and similar assumptions 
imposed on the underlying endpoint constraint set in infinite dimensions. Moreover, the 
case of endpoint constraints (1.3) and (1.4) allows us to partly avoid some other rather re
strictive assumptions (like "strong coderivative normality," which may not hold in infinite
dimensional spaces; see Sections 6, 7 for more details) imposed in {13] in the general case of 
geometric constraints (1.5). Our approach is based, in addition to [13], on refined proper
ties of appropriate subdifferentials of locally Lipschitzian functions on infinite-dimensional 
spaces, as well as on dualjcoderivative characterizations of Lipschitzian and metric regular
ity properties of set-valued mappings. 

The rest of the paper is organized as follows. In Section 2 we formulate· the standing 
assumptions on the initial data of (P), and discuss the relaxation procedure used for some 
results and proofs in the paper. The main attention in this paper is paid to the so-called 
intermediate local minimizers, which occupy an intermediate position between the classical 
weak and strong minima. 

In Section 3 we construct a sequence of the well-posed discrete approximations (PN) to 
the original Bolza problem (P) involving consistent perturbations of the endpoint constraints 
in the discrete approximation procedure. Then we present a major result on the strong 
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stability of discrete approximations that justifies the W 1•2-norm convergence of optimal 
solutions for (PN) to the fixed local minimizer for the original problem (P). 

Section 4 contains an overview of the basic tools of generalized differentiation needed 
to perform the subsequent variational analysis of the discrete-time and continuous-time 
evolution systems under consideration in infinite-dimensional spaces. Most of the material 
in this section is taken from the author's book [12], where the reader can find more results 
and commentaries in this direction and related topics. 

Section 5 is devoted to deriving necessary optimality conditions for the constrained 
discrete-time problems arising from the discrete approximation procedure. These problems 
are reduced to constrained problems of mathematical programming in infinite dimensions, 
which happen to be intrinsically nonsmooth and involve finitely many functional and geo
metric constraints generated by those in (1.2)-(1.4) via the discrete approximation proce
dure. Variational analysis of such problems requires applications of the full power of the 
generalized differential calculus in infinite-dimensional spaces developed in (12]. 

In Section 6 we derive necessary optimality conditions of the extended Euler-Lagrange 
type for relaxed intermediate minimizers to the original Bolza problem (P) by passing to 
the limit from those obtained for discrete-time problems. It worth emphasizing that the 
realization of the limiting procedure requires not only the strong convergence of optimal 
trajectories to discrete approximation problems but also justifying an appropriate conver
gence of adjoint trajectories in necessary optimality conditions for discrete-time systems. 
The latter becomes passible due to specific properties of the basic generalized differen
tial constructions reviewed in Section 4, which include complete dual characterizations of 
Lipschitzian and metric regularity properties of set-valued mappings. 

The concluding Section 7 concerns necessary optimality conditions for arbitrary (non
relaxed) intermediate minimizers to problem (P) that are established in terms of the ex
tended Euler-Lagrange inclusion accompanied by the Weierstrass-Pontryagin/maximum and 
transversality relations without imposing any SNC assumptions on the target/endpoint con
straint set. The approach is based on an additional approximation procedure that allows 
us to reduce (P) to an unconstrained Bolza problem of the type treated in Section 6 for 
which any intermediate local minimizer happens to be a relaxed one. 

Our notation is basically standard; cf. [12, 13]. Unless otherwise stated, all the spaces 
considered are Banach with the norm II · II and the canonical dual pairing (-, ·) between the 
space in question, say X, and its topological dual X* whose weak* topology is denoted 
by w*. We use the symbols lB and JB* to signify the closed unit balls of the space under 
consideration and its dual, respectively. Given a set-valued mapping F: X =t X*, its 
sequential Painleve-Kuratowski upper/outer limit at xis defined by 

(1.6) 
LimsypF(x) := {x* E X*j 

X-->X 

w• 
3 sequences Xk --+ x, xk --+ x* with 

xk E F(xk) as k E IN:= {1, 2, ... } }· 

2 Bolza Problem for Differential Inclusions 

Just for brevity and simplicity, we consider in this paper the Bolza problem (P) with 
autonomous (time-independent) data. By a solution to inclusion (1.2) we understand (as 
in [1, 6] a mapping x: T--+ X, which is Frechet differentiable for a.e. t E T satisfying (1.2) 
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and the Newton-Leibniz formula 

x(t) = xo + lt x(s) ds for all t E T, 

where the integral in taken in the BoCHNER SENSE. 
Recall that a Banach space X is Asplund if any of its separable subspaces has a separable 

dual. This is a major subclass of Banach spaces that particularly includes every space with 
a Frechet differentiable renorm off the origin (i.e., every reflexive space), every space with 
a separable dual, etc.; see [4] for more details, characterizations, and references. There is a 
deep relationship between spaces having the Radon-Nikodym property (RNP) and Asplund 
spaces, which is used in what follows: given a Banach space X, the dual space X* has the 
RNP if and only if X is Asplund. 

