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CAN WE HAVE SUPERCONVERGENT GRADIENT RECOVERY UNDER 
ADAPTIVE MESHES?* 

HAIJUN WU U AND ZHIMIN ZHANGt 

Abstract~ We study. adaptive finite element methods for elliptic problems with domain corner singularities. Our model 
problem is the two dimensional Poisson equation. Results of this paper are two folds. First, we prove that there exists an 
adaptive mesh (gauged by a discrete mesh density function) under which the recovered.gradient by the Polynomial Preserving 
Recovery (PPR) is superconvergent. Secondly, we demonstrate by numerical examples that an adaptive procedure with 
a posteriori error estimator based on PPR does produce adaptive meshes satisfy our mesh density assumption, and the 
~ecovered gradient by PPR is indeed supercoveregent in the adaptive process. 

Key. words. finite element method, adaptive, superconvergence, gradient recovery 
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1. Introduction. Let n c R2 be a bounded polygon with boundary on. Consider the 
Dirichlet boundary problem: find u E H 1(0.) such that u = g on an and 

A(u, v) = { "Vu · "Vv = f(v), Vv E HJ{n), Jn - (1.1) 

where f E H-1(n). 
Assume the solution u has a singularity at the origin 0 and can be decomposed as a 

sum of a singular part and a smooth part [8]: 

u=v+w, (1.2) 

where 

Ia ~v ·I ~ r 5
-m and Ia ~;w ·I < 1, m = 1, · · · , k + 2, i = 0, · · · , m, (1.3) xt ym-t . - xt ym-t rv 

_where r = J x 2 + y2 and 0 < 8 < k + 1 is a constant. Here k = 1 for linear finite element 
methods and k = 2 for quadratic finite element methods. 

Next, we briefly explain the rational of the above regularity assumption. When Q is 
a polygonal domain, the solution of the Poisson equation with the Dirichlet boundary 
condition: 

-D..u = f in n, ulan= g 

with sufficiently smooth data f and g, has the following decomposition, see, e.g., {8] and 
[3], at a corner with angle w: 

J 

u( r, 0) = L Cjr0
j ln8

j r sin aie + w, 
j=1 
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where w is smoother than the terms in the sum, and 

8 
. _ { 1 aj is an integer 

3 - 0 otherwise 

Specially, for the £-shaped domain, w = 3rr /2 at the re-entrance corner and the expansion 
there is 

u-:- c1r 213 sin ~B + c2r
413 sin ~B + c3r 2 ln r sin 2() + c4r

813 sin ~B + w; 

and for a cracked domain, w = 2rr at the crack tip and the expansion there is 

u = c1r 112 sin ~B + c22r ln rsinB + c3r 312sin ~B 

+ c4r 2 ln r sin 20 + c5r 512 sin ~B + C()r3 ln r sin3B + w. 

These are the two cases we shall test numerically in the last section. 
Let Mh be a regular triangulation of the domain n, &h be the set of all interior edges, 

and Nh be the set of all nodal points. Assume that the origin 0 E Nh. Remember that any 
triangle r E Mh is considered as closed. Let Vt = { vh : vh E H 1(n), vhlr E Pk(r)}, k = 

0 

1, 2, be the conforming finite element space associated with Mh, and Vt = Vt n HJ(n). 
Here Pk denotes the set of polynomials with degree ;:S k. Denote by Ik : C(Q) ~ Vhk 

the standard finite element interpolation operator. The finite element solution uh E Vt 
satisfies Uh = Iku on an and 

A(uh,vh) =In '\luh·'\lvh=f{vh), (1.4) 

In adaptive finite element methods, the convergence rate is measured by the total 
degrees of freedom N, since the mesh is not quasi-uniform. For a two-dimensional second
order elliptic equation, the optimal convergence rates are 

where k = 1 is for linear element and k = 2, quadratic. 
Starting from a fundamental work of [6], in the last decade, convergence proof of 

residual based adaptive finite element method has been well established {1, 2, 10, 11]. 
On the contrary, there is no convergence proof for using recovery based error estima
tors. By shifting the error estimator from residual based to recovery based, we obtain 
the same numerical convergence rate following the same mark-up, refinement procedure. 
Furthermore, the recovered gradient Ghuh is superconvergence in the sense · 

where p > 0 is a constant which depends on the quality of the adaptive mesh, 
Throughout the paper, we use the notation A1 ;:S B1 to represent the inequality 

A1 ~constant x Ell where the constant may only depends on the minimum angle of the 
triangles in the m€sh Mh, the constant 8, and the domain n. The notation A1 ;:v B1 is 
equivalent to the statement A1 ;:S B1 and B1 ;:S A1. 
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2. Preliminary. Following the argument in [5], we consider in Figure 2.1, an edge e, 
two elements T and T 1 sharing e, and ne = T u T 1 the patch of e. For an element T c ne, 
Be denotes the angle opposite to the edge e. he, he+b and he-l denote the length of e and 
the other two edges of T. The subscript ~ + 1 or e ..;... 1 is for orientation. All triangles in 
the triangulation are orientated counterclockwise. te is the unit tangent vector of e with 
counterclockwise orientation and ne is the unit outward normal vector. An index ' is add 
for the corresponding quantity in T

1
• Notice that te = -t~ and ne = -n~ because of the 

orientation. For any T E Mh, we denote by hr its diameter and by rr the distance from 
the origin to the barycenter ofT, and by ITI the area of the triangle T. For any e E eh, 
let re be the distance from the origin 0 to the midpoint of e. 

