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CAN WE HAVE SUPERCONVERGENT GRADIENT RECOVERY UNDER
ADAPTIVE MESHES?*

HAIJUN WU it AND ZHIMIN ZHANGH

- Abstract. We study. adaptive finite element methods for elliptic problems with domain corner singularities. Our model
problem is the two dimensional Poisson equation. Results of this paper are two folds. First, we prove that there exists an
adaptive mesh (gauged by a discrete mesh density function) under which the recovered gradient by the Polynomial Preserving
Recovery (PPR) is superconvergent. Secondly, we demonstrate by numerical examples that an adaptive procedure with
a posteriori error estimator based on PPR. does produce adaptive meshes satisfy our mesh density assumption, and the
recovered gradient by PPR is indeed supercoveregent in the adaptive process. '

Key words. finite element method, adaptive, superconvergence, gradient recovery

AMS subject classiﬁcaﬁbns. 65N30, 65N15, 456K20

1. Introduction. Let £ C R2 be a bounded polygon with boundary 952. Cons1der the
Dirichlet boundary problem find u € H() such that v = g on 89 and

_A(u,v); /Q Vu. Vo - f), wem®, (1.1)

where f € H™ 1(Q)
Assume the solution v has a singularity at the origin O and can be decomposed as a
sum of a singular part and a smooth part [8]:

v=v+w, (1.2)
Whvere'

0™
szﬁym—’

omw
Ozioym~

< r8~™ and |

~J

|51, m_=1,--- k+2,i=0,---,m, (L3)

where r = /2% + 42 and 0 <0 < k+1isaconstant. Here k =1 for linear finite element
methods and k& = 2 for quadratic finite element methods. ,

‘Next,; we briefly explain the rational of the above regularity assumption. When Q is
a polygonal domaln the solutlon of the Poisson equation with the Dirichlet boundary
. cond1t1on

4Au=f in , ’U;|ag=g

with sufficiently smooth data f and 9, has the following decomposition, see, e.g., [8] and
[3], at a corner with angle w:

‘ J .
T
u(r, ) = _5_ cir*In® rsine;0 +w, o= J—,
w
j=1
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where w is smoother than the terms in the sum, and

5 = 1 ajisan integer
7771 0 otherwise

Specially, for the L-shaped domain, w = 37 /2 at the re-entrance corner and the expansion
there is ’

u = c;r¥3sin 323-9 + cor*/®sin g& + ¢ar?Inrsin 20 + c,r¥/3 sin 26 +w;
and for a cracked domain, w = 27 at the crack tip and the expansion there is
u = ¢;r/?sin %9 4+ c2rinrsind + 63r§/2sin g@

+ c4r? InTsin 26 + .c5r5/2 sin —2-0 + cgr Inrsin 30 + w.

These are the two cases we shall test numerically in the last section. -

Let M}, be a regular triangulation of the domain 2, £, be the set of all interior edges,
and NV}, be the set of all nodal points. Assume that the origin O € ;. Remember that any
triangle 7 € M, is considered as closed. Let V¥ = {vp: vy, € HY(Q),v|r € Pe(T)}, b =

1,2, be the conforming finite element space associated with My, and ViF = ViF N HY(Q).
Here P, denotes the set of polynomials with degree < k. Denote by If : C(Q) — V}*
the standard finite element interpolation operator. The finite element solution uj, € V¥
satisfies up = Ifu on O and

A(uh,vh) = / Vuh . V’Uh = f(’l)h), V’Uh € th. (1.4)
: Q

In adaptive finite element methods, the convergence rate is measured by the total
degrees of freedom N, since the mesh is not quasi-uniform. For a two-dimensional second-
order elliptic equation, the optimal convergence rates are

O(NTY?) k=1 OWT) k=2

where k = 1 is for linear element and k = 2, quadratic.

Starting from a fundamental work of [6], in the last decade, convergence proof of
residual based adaptive finite element method has been well established {1, 2, 10, 11].
On the contrary, there is no convergence proof for using recovery based error estima-
tors. By shifting the error estimator from residual based to recovery based, we obtain
the same numerical convergence rate following the same mark-up, refinement procedure.
Furthermore, the recovered gradient Gjuy, is superconvergence in the sense

k=2

1 ‘ 1
||Vu - Ghuhll S, —]\—[1—/2-_*—_-; k=1, IIVu -— GhuhH SJ Nitr
where p > 0 is a constant which depends on the quality of the adaptive mesh,

Throughout the paper, we use the notation A; < B to represent the inequality
A, < constant x B, where the constant may only depends on the minimum angle of the
triangles in the mesh My, the constant §, and the domain 2. The notation A; < B is
equivalent to the statement A; < By and By S A4;.
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2. Preliminary. Followmg the argument in [5] we consider in Figure 2.1, an edge e,
two elements 7 and 7' sharing e, and Q. = 7 U7 the patch of e. For an element TC Qe,
6. denotes the angle opposite to the edge e. he, het1, and h._; denote the length of e and
the other two edges of 7. The subscript e + 1 or e — 1 is for orientation. All triangles in
the triangulation are orientated counterclockwise. t. is the unit tangent vector of e with
counterclockwise orientation and n. is the unit outward normal vector. An index ’is add
for the corresponding quantity in 7'. Notice that t. = —t, and n. = —n/, because of the
orientation. For any 7 € M, we denote by h, its diameter and by . the distance from
the origin to the barycenter of 7, and by |7| the area of the triangle 7. For any e € &,
let 7. be the distance from the origin O to the midpoint of e.

