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The paper concerns new applications of advanced methods of variational analysis and generalized 
differentiation to constrained problems of multiobjective/vector optimization. We pay the main 
attention to general notions of optimal solutions for multiobjective problems that are induced by 
geometric concepts. of extremality in variational analysis while covering various notions of Pareto 
and other type of optimality/efficiency conventional in multiobjective optimization. Based on the 
extremal principles in variational analysis and on appropriate tools of generalized differentiation 
with well-developed calculus rules, we derive necessary optimality conditions for broad classes of 
constrained multiobjective problems in the framework of infinite-dimensional spaces. Applications 
of variational techniques in infinite dimensions require certain "normal compactness" properties of 
sets and set-valued mappings, which play a crucial rcile in deriving the main results of this paper. 

Keywords: Multiobjective and vector optimization; Variational analysis; Generalized differentiation; 
Subdifferential calculus; Optimality conditions; Normal compactness; Banach and Asplund spaces 

Mathematical Subject Classification 2000: Primary: 49J52, 49J53; Secondary: 90C29 

1 Introduction 

Variational analysis has been recognized as a fruitful and rapidly developing area in mathe­
matics that mainly concerns optimization, equilibrium, and related problems while applying 
variational principles and perturbation/ approximation techniques to a broad spectrum of 
problems, which may not be of optimization nature. We refer the reader to the now-classical 
monograph by Rockafellar and Wets [19] devoted to the key issues of variational analysis 
in finite dimensions and to the recent mutually complementary books by Borwein and Zhu 
{3] and by Mordukhovich [12, 13] concerning basic theory and numerous applications of 
variational analysis in both finite-dimensional and infinite-dimensional settings. 

This paper addresses general classes of problems in multiobjectivejvector optimization, 
which are important from both viewpoints of optimization theory and its various applica­
tions, especially to economic modeling, operations research, etc. It is partly based on the 
author's plenary talk at the Eighth International Conference on Parametric Optimization 
and Related Topics (Cairo, Egypt, November-December 2005) and widely uses the methods 
and results developed in [12, 13], being nevertheless basically self-contained. 

1Research was partially supported by the National Science Foundation under grant DMS-0304989 and 
by the Australian Research Council under grant DP-0451168. 
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We pay the main attention to considering two concepts of (vector) optimality in multi­
objective problems that are in fact generated by certain geometric notions of local extremal 
points for systems of sets and set-valued mappings, respectively, which play a fundamen­
tal role in variational analysis and its applications via the so-called extremal principles; 
see [12, 13]. These concepts of optimal solutions to multiobjective problems happen to 
extend standard and generalized notions of Pareto-like and other types of multiobjective 
optimality/ efficiency that are conventional in vector optimization theory and applications. 

An efficient study of constrained multiobjective optimization problems with respect to 
the afore-mentioned concepts of vector optimality requires the usage of appropriate robust 
tools of generalized differentiation for sets, set-valued mappings, and extended-real-valued 
functions satisfying comprehensive calculus rules ("full calculus"). Furthermore, variational 
analysis of these problems in infinite-dimensional spaces unavoidable requires certain "nor­
mal compactness" properties of sets and mappings, which allow us to conduct limiting proce­
dures under perturbation/ approximation techniques lying at the heart of variational meth­
ods. We employ the weakest sequential versions of such properties (called SNC-sequential 
normal compactness), which enjoy a full "SNC calculus," i.e., comprehensive rules ensuring 
their preservation under various operations. 

Using these tools and associated machinery, we establish in this paper first-order neces­
sary optimality conditions in general constrained multiobjective problems and their spec­
ifications with no using any scalarization techniques typical in vector optimization theory 
and its applications; see, e.g., the recent book by Jahn [6] and the references therein. 

The paper is organized as follows. In Section 2 we define the notions of optimal solutions 
to constrained problems of multiobjective optimization· studied below. They are deduced 
from geometric concepts of extremality for systems of sets and set-valued mappings and are 
compared with conventional notions of efficiency /optimality in vector optimization. 

In Section 3 we overview dual-space constructions of generalized differentiation (normals, 
coderivatives, and subgradients) used throughout the paper. It is complemented by several 
versions of sequential normal compactness for sets and set-valued mappings in infinite­
dimensional spaces. This material provides basic tools of variational analysis used for 
deriving necessary optimality conditions in the multiobjective problems under consideration. 

Section 4 is devoted to the study of constrained multiobjective problems, where the 
notion of vector optimality for a "cost" mapping f: X ~ Y between Banach spaces is de­
fined via a certain generalized order on Y. Employing the full power of the exact extremal 
principle of variational analysis in the product space X x Y under minimal partial SNC 
requirements, we derive extended necessary conditions for generalized order optimality in 
constrained multiobjective problems and discuss some of their implementations and speci­
fications. Besides the extremal principle, extended rules of the afore-mentioned generalized 
differential and SNC calculi, which hold for our basic constructions involved, play a crucial 
role in the derivation of these results. 