0 
FIG. 2.1. Notation in the patch !le. 

Let e E ch be an interior edge. Recall that Oe, the patch of e, consists two adjacent 
triangles sharing e. We say that ne is an O(c:) approximate parallelogram if the lengths 
of any two opposite edges differ only by O(c:). · 

Definition: The triangulation Mh is said to satisfy Condition (a, a, J.l) if there exist 
constants a> 0, a 2:: 0, and J.l > 0 such that the interior edges can be separated into two 
parts ch = c 1,h EEl £2,h: Oe forms an O(h!+a /r~+p,(l-a)) parallelogram fore E E1,h and the 
number of edges in £2,h satisfies #£2,h ;S Nu. 

Remark 2.1. The meaning of Condition (a, a, J.l) is the following. The edges can be 
grouped into "good" (Ei,h) and "bad" (£2,h), where the number of bad edges are much 
smaller than good edges. The ratio is 

#£2,h < Nq _ 1 

#£ rv N - Nl-u ' 
- l,h 

When re = 0(1), i.e., an edge e is far away from the singular point 0, more restric
tions are put on the adjacent triangles with the common edge e. This condition requires 
that they form an O(h!+a) parallelogram, which is the same as in previous works [13]. 
When e is in a neighborhood of 0, where r!+~-t(l-a)/a ;S he, the condition O(he) implies 
O(h!+a /r~+J.t(l-a)). In other words, two adjacent triangles that share e are allow to dis
tort O(he) from a parallelogram, which implies no restriction on them. Roughly speaking, 
number of edges in £1,h that have no restriction imposed are O(N1-a) if hr ;::v r;.-J.tf]/' for 
any T E Mh· Here fl and J.l are positive constants. An explanation is given below after 
Lemma 2.1. 

We see from the above discussion, the closer to the singular point, the less restriction 
is imposed on the mesh. Indeed, for an adaptively refined mesh, the closer to the singular 
point, the worse of the mBsh quality in terms of forming parallBlogram triangular pairs. 0 

LEMMA 2.1. Assume that hr ;::v r;.-J.tfliL for any T E Mh, where ll a.nd J.l .are positive 
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constants. Then the degree of freedoms·N of the finite element equation (1.4) satisfies 
1 

N N f1211-. (2.1) 

Proof. 

h2 1 1 
N N L h; N h211- L r2-2JJ- . lrl 

TEMh T - TEMh T 

1 l 1 1 11 
1 1 

N h2JJ-. r2-2JJ- N h2JJ- r2-2JJ- . r dr ;::::::; h2JJ-. _ n _ o _ 

This completes the proof of the lemma. 0 
Remark 2.2. For linear element, J1 = 6/2, N N 1/f1°, and for quadratic element 

J1 = 8/3, N;:::::; 1/!J.20/3
. The condition hr;::::::; r;-JJ-flll- can be thought of as a discrete mesh 

density function. The positive number [! ;::::::; minreMh hn the size of the minimum element 
because for an elementr neighboring 0, rr N hr and the condition hr N r}-11-flll- implies 
that hr N fl. It is clear that the condition hr N r}-11-flll- for any r E Mh is equivalent to 
the condition he ;::::::; r;-JJ-flll- for any e E Eh. We recall that Condition (a, u, J.t) means no 
restriction On f!e if r!+JJ-(1-a)/a ;S he• Furthermore, if hr ;;;:i r;-P,flll-, i.e., he ;;;:i r!-11-fJt, then 
re ;S fla. Therefore if the mesh Mh satisfies Condition (a, u, J.t) and hr ;;;:i r;-JJ-lJ,.Il-, then no 
restriction is imposed on edges within the ball of radius R ;S fla. The number of edges in 
the ball is O(N1-a) by a similar argument as the proof of Lemma 2.1. 0 

3. Superconvergence between the fi,nite element solution and linear interpolation. We 
now define a quadratic interpolation of ¢ based on moment conditions on edges. Let 
¢Q = IIQ¢ be a quadratic element defined by 

(IIQ¢)(z) = ¢(z), and 1 IIQ¢ = 1¢, 'i/z E Nh, e E Eh. (3.1) 

The following fundamental identity is proved in {5] for vh E P1 ( r): 

1 '\I(¢- ¢I)' \lvh = L:.(f3e 1 [);:2Q ~~h + /e 1 0~2

:Q ~~h) 1 

T eC8T. e e V e e e ne e 
(3.2) 

where 
1 

'Ye = 3 cot Be lrl (3.3) 

and ¢I E P1 ( r) is the linear interpolation of ¢ on r. 
LEMMA 3.1. Let me denote te orne. Assume that Mh satisfy Condition {a,u,o/2) 

with 0 < a < 1 and 0 ~ u < 1. For any interior edge e -E Mh and two elements r, 
T

1 c ne, we have 

4 

(3.4) 

(3.5) 

(3.6) 

(3.7) 



Proof The arguments for (3.4), (3.5), and (3.6) are trivial, and for (3.7) follows from 
the trace theorem and the standard error estimate I¢- </>qiH2(r) ;S h,. lc/>IHa(r)' 0 

To deal with the singularity at the origin 0 we introduce the following lemma. Recall 
that v is the singular part of the decomposition u = v + w. 