It has been well recognized that differential inclusions (1.2), which are certainly of 
their own interest, provide a useful generalization of control systems governed by differen
tial/evolution equations with control parameters: 

(2.1) x = f(x,u), u E U, 

where the control sets U(·) may also depend on time and state variables via F(x, t) = 
f(x, U(x, t), t). In some cases, especially when the sets F(·) are convex, the differential 
inclusions {1.2) admit parametric representations of type (2.1), but in general they cannot 
be reduced to parametric control systems and should be studied for their own sake; see [1]. 
Note also that the ODE form (2.1) in Banach spaces is strongly related to various control 
problems for evolution partial differential equations of parabolic and hyperbolic types, where 
solutions may be understood in some other appropriate senses {7, 9]. 

In what follows, we pay the main attention to the study of intermediate local minimizers 
for problem (P) introduced in [11]. Recall that a feasible arc to (P) is a solution to the 
differential inclusion (1.2) for which J[x] < oo in (1.1) and the endpoint constraints (1.3) 
and (1.4) are satisfied. 

Definition 2.1 (intermediate local minimizers). A feasible arc x(-) is an INTERME
DIATE LOCAL MINIMIZER (i.l.m.) of rank p E [1, oo) for (P) if there are numbers € > 0 and 
a~ 0 such that J[x] ::; J[x] for any feasible arcs to (P) satisfying the relationships 

(2.2) llx(t) - x(t) II < e for all t E [a, b] and 

(2.3) alb llx(t)- i(t)IIP dt <e. 

In fact, relationships (2.2) and (2.3) mean that we consider a neighborhood of x(·) in 
the Sobolev space W1·P([a, b]; X) with the norm 

(1b )1/p 
llx(·)llwl,p := max llx(t)ll + llx(t)IIP dt , 

tE[a,b] a 

where the norm on the right-hand side is taken in the space X. If there is only the re
quirement (2.2) in Definition 2.1, i.e., a = 0 in (2.3), then we get the classical strong local 

4 



minimum corresponding to a neighborhood of x(·) in the norm topology of C([a, b]; X). If 
instead of (2.3) one puts the more restrictive requirement 

ll±(t)- f(t)JI < € a.e. t E [a, b], 

then we have the classical weak local minimum in the framework of Definition 2.1. Thus the 
introduced notion of i.l.m. takes, for any p E [1, oo), an intermediate position between the 
classical concepts of strong (a= 0) and weak (p = oo) local minima, being indeed different 
from both classical notions; see various examples in {18, 13]. Clearly all the necessary 
conditions for i.l.m. automatically hold for strong (and hence for global) minimizers. 

Considering the autonomous Bolza problem (P) in this paper, we impose the following 
standing assumptions on its initial data along a given intermediate local minimizer x(·): 

(Hl) There are a open set U C X and a number fp > 0 such that x(t) E U for all 
t E [a, b], the sets F(x) are nonempty and compact for all x E U and satisfy the inclusion 

(2.4) F(x)cF(u)+fpllx-ulllB whenever x,uEU, 

which implies the uniform boundedness of the sets F(x) on U, i.e., the existence of some 
constant 'Y > 0 such that 

F(x) C "(lB for all x E U. 

(H2) The integrand '19 is Lipschitzian continuous on U x ('YJB). 

(H3) The endpoint functions <pi, i = 0, ... , m + r, are locally Lipschitzian around x(b) 
with the common Lipschitz constant f > 0. 

Observe that (2.4) is equivalent to say that the set-valued mapping F is locally Lips
chitzian around x( ·) with respect to the classical Hausdorff metric; on the space of nonempty 
and compact subsets of X. 

In what follows, along with the original problem (P), we consider its "relaxed" coun
terpart significantly used in some results and proofs of the paper. Roughly speaking, the 
relaxed problem is obtained from (P) by a convexification procedure with respect to the 
velocity variable. It follows the route of Bogolyubov and Young in the classical calculus of 
variations and of Gamkrelidze and Warga in optimal control; see the books [1, 13] and the 
references therein for more details and commentaries. 