F1G. 2.1. Notation in the patch Q..

Let e € &, be an interior edge. Recall that ., the patch of e, consists two adjacent
triangles sharing e. We say that € is an O(e) approx1mate parallelogram if the lengths
~ of any two opposite edges differ only by O(e).

Definition: The triangulation M, is said to satisfy Condition (o, o, 1) if there exist
constants & > 0, o > 0, and p > 0 such that the interior edges can be separated into two
parts &, = £y ® Exp: Qe forms an O(hlte /re™ (l_"a)) parallelogram for e € & 5 and the -
number of edges in &, satisfies #&E S N°. ‘

Remark 2.1. The meaning of Condition (o, o, 1) is the following. The edges can be
grouped into “good” (£1) and “bad” (&), where the number of bad edges are much
smaller than good edges. The ratio is ' :

#an o N° 1

#gl,h ~ N - N1l-o®

When r, = O(1), i.e., an edge e is far away from the singular point O, more restric-
tions are put on the adjacent triangles with the common edge e. This condition requires
that they form an O(hl*®) parallelogram, which is the same as in previous works [13].
When e is in a neighborhood of O, where ri™!=®/% < p_ the condition O(h,) implies
O(hi+e [rotell= a)). In other words, two adjacent trlangles that share e are allow to dis- -
tort O(he) from a parallelogram, which implies no restriction on them. Roughly speaking,
number of edges in £ » that have no restriction imposed are O(N*=%) if h, = r1=#h* for
any 7 € M. Here h and u are positive constants. An explanation is given below after
Lemma 2.1.

We see from the above discussion, the closer to the singular point, the less restriction
is imposed on the mesh. Indeed, for an adaptively refined mesh, the closer to the singular
- point, the worse of the mesh quality in terms of forming parallelogram triangular pairs. O
LEMMA 2.1. Assume that h, = r1~*h" for any 7 € My, where h and u are positive
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constants. Then the degree of freedoms N of the finite element equation (1.4) satisfies

1 o
Proof.
1 1
N= Y @~ 2wl
TEME T = TeM, T
1 1T .1 o dr = L
~ W 7#2—2/; ~ ;{2_14 0 r2-2p rrar~ :}F

This completes the proof of the lemma. O
Remark 2.2. For linear element, 4 = §/2, N /1, and for quadratlc element
= §/3, N = 1/h®/3. The condition h, = rl ‘“h" can be thought of as a discrete mesh
densn;y function. The positive number i =< min e, hr, the size of the minimum element
because for an element 7 neighboring O . = h, and the condition h, = rl-#p* implies
that h, ~ h. It is clear that the condition h, = ri=ER* for any T € My is equlvalent to
the condition h, =~ rl"#h* for any e € &,. We recall that Condition (o, 0, ) means no
restriction on Q. if ri“ (1-a)/e < he. Furthermore, if h, = rI"#h*, ie., he < ri"h¥, then -
re S b*. Therefore if the mesh M), satisfies Condition (o, o, ) and h, = r}~#h*, then no
restriction is imposed on edges within- the ball of radius R S A% The number of edges in
the ball is O(N'~%) by a similar argument as the proof of Lemma 2.1. O

3. Superconvergence betweeri the i'"i'mte element solution and linear bmterpolatlon We.
now define a quadratic interpolation of ¢ based on moment conditions on edges Let
$q = ¢ be a quadratic element defined by

(Tlod)(2) = $(2), end / Mg = / 6 VzeNme€& - (31)

The following fundamental identity is proved in {5] for v, € Pi(7):

82¢Q 3’Uh 62¢Q 6'0,, )
[v@=60- Vo= Za (ﬁ oo v [ ), 69
where ' |
1 1
Be = — cot 0, ( es1 1) Ye = = cot ¢ | 7] (3.3)

12
and ¢; € Py(7) is the linear 1nterpolat10n of g on 7.
LEMMA 3.1. Let m. denote t. or-mn.. Assume that M, satzsfy Condition {a, 0, 5 /2)
with 0 < a <1 and 0 < 0 < 1. For any interior edge e € My, and two elements T,
7 C Q., we have

3

Bl +1BI S el + I S B2, Vee & (3.4)

|,6e ﬂll < h2+a/,ra+6(1 a)/2 I ’Yel < h2+a/ra+6(1—a)/2 Ye € Sl,h; . (35)
8¢ v -

. Ot.0m ath @l 100(e) ”vvh”m(r) ; o (3.6)

0%(¢ — ¢q) Oun
. 9t.0m, Of, <|¢|H3(T)||V”h|'|m<f)- (3.7)
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Proof. The arguments for (3.4), (3. 5), and (3.6) are trivial, and for (3.7) follows from
the trace theorem and the standard error estimate |¢ — ¢qlgz(r) < Br |9lga(r)- O

To deal with the singularity at the origin O we introduce the followmg lemma. Recall
that v is the singular part of the decomposition u = v + w.

- LEMMA 3.2. Let M© = {1 € My the origin O € 91} be the set of elements with
‘one vertez at O.

Vv — Vvrll 2y S R, Vre MO,

where vr = I}v is the linear interpolation of v.
Proof.