LEMMA 3.2. Let M 0 = { T E Mh : the origin 0 E OT} be the set of elements with 
one vertex at 0. 

where v1 - Jtv is the linear interpolation of v. 
Proof. 

IIY'v- \i'vlll£2(r) ;S IIY'vll£2(r) + IIY'viii£2(r), 

It follows from (1.3) that 

(3.8) 

II'Vvll£2(r) ;S ( 11'Vvl2) 1/2 ;S (1 r28-2) 1/2 ;S ( 1h,. r28-2r dr) 1/2 ;S h~. (3.9) 

Since 'VC = 0, for any constant C, we have, 

Noting that lzl ;S h,. for 7 E M 0 , it follows from the assumption (1.3) that 

II'VviiiL2(r) ;S 11 

h,. · (h,.t)8
-

1dt ;S h~. (3.10) 

The proof is completed by combining (3.8)-(3.10). 0 
LEMMA 3.3. Assume that Mh satisfy Condition (a, a, oj2) with 0 < a ~ 1 and 

0 

0 ~a< 1, and that h,. ;:v r~-812!.1/12 for any T E Mh. Then for any vh E Vl 

a 1- a 
p = min(2, -

2
-), 

where u1 = Ilu E Vl is the piecewise linear interpolation of u. 
Proof From the decomposition u = v + w, 

where v = Ilv and w = Ilw are the linear interpolations of v and w, respectively. 
5 
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We first ·estimate In V'(v- VI). V'vh. Let £0 = {e E eh: e c 8r the origin 0 E r} 
and 8£0 = { e E £0 : 0 ¢:. e}. Recall that M 0 is the set of elements with one vertex at 
0. Applying (3.2), 

where 

j =1,2, 

First, 13 can be estimated by Lemma 3.2 and the fact that hr;:;::; 11 for r E M 0 : 

1131 ;S 116 L: IIV'vhll£2(r) ;S 116
ll\7vhii£2(0) · {3.14) 

reM 0 ·.· 

Secondly, 14 can be estimated by Lemma 3.1, the assumption (1.3), and the fact that 
he ;:;::; r e ;:;::; 11 for e E 8£0 . 

1141 ;S L: h; ( lvlw2,oo(e) + lvl1fa(r: rEOe,r~MO)) ll\7vhll£2(r: rEOe,r~MO) 
ee8e0. 

;S L: h; (r~-2 + her~-3 ) IIV'vhll£2(r: rEOe,r~Mo) 
ee8e0 

(3.15) 

Next we estimate 11. Notice that he;:;::; hr andre;:;::; rT forT c ne and e E ·el,h \£0 . 
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It follows from Lemma 3.1 and the assumption (1.3) that 

!III~· L [ra+~r:a)/2r~-2 + h~hrr~-3]11VvhiiL2(r:rEne) 
eEel,h\e0 e 

~ I: 
< { ""' [h2h2+2ar2o-4-2a-o{l-a) +. h2h4r2o-6] }

112
11\/v II 

rv L...J e e e e e e h £2(0) 

eEel,h \e0 

< { ""' [h2ho(l+a)r{2-o)(l+a)r2o-4-2a-o{l-a) + h2h2or4-2or2o-6] }
112

11Vv II 
rv L...J e- e e e- e e h L2(0) · 

eEel,h \e0 

Here we have used he ;::::; r!-812!J.812 to derive the last inequality. Therefore 

!1 ~ { !J.o(l+a) L h~r;2 } 112
ll\7vhiiP(n) ~ { !J.o(l+a) L h;r:;2} 

112
ll\7vhiiL2(n) 

eEel,h \e0 rEMh \M0 

~ { !J.o(l+a) . L 1 r-2} 1/211VvhiiL2(n) ~ { !J.o{l+a) 11 r-1 dr} 1/211VvhiiP(n) 
rEMh\M0 . -

~ !J.o(l+a)f2(lln!J.Il/2) ll\7vhiiL2(n). (3.16) 

Finally, we estimate 12. Notice that he ~ re. fore¢ £0. It follows from Lemma 3.1 
and the assumption (1.3) that 

II2I ~ L [h~r~-2 + h~hrr~-3] llvhiiL2(r: rEne) ~ L h~r~-2 llvhiiL2(r: rEne) 
eEe2,h \e0 eEe2,h \f:0 . 

~ { L h!r;8
-
4} 

112
ll\7vhiiP(n) 

eEe2,h \e0 

~ !J.o { L 1} 1/211\7vhll£2(n) . 
. eEe2,h\e0 

Here we have used he ;::::; r!-812!J.812 to derive the last inequality. Therefore 

II2I ~ !J.8 { #£2,h} 
112

ll\7vhiiP(n) ~ !J.8 { Nu} 112
ll\7vhiiL2(n) · (3.17) 

From Lemma 2.1, !J.8 ;:;::; 1/N, lln!J.I ;:;::; ln N. Combining (3.13)-(3.17) we have 

lin \7(v- VI). \7vhl ~ (!J.o(l+a)/2(lln!J.Il/2) + !J.o{ Nu} 1/2) JIVvhiiL2(n) 

1 + (ln N)112 · . a 1 -a 
~ Nl/2+p ll\7vhiiL2(n)' p = mm( 2' -2-). 