To construct an appropriate relaxation of the Bolza problem (P) under consideration, 
we first consider the extended-real-valued function 

'!?p(x,v) := '!?(x,v) + 8(v;F(x)), 

where 8(·; n) is the indicator junction of the set n. Denote 

19p(x,v) := ('l?p)~*(x,v), (x,v) EX x X, 

the biconjugatejbypolar function to 'l?p(x, ·), i.e., the greatest proper, convex, and lower 
semicontinuous (l.s.c.) function with respect to v that is majorized by 'l?p. Then the relaxed 
problem (R) to (P), or the relaxation of (P), is defined as follows: 

(2.5) minimize J[x] := <p(x(b)) + 1b 19p(x(t),x(t)) dt 
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over a.e. differentiable arcs x: [a, b] ~ X that are Bochner integrable on [a, b] together with 
'l?p(x(t), ±(t)), satisfy the Newton-Leibniz formula and the endpoint constraints (1.3), (1.4). 

Note that the feasibility requirement J[x] < oo in (2.5) is fulfilled only if x(·) is a solution 
to the convexified differential inclusion 

(2.6) ±{t) E clcoF(x(t),±(t)) a.e. t E [a,b] with x(a) = xo, 

where "cleo" stands for the convex closure of a set in X. Thus the relaxed problem (R) 
can be considered under explicit dynamic constraints given by the convexified differential 
inclusion (2.6). Any trajectory for (2.6) is called a relaxed trajectory for (1.2), in contrast 
to the ordinary (or originaQ trajectories for the latter inclusion. 

There are deep relationships between relaxed and ordinary trajectories for differen
tial inclusions, which reflect the fundamental hidden convexity inherent in continuous-time 
(nonatomic measure) dynamic systems defined by differential and integral operators. In 
particular, any relaxed trajectory of (1.2) under assumption (H1) can be uniformly approxi
mated (in the C([a,b];X)-norm) by a sequence of ordinary trajectories; see, e.g., [1, 6, 16]. 
We need the following version [5] of this approximation/ density property involving not only 
differential inclusions but also minimizing functionals. 

Lemma 2.2 (approximation property for the relaxed Bolza problem). Let x(·) be 
a relaxed trajectory for the differential inclusion (1.2) with a separable state space X, where 
F and{) satisfy assumptions (H1) and (H2), respectively. Then there is sequence of the 
ordinary trajectories xk(·) for (1.2) such that Xk(·) ~ x(·) in C([a, b]; X) ask~ oo and 

liminflb 1?(xk(t),±k(t)) dt::::; 1b Jp(x(t),±{t)) dt. 
k-+oo a a 

Note that Theorem 2.2 does not assert that the approximating trajectories Xk(·) satisfy 
the endpoint constraints (1.3) and (1.4). Indeed, there are examples showing that the latter 
may not be possible and, moreover, the property of relaxation stability 

(2.7) inf(P) = inf(R) 

is violated; in (2.7) the infima of the cost functionals (1.1) and (2.5) are taken over all the 
feasible arcs in (P) and (R), respectively. 

An obvious sufficient condition for the relaxation stability is the convexity of the sets 
F(x, t) and of the integrand'!? in v. However, the relaxation stability goes far beyond the 
standard convexity due to the hidden convexity property of continuous-time differential 
systems. In particular, Theorem 2.2 ensures the relaxation stability of nonconvex problems 
(P) with no constraints on the endpoint x(b). There are various efficient conditions for 
the relaxation stability of nonconvex problems with endpoint and other constraint; see [13, 
Subsection 6.1.2] with the commentaries therein for more details, discussions, and references. 

A local version of the relaxation stability property (2.7) regarding intermediate mini
mizers for the Bolza problem (P) is postulated as follows. 

Definition 2.3 (relaxed intermediate local minimizers). A feasible arc x(-) to the 
Bolza problem (P) is a RELAXED INTERMEDIATE LOCAL MINIMIZER (r.i.l.m.) of rank p E 

[1, oo) for (P) if it is an intermediate local minimizer of this rank for the relaxed problem 
(R) providing the same value of the cost functionals: J{x] = J[x]. 
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It is not hard to observe that, under the standing assumptions formulated above, the 
notions of intermediate local minima and relaxed intermediate local minima do not actually 
depend on rank p. In what follows we always take (unless otherwise stated in Section 7) 
p = 2 and a = 1 in (2.3) for simplicity. 

The principal method of our study in this paper involves discrete approximations of 
the original Bolza problem (P) for constrained continuous-time evolution inclusions by a 
family of dynamic optimization problems of the Bolza type governed by discrete-time in
clusions with endpoint constraints. We show that this method generally leads to necessary 
optimality conditions for relaxed intermediate local minimizers of (P). Then an additional 
approximation procedure allows us to establish necessary optimality conditions for arbi
trary (non-relaxed) intermediate local minimizers by reducing them to problems, which are 
automatically stable with respect to relaxation. 