In Section 5 we study multiobjective optimization problems, where the notion of vec­
tor optimality is defined by a general closed preference relation, which must satisfy certain 
"local satiation" and "almost transitivity" requirements motivated by the possibility to 
employ a version of the extremal principle for systems of set-valued mappings '(or moving 
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sets). Involving somewhat different limiting generalized differential constructions and SNC 
properties in comparison with those from Section 4, we derive generally independent neces~ 
sary conditions for constrained multiobjective optimization with respect to closed preference 
relations satisfying the afor~mentioned properties. 

Throughout the paper we use the standard notation of variational analysis; see [12, 13]. 

Unless otherwise stated, all the spacesunder consideration are Banach, with the norm 11·11 
and the canonical pairing (·, ·) between the space X in question and its topological dual 
X*; the weak* topology on X* is denoted by w*. Given a set~ valued mapping F: X =t X*, 
the sequential Kuratowski~Painleve upper/outer limit off as x-+ xis 

Lims~pF(x) := {x* EX* I 3 sequences Xk ~ x and xk ~ x* 
X->X 

with xk E F(xk) for all k E IN}, 
(1.1) 

where IN := {1, 2, ... }. Recall that x ~ x indicates the convergence of x -+ x with x E n. 
Finally, IBx signifies the closed unit ball ofX, wherethe subindex "X" may be dropped if 
no confusion arises. 

2 Extremal Points and Optimal Solutions to Constrained 
Multiobjective Problems 

In this section we introduce two major notions of optimal solutions to constrained problems 
of multiobjective optimization and discuss their relationships with other solution notions 
in vector optimization and with geometric concepts of extremality in variational analysis. 
Let us start with the notion of "generalized order optimality" under arbitrary geometric 
constraints defined in the vein of [11, 13]. 

Definition 2.1 (constrained generalized order optimality). Given a cost mapping 
f: X -+ Y between Banach spaces, an ordering set e C Y with 0 E e, and a constraint 
set f2 C X we say that a point X E f2 is LOCALLY (/,e)-OPTIMAL subject to the ab~ 
stractjgeometric constraints x ·E n if there are a neighborhood U of x and a sequence of 

Yk E Y with IIYk II -+ 0 as k -+ oo such that 

f(x)- f(x) rf_ e- Yk for all x E f2 n U as k E IN. (2.1) 

The set e in Definition 2.1 can be viewed as a generator of an extended order/preference 
relation between Yb Y2 E Y defined by Yl-Y2 E e. In the scalar case ofY = lR and e = JR_, 
the above notion clearly reduces to the standard minimization of the cost function f. 

Note that we do not assume, as in many other abstract notions of vector optimality 
(see, e.g., Neustadt (16] and Pallaschke and Rolewicz [17]) that the ordering set e is either 
convex or of nonempty interior. If it is a convex subcone of Y with ri e f: 0, then the 
concept of Definition 2.1 encompasses a Pareto~type optimality/efficiency requiring that 

there is no X E fl n U with f(x) - f(x) E ri'e. 
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To see this, just let Yk := -y0 jk, k E IN, with some Yo Erie. The standard weak Pareto 
efficiency corresponds to the more restrictive relation f(x)- f(x) E inte, while the Pareto 
efficiency means that there is no X E 11nU for which f(x)- f(x) E e and f(x)- f(x) rf_ e; 
compare, e.g., the book by Jahn [6] and its references. 

The general notion of vector optimality from Definition 2.1 essentially goes back to the 
early work by Kruger [8] and Mordukhovich [10] motivated the the concept of set extremality 
introduced in their paper [9]. 

Definition 2.2 (extremal points of sets). Given nonempty subsets 111.112 c X of 
a norm space, we say that x is LOCAL EXTREMAL POINT of the set system {111, 112} if 
x E 111 n 112 and if there are a sequence { ak} c X with llakll ~ 0 as k ~ oo and a 
neighborhood U of x such that 

(2.2) 

Let us now demonstrate that the notion of(!, e)-optimality subject to X E n can be 
easily reduced to the above extremality of some set system in X x Y built in what follows. 
Given (!, e, 11) as in Definition 2.1, define the set 

£(f,11,e) := {(x,y) EX X Yl f(x)- y E e, x E 11}, {2.3) 

which is called the generalized epigraph of the mapping f on 11 with respect to e. In 
particular, iff= (<p1, ... ,<pm): X~ IRm on the whole space 11 =X and if e = IRr:!: is 
the nonnegative orthant of Y = IRm, then set (2.3) is the epigraph off with r.espect to the 
standard order on IRm. Fore= {0}, set (2.3) is obviously the usual graph of f. 

Let X be a local (!,e)-optimal solution subject to the set constraint X .E 11, and let u 
be the corresponding neighborhood of x from Definition 2.1. Suppose for convenience that 
f(x) = 0. Consider the system of sets {Ql, 112} in the space X x Y defined by 

111 := £(!, e, 11) and 112 := cl U X {0} (2.4) 

and observe that (x, 0) is an extremal point of this system. Indeed, one obviously has 
(x, 0) E 111 X 112. Furthermore, taking the sequence {Yk} c y from Definition 2.1 and 
letting ak := -yk, we directly arrive at (2.2) for the set system (2.4) with no neighborhood 
needed therein: . this can be easily checked by contradiction due to the structures of these 
sets. Note that we use the closure of U in (2.4) for the subsequent application of the 
extremal principle, where the closedness of the sets in question is essential. 