(3.18) 

Now we turn to the estimate for fn \7(w- w1) · \7vh. Since w is smooth, we do not 
separate the point 0. From (3.2), 

r v(w-wi)·\lvh= I: 1v(w-w1)·\lvh=J1+J2, (3.19) 
ln reMh r 
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j = 1,2. 

(3.20) 

Now, the proof of the lemma follows from (3.12), (3.18), and (3.20). D 
Applying Lemma 3.3 we obtain the following superconvergence result between the 

finite element solution uh and the linear interpolation UJ of the solution of the problem 
(1.1) . 

THEOREM 3.4. Assume that Mh satisfy Condition {a, u, 8/2) with 0 < a ~ 1 and 
0 ~ u < 1 and that hr ;::;:; r;-812 j]/12 for any T E Mh. Then 

_ . < 1+ (lnN)112 a 1- u 
IIY'(uh UJ )11£2(!1) "" . Nl/2+p , p =min( 2 , - 2-). (3.21) 

Proof Taking vh = uh - UJ in Lemma 3.3 we have 

IIY'(uh- UJ)IIi2(f!) = A(uh ~·1.1,J, vh) = A(u- UJ, vh) 

{ ·· 1 + {ln N) 112 

= Jn \7( u.- UJ) • \i'vh ;S Nl/2+p jiV'vhll£2(f!). 

The proof of the theorem is completed by canceling IIY'vhll£2(f!) on both sides of the 
inequality. D 

4. Superconvergence between the f:inite element solution and quadratic interpolation. 
Most parts of the proofs are similar tothose for linear elements and is omitted. We only 
point out the different parts. In this section uh is the solution of (1.4) with k = 2, that 
is, the quadratic finite element approximation of u. 

We first introduce some estimates over triangles from [9]. Recall that </JQ = IIQ¢ is 
the quadratic interpolations defined in (3.1) based on the moment conditions. 

LEMMA 4.1. Assume that¢ E H4 (r), then there holds 

1 · ~~-( s lrl s. )1 8
3
¢ 8

2
vh 

T \7(¢- IIQ¢). \i'vh = e~ {:a' ae(r) he + be(r) e 8n~8t~-s at; (4.1) 

+O(h;) I¢1H4(r) llvhiiHl(r), Vvh E P2(r), 

where for s = 0, 1, 2, 3, 

la:(r)l + la:(r')l ;S h~, lb:(r)l + lb:(r')l ;S h!, if e ·E &h; (4.2) 
Ia:( r)lrl - a:(r')lr'll ;S h~+a /r~H(l-a)/3 , Jb:(r) - b:( r')l ;S h!+a /r~+c(l-a)/3 , (4.3) 
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if Mh satisfy Condition (a,a,o/3) with 0 <a::; 1 and 0::; a< 1, and e E £1,h· 

To obtain the superconvergence of IIY'(uh- J~u)llv2(n)' we estimate the difference 
between two quadratic interpolation operators IIQ and J~. It easy to check that [15] 

ITQP- I~p = 0, 'Vp E P3. 

From the Bramble-Hilbert lemma, we have 

1 . 2 3 
r (\i'Ilq</>- \i'Ih¢) · Y'vh ;S hr I</>IH4(r) IIY'vhiiL2(r) · 

Therefor we have the following lemma from ( 4.1). 
LEMMA4.2. Assumethat </> E H4(7), then there holds 

1 ( 2 ) ·" ~ ( s( )171 s( )) 1 [)3¢ fPvh 
T \7 </>- Ih</> . \i'vh = ef:r {:o' ae 7 he +be 7 e an~at~-s at~ (4.4) 

+ O(h;) I</>IH4(r) llvhiiHl(r), for Vh E P2(7), 

Recall from Lemma 2.1, in the quadratic case, ifhr;:::::; r;.-613 !J.61
3 for anyr E Mh, then 

the degree of freedoms N of the finite element equation (1.4) satisfies 

1 
N;:::::; l12a/3 · (4.5) 

The following lemma is analogous to Lemma 3.2. We omit the proof. 
LEMMA 4.3. For v in the decomposition (1.2), 

IIV'v- Y'I~v!IL2(r) ;S h~, 'V7 E M 0
. 

·The following lemma is similar to Lemma 3.3 
LEMMA 4.4. Assume that Mh satisfy Condition (a, a, 8/3) with 0 < a < 1 and 

0 

0::; a< 1, and that hr;:::::; r;.-613116
1

3 for any 7 E Mh· Then for any Vh E v~ 

I 
r I 1 + (ln N) l/2 a 1 - a 

Jn\i'(u- I~u) · \i'vh ;S Nl+P IIVvhiiL2(n), p. min( 2' - 2-). (4.6) 

Proof From the decomposition u = v + w, 

in \i'(u- I~u) · \i'vh =in \i'(v- I~v) · \i'vh +in \7(w- I~w) · \i'vh, (4.7) 

We first estimate the term Jn \i'(v- I~v) · \i'vh. It follows from Lemma 4.2 that 

r \i'(v- I~v). \i'vh = L 1 \i'(v- I~v). \i'vh = Jl + 12 + 13 + 14, (4.8) 
ln rEMh T 

where 



/3 = I: 1 \7(v- I~v) · \7vh, 
- rEM0 T 

!4 = L t (a:(r) ~~ + b:(r)) 1 on~;~3-s ~~h + O(h;) lvJH4(r) JJvhJIHl(r). 
eeaeo s=O e e -· e e e 

Notice that the T in 14 is not in M 0 . 