3 Discrete Approximations 

In this section we present basic constructions of the method of discrete approximations in the 
theory of necessary optimality conditions for differential inclusions following the scheme of 
[11, 13] developed for the case of geometric constraints, with certain modifications required 
for the functional endpoint constraints (1.3) and (1.4). 

For simplicity we use the replacement of the derivative by the uniform Euler scheme: 

. ( ) x(t +h)- x(t) 
X t f':::! h , h~o. 

To formalize this process, we take any natural number N E IN and consider the discrete 
grid/mesh on T defined by 

TN:= {a, a+ hN, ... ,b- hN,b}, hN := (b- a)jN, 

with the stepsize of discretization hN and the mesh points tj :=a+ jhN as j = 0, ... , N, 
where to =a and tN =b. Then the differential inclusion (1.2) is replaced by a sequence of 
its finite-difference/ discrete approximations 

(3.1) XN(tj+l) E XN(tj) + hNF(xN(tj)), j = 0, ... , N -1, x(to) = xo. 

Given a discrete trajectory XN(tj) satisfying (3.1), we consider its piecewise linear ex
tension XN(t) to the continuous-time interval T = [a, b], i.e., the Euler broken lines. We 
also define the piecewise constant extension to T of the corresponding discrete velocity by 

(t) 
,_ XN{tj+l)- XN(tj) 

VN .- hN 'tE[tj,tj+l),·j=O, ... ,N-1. 

It follows from the very definition of the Bochner integral that 

XN(t) = xo + 1t VN(s) ds for t E T. 

The next result establishes the strong W 1•2-norm approximation of any trajectory for 
the differential inclusion (1.2) by extended trajectories of the sequence of discrete inclusions 
(3.1). Note that the norm convergence in W1•2 ([a,b];X) implies the uniform convergence 
of the trajectories on [a, b] and the pointwise, for a.e. t E [a, b], convergence of (some 
subsequence of) their derivatives. The latter is crucial for the study of nonconvex-valued 
differential inclusions. The proof of this result in given in {13, Theorem 6.4], which is an 
infinite-dimensional counterpart of the one in [11, Theorem 3.1]. 
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Lemma 3.1 (strong W1•2-approximation by discrete trajectories). Let x(·) be an 
arbitrary solution to the differential inclusion (1.2) under the assumptions in (H1), where 
X is a general Banach space. Then there is a sequence of solutions XN(tj) to the discrete 
inclusions (3.1) such that their extensions XN(t), a~ t ~ b, converge to x(t) strongly in the 
space W1•2 ([a, b); X) as N ~ oo. 

Now fix an intermediate local minimizer x(·) for the Bolza problem (P) and construct 
a sequence of discrete approximation problems (PN), N E IN, admitting optimal solutions 
XN(·) whose extensions converge to x(·) in the norm topology of W1•2({a, b); X) as N---+ oo. 

To proceed, we take a sequence of the discrete trajectories XN(·) approximating by 
Lemma 3.1 the given local minimizer x(-) to (P) and denote 

(3.2) rJN := max llxN(tj)- x(ti)ll ~ 0 as N ~ oo. 
jE{l, ... ,N} 

Having e> 0 from relations (2.2) and (2.3) for the intermediate minimizer x(·) with 
p = 2 and a= 1, we always suppose that 

x(t) + E/2 E U for all t E (a, b], 

where U is a neighborhood of x(·) from (H1). Let£> 0 be the common Lipschitz constant 
of <(Ji, i = 1, ... , m +r, from (H3). Construct problems (PN ), N E IN, as follows: minimize 

(3.3) 

over discrete trajectories XN = XN(·) = (xo,xN(tl), ... ,xN(tN)) for the difference inclu
sions (3.1) subject to the constraints 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Considering in the sequel (without mentioning any more) piecewise linear extension of 
XN(·) to the whole interval [a, b], we observe the relationships: 

(3.8) 
·{ xN(t) = xo + 1t iw(s) ds for all t E (a, b) 

±N(t) = ±N(tj) E F(xN(tj)), t E (tj,tj+l), 
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In the next theorem, we establish that the given relaxed intermediate local minimizer 
(r.i.l.m.) x(-) to {P) can be strongly in W1•2 approximated by optimal solutions to (PN); 
the latter implies the a.e. pointwise convergence of the derivatives significant for the main 
results of the paper. To justify such an approximation, we need to impose the Asplund 
structure on both X and its dual X*, which is particularly the case when X is reflexive. 