Vv = Vorll g2y S ”Vv”m(f) + [1Vorll 2y : (3.8)
1t follows from (1.3) that '

— . 1/2 12 ., fhe 12 -
Vv < / volr) T < (0 / r¥-2) < / r¥=2rdr) <R, 3.9
u_m%)(Tli) (/ ) s() ) (3.9)
‘Since VC = 0, for any constant C, we have,
IVl oy = IV (01 = v(O))IILz(T) S hr max |V (o - 'U(O))(Z)I

< h.— —
S hef B 0(2) = ()

/I.Z (t)et| =

Noting that |2| < h, for 7 € MO, it follows from the assumption (1.3) that

= max

- max
2eENROT

zeNhﬂ‘r

T '
/ z: V’u(zt)dt‘ .
0

1 . :
0l S [ B ettt 5 B - (310)
0 .

" The proof is completed by combining (3.8)-(3.10). O '
LEMMA 3.3. Assume that M, satisfy Condition (o, 0, 5/2) with 0 <a <1 and

0<o<1,and that h, = re” /2h5/2 for any T € M;,. Then for any v, € Vh

1+ (InN)Y/2 ' ' . al—oc '
/QV(U —ur) Vo S —]\(,er)— IVorllzay, o= min(5, —=), (3.11)
where uy = Ilu € V}! is the piecewise linear interpolation of u.
Proof. From the decomposition u = v + w,
/ V(u—ur) - Vo :/ V(v —v;): Vo, + / V(w — wy) - Vg, (3.12)
Q Q Q

where v = I}v and w = I}w are the linear interpolations of v and w, respectively.
5



We first estimate [}, V(
and 9EC =
O. Applying (3.2),

v=v) V. Let E9 = {e€é,:
={e€&9: O ¢ e}. Recall that MO is the set of elements with one vertex a

e C Or the origin O € 7}

/Vv—vI Vvh— Z /V(v—v; ) Vo, = Z V(v-—v; Vvh>
TEMp - remMo¥T .
, 0?%vg Oup, O%vg O\
o DB aa e e“—“ateanea:>
TEMp\MPO eCdr
=h+hL+ L+, (3.13)
where
' | 32v3vh 8%v Ovn
— — A —— / .
L= > [(ﬁe b) | o, * )/at om, Ot,
eGSj,h\EO
0%(vg —v) 8vh 9% (vg — v) Ouy,
+ﬁe/ oz ot T ), TBi.on, o,
8*(v — vg) Ay, 0% (v — vg) Oup, .
’ ' .
b / ot - o, +%/e dt.on, ot,|' 7 b3
Z V(v—v; Vo, |
TeMO T
_ 0%vq Oun _O%ug Ou,
I“"eg‘;o (ﬁe . 98 o, +70  Otoom, ot, )

First, Is can be estimated by Lemma 3.2 and the fact that h, = h for 7 € M©:

Bl SE Y IV0llaey S B IVl gy -

TEMO

{3.14)

Secondly, I4 can be estimated by Lemma 3.1, the assumption (1.3), and t'he fact that

h NTGNhforeeafo

TABS Z h2 |U|W2°° (e) + |'U|H3(r TEQe,T¢MO)) ”v”h“H(r T€Qe, T¢MO)

ecBEO

S Y R 4 herl) ||Vvh”L2(T r€.,TEMO)

ecOEC

@15)

Sh B’ Z ||V’Uh||L2(T TGQe,'rgéMo) 5 i ”vvh“L?(Q)

ecHED

Next we estimate I;. Notice that h, < h, and re = 7 for 7 C Q. and e € £y \ £°.
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It follows from Lemma 3.1 and the assumption (‘1.3)'t1_1at

: h2+a ] .
s 5 |t B0t [ Vonl i ren,

e€€  \EO '€

S : Z [h§+d7'g_2_a'_6(l—a)/2 + hgrg_?’] ”vvh“LZ(T: T€Qe)
e€&1,1\E9 ' |

5{ Z [h2h2+2a 26—4—20—~ 6(1—a) +h§h§ 36 6]} “V'Uh“m(n)-
e€&y n\E9 : '

: _ T S . 1/2
5{ Z [hgb_f(ua)rgz 6)(1+a),r.§6 4-2a-6(1 “)_+h§h26r§ 26,,.36.6]} “V”h||z,2(9)~
e€€,R\EC : C v :

Here we have used he = re” 5/ 2h5/ % to derive the last inequality. Therefore

I <{h"‘1+°‘) DR —2} VRl 2oy S {héma) > h37“?2}1/2 I.|Vbhlll;2(9),

e€Ey 1 \EO TEMR\MO
) ~ 1/2
S{pme Y i nwhn,,zm S {h‘“‘*"‘)/ T} Vol
reMMmo T o .
< h6(1+a)/2(|ln hll/z) ”V'Uh“m(g) | . (3'16)

Finally, we estimate I,. Notice that h, S re for e ¢ £9. It follows from Lemma 3.1
and the assumption (1.3) that :

|I2| Sf ' Z _ [h'zrz—2 + hghTT‘(rs'—a] "vh”LZ('r: TE€Q) tS Z hg’rg.a ||v’7;||L2(T‘: TEQ,)
e€E2 1 \EQ ) ) e€€,,n\EC

1/2
s{ X w1Vl

e€£2,h\50
- 1/2 :
5&6{ Z 1} ”V”h“m(n)-
i - e€€y\E9

1 6/2h6/2

- Here we have used h, = to derive the last mequahty Therefore

B SE{#EA} IV0lla) S BYNTY Vol gy - (3.17)
From Lemma 2.1, A° < 1/N, |Inh| = In N. Combining (3.13)—(3.17) we have

/V'v—vz) V'Uh

(h6<1+a>/2(|1n B2 + h{N7}Y 2) IVorll 22y

1+ (In N)2/2 Cal-o
S —are— Vol p=min(z, —=).