Form Lemma 4.3, 

. 0 
1131 ~ 11 ll\7vhiiL2(n) · (4.9) 

It follows from (4.2) and the assumption (1.3) that 

1141 ~ L h~r~-3 Jvhlw2,oo(r) + h~hrr~-4 Jivhi1Hl(r) 
ee8&0 -

~ L h~r~-3 llvh11Hl(r) + h!r~-4 llvhi1Hl(r) ~ 115 
JjvhiiHl(fl) · 

{4.10) 

ee8&0 

Here we have used the inverse estimate Jvhlw2,oo(r) ~ h;2 Jivh11Hl(r) and the fact that · 
he ;::::; r e ;::::; 11 for e E 8£0 . 

Next we estimate 11 . It follows from Lemma 4.1 and the assumption (1.3) that 

II1I ~ L [ra+~r-aa)/3 r~~3 lvhlw2,oo(r) + h~hrr~-4 llvhi1Hl{ne)l 
eE&1,h \&0 e _ 

~ I: [h3+aro-3-a-o(i-a)/3 + h4ro-4] llv II 
e e e e h Hl(fle) 

eE&1,h \&0 

< { ~ [h2h4+2ar2o,-6-2a-2o(l-a)/3 + h2h6r2o-B] _}
112

Jjv II 
rv ~ e e e -,_ e e e h Hl{fl) 

eE&1,h \&0 · . 

~ { L [h~l12o(2+a)/3r~4+2a)(l-o/3)r;o-6-2a-2o(l-a)/3 

eE&1,h \&0 

Here we have used he ;::::; r!-o/3115/ 3 to .derive the last inequality. Therefore 

By a similar argument for (3.17) we can show that 

JI2I ~ 115 
{ #£2,h} 

112
1JvhJIHl(fl) ~ 115 

{ Nu} 112 
JlvhiiHl{fl) · 

10 
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Notice that llvhi!Hl(n) ;S IIY'vhll£2(n) from the Poincare's inequality. Combining (4.8)
(4.12) we have 

IL \i'(v- VI). \i'vhl ;S (.ao(2+a)/3lln.b:ll/2 + .b/~{Nu}l/2) IIY'vhiiL2(n) 

1 + (lnN)112 a 1- a 
;S NHP IIY'vhiiL2(n), P =min( 2' - 2-). 

(4.13) 

The estimate for the term fn \i'(w- I~w) · V'vh is similar as above. It follows from 
Lemma 4.2 that 

r \i'(w.,... I~w). \i'vh = L 1\i'(w- I~w). \i'vh = Jl + J2, (4.14) 
Jn TEMh T 

where 

There holds 

(4.15) 

Now, the proof of the lemma follows from (4.7), (4.13), and (4.15). 0 
Applying Lemma 4.4 we can obtain the following superconvergence result between the 

quadratic finite element solution uh and the quadratic interpolation I~u of the solution 
of the problem (1.1). 

THEOREM 4.5. Assume that Mh satisfy Condition (a,a,8/3) with 0 <a~ 1 and 

0 ~a< 1, and that hT;::::; r;-813a8
1
3 for any T E Mh. Then 

. (.a 1- a) 
p=mm 2'_2_. (4.16) 

5. The asymptotically exact a posteriori error estimators. In this section, we apply a 
newly developed gradient recovery operator, called polynomial preserving recovery {PPR) 
(12, 14, 16], to define an a posteriori error estimator. We further prove some supercon
vergence property of the recovery operator. As a consequence, the error estimator based 
on PPR is asymptotically exact under a mesh density assumption. 

5.1. The gradient recovery operator Gh and its superconver.gence. Given a node z E Nh, 
we select n ~ m = (k + 2)(k + 3)/2 sampling points Zj, j = 1, 2, ... , n, in an element 
patch Wz containing z (z is one of Zj), and fit a polynomial of degree k + 1, in the least 
squares sense, with values of uh at those sampling points. In other words, we are looking 
for Pk+l E Pk+l such that 

n n 

L:(Pk+l- uh)2(zj) = min L(q- uh)2(zj)· 
j=l qE'Pk+l j=l 

(5.1) 
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The' recovered gradient in the neighborhood of z is then defined as 

Ghuh = Y'Pk+l· (5 . .2) 

It was proved in [12] that the above least squares fitting procedure has a unique solution 
as long as those n sampling points are not on the same conic curve. Furthermore, the 
gradient recovery operator Gh : G(n) ~ V/: x V/:, k = 1 or 2, has the following properties. 

(i) liGhvhliL2(0) ;S IIY'vhll£2(n), "1/vh E V/:; 
(ii) For any nodal point z, (Ghp)(z) = \i'p(z) if p E Pk+l(wz)i 

(iii) I(Gh¢)(z)l ;S hl max l¢(z')lfor any node z ·E Nh; 
· r z'ENhnw,. 