Theorem 3.2 (strong convergence of discrete optimal solutions). Let x(·) be an 
r.i.l.m. for the Bolza problem (P) under the standing assumptions (H1)-(H3) in the Banach 
state space X, and let ( PN), N E IN, be a sequence of discrete approximation problems built 
above. The following hold: 

(i) Each (PN) admits an optimal solution. 
(ii) If in addition both X and X* are Asplund, then any sequence {xN(·)} of optimal 

solutions to (PN) converges to x(-) strongly in W1•2 ([a,b];X). 

The proof of this theorem follows the arguments in [12, Theorem 6.13] and the estimates 

due to (3.2), which are needed for {3.4) and (3.5). 
The strong convergence result of Theorem 3.2 makes a bridge between the original 

continuous-time dynamic optimization problem (P) and its discrete-time counterparts (PN ), 
which allows us to derive necessary optimality conditions for (P) by passing to the limit 
from those for (PN)· The latter ones are intrinsically nonsmooth and require appropriate 
tools of generalized differentiation for their variational analysis. 

4 Generalized Differentiation 

In this section, we define the main constructions of generalized differentiation used in what 
follows. Since our major framework in this paper is the class Asplund spaces, we present 
simplified definitions and some properties held in this setting. All the material reviewed 
and employed below is taken from the author's book [12], where the reader can find more 
details and references. 

We start with generalized normals to closed sets n C X. . Given x E f!, the (basic, 
limiting) normal cone to n at x is defined by 

(4.1) N(x; n) :=Lim sup N(x; n), 
X--toX 

where "Limsup" stands for the sequential upper/outer limit (1.6) of the Frechet normal 
cone (or the prenormal cone) to f! at X E f! given by 

(4.2) N~( ~'"'~) {* X*ll' (x*,u-x) } 
XjH := x E 1m~up llu-xll :::; 0 , 

U->X 

where X ~ X signifies that X ---? X with X E n, and where N(x; n) := 0 for X ~ n. 
Given a set-valued mapping F: X ==/ Y of closed graph 

gphF := {(x,y) EX x Yl y E F(x)}, 
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define its normal coderivative and Frechet coderivative at (x, y) E gphF by, respectively, 

(4.3) D*F(x,Y)(y*) := {x* EX*! (x*,'-y*) E N((x,Y);gphF)}, 

(4.4) D*F(x,y)(y*) := {x* E X*l (x*,-y*) E N((x,Y);gphF)}. 

If F = f: X -4 Y is strictly differentiable at x (in particular, if f "E C1), then 

D* f(x)(y*) = D* f(x)(y*) = {Y' f(x)*y*}, y* E Y*, 

i.e., both coderivatives (4.3) and (4.4) are positively homogeneous extensions of the classical 
adjoint derivative operator to nonsmooth and set-valued mappings. 

Finally, consider a function r.p: X -4 lR locally Lipschitzian around x; in this paper we 
do not use more general functions. Then the (basic, limiting) subdifferential of r.p at x is 

(4.5) fJ<p(x) := Limsupar.p(x), 
x--+X 

where the sequential outer limit (1.6) of the Frechet subdifferential mapping ar.p(.) is 

(4.6) ar.p(x) := {x* EX* I r.p(u)- r.p(x) ~ (x*,u- x) 2': o}. 
llu-xll 

We are not going to review in this section appropriate properties of the generalized 
differential constructions (4.1)-(4.6) used in Sections 5-7: these properties will be invoked 
with the exact references to (12] in the corresponding places of the procifs in the subsequent 
sections. Just note here that our basic/limiting constructions (4.1), (4.3), and {4.5) enjoy 
full calculus in the framework of Asplund spaces, while the Frechet-like ones {4.2), (4.4), 
and ( 4.6) satisfy certain rules of "fuzzy calculus." 

5 Necessary Conditions for Discrete Inclusions 

In this section we derive necessary optimality conditions for the sequence of discrete ap
proximation problems (PN) defined in (3.1) and (3.3)-(3.7). We only present results in 
the "fuzzy" form, which are more convenient to derive necessary conditions for the original 
problem ( P) by the limiting procedure in Section 6. 

Observe first that each discrete optimization problem (PN) can be equivalently written 
in a special form of constrained mathematical programming (MP ): 

{ 

minimize 7f;o\z) subject to 
'lj;j(z) ~ 0, J = 1, ... ,s, 
f(z) = 0, 
z E ej c z, j = 1, ... , z, 

where 'lj;j are real-valued functions on some Banach space Z, where f: Z -4 Eisa mapping 
between Banach spaces, and where ei c Z. To see this, we let 

z := (xl. .. . ,XN,Vo, ... ,VN-1) E z := X 2N, E := xN, s := N + 2+m+2r, l := N -1 
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and rewrite (PN) as an (MP) problem (5.1) with the following data: 