Next let us discuss another general concept of vector optimality, which was introduced 
in the following form by Mordukhovich, Treiman and Zhu [14] while having various prede­
cessors; see [14] and the book [13] for comments, discussions, and references. 

Given a Banach spaceY and a subset R C Y x Y, we say that Yl is preferred to Y2 
(notation Yl -< Y2) if (y1, Y2) E R. In what follows, we consider nonreftexive preference 
relations, i.e., such that the preference set R does not contain the diagonal.(y, y) E Y 2• 

Definition 2.3 (closed preference relations). Let 

C(y) := { v E Yl v-< y} 
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be a LEVEL SET at y E Y with respect to the given preference -<. We say that the preference 
-< is LOCALLY SATIATED around y if y E cl.C(y) for all y in some neighborhood of y. 
Furthermore, the preference -< is ALMOST TRANSITIVE on Y provided that for all v -< y and 
u E cl.C( v) one has u -< y. The preference relation -< is called CLOSED around y if it is 
locally satiated and almost transitive simultaneously; 

Observe that, while the local satiation property definitely holds for any reasonable pref­
erence, the almost transitivity requirement may be violated for some natural preferences 
significant in applications that are particularly covered by the notion of generalized order 
optimality from Definition 2.1. To illustrate it, consider the so-called generalized Pareto 
preference, which is an important special case of generalized order optimality, induced by 
a closed subcone 9 C Y such that Yl -< Y2 if and only if Yl - Y2 E 9 and Yl :f: Y2· As 
proved in the dissertation by Eisenhart [4] (see also [13, Proposition 5.56]), the generalized 
Pareto preference is almost transitive if and only if the cone e is convex and pointed; the 
latter means that 9 n ( -8) = { 0}. A specific example of the generalized Pareto while "not­
almost-transitive" behavior is provided by the preference described by the lexicographical 
order on IRm; see [13, Example 5.57]. 

Note that the principal difference between the preference concepts from Definition 2.3 
and Definition 2.1 is that, instead of the linear translation of sets in the extremal system 
induced by generalized order optimality, preference relations of Definition 2.3 involve non­
linear transformations of set-valued mappings/moving sets. The latter is closely interrelated 
with the following notion of local extremal points of set-valued mappings, which was also 
introduced in [14]. For simplicity, consider the case of two mappings in the extremal system 
only needed in this paper. 

Definition 2.4 (extremal points of set-valued mappings). Let 8i: Mi =t X, i = 1, 2, 
be set-valued mappings from metric spaces ( Mi, di) into a normed space X. We say that x is 
a LOCAL EXTREMAL POINT of the system {81, 82} at (81, 82) provided that X E 81(5I)n82(s2) 

and there exists a neighborhood U of x such that for every e > 0 there are Si with 8i(si) :f: 0 
satisfying the relationships 

{2.5) 

Let us show that optimal solutions to constrained multiobjective problems defined by 
closed preference relations reduce to extremal points of set-valued mappings. 

Proposition 2.5 (optimal solutions via extremal points in multiobjective opti­
mization with closed preferences). Let x be an optimal solution to the constrained 
multiobjective problem: 

minimize j(x) subject to x E 0 C X, 
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where "minimizing" the mapping f: X--+ Y between Banach spaces is induced by the closed 
preference relation -< with the level set C(y) from Definition 2.3. Then (x,f(x)) is a local 
extremal point for the system of set-valued mappings si : Mi =t X X y defined by 

S1(s1) := 0 x cl£(s1) with M1 := C{f(x)) U {J(x)}, 

S2(s2) = 82 := { (x,f(x))l x EX} with M2 := {0} 

at f(x) EM1 and 0 E M2, respectively. 

Proof. It is easy to observe that (x, f(x)) E 81 (f(x)) n S2(0) due to the local satiation 
property of-<. To establish (2.5), assume the contrary and find, given an arbitrary neigh­
borhood U of(x,f(x)), a point s1 E .C(f(x)) close to f(x) while not equal to the latter by 
the preference nonrefiexivity such that 

This yields the existence of x near x satisfying 

(x,f(x)) E 81(s1) = 0 x cl.C(s1). 

Hence x E n and f(x) -< f(x) by the almost transitivity property of-<. This contradicts 
the local optimality of x in the multiobjective problem under consideration. 6 

Our primary goal in what follows is to derive efficient necessary optimality conditions 
for general constrained multiobjective problems described above and for their important 

· specification. To proceed, we overview in the next section certain basic tools of generalized 
differentiation and appropriate sequential normal compactness properties needed to conduct 
variational analysis in Sections 4 and 5. 