(iv) Gh¢ = Ghik¢. 
Since Ik¢ and ¢ have the same nodal values and Gh uses only nodal values, so (iv) is 
clear. The polynomial preserving property (ii) can be established easily by the least 
squares procedure (16]. A key observation is that Gh provides a finite difference scheme 
at each node z E Nh, therefore, {iii) is obvious. Under a very mild mesh condition, "the 
sum of any two adjacent angles in M~t.is at most 1r", the bounded-ness property (i) can 
be proved, though not trivial. A reader is referred to (12, 14, 16] for more details. 

We first consider the case of linear finite elements and then state the corresponding 
results for quadratic elements since the proofs are similar. We have from (i) and (iv), 

IIGhuh- V'ull£2(!1) :::; IIGhuh- GhuiiiL2(0) + IIGhu- Y'ull£2(n) 

;S IIV'(uh - ui) 11£2(!1) + IIGhui - Y'ull£2(n) . 
-(5.3) 

Here ui is the linear interpolation of u·~ The estimate for the first term of the right hand 
side of the inequality (5.3) is given in Theorem 3.4. To estimate the second term we need 
the following lemma. 

LEMMA 5 .1. Under the conditions (ii )-(iii), for any element T E M h and any function 
¢ E W3'00 (f), 

IIGh¢I- V'¢11£2(r) ;S h; l¢lwa,oo{f)' 

where f - U { Wz : z E Nh n T} and ¢I is the linear interpolation of </J. 
Proof. Let (V'¢)I be the linear interpolation of V'¢. Then 

IIGh¢I- V'¢11£2(-r) :::; IJGh¢I- ('v'¢)IIIL2(-r) + II(V'¢)I- Y'¢11£2(r) · {5.4) 

The standard theory of finite element interpolation estimates says that [4] 

II (V' ¢)I - V' ¢11£2(r) ;S h; I¢1H3(r) ;S h; J¢lwa,oo{f) · {5.5) 

For a node z E r, let ¢2(x, y) be the 2nd-degree Taylor expansion of¢ at the point z. It 
is clear that 

.l¢(x, y) - <P2(x, y)l ;S h; I<Piwa,oo(f), "1/(x, y) E f. 

Form Condition (ii) and (iii), 

I (Gh¢I- (V'¢)J)(z)l =I (Gh¢I --\7¢)(z)l = I(Gh{¢I- ¢2)- (\1¢- Y'¢2))(z)l 

= 1( Gh{¢I- ¢2))(z) I ;S hl , max H¢- ¢2)(z')l 
T z ENhnw,. 

;S h; 1</Jiwa,oo(wz) · 
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Therefore 

The proof of the lemma is completed by combining (5.4)-(5.6). 0 · 
The following theorem is devoted to the estimate of the second term of (5.3). 
THEOREM 5.2. Assume that hr ;v r~~612!J}I2 for any r E Mh· Then 

Proof. Recall the decomposition u = v + w. 

where V[ = I~v and W[ = I~w are the linear interpolations of v and w respectively . 

(5.7) 

. We first estimate the singular part iiGhvi - V'vliL2(n)· Introduce the set of triangles 

M 0 = {r E Mh: the origin 0 E f}. For any r -E Mo, 

(5.9) 

From Condition (ii), GhC = 0, for any constant C. Thus, from Condition (iii), 

1 
;S hr-h max~ iv(z') - v( 0) I 

r z'ENhnr 

= max -I t dd v(z't)dtl. = max -I {1 

z' · Y'v(z't)dtl. 
z'ENhnr lo t z'ENhnr lo 

SincerE M 0 , iz'i ;S f1. It follows from the assumption (1.3) that 

(5.10) 

On the other hand, 

( 1 ) 1/2 ( 1 ) 1/2 (. rh ) 1/2 
IIY'vll£2(r) ;S r IY'vl

2 ;S . r r 26
-

2 
. ;S Jo - r26

-
2r dr ;S f16

• (5.11) 

Here ell is the diameter of f. Combining (5;9), (5.10), and (5.11), we obtain 

iiGhvi - Y'viiL2(r) ;S !16
, for r E M 0 . (5.12) 

It follows from Lemma 5.1 and (1.3) that 

ilGhvi - Y'vllvz.(r) ;S h~ lvlw3,oo(f) ;S h~r~-3 , for r E Mh \ M 0 , (5.13) 
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whe~e T7 is the distance form 0 to the barycenter of r. Therefore from h7 ;:;:; r;.-ot2!J/12 , 

rEMh\M0 

h;r~-2o ll2or;o-6 ;S ll2o + L 
rEMh \Mo rEMh \Mo 

;S ll2o + ll2o L .1 r-2 ;S ll2o + ll2o 11 r-1 dr ;S ll2o + ll2o llnfll . 
- T h rEMh\MO . -

Therefore Lemma 2.1 implies that 

(5.14) 

Next we turn to estimate the term IIGhwi- V'wll£2(n) in (5.8). Since w is smooth, we 
do not have to divide Mh into two parts as above. From Lemma 5.1 and the assumption 
(1.3), 

(5.15) 

The proof of the theorem is completed by inserting the estimates (5.14) and (5.15) into 
the inequality (5.8). 0 

The following superconvergence result of the gradient operator recovery Gh can be 
proved by combining (5.3), Theorem 3.4, and 5.2. 