(3.18)

Now we turn to the estimate for [, V{( (w - w;) V. Since w is smooth, we do not
separate the point O. From (3.2), .
/ V(w —wy) - Von = / V(w —wy) - Vo = Jy + Ja, (3.19)

Q TEMp,
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where

. [ O*w th / w  Ovp
Ji = ee;, [(ﬂ —Pe) . Ot Ot, —%) Ot.On. Ot.
iy / 0 (wg — w) 8vh / 0*(wg — w) Ovy,
© o2 otdn, Ot.
[ 0%(w—wg) Ofuh 0% (w — wg) Ovy, ,
! -—
+ﬂe/e 5 / Bt.0on, 0, ] J=1z2

By a similar argument as for I and I, we can prove that
/ V(’LU - ’LU]) ' Vvh
Q ﬁ

Now, the proof of the lemma follows from (3.12), (3.18),’ and (3.20). O

Applying Lemma 3.3 we obtain the following superconvergence result between the
finite element solutlon up, and the hnear interpolation ur of the solution of the problem
(1.1
THEOREM 3.4. Assume that My, satzsfy Condition (o, 0,8/2) with 0 < a < 1 and
0< o <1 and that h, =~ ri~%?p%/? forany'rEMh Then '

1+ (InN)Y2 al-o

|I_V(uh_u1)”L2(Q) S-W’ p= mln(— -2—)- | '. (3.21)

1 )
S N1/2+"",,‘||V”h||z,2(9)- o (3..20)

Proof. Taking v, = up — uy in Lemma 3.3 we have

IV (un — ur) |72y = A(un ~ur,vn) = A(u — ur, vn)

1+ (In N)1/2
= / V(u - 'U.I) . v’vh S ‘_—]-V(—]'./—z%' ”vvhlle(Q) .

The proof of the theorem is completed by canceling ||Vvh|| 2y On both sides of the
inequality. O .

4. Superconvergence between the ﬁnite element solution and quadratic interpolation.
Most parts of the proofs are similar to those for linear elements and is omitted. We only
point out the different parts. In this section u, is the solution of (1.4) with k& = 2, that
is, the quadratic finite element approximation of u. '

We first introduce some estimates over triangles from {9]. Recall that ¢g = HQqS is
the quadratic interpolations defined in (3.1) based on the moment conditions.

LEMMA 4.1. Assume that ¢ € H 4(7‘) then there holds

8¢ v,
fre-ror s E sk ver) [ 58553

eCor s=0

+ O(h ) |¢|H4 (r) ”'Uh“m(T) ) V’Uh € Pz( )

wherefors=0123 v
jaS(7)] +laS(T) S BE,  [0E(r)| + ()] S hE,  if e € En | - (42)
laz(T)7| = ag(T)|'|| 5 h+e fret0A=e)lS bs(7) —bi(r')| S hete fre*o0B (4.3)

8



if Mh satisfy Condition (o, 0,6/3) with 0<a <land0<o <1, ande € Exp.
To obtain the superconvergence of ||V(us — Iju)|l;2(q), We estimate the difference

between two quadratic interpolation operators g and I2. It easy to check that [15]
| Mgp— IPp=0, Vpec P
F_rbm the Bramble-Hilbert lemma, we have
[(VT16 = VIEg) - Fu S 1 bl [Vl

* Therefor We"have the following lemma, from (4.1). _
LEMMA 4.2. Assume that ¢ € H¥(r), then there holds

/V((/) Iig) - V’Uh—-ZZ( T)I I+bs( ))/3 ?;fg—sa;éh | (4.4)

eCor s=0 .
+O(h2) ¢ mary 1vnllgary»  for vn € Po(7),

~ Recall from Lemma 2. 1, in the quadratlc case, if h, = ri-¢/ 3p373 for any 7 € M, then

the degree of freedoms N of the finite element equation (1.4) satisfies
N= T R - (4.5)

The following lemma is analogous to Lemma 3.2. We omit the proof.
LEMMA 4.3. For v in the decomposition (1.2),

Vv - - VI gy Sy, V7€ MO

- The following lemma is similar to Lemma 3.3
LEMMA 4.4. Assume that M, satisfy Condition (a,0,6/3) with 0 <a <1 and

0<0o<1, and that h, = rk 5/3h5/3 for any T € M,,. Then for any vy € Vh

. ' 1+(lnN)1/2 ' al—o,
2
‘/QV. (u— IPu) - Vup| S N “v”h”m(n) , P= mm(2 5 ). (4.6)

Proof. From the decomposition u = v + w, ,
/ V(u — Iu) - Vo, = / V(v — I?) - Vo, +/ V(w — I2w) - Vo, (4.7)
Q Q Q
We first estimate the term [, V(v — I2v) - V. It follows from Lemma, 4.2 that

/Vv—Ihv) Vo, = Z /Vv—[hv) Vop,=L+ L+ 13+ 14, (4.8)