3 Tools of Variational Analysis 

Let us begin with the basic constructions of generalized differentiation used in the sequel. 
We follow the author's book (12], where the reader can find more details, comments, and 
references. The main framework of this paper is· a major collection of Banach spaces known 
as the class of Asplund spaces. Recall that a Banach space X is Asplund if its any sepa­
rable subspace has a separable dual. This class includes all spaces admitting an equivalent 
renorm Fnkhet differentiable off the origin, particularly every reflexive space. On the other 
hand, there are Asplund spaces that fail to admit even a Gateaux differentiable renorm at 
nonzero points. We refer the reader to the book by Phelps {18] for more information on As­
plund spaces and their various applications. Since the generalized differential constructions 
reviewed below are used in this paper only in the Asplund space framework, we present 
their simplified definitions and needed properties held in the this setting. The interested 
reader can consult with the afore-mentioned book{12] for the corresponding constructions 
and results in more general settings. 
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We start with generalized normals to (locally) closed sets n c X. Given x E n, the 
(basic, limiting) normal cone to n at x is defined by 

N(x;n) := LimsupN(x;n), (3.1) 
:z:-+:1: 

where "Limsup" stands for the sequential upper/outer limit (1.1) of the Frechet normal 

cone (or the prenormal cone) to S1 at X E S1 given by 

.-... { I . (x*, u- x} } N(x; 0) := x* EX* hmsup ~ 0 
n llu-xll 

'U-+:Z: 

(3.2) 

with N(x; n) := 0 for X ¢ n. 
Given a set-valued mapping F: X =t Y of closed graph 

gphF := {(x,y) EX x Yl y E F(x)}, 

define its normal coderivative and Frechet coderivative at (x, jj) E gphF by, respectively, 

D*F(x,y)(y*) := {x* E X*l (x*,-y*) E N((x,jj);gphF)}, {3.3) 

D*F(x,y)(y*) := {x* E X*l (x*,-y*) E N((x,jj);gphF)}. (3.4) 

IfF = f: X -+ Y is strictly differentiable at x (in particular, iff E C1 ), then 

D* J(x)(y*) = D* f(x)(y*) = {V J(x)*y*}, y* E Y*, 

i.e., both coderivatives (3.3) and (3.4) are positively homogeneous extensions of the classical 
adjoint derivative operator to nonsmooth and set-valued mappings. 

Finally, consider a real-valued function <p: X -+ lR locally Lipschitzian around x; in this 
paper we do not use more general functions. Then the (basic, limiting) subdifferential of~ 
at x is defined by 

8cp(x) := Limsupacp(x), (3.5) 
:z:-+:1: 

where the sequential limit (1.1) of the Frechet subdifferential mapping §cp(·) is given by 

§cp(x) := {x* E X*l cp(u)- cp(x)- (x*,u- x} ~ o}. 
llu-xll 

In this section, we are not going to review appropriate properties of the above generalized 
differential constructions used in Sections 4 and 5: these properties will be invoked with 
the exact references to [12] in the corresponding places of the proofs in the subsequent 
sections. Just mention here that our basic/limiting constructions (3.1), (3.3), and (3.5) 
enjoy comprehensive calculus rules (full calculus) in the framework of Asplund spaces under 
consideration, which are based on the extremal principle of variational analysis. 

Next we recall "normal compactness" properties of sets and mappings that are automatic 
in finite dimensions while playing a crucial role in infinite-dimensional variational analysis 
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and its applications; see [12, 13] for more details and references. Since these properties 
are employed in the paper only in the Asplund space setting, we give simplified definitions 
equivalent to the general ones [12] for the cases under consideration. 

A locally closed set 0 c X is sequentially normally compact (SNC) at x E 0 if for any 
sequences of (xk, xk) EX x X* satisfying 

Xk ~ x and xk ~ 0 with xk E N(xk; 0), k E IN, 

orie has llxkll-+ 0 ask-+ oo. Besides finite dimensions, this property always holds when 0 
is compactly epi-Lipschitzian (CEL) around x in the sense ofBorwein and Str6jwas [2], i.e., 
.there are a compact set CCX, a neighborhood U of x, a neighborhood 0 of the origin in 
X, and a number 'Y > 0 such that 

On U +tO c 0 +tC for all t E (O,"f). 

In general (CEL)::::>(SNC), where the implication may be strict even for convex cones in 
Asplund spaces; see Fabian and Mordukhovich [5] for a detail study of relationships between 
SNC and CEL properties of sets in Banach spaces. 

In what follows we also need more subtle partial modifications of sequential normal 
compactness, which take into account the product structure of the spaces in question. Let 
us present an Asplund space adaptation of the general properties of this type from [12, 

Definition 3.3] used in this paper for products of two and three Asplund spaces; note that 
products of Asplund spaces are also Asplund [18]. 

Definition 3.1 (partial SNC properties in product spaces). Let 0 belong to the 

. · product f1j,:.1 Xj of Asplund spaces, and let J c { 1, ... , m}. Assuming the local closedness 
of 0 around x E 0, we say that: 

(i) 0 is PARTIALLY SEQUENTIALLY NORMALLY COMPACT (PSNC) at X with respect to 

{ Xj I j E J} ( i.e., with respect to the product I1jeJ Xj) if for any sequences Xk ~ x and 

xk = (xik, ... , x:nk) E N(xk; 0) one has the implication 

. [xjk ~ 0, j E J & llxjkll-+ 0, j E {1, ... ,m} \J] ==? llxjkll-+ 0, j E J. 

(ii) 0 is STRONGLY PSNC at x with respect to {Xjl j E J} if for any sequences Xk ~ x 
and (xik, ... , x:nk) E N(xk; 0) one has 

[xjk ~ 0, j = 1, ... ,m] ==? llxjkll-+ 0, j E J. 