THEOREM 5.3. Let uh is the linear finite element approximation of u. Assume that 
Mh satisfy Condition (a, u, 8/2) with 0 <a ~ 1 and 0 ~ u < 1, and that hr;:;:; r;.-ot2f1812 

for any r E Mh· Then · 

a 1-u 
p = min(2, -

2
-). (5.16) 

We remark that the result of Theorem 5.3 is a supperconvergence result since the 
asymptotically optimal convergence rate of IIY'(u- uh)ll£2(!1) is 0(1/N112

) 

Next we state the results for quadratic finite elements. The following theorem provides 
the the estimate for the gradient recovery operator G h 

THEOREM 5.4. Assume that h7 ;:;:; r;.-ot3f1813 for any r ·E Mh· Then 

a 1-o 
p = min(2, -

2
-). (5.17) 

The superconvergence of the gradient recovery operator G h is presented in the follow
ing theorem which is parallel to Theorem 5.3. 
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THEOREM 5.5. Letuh be the quadratic finite element approximation ofu. Assume that 
Mh satisfy Condition (a, a, 6/3) with 0 <a::; i and 0::; a< 1 and that hr;:;::; r;-o;3

f1_513 

for any T E Mh. Then 

1 + (In N) 112 a 1 - a · 
llGhuh- 'Vuii£2(0) ;S Nl+P , p = min(2, -

2
-). (5.18) 

· 5.2. The a posteriori error estimators. With preparation in the previous sections, it is 
now straightforward to prove the asymptotic exactness of error estimators based on the 
recovery operator Gh. The global error estimator is naturally defined by 

(5.19) 

THEOREM 5.6. Let uh be the linear finite element approximation of u. Assume that 
Mh satisfy Condition (a, a, 6/2) with 0 <a::; 1 and 0 $;a< 1, and that hr;:;::; r;-o;2f1_512 

for any T EM,;. Furthermore, assume that · 

(5.20) 

Then 

'f/h • · _ 
1 

< 1 + (In N) 112 a 1 - a 
ll\7{u-uh)ll£2(0) rv NP , p=min(2,-.-2-). (5.21) 

The following lemma says that II'V(u- uh)II£2(0) is the asymptotically optimal on the 

meshes Mh satisfying hr ;:;::; r;-o/2 
f1_512 as the degree of freedoms N -+ oo. 

LEMMA 5.7. Let uh be the linear finite element approximation of u. Assume that 
hr;:;::; r;-512!1.512 for any T E Mh· Then 

1 . 1 
ll\7(u- ui)II£2(0) ;S N 112 and hence II'V(u- uh)II£2(0) ;S N 112 . 

Proof. Recall u is decomposed as u = v + w satisfying (1.3). Noticing that 

II'V(v- VI)IIL2(r) ;S hr lviH2(r) ;S h~r~-2 , 'Vr E Mh \ M 0
, 

and that 

II'V(w- WJ)II£2(r) ;S hr lwiH2(r) ;S h~, 'VT E Mh, 

From Lemma 3.2 we have 

II'V(u- ui)IIi2(n) ;S II'V(v- VI)Ili2(n) + II'V(w- WJ)IIi2(0) 

= L ( II'V(v- VI)IIi2(r) + II'V(w- WJ)IJi2(r)) 

TEMh \M0 rEMh \M0 

;S !1.25 + Qo k ro-2 ;S !1.25 + Qo. 
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Fro~ Lemma 2.1, 
. 1 1 

IIY'(u- UI)IIi2(0) ;S N 2 + N' 

which completes the proof of the lemma .. 0 
The following lemma says that, for the the quadratic finite element approximation uh, 

IIY'(u- uh)IIL2(0) is asymptotically optimal on the meshes Mh satisfying hr N r~-813!)/13 
as the degree of freedoms N --+ oo. . 

LEMMA 5.8. Let uh be the quadratic finite element approximation of u. Assume that 
hr N r~-81311.813 for any T E Mh. Then 

I!V'(u- I~u)ljL2 (o) ;S ~ and hence IIY'(u- uh)IIL2(0) ;S ~· 

From Theorem 5.5, we can prove the asymptotic exactness of error estimators based 
on the recovery operator Gh for quadratic elements. 

THEOREM 5.9. Letuh be the quadrq,ticfinite element approximation ofu. Assume that 
Mh satisfy Condition (a, a, o/3) with 0 < a ~ 1 and 0 ~a< 1 and that hr N r~-813!J..813 
for any T E Mh· Furthermore, assume that 

1 . 
N ;S B.V'(u- uh)IIL2(0). (5.22) 

Then 

'T]h _ 
1 

..( 1 + (lnN)112 

IIY'(u- uh)ll£2(0) rv' NP ' 
a 1- a 

p = min(2, -
2
-). {5.23) 

6. Implementation and numerical examples. In this section we present some examples 
to verify the asymptotic exactness of error estimators 'T]h based on the recovery operator 
Ghusing quadratic finite elements. For the examples on linear elements we refer to [7). 

The implementation of the adaptive algorithm in this section is based on the FEMLAB. 
We define the local a posteriori error estimator on element T as follows: 

1Jr = lrGhuh- \i'uhll£2(r). 

Then the global error estimator 

Now we describe the adaptive algorithm we have used in this paper. 
Algorithm. Given tolerance TOL > 0.' 

• Generate an initial mesh Mh over n; 
• While 1Jh > TOL do . 