'rGMh

- 5SS ) [5G

e_mr'es, R\EC s=0

+ O(h) v g, “vh‘“Hl(Qe) y J=1L12,
9



K=Y V(v—Ihv) Vo,
- remo VT

\ v 0%y 'k o
=2 Z( +b )/ Frsot atzh + O(h2) Wl sry vl ar ey

e€880 s=0

Notice that the 7 in I is not in MO.
Form Lemma 4.3,

\Zs] 5 i “V'Uh”LZ(Q) . . (49)
It follows from (4.2) and the assumption (1.3) that

Hal S Z hre” |Uh|W2°°(T)+h3hTr “vh”ffl(‘r)

e€OEO A : (4.10) ;
SZ hire” |Ivh”H1(1')+h4 re 4”Uh||Hl(r) i “’Uh”Hl(n)
e€0EQ :
Here we have used the inverse estlmate [vhlw2.co(ry S h% ||vg Hr) and the fact that -

h. = 1.~ h for e € OE°.
Next we estimate I;. It follows from Lemma 4.1 and the assumption (1 3) that

1S T |mtiayrt nlyamg + ibort ol
ec€1 s \EQ H'¢E

S >, [hi’+“r2‘3‘“""‘.1‘“”3+h2r2‘4] llvnll g2 .
eeé‘l,h\&'o . '
» o 1/2 .
5{ Z [hzhféﬂa,,,(236.—:6—2:1-—25(1—0:)/3+h2h2r25f8] } lvall 10
e€€q n\EQ _ : . ' .
< { Z [h2h26(2+a)/ere(z4+2a)(1—5/3)Tga-e-za—_zs(l—a)/s

~J

€] K\EQ ‘
1/2
+ R h26,r6—26,,.26—8]} ”vh”Hl(Q)

Here we have used he ~re 3pé13 1o derlve the last inequality. Therefore :

. . _ oY 1/2 S
I S {p2erer > wrz} ||vh,um(m s {3 2} ol
e€€y,n\EC : TEM\MO .

s{ueon 37 [ Ilvh||m<m<h“‘2+“>/3 A onllany - (410)
reMamO’T o

By a similar argument for (3.17) we can show that

L) S b {#Ean}" lonllgaey S B{N Y Honll ey - (4.12)
10



Notice that lvallingey S 1Vl L2 from the Pomcare s inequality. Combining (4.8)-
(4.12) we have .

/ V('U _ ,UI V'Uh (h6(2+a)/3 |lnh|1/2 + hG{NU}l/Z) “V'Uh”LQ(Q)
1+(lnN)12 U Sal—g (4.13)
S i — IVnllag, p=min(3, —5)-

The estimate for the term [, V(w — I 2p) - Vo, is similar as above. It follows from
Lemma 4.2 that ’ ' '

V(w PPw) - Voy, = V (w — IPw) - V'uh =J1+ Jy, (4.14
h o
TEM

S(r)|7] = as(7') |7 . . Bw 6%
5o 23 23{ GLE LI .

e=TNT'€E;p 5=0
_ +O(hg) |w‘H4(ne) Nonllgiy, 7=1,2.
' There holds | |

o
/Q Viw=wr)- Vo] $ 15 [ Vonl gy (4.15)

Now, the proof of the lemma follows from (4.7), (4.13), and (4.15). O
Applying Lemma 4.4 we can obtain the following superconvergence result between the
quadratic finite element solution uy, and the quadratic interpolation I?u of the solution
of the problem (1.1).
' THEOREM 4.5. Assume that My, satisfy Condition (o, o, 5/3) with 0 <a <1 and

0<a<1 and that h, = /3h‘s/3 for any T € My. Then
14 (In N)/2 . ,al—gc :
”WW mu@s—7m7—,p=mm? ) 419

5. The asymptotically exact a posteriori error estimators. In this section, we apply a
newly developed gradient recovery operator, called polynomial preserving recovery (PPR)
[12, 14, 16], to define an a posteriori error estimator. We further prove some supercon-
vergence property of the recovery operator. As a consequence, the error estlmator based
on PPR is asymptotically exact under a mesh density assumption.

5.1. The gradient recovery operator G}, and its superconvergence. Given anode z € A h,.

we select n > m = (k + 2)(k + 3)/2 sampling points z;, j = 1,2,...,n, in an element

- patch w, containing z (2 is one of 2;), and fit a polynomial of degree k + 1, in the least
squares sense, with values of u; at those sampling points. In other words, we are looking
for pry1 € Pk+1 such that

q€Pr,

Z(pm —un)’(z) = min Z(q—uh) (). (5.1)

11



The recovered gradient in the neighborhoo.d of z is then defined as
 Ghtp = Vpeyr. | - (52)

It was proved in [12] that the above least squares fitting procedure has a unique solution
as long as those n sampling points are not on the same conic curve. Furthermore, the
gradient recovery operator Gy, : C(Q) — V¥ x V¥, k = 1 or 2, has the following properties.
() IGrvnllz@y S IVURll L2y, Von € V¥ - | | |
(ii) For any nodal point 2z, (Grp)(2) = Vp(2) if p € Pey1(w,);

(iti) [(Grd)(2)| S i max |¢(2)} for any node z € Nj;

2 eNpNw,

(IV) Gh¢ Gnl k¢
Since If$ and ¢ have the same nodal values and ‘G}, uses only nodal values, so (1V) is
clear. The polynomial preserving property (ii) can be established easily by the least
squares procedure [16]. A key observation is that G}, provides a finite difference scheme
at each node z € N}, therefore, (iii) is obvious. Under a very mild mesh condition, “the
sum of any two adjacent angles in M, is at most 7", the bounded-ness property (1) can
be proved, though not trivial. A reader is referred to [12, 14, 16] for more details.