It is worth mentioning the two extreme cases in Definition 3.1: 

(a) J = 0 when any closed set n satisfies both properties in (i) and (ii), and 
(b) J = {1, ... , m} when both properties (i) and (ii) do not depend on the product 

structure and reduce to the SNC property of sets defined above. 

Note that (set-valued and single-valued) mappings F: X ==t Yare naturally associated 
with the product structure of the graphs gph F c X x Y. In this case, the above properties 
of sets induce the corresponding properties of mappings via their graphs. Observe [12, 
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Proposition 1.68] that the graph ofF is PSNC at (x, Y) E gph F with respect to X provided 
that F satisfies the so-called Lipschitz-like (Aubin's "pseudo-Lipschitz" [1]) property around 
(x, jj), which means that there are neighborhoods U of x and V of jj such that 

F(x) n V c F(u) +fllx- uii.JB whenever x,u E U (3.6) 

with some modulus .e > 0. When V = Y in (3.6), this property reduces to the classical 
(Hausdorff) Lipschitz continuity ofF around x. Furthermore, the Lipschitz-like property 
of F is known to be equivalent to the metric regularity and linear openness properties of 
the inverse p-l around (jj, x). 

Let us also observe that the graph ofF: X .:=:t Y is strongly PSNC at (x,jj) E gphF 
with respect toY provided that F is partially GEL around (x,jj) in the sense of Jourani 
and Thibault [7]; see [12, Theorem 1.75]. 

Finally, we emphasize a crucial fact for the theory and applications of the SNC properties 
under consideration: they enjoy a strong/full SNC calculus (in the sense of their preservation 
under a variety operations upon sets and mappings), which is mainly based on the extremal 
principle; see [12] for more details. 

4 Generalized Order Optimality in Multiobjective Problems 

In this section we derive verifiable necessary conditions for optimal solutions to constrained 
multiobjective problems, where the generalized order optimality is understood in the sense 
of Definition 2.1, and discuss some of their specifications. The mail tools of our variational 
analysis involves the (exact) extremal principle for systems of sets in product spaces ·as 
well as powerful results of the generalized differential and SNC calculi available for the 
constructions used in the framework of Asplund spaces. 

The following version of the exact/pointwise extremal principle for systems of closed 
sets in Asplund spaces (see particularly {13, Lemma 5.58] and the related material of {12, 
Chapter 2]) plays a crucial role in the variational analysis conducted in this section. 

Lemma 4.1 (extremal principle for set systems in product spaces). Let x E fh nfh 
be a local extremal point of the sets fl1, fl2 C X1 X X2 that are supposed to be locally closed 
around x, and let 

Assume that both spaces X 1 and X2 are Asplund, and that fh is PSNC at x with respect to 
J1 while n2 isstrongly PSNC at x with respect to J2. Then there is x* '# 0 satisfying 

x* E N(x;01) n (- N(x;02)). 

The next theorem provides major necessary conditions for generalized order optimality 
of Definition 2.1. Besides the extremal principle of Lemma 4.1, the proof of this theorem 
uses the full strength of generalized differential and SNC calculi, particularly the basic 
intersection rules for sets; see below. 
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Theorem 4.2 (necessary conditions for constrained generalized order optimal­
ity). Let x be a local(!, e)-optimal solution subject to x E 0, where f: X ~ Y is a mapping 
between Asplund spaces continuous around x. relative to 0, and where the sets 0 c X and 
e C Y are locally closed around x E 0 and 0 E e, respectively. Assume furthermore that 
either e is SNC at 0, or the set 

B := { (x, y) EX X Yl x E 0, y = f(x)} 

is PSNC at (x,J(x)) with respect toY. Then there is y* E Y* satisfying 

0 f.: y* E N{O; e) n [ker D* fn(x)), 

where fn(x) denotes the restriction off to 0 equal f(x) for X E 0 and 0 otherwise. 

(4.1) 

{4.2) 

Proof. Let x be locally (!,e)-optimal subject to x E 0 in the sense of Definition 2.1, 
where we assume for simplicity that f(x) = 0. Then, as shown in Section 2, the point (x, 0) 
is locally extremal for the set system {01, 02} defined in {2.4). It is easy to see that the set 
01 = e(f, e, 0) from {2.3) is locally closed around {x, 0) under the continuity and closedness 
assumptions imposed on fand one and 0, respectively. Note that these assumptions may 
be significantly relaxed to ensure the closedness of e(f, 8, 0) in more specific situations. 
In particular, for the standard vector optimization setting off= (cp1, ... , <f'm): X~ m;n 
and e = IR"!!:, it is sufficient to assume merely the lower semicontinuity of <f''i around x to 
guarantee the required closedness of the generalized epigraph {2.3). 

We intend to apply the extremal principle of Lemma 4.1 to the local extremal point 
(x, 0) of the closed set system {2.4) in the product space X x Y. To proceed, we need to 
designate index sets J1, J2 c {1, 2} with J1 U J 2 = {1, 2} such that 01 is PSNC at {x, 0) 
with respect to J 1 while 0 2 is strongly PSNC at {x, 0) with respect to J2. 