N-1 N-1

1
t·+l 

'1/Jo(z) :=<po(xN)+hN L't?(xj,Vj)+ L 1 

llvJ-~(t)ll2 dt, 
j=O j=O t; 

llxi-1- x(tJ-1)11- E/2, j = 1, ... , N + 1, 

N-11t;+l 
'1/Jj(z) := L llvi- ~(t)ll 2 dt- E/2, j = N + 2, 

i=O t; 

<pi(xN)-irm, j=N+2+i, i=1, ... ,m+r, 
-<pi(xN)- lrJN, j = N + 2 +m+r + i, i = m + 1, ... ,m+r; 

{ 
f(z) = (fo(z), ... , fN-1(z)) with 
/j(z) := Xj+l - Xj- hNVj, j = 0, ... , N- 1, 

ei:={zEX2NivjEF(xJ)} for j=O, ... ,N-1. 

The next theorem establishes necessary optimality conditions for each problem (PN) 
in the approximate/fuzzy form of refined Euler-Lagrange and transversality inclusions ex
pressed in terms of Fn3chet-like normals and subgradients. The proof is based on applying 
the corresponding fuzzy calculus rules and neighborhood criteria for metric regularity and 
Lipschitzian behavior of set-valued mappings; cf. [13, Theorem 6.19]. 

Theorem 5.1 {fuzzy Euler-Lagrange conditions for discrete approximations). 
Let XN(·) = {xN(tJ)I j = 0, ... , N} be local optimal solutions to problems (PN) as N ~ oo 
under the assumptions (H1)-(H3) with the Asplund state space X. Consider the quantities 

l t;+lll XN{tj+1)- XN(tj) .:. 11 . 
0Nj:=2 t· hN -x(t) dt, J=O, ... ,N-1. 

1 

Then there exists a sequence eN ! 0 along some N ~ oo, and there are sequences of 
Lagrange multipliers AiN, i = 0, ... , m + r, and adjoint trajectories PN(·) = {PN(tj) E 
X* I j = 0, ... , N} satisfying the following relationships: 

-the sign and nontriviality conditions 
m+r 

AiN 2:: 0 for all i = 0, ... , m + r, L AiN = 1; 
i=O 

-the complementary slackness conditions 

AiN[cpi(xN{tN)) -i?JN] =0 for i=1, ... ,m; 

-the extended Euler-Lagrange inclusion in the approximate form 

(
PN(tJ+1)- PN(tj) (t. ) _).. ONj b* ) E).. fi'l?(- (t ·) XN(tH1)- XN(tj)) 

hN ,pN 3+1 ON hN N; ON XN 3 ' hN 

N~·((- (t ) XN(tj+l)- XN(tj)) hF) 18* 'th b* 18* . 0 N + XN j, hN ;gp +e W'l NjE , J= , ... , -1; 

-the approximate transversality inclusion 
m m+r 

-PN(tN) E L:>..iNacpi(xN(tN)) + 2::: >..iN[a<pi(xN(tN)) Ua(- <pi){xN(tN))] +siB*. 
i=O i=m+1 
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6 Euler-Lagrange Conditions for Relaxed Minimizers 

This section contains necessary optimality conditions in the refined forms of the extended 
Euler-Lagrange and transversality inclusions for relaxed intermediate local minimizers of 
the original problem (P). The proof is based on the passing to the limit from the necessary 
optimality conditions for discrete approximation problems obtained in Section 5 and on the 
usage of the strong stability of discrete approximations established in Section 3. A crucial 
part of the proof involves the justification of an appropriate convergence of adjoint arcs; the 
latter becomes possible due to the coderivative characterization of Lipschitzian set-valued 
mappings; cf. [13, Theorem 6.21] 

Theorem 6.1 (extended Euler-Lagrange and transversality inclusions for re
laxed intermediate minimizers). Let xO be a relaxed intermediate local minimizer 
for the Bolza problem (P) given in {1.1)-(1.4) under the standing assumptions of Section 2, 
where the spaces X and X* are Asplund. Then there are nontrivial Lagrange multipliers 
0 =/= (Ao, ... , Am+r) E JRm+r+l and an absolutely continuous mapping p: [a, b] -+ X* such 
that the following necessary conditions hold: 

-the sign conditions 

(6.1) Ai 2:: 0 for all i = 0, ... , m + r, 

-the complementary slackness conditions 

(6.2) AiC,Oi (x(b)) = 0 for i = 1, ... , m, 

-the extended Euler-Lagrange inclusion, for a. e., t E [a, b], 

(6.3) p(t) E cleo { u EX* I (u,p(t)) E Ao819(x(t),:t(t)) + N((x(t),ft{t));gphF)}, 