We first consider the case of linear finite elements and then state the corresponding -
results for quadratic elements since the proofs are similar. We have from (i) and (iv),

|Grun — vU”zﬂ(n) < ”Ghuh - GhUI“LZ(Q) + ”Gh“ VU’HLQ(Q)
SV (un - ur)|| oy + 1Ghtsr = V| paqy -

Here u; is the linear interpolation of u. The estimate for the first term of the right hand
side of the inequality (5.3) 1s glven in Theorem 3.4. To estimate the second term we need
the following lemma.

LEMMA 5.1. Under the conditions (11) (iii), for any element T € My, and any functzon
¢ € W (7),

(5.3)

\Gror — V¢”L2(T) Shl |¢|W3 00 (F) »

where 7 = J{w, : z€ Nh N7} and ¢1 is the linear interpolation of ¢.
Proof. Let (V¢)r be the linear mte_rpolatlon of V¢. Then

1Ghdr = Vblliagr < IGk81 = (V)illiagy + NV = Volpary.  (5.4)

The standard theory of finite element- interpolation estimates says that [4]
IV8)r = Vol S B Blascry S B WBlupomy - (55)

For a node z € 7, let ¢o(z,y) be the 2nd-degree Taylor expansion of ¢ at the point 2. It
is clear that - : .

16(,9) = d2(3,9)| S B |@lwsogsy> V(@ 9) € F
Form Condition (ii) and (iii), | ' o
|(Guér — (Vo)1) (2)] = | (Gugr — Vo) (2)| = |(Gh<¢1 ~ ) — (Vo — Vo)) ()|
= |(Gn(¢1 — 2))(2)| S S mmax (6 ¢2) (&)

'GNhan
s h?. l¢|W3'°°(wz) .

12



Ther}ef(:)re . .
'||G5¢I = (V)| z2(ry 5 hr max |(Gnér = (Vo)1) (2)] S h2 | lwaces - (5.6)

The proof of the lemma is completed by combining (5.4)—(5.6). O

~ The following theorem is devoted to the estimate of the second term of (5.3).

 THEOREM 5.2. Assume that hy = 75 8/ 2h5/ 2 for any T € My. Then

1+ (In N)Y/2
G = Vulago S _T')“" (5.7)
_Prbof. Recall the decomposition u = v + w. |
IGrts = Vullzaey < 1Ghvr = Vollsy + IGhvr = Vullagy,  (5.8)

~where vy = [, iy and wy = I}w are the linear interpolations of vand w respectlvély
- We first estimate the singular part |Grvr — V| 12(0): Introduce the set of triangles

={T€ My : the origin O € 7}. For any 7 € MO, |

||GhUI - vU”zﬁ(r) < ”Gth"L2(T) + ||VU||L2(T)' - - (5.9
- From Condition (ii), G,C = 0, for any constantC’ Thus, from Condition (iii),
IGrvillagry = ”Gh('UI —v(0 ))HLz(T) S hr max |Gh U v(O))(z)|

< h, h—zlrenax |v(z)—v(O)|
1
d
/0 a—tv(zt)dt

Since 7 € M9, |2/| < h. It follows from the assurhption (1.3) that

—-max

max
2 eENRNF 2 eNpNF

1
/ Z Vv(Z’t)dt‘ .
0 .

1 ' ' :
Grorliagy S [ - (ut)-iat S B (5.10)
0

On the other hand,

90t [199) s ()" ([Fra) "5t e

Here ch is the diameter of 7. Combining (5.9), (5.10), and (5.11), we obtain
1Ghvr = Vol oy S B, for 7 € MO. (5.12)
1t follows from Lemma, 5.1 and (1.3) that |

1Ghvr = Vollzagy S B Jolyacqry S BErS%, form€ M\ MO, (5.13)

13



whe}e r, is the distance form O to the barycenter‘ of 7. Therefore from hr o~ ri_‘s/ 2&” 2,

||Gh’UI—VU||L2(Q) = Z ”Gh’UI V”Hrﬁ(r) B® + Z her 25—

TEM, TEMp\MO
5 EZJ + Z h2 4 26 h26 26 6 < h26 Z b-26 h.2r’r‘:2
T€EMp\MO -rth\.M5 '
5 h _]_'14_26 Z / -9 < h26 h25/ -1 dr S b.25 +E26 |lnb.| )
TGM;.\MO . »

Therefore Lemma 2.1 implies that

14 (In N)Y/2
N ' v
Next we turn to estimate the term l|th1 - Vw" 2@ in (5.8). Smce w is smooth we

do not have to divide M), into two parts as above. From Lemma 5.1 and the assumptlon
(1.3),

|Grw: —Avw”L?(ﬂ) ( Z HGh'wI - V'w||L2(T)> ( Z h6)1/2

TEME - ¢ . TEM

5( Z-hfﬁf”_h”) V< hs(/ - 25)1/2 < "1’ :

TEMp, Q

|Gt = Vol 20y S _’l& (1 + |ln@|1_/2) S ("5-14)