Let us take J1 = {2} and J2 = {1}, i.e., X1 = Y and X2 = X in the framework of 
Lemma 4.1. It is easy to see that 02 in {2.4) is strongly PSNC at {x, 0) with respect to 
X, since U is a neighborhood of x. Observe that this set is SNC at (x,O) if arid only if 
dim Y < oo, i.e., the product structure in {2.4) is very essential in what follows. Thus it 
remains to show that the generalized epigraph 0 1 = e(f, 0, e) from (2.3) is PSNC at (x, 0) 
with respect to Y under the assumptions imposed in the theorem. The desired property 
means that, given arbitrary sequences {xk, Yk) ~ (x, 0) with Xk E 0 and f(xk) - Yk E B 
and given generalized normals (xk,yk) E N((xk,Yk);e(f,O,e)), we have 

[llxkll ~ o, .Yk ~ o] ===* IIYkll ~ o. (4.3) 

Observe from the structure of e(f, e, 0) in (2.3) that the above sequences satisfy 
" 

(xk, Yk• 0) E N((xk, Yk, Vk)i Al n A2) for all k E JN, (4.4) 

where Vk := f(xk) - Yk and where the sets A1, A2 c X x Y x Y are defined by 

Al := gphh with h{x,y) := fn(x)- y and A2 :=X X y X e. {4.5) 

We are going to justify, using the full strength of Theorem 3. 79 from {12] on the PSNC 
property of set intersections in the three space product X X Y X Y = X1 X X2 X X3 {which 
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'· 

is one of the major results of the SNC calculus developed in (12] on the base of the extremal 
principle), that the set A1 n A2 is PSNC at {x, 0, 0) with respect to Y = X2 • 

Consider first Case 1 when the set 8 is SNC at 0 in the alternative assumptions of 
the theorem. Tci ensure by [12, Theorem 3.79] the PSNC property of the set intersection 
A1 n A2 with respect to Y = X2 at the point (x, 0, 0), we need to designate some index sets 
J1, J2 c {1, 2, 3} such that J1 n J2 = {2}, J1 U J2 = {1, 2, 3}, the set A1 is PSNC at (x, 0, 0) 
with respect to J 1 = {2}, the set A2 is strongly PSNC property at (x, 0, 0) with respect 
to J2 \ J~, and the "mixed qualification condition" of [12, Definition 3.78] holds for the set 
system {A1,A2} at (x,O,O) with respect to (J1 \ J2) U (J2 \ J1). Letting 

J1 := {2} and J2 := {1, 2, 3}, (4.6) 

note that the set A2 in ( 4.5) is SNC at (x, 0, 0), i.e., its strong PSNC property at (x, 0, 0) 
with respect to J2 \ J1 = {1, 3} is automatic. Further, the required PSNC property of the 
other set A1 at the point (x, 0, 0) with respect to J1 = {2} means that for any sequences 
(xk,Yk,vk)-+ (x,O,O) and (xk,yz,vk) E N((xk,Yk,vk);gphh) one has 

(4.7) 

To justify (4.7),observe from the coderivative definition {3.4) that 

(xk,yZ,vk) E N{((xk,Yk,vk)igphh) <====> (xk,Yk) E D*h(xk,Yk)(-vk). 

The latter implies, by taking into account the structure of h in (4.5) and using the coderiva­
tive sum rule from [12, Theorem 1.62(i)], that 

xk ED* fn(xk)(-vk) and Yk = vZ for all k E IN. (4.8) 

This gives IIYZII = llvZII -+ 0 as k -+ oo and thus (4.7), which justifies the PSNC property 
of A1 at (x, 0, 0) with respect to J1 = {2}. 

To establish the required PSNC property of the intersection A1 n A2 with respect to 
Y = X2, it remains-,-by the choice of J1 and J2 in (4.6)-to check that the system {A1, A2} 
satisfies the mixed qualification condition at (x, 0, 0) with respect to 

The latter means, by [12, Definition 3.78] and the structures of A1 and A2 in (4.5), that 

[ (xk, Yk, Vk, uk) -+ (x, 0, 0, 0), llxk II -+ 0, yz ~ 0, ( uk, vk) ~ ( u*, -u*)] 
(4.9) 

=> u* = 0 whenever u* E N(O; 8) 

for any sequences (xk,yz,vZ) E N((xk,Yk,vk);gphh) and uk ~ N(uk;E>) ask-+ oo. It 
follows from (4.8) that (4.9) is satisfied if 

N{O; 8) n fker D* fn{x)] = {0}. (4.10} 
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Without loss of generality, we may always assume that (4.10) holds. Indeed, otherwise 
we immediately arrive at the optimality condition ( 4.2) of the theorem. Therefore, all the 
assumptions of (12, Theorem 3.79] are satisfied ensuring that A1 n A2 is PSNC at (x, 0, 0) 
with respect to X2 = Y. The latter gives (4.3), which allows us to apply the extremal 
principle from Lemma 4.1 to the set system (2.4) at (x, 0). 

Thus using Lemma 4.1 and taking into account the structures of the sets 0 1 and !12 in 
(2.4), we find y* E Y* satisfying 

(o, -y*) E N((x, f{x)); £(!, n, e)), y*:? o~ (4.11) 

This implies the optimality condition {4.2) by [13, Lemma 5.23{ii)] and hence completes the 
proof of the theorem in Case 1 under consideration. 