- Choose a set of elements Mh c Mh such that 

( 
~ 11~) 1/2 > o.7 ( 2: n~) 1/2, 

r.EMh r-EMh 

then refine the elements in Mh. Denote the new mesh by Mh also. 
16 



- solve the discrete problem (1.4) on Mh 
- compute error estimators on Mh 

end while 
Example 1. The Laplace equation on the L-shaped domain of Figure 6.1 with the 

Dirichlet boundary condition so chosen that the true solution is r213 sin(28 /3) in polar 
coordinates. 

Figure 6.1 plots the initial mesh and the adaptively refined mesh of 3565 elements 
after 15 adaptive iterations. Figure 6.2 show the asymptotic exactness of error estimators 
'f/h = IIGhuh- V'uhiiL2(0) for the Laplace equation on 1-shaped domain. It is shown that 

IIV'uh- V'uiiL2(f!) ::::i O(N-1 
), IIGhuh- V'uiiL2(0) ::::i O(N-1.2

), 

and 

IIGhuh- V'uhiiL2(f!) I IIV'u- V'uhiiL2(0) ::::i 1 + O(N-0
·
5
). 

Notice that the decay of IIV'uh- V'uiiL2(0) is quasi-optimal, IIGhuh- VuiiL2(f!) is super

convergent by an order of O(N-1.2), and 'f/h I IIV'u- \7uhiiL2(f!) approaches 1 at the rate 

of O(N~0·5 ) which is faster than expect rate O(N-0·2) indicated by Theorem 5.9. In this 
paper, the. L2 norms are calculated· by using the six points Gauss quadrature rule over 
triangles. 

Let us have a close look at the mesh density assumption hr ;;:;:; r;-613f1613 = r~/9f1.219 
for o = 2/3. We shall verify this on the final mesh, which has 112880 elements, after 24 
adaptive iterations. We choose fl. = min hr ::::i 5.96 x 10-8 and have 

rEMh 

0.44 :::; 7/ZT 2/9 :::; 2.35 
rr fl. 

for all element r E Mh. Note that the ratio between the upper and lower bounds is less 
than 6. this fact indicates that all elements in the final mesh satisfy the mesh density 
assumption. 

Example 2. Let n = {(xl, X2) : lxll, lx21 < 0.5}\{(x1, X2) : 0 :::; Xl < 0.5} be the 
domain with a crack. We consider the Poisson equation 

-b,.u = 1 

with Dirichlet boundary condition so chosen that the true solution is r112 sin(B/2)- ir2 

in polar coordinates. 
Figure 6.3 plots the initial mesh and the adaptively refined mesh of 3353 elements 

after 16 adaptive iterations. Figure 6.4 show the asymptotic exactness of error estimators 
'f/h = IIGhuh- VuhiiL2(0) for the crack problem. It is shown that 

and 

IIV'uh- VuiiL2(0) ::::i O(N-1), IIGhuh- V'uiiP(n) ::::i O(N-u), 

IIGhuh- V'uhiiL2(Q) I IIV'u- \7uhiiL2(f!) ::::i 1 + O(N-0
·
3
). 
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FIG. 6.1. The initial mesh (left) and the adaptivilly refined mesh (right} of 3565 elements after 15 adaptive iterations 
for the Laplace equation on L-shaped domain 

10-4 nv u-v urille 

~ IIGhuh -v UIIL2 

10-s 1)-lH> IIGh uh -vuhiiL2/IIV u-v uhiiL2 -1 

10-6 '-------,-......_ _____ _._ _____ _, 

10° .102 104 106 

:. Degree of freedoms 

FIG. 6.2. liGhuh- V'tt.hliL2(0) / IIV'u- V'uhliL2.(0) -1, IIV'u- V'uhiiL2(0)• and ii'Vu- GhuhiiL2(0) versus the degree 
of freedoms for the Laplace equation on L-shaped domain. Dotted lines give reference slopes. 

Notice that the decay of I!'Vuh- 'Vull£2(n) is quasi-optimal, I!Ghuh- 'Vui!L2(n) is ·super

convergent by an order of O(N-1.1 
), and 'f/h j I!'Vu- 'Vuhll£2(n) approaches 1 at the rate 

of O(N-0·3 ) which is faster than expect rate O(N-0·1 ) indicated by Theorem 5.9. 

Let us have a close look at the mesh density assumption hr ;:::::; r~-613!J.613 = r~l6f1.1 16 
for 8 = 1/2. We shall verify this on the final mesh, which has 11D790 elements, after 27 
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adaptive iterations. We choose 11 = min hr ~ 3. 73 X w-9 and have 
TE~h . 

hr 
0.32 < 5/6 1/6 < 1.92 

rr 11 
for all element r E Mh. Note that the ratio between the upper and lower bounds is 6. 
this fact indicates that all elements in the final mesh satisfy the mesh density assumption. 

FIG. 6.3. The initial mesh (left) and the adaptively refined mesh (right) of 3353 elements after 16 adaptive iterations 
for the crack problem 

- IIV u-V uhiiL2 

10-4 Ge-E> IIGhuh -v u11L2 

10-5 '-------"'--------'--------' 

1~ 1~ 1~ 1~ 
Degree of freedoms 

FIG. 6.4. IIGhuh- V'uhll£2(f1) / IIY'u- V'uhll£2(fl) -1, IIY'u- V'uhll£2(fl)• and 11'17u- Ghuhil£2(fl) versus the degree 
of freedoms for the crack problem. Dotted lines give reference slopes. 
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