(5.15)
N

The proof of the theorem is completed by inserting the estimates (5 14) and (5. 15) into
the inequality (5.8). O

The following superconvergence result of the gradlent operator recovery Gh can be
proved by combining (5.3), Theorem 3.4, and 5.2. :

THEOREM 5.3." Let uy, is the linedr finite element approzimation of u. Assume that
M,, satisfy Condition (o, 0,68/2) with 0<a<1land0<0o <1, and that hy = i pdl2
for any T € My. Then

'1.‘—{—(1nN)1/2 o l-¢ )
__W, p= mln(2 5 )

IGhun — Vaull 2y S - (5.16)

We remark that the result of Theorem 5.3 is a supperconvergence result since the
asymptotically optimal convergence rate of ||V (u — us)||12(q) is O(1/N'/?)

Next we state the results for quadratic finite elements. The following theorem provides
the the estimate for the gradient recovery operator Gy

THEOREM 5.4. Assume that h, ~.r2"% 3h913 for any T € My. Then

1+ (In N)¥/2
— N

-0

“GhIizzu - Vul‘LZ(g) 5 p= min(g"a _"'2—") - (517)

The superconvergence of the gradient recevery operator G, is presented in the follow--
ing theorem which is parallel to Theorem 5.3.
14



THEOREM 5.5. Letuy be the quadmtzc finite element approximation of u. Assume that
M, satisfy Condition (o, 0,0 /3) with 0 < o < 1 and 0<0 <1 andthat h, = ry 3o/
for any T € My,. Then

1+ (InN)Y/2 a 1-
——i—

Ghun = Vull gy S ). (5.18)

2

5.2. Thea postefiori error estimators. With preparatlon in the previouS sections, it is
now straightforward to prove the asymptotic exactness of error estimators based on the
recovery operator Gj,. The global error estimator is naturally defined by

M = ”Ghuh = vuh“LZ(Q) ' (5 19)

THEOREM 5.6. Let up, be the lznear finite element approa:zmatzon of u. Assume that
M,, satisfy Condition (a,0, 5/2) with0 <a<1and0< o<1, and that h, = ri=d/ 2pé/2
for any 7 € My,. Furthermore, assume that

1 : .
N1/2 SV - “h_)||L2(9)- }_ (5.20)

Then

+ (In N)*/2 o al-o,
p=m1n(—1_‘

Mk <!
! 5

IV —=u)lpeq |~ No

(5.21)

The following lemma says that ||V (u — u)], L7(q) 18 the asymptotically optimal on the

meshes M), satisfying h, = ~8/ 2h‘s/ 2 as the degree of freedoms N — oo.
LEMMA 5.7. Let u be the linear finite element approzimation. of u. Assume that
hr = rim02p8/2 for any T € Mh Then

1

||V(u - u;)lng(Q) W and hence ||V(u — uh)||_L2(Q) < T

Proof Recall u is decomposed as u = v +w satlsfymg (1.3). Noticing that
IV~ 00)ll g2y S B ol S B2r572, Wr € M\ MO,
| and that _
IV = w)llgagry S b fwliagry S B ¥ € M,
F‘rom Lemma 3.2 we have _
IV(u— UI)HZLz(n) SIV(v - ’UI),”iz(n) + || V(w - wI)”iz(n)
= Z (V@ = v1) 32y + IV (w — w2 )

TEM;,
< h25+ Z h4 25 4 < h25 + Z h2 2—-6h5 26 4
reMp\MO TGMh\MO

SQZJ +b’.6/ r&—Z ;S ’_1.26 +_’l6
Q
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From Lemma 2.1,

' 1 1
_ IV (u— uI)”iz(n) S vzt
which completes the proof of the lemma. O :
The following lemma says that, for the the quadratic finite element approximation u,
IV (u — un)l| 2q) is asymptotically optimal on the meshes My, satisfying h, = ry*/3p%/3
as the degree of freedoms N — oo. '
' LEMMA 5.8. Let uy, be the quadratic finite element approzimation of u. Assume that.

h, =78 6/3h5/3 for any T € My. Then

1.
[V (u~ Iﬁu) ”L?(n’) S N

N _ _1
and hence IIV(u — )|l 2y S ¥

From Theorem 5.5, we can prove the asymptotic exactness of error estlmators based
on the recovery operator G, for quadratic elements.
THEOREM 5.9. Let uy, be the quadratic finite element appro.mmatzon of u. Assume that

My, satisfy Condition (¢, 0,8/3) with0 < a <1 and0< o < 1 and that h, = ri~/3p%/3
for any T € Mh Furthermore, assume that R
A 1 o
||V(u Uh)”zﬁ(n) : (5.22)
- Then o _
. _ 1 1/2 . 1—0.
i _q| & Lt UnN)” p= min(%, - A (5.23)

N udlpe |~ N

6. Implementation and numerical examples. In this section we present some examples
to verify the asymptotic exactness of error estimators 7, based on the recovery operator
G}, using quadratic finite elements. For the examples on linear elements we refer to [7].

The implementation of the adaptive algorithm in this section is based on the FEMLAB
We define the local a posteriori error estimator on element 7 as follows:

e = ||Ghuh - Vuh“m(r) .
Then the global error estimator -
' - 1/2
m=(, )
: TEMp

Now we descrlbe the adaptlve algonthm we have used in this paper.
Algorithm. Given tolerance TOL > 0.