-and the transversality inclusion 

m m+r 
(6.4) -p(b)) E LAiac,oi(x(b)) + L Ai[ac,oi(x(b))Ua( -c,oi)(x(b))]. 

i=O i=m+l 

Note that the results obtained in Theorem 6.1 are different from those derived in 
[13, Subsection 6.1.5] not only by the absence of any SNC-like assumptions on the tar
get/constraint set but also by not imposing the "coderivative normality" property on F 
needed in [13] in similar settings. Observe also that the arguments developed above al
low us to provide the correspondent improvements in the case of Lipschitzian endpoint 
constraints of the Euler-Lagrange type necessary optimality conditions derived in [14] for 
evolution models governed by semilinear inclusions 

(6.5) x(t) E Ax(t) + F(x(t), t), 

where A is an unbounded infinitesimal generator of a compact Co-semigroup on X, and 
where continuous solutions to (6.5) are understood in the mild sense. 
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7 Necessary Conditions without Relaxation 

In this section we establish necessary optimality conditions for intermediate local minimizers 
x( ·) of evolution inclusions without any relaxation. It can be done under certain more 
restrictive assumptions on the initial data in comparison with those in Theorem 6.1. For 
simplicity, consider here the Mayer version (PM) of problem (P) with '19 = 0 in (1.1). In 
this case, the Euler-Lagrange inclusion (6.3) admits the coderivative form 

(7.1) p(t) E clcoD* F(x(t),if(t)){- p(t)) a.e. t E {a, b], 

which easily implies, due to the extremal property for coderivatives of convex-valued map
pings given in {12, Theorem 1.34], the Weierstrass-Pontryagin maximum condition 

(7.2) (p(t),x(t))= max (p(t),v) a.e. tE.[a,b] 
vEF(x(t)) 

provided that the sets F(x) are convex near x(t) for a.e. t E {a, bj. Our goal is to justify 
the above Euler-Lagrange and Weierstrass-Pontryagin conditions, together with the other 
necessary optimality conditions of Theorem 6.1, for intermediate minimizers of the Mayer 
problem (PM) subject to the Lipschitzian endpoint constraints (1.3) and (1.4), without 
any convexity or relaxation assumptions and with no SNC-like requirements imposed on 
the endpoint constraint set. To accomplish this goal, we employ a certain approximation 
technique involving Ekeland's variational principle combined with other advanced results of 
variational analysis and generalized differentiation, which allow us to reduce the constrained 
problem under consideration to an unconstrained (and thus stable with respect to relaxation) 
Bolza problem studied iil Section 6. However, this requires additional assumptions on the 
initial data of (PM) imposed in what follows. 

Recall that a set-valued mapping F: X =t Y is strongly coderivatively normal at (x, y) E 
gph F if its normal coderivative ( 4.3) admits the representation 

D*F(x,y)(y*)={x*EX*I3sequences (xk,Yk)~(x,y), x'k~x*, and Y'k~Y* 
with Yk E F(xk) and x'k E fr F(xk, Yk)(Y'k) as k ~ oo} =: DM-F(x, y)(y*), 

where DM-F(x, Y) is called the mixed coderivative ofF at (x, y). Observe that the only 
difference between the normal and mixed coderivatives of F at (x, y) is that the mixed 

weak* convergence of x'k ~ x* and the norm convergence of Y'k ~ y* is used for DM-F(x, y) 

in (7.3), in contrast to the weak* convergence of both components (x'k, yk) ~ {x*, y*) for 
D* F(x, Y) in (4.3) via (4.1). Besides the obvious case of dim Y < oo, the strong coderiva
tive normality holds in many important infinite-dimensional settings, and the property is 
preserved under various compositions; see (12, Proposition 4.9] describing major classes of 
mappings satisfying this property. 

A mapping F: X =tY is called sequentially normally compact (SNC) at (x,y) E gphF 

iffor any sequences (xk,Yk) g~ (x,y) and (x'k,y*) E N((xk,Yk);gphF) one has 

(x'k,yk) ~ 0 ==? ll(x'k,Y'k)ll ~ 0 as k ~ oo. 

As discussed in Section 1, this property is a far-going extension of the "finite-codimension" 
and other related properties of sets and mappings. It always holds in finite dimensions, 
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while in reflexive spaces agrees with the"compactly epi-Lipschitzian" property by Borwein 
and Str6jwas; see [12] for more details, discussions, and calculus. 

Finally, recall that the given norm on a Banach space X is Kadec if the strong and weak 
convergences agree on the boundary of the unit sphere of X. It is well known that every 
reflexive space admits an equivalent Kadec norm. 