It remains to consider Case 2, where the set (4.1) is assumed to be PSNC at (x,J(x)) 
with respect toY. Let us show that in this case the intersection A1 nA2 of the sets Ai in ( 4.5) 
is also PSNC at (x, 0, 0) with respect toY = X2 in the product of the three Asplund spaces 
X X y X y = xl X x2 X Xa. To accomplish this, we apply again the PSNC intersection 
rule of (12, Theorem 3.79] with a different arrangement of the index sets J1 and J2 therein 
in comparison with (4.6) in Case 1. Namely, let 

J1 := {2, 3} and J2 := {1, 2}. (4.12) 

Then J2 \J1 = {1}, and the set A2 is obviously strongly PSNC at {x, 0, 0) with respect to J2. 
We now check that A1 is PSNC at (x, 0, 0) with respect to J1 under the PSNC assumption 
·on set (4.1) imposed in the theorem. Indeed, the required PSNC property of A1 means that 
for any sequences (xk,Yk,vk)---.. (x,O,O) and (xk,yz,vk) E N{(xk,Yk,vk);gphh) one has 

[llxkll ---.. O, (yz, vk) ~ (0, O)] ==> li(YZ, vZ)II ---.. O as k---.. oo. (4.13) 

By arguments similar to those in Case 1, we get that (4.13) is equivalent to 

[xk ED* fn(xk)(yk), Xk---? x, llxkll---? 0, Yk ~ o] ==> IIYZII---? 0 

ask---.. oo, which is obviously equivalent to the assumed PSNC property of set (4.1). 
To be able applying (12, Theorem 3.79] to the set intersection A1nA2 with the index sets 

{J1, J2} chosen in (4.12), we have also to check that the mixed classification condition from 
(12, Definition 3.78] holds for {A1, A2} at (x, 0, 0) with respect to (J1 \J2)U(h \J1) = {1, 3}, 
which happens to be exactly the same as in Case 1. Thus we conclude that A1 nA2 is PSNC 
at (x, 0, 0) with respect to X2 = Y. The latter allows us to apply the extremal principle 
from Lemma 4.1 to the set system (2.4) and thus to get (4.11), which yields (4.2) and 
completes the proof of the theorem. 6 

Note that the SNC/PSNC assumptions imposed on the sets e and (4.1) in Theorem 4.2 
are automatic when the image space Y is finite-dimensional. Furthermore, in this case the 
optimality condition (4.2) can be equivalently represented in the subdifferential form as the 
existence of y* satisfying 

o E o{y*, !n)(x) y* .E N(o; e)\ {O} (4.14) 
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provided that f is locally Lipschitzian around x relative to the constraint set n. This is due 
to the "scalarization" relationships between basic subgradients and coderivatives of single­
valued Lipschitzian mappings that hold also for mappings with into infinite-dimensional 
spaces under additional assumptions; see [12] for more details and references. 

Observe that the restriction fn of f to n can be represented as the sum 

fn(x) = f(x) +~(x;O), x E Q, 

via the indicator mapping A(x; Q) of n (relative to the image spaceY) equal 0 E y for X E n 
and 0 otherwise. Using this observation and employing well-developed coderivative and 
subdifferential sum rules in (4.2) and (4.14), we easily arrive at (generally more restrictive) 
necessary conditions for generalized order optimality expressed separately via the basic 
coderivative of r (or the subdifferential of its scalarization) and the normal cone ton. 

Theorem 4.2 establishes necessary conditions for generalized order optimality in a broad 
class of multiobjective problems with arbitrary geometric constraints. Since these condi­
tions are expressed in terms of generalized differential constructions and sequential normal 
compactness properties that enjoy full calculi [12], they can be implemented and applied 
to more specific problems with various constraints of operator, functional, equilibrium, and 
other J;ypes. We refer the reader to [13, Chapter 5] for a number of results in this direction 
(mainly for single-objective problems), which can be further developed and extended to 
multiobjective optimization based on Theorem 4.2 and comprehensive calculus rules. 

As an example of the implementation and specification of the general results of Theo­
rem 4.2, we present necessary optimality conditions in the following minimax problem under 
arbitrary geometric constraints: 

minimize <p(x) :=sup { (v* ,J(x)}l v* E V*} subject to X En c X, (4.15) 

where V* is a nonempty subset of the dual space Y* with cl * signifying the weak* topolog­
ical closure. Note that optimal solutions to (4.15) are understood in the standard single­
objective sense, while they can be naturally treated from the viewpoint of multiobjective 
optimization; see the proof below. Observe that such a reduction allows us, in particular, 
to avoid conventional assumptions on the compactness of the set V* c Y* in (4.15), where 
the supremum may not be thus realized. 