° Generate an initial mesh Mh over {};

e While n, > TOL do

- Choose a set of elements Mh C M, such that
1/2

1/2
Znﬁ >0-7<Zn3> ,

T‘Eﬂh TEMh

then refine the elements in'/T/l\h. Denote the new mesh by M, also.
16 '



— solve the discrete problem (1.4) on' M,
— compute error estimators on M,
end while _

Ezample 1. The Laplace equation on the L-shaped domain of Figure 6.1 with the
Dirichlet boundary condition so chosen that the true solution is v%/sin(20/3) in polar
coordznates
- Figure 6.1 plots the initial mesh and the adaptlvely refined mesh of 3565 elements
after 15 adaptive iterations. Figure 6.2 show the asymptotic exactness of error estimators
M = |Ghtn — V| 12(q for the Laplace equation on L-shaped domain. It is shown that

NIV — Vulle(g) ~ O(N1), “th@h _ _vu“m'm)_z O(N—l.z)?
and ' ‘ :

V ”Ghuh - VuhuLz(Q) / ||Vu - Vuh“m(m ~1 + O(N"O'f’)'_

Notice that the decay of ||Vun = V| 2 is quam—optlmal Grun — V| 2y is super-

convergent by an order of O(N-'?), and 7, / Ve = Vupll 2 approaches 1 at the rate

of O(N~=°3) which is faster than expect rate O(N—%2) indicated by Theorem 5.9. In this
‘paper, the L? norms are calculated by using the six points Gauss quadrature rule over
triangles. :

Let us have a close look at the mesh density assumptlon he =~ riOBp3 = pT/OR2/0
for § = 2/3. We shall verify this on the final mesh, which has 112880 elements, after 24

adaptive iterations. We choose h = 12}11(1 h, =~ 5.96 x 10~ and have
: . TEMp B

- h:

for all element 7 € M. Note that the ratio between the upper and lower bounds is less
than 6. this fact indicates that all elements in the final mesh satisfy the mesh density -
assumption. ' v '
Ezample 2. Let Q = {(z1,%2) : |z1),|z2] < 0.5}\{(z1,22) : 0 < 1 < 0.5} be the
 domain with a crack. We consider the Poisson equation

—-Au=1

with Dirichlet boundary condition s0 chosen that the tme solution is r¥/ sin_(0/2) - ir?
in polar coordinates.
Figure 6.3 plots the initial mesh and the adaptlvely refined mesh of 3353 elements
“after 16 adaptive iterations. Figure 6.4 show the asymptotic exactness of error estlmators
- Mh = ||Ghtun — V|| 2(qy for the crack problem. It is shown that

”vuh - Vu”L2(Q) ~ .O(N_l)’ “Ghuh - v7'1'”L2(Q) ~ O(N_l‘l)a
and |

1Grun — V|l 2 / Ve = V| j2q) = 1+ O(N7F).
17
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" FI1G. 6.1. The initial mesh (left) and the adaptwely refined mesh (right) of 3565 elements after 15 adaptive zteratwns
for the Laplace equation on L-shaped domam . )

10

107}
102 %

10°}

Error

107 —— |IVu-Vuij 2

|
. L Slope: -1.2 3
080 [IG,u,-V ull 2
105} Do 118, UVl 2 NIV U=V uyfl2~1 :
10" . v 1
10° 10° 10° 10°

~ Degree of freedoms

Fi1G. 6.2. |Grup —- Vuhlle(m/IIVu Vuhlle(Q)—-l IVu = Vunll 2 ), and [|Vu - Ghuh"z,z(n) versus the degree
of freedoms for the Laplace equation on L-shaped domain. Dotted lines give reference slopes.

Notice that the decay of ||Vu, — Vu|__|._L2(Q) is quasi-optimal, ||Gpup, — V| L2(q) 1S super-
convergent by an order of O(N~11), and / |Vu — Vun|| 2(q) approaches 1 at the rate
of O(N~93) which is faster than expect rate o(N -0.1) indicated by Theorem 5.9.

Let us have a close look at the mesh dens1ty assumption h ~ rl o 3pel3 = re/ eﬁll 6

for = 1/2. We shall verify this on the final mesh, which has 110790 elements, after 27
18



‘adaptive iterations. We choose h = min h, x5 3
» : : ‘ TEMp :

173 x 10~ and have

0.32 < i < 1.92

ry/O R | |
for all element 7. € Mj. Note that the ratio between the uppér and lower bounds is 6

this fact indicates that all elements in the final mesh satisfy the mesh density assumption

05 05
\ A
0 0
—0.54— 05 .' ,
0.5 0 05 <05 o 0.5

F1G. 6.3. The initial mesh (left) and the adaptively refined mesh (right) of 3353 elements after 16 adaptive iterations
for the crack problem ) :

10
107}
107
<)
i
107}
— IV u-Vu |2 S
- Slope:-1.1
107t ce0 118G u,~V ull 2
>t ||Gh uh-V uhlle vV u-v uh||Lz -1
10°° — : i
10° 10° 10* 10°

Degree of freedoms

F1G. 6.4. ||Grun — Vuhlle(n) / |Vu - Vunllg2e) =1 |Vu ~ Vuh"Lz(Q), and ||Vu ~ Ghrun|lp2(ny versus the degree
of freedoms for the crack problem. Dotted lines give reference slopes.
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