Theorem 7.1 (Euler-Lagrange and Weierstrass-Pontryagin conditions for inter
mediate local minimizers with no relaxation). Let x(-) be an intermediate local 
minimizer for the Mayer problem (PM) in (1.1)-(1.4) under the standing hypotheses (Hl) 
and (H3) on F and 'Pi· Assume in addition that: . 

(a) the state space X is separable and reflexive with the Kadec norm on it; 
{b) the velocity mapping F is SN C at ( x( t), :/;( t)) and strongly coderivatively normal 

with weakly closed graph around this point for a. e. t E {a, b]. 

Then there are nontrivial Lagrange multipliers 0-::/= (.Xo, ... , Am+r) E JRm+r+l and an abso
lutely continuous mapping p: [a, b] -+X* satisfying the following relationships: 

-the sign and complementarity slackness conditions in (6.1) and (6.2); 

-the Euler-Lagrange inclusion (7.1), where the closure operation is redundant; 

-the Weierstrass-Pontryagin maximum condition (7.2); and 

-the transversality inclusion (6.4). 

Proof. Denote 

(7.3) <pt(x, 11) :=max { <po(x)- 11, 0}, <pt(x) :=max { 'Pi(x), 0}, i = 1, ... , m, 

and, by the method of metric approximations [10], consider the parametric cost functional 

m m+r l/2 
(7.4) B11 [x] := [ ('Pd)2 (x(b), 11) +I: ('Pi/(x(b)) + I: <p;(x{b))] , 11 E JR, 

i=l i=m+l 

over trajectories for (1.1) with no endpoint constraints. Since x(-) is an intermediate local 
minimizer for (PM) and due to the constructions in (7.3) and (7.4), we have 

Bv[x] > 0 for any 11 < ii := <po(x(b)) 

provided that x(·) is a trajectory for (1.2) belonging to the prescribed W1•1-neighborhood 
of the given intermediate local minimizer and such that x{t) E U for all t E {a, b], where the 
open set U C X is taken from the requirements in (H1) imposed on x(·). 

Then following the proof of [13, Theorem 6.27], we find an absolute continuous arc Xe(·) 
satisfying the estimate 

and such that Xe provides an intermediate minimum to the unconstrained Bolza problem 
with Lipschitzian data: 

(7.5) minimize 'Pe(x(b)) + 1b '!?e(x(t), x(t), t) dt 
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over absolutely continuous arcs x(·) satisfying x(a) = xo and lying in a W 1•1-neighborhood 
of x(·), where the functions <pe: X-+ JR and Be: X x X x .[a,b]-+ JR are given by 

(7.6) 
m m+r / 

( + 2 "' + 2 "' 2 ·]1 2 'Pe(x) := ('Po) (x, lie)+ .L.t ('Pi ) (x) + .L.t 'Pi (x) , 
i=l i=m+l 

(7.7) '!?e(x, v, t) := 7JV1 + l}dist{(x,v); gphF) + v'ellv- Xe(t)ll. 

Applying the optimality conditions of Theorem 6.1 to problem (7.5) with the initial 
data (7.6) and (7.7), for all small c > 0 we find an absolutely continuous adjoint arc 
Pe: [a, b] -+ X* satisfying 

(7.8) Pe(t) E co { u EX* I (u,pe(t)) E JLOdist({xe(t),:i:e(t));gphF) + ye(O,JB*)} 

for a.e. t E [a, b] with JL := 7JV1 + £} and 

(7.9) 
m m+r l/2 

-Pe(b)Ea[(cpci)2(·,ve)+L(cpt)
2
0+ L 'P~O] (xe(b)). 

i=l i=m+l 

Passing to the limit in (7.8), (7.9) and using the calculus rules of generalized differentiation 
as in the proof of [13, Theorem 6.27], we arrive at the Euler-Lagrange and transversality 
conditions of the theorem without any relaxation. 

Observe that in the general nonconvex setting the Euler-Lagrange inclusion {7.1) does 
not automatically imply the maximum condition (7.2). To establish the latter condition 
supplementing the other necessary conditions of the theorem, we follow the proof of [17, 
Theorem 7 .4.1] given for a Mayer problem of the type (PM) involving nonconvex differential 
inclusions in finite-dimensional spaces; it holds with minor changes in infinite-dimensions 
under the assumptions imposed. The proof of the latter theorem is based on reducing the 
constrained Mayer problem for nonconvex differential inclusions to an unconstrained Bolza 
(finite Lagrangian) problem, which in turn is reduced to a problem of optimal control with 
smooth dynamics and nonsmooth endpoint constraints first treated in [10] via the nonconvex 
normal cone (4.1) and the corresponding subdifferential (4.5) introduced therein to describe 
the appropriate transversality conditions in the maximum principle. 1::,. 
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