Theorem 4.3 (necessary conditions for constrained minimax problems). Let x be 

a local optimal solution to the constrained minimax problem (4.15) with lcp(x)l < oo, where 
f : X -. Y is a mapping between Asplund spaces continuous around x relative to n. Suppose 
that n is ·locally closed around x and that V* is an nonempty subset of Y* for which there 
is Yo E Y satisfying (v*, Yo} = 1 whenever v* E Y*. Assume also that either the cone 

A:= {y E Yl (v*, y) ~ 0 whenever v* E V*} (4.16) 

is SNC at the point f(x)- cp(x)yo, or the graphical set 3 c X x Y from (4.1) is PSNC at 

(x, f(x)) with respect toY. Then there is y* E Y* satisfying the inclusions 

0 .E D'Nfn{x)(y*) with y* # 0, (4.17) 
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n 

y* E cl * { L O:iv; I O:i ~ 0, vi E V*, n E IN} 
i=l 

(4.18) 

and the complementary slackness condition 

(y*, f(x)- cp(x)yo) = o. (4.19) 

Proof. Given A in (4.16) and Yo from the assumptions of the theorem, define the set 

8 := (cp(x)yo- f(x)) +A, (4.20) 

which is always closed and convex in Y, regardless of V* in (4.16). Let us show that x 
is locally (!, 8)-optimal subject to x E 0, in the sense of Definition 2.1, with the given 
mapping fin (4.15) and the ordering set 8 from (4.20). Indeed, 

0 E 8 due to f(x) - cp(x)yo E A. 

Construct further the sequence of Yk := Yo/k, k E IN, and check that condition (2.1) holds 
along this sequence. Assuming the contrary, we find x E U from a neighborhood U of x 
such that x E 0 and one has 

(v*, f(x))- cp(x) = (v*, f(x))- cp(x)(v*, Yo) :::; -~(v*, Yo) < 0 

whenever v* E V* as k --+ oo, which contradicts the local optimality of x in the minimax 
problem (4.15). Employing Theorem 4.2 in this setting and taking into account the convexity 
of the ordering set 8 in (4.20), we find y* E Y* satisfying (4.17) and such that 

(y*, y- (f(x)- cp(x)yo)) :::; 0 for all yEA; (4.21) 

the latter is equivalent to the optimality condition y* E N(O; 8) in (4.2) due to the structure 
of 8 in (4.20) and by the fact that the basic normal cone (3.1) to convex sets reduces to 
the normal cone of convex analysis. It remains to show that ( 4.21) implies both conditions 
(4.18) and (4.19) in the theorem. 

Toproceed, we observe that (4.21) and the conic structure of A ensure the inequality 

(y*, a:y- (f(x)- cp(x)yo)) :::; 0 whenever a: > 0 and yEA. 

It implies, by passing to the limit as a: --+ oo, that (y*, y} :::; 0 for all y E A. This gives 

y* E cl *co (cone V*] 

by the duality with A in (4.16), which is equivalent to (4.18). Mor-eover; we have 

(y*, f(x)- cp(x)yo) :::; o, 

since f.(x)- cp(x)yo EA. The opposite inequality follows from (4.21) withy= 0. Thus we 
arrive at (4.19), which completes the proof of the theorem. b. 
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5 Multiobjective Problems Defined by Closed Preferences 

The vector optimization problem of our study in this section is as follows. Given a closed 
preference relation -< from Definition 2.3, a cost mapping f: X ~ Y, and a constraint set 
n c X, we consider the multiobjective problem: 

minimize f(x) with respect to -< subject to X E 0, (5.1) 

where. "minimization" of f is understood in the sense of the given preference Yl -< Y2 on 
Y. As seen in Proposition 2.5, local optimal solutions to problem (5.1) can be reduced to 
local extremal points of systems of moving sets, i.e., set-valued mappings. The main tool of 
studying such extremal points is provided by the extremal principle for moving sets derived 
in [14]; see also [13, Subsection 5.3.3]. To formulate this result, recall the notion of the 
extended normal cone to S: Z =t X at (z, x) E gph S defined by 

N+(x; S(z)) := Lim sup N(x; S(z)); 
(z,:c)g~ 8 (z,x) 

(5.2) 

we refer the reader to [13, 14] for various properties of this construction; in particular, for 
conditions ensuring that N + (x; S (z)) = N ( x; S( z)). 

We also need recalling an appropriate modification of the SNC property for moving sets 
involving their images but not graphs as in the basic SNC property for set-valued mappings 
and its modifications presented in Section 3. Given S: Z =t X, we say that it is imagely 
SNC (abbr. ISNC) at (z,x) E gphS if 

( ) gph s (- -) Zk,Xk ~ Z,X, w• ] xk ~ 0 ===> llxkll ~ 0 as k ~ oo. 

Similarly to the case of fixed sets, there are strong relationships between the above 
ISNC property and the corresponding counterparts of the CEL property for moving sets. 
In particular, a mapping S: Z =t X is ISNC at \z, x) if there are numbers a, rJ > 0 and a 
compact set C c X such that 

N(x;S(z)) C {x* EX*I rJIIx*ll ~~agl<x*,c}l} 

whenever (z,x) E gphSn ((z,x) +rJlBzxx). The latter surely holds if Sis uniformly GEL 

around (x, z) in the sense that there are a compact set C c Z, neighborhoods V x U of 
(x, z) and 0 of the origin in Z, and a number 'Y > 0 such that 

S(x) nu +tO c S(x) +'Yo for all X E u and t E (0, "f). 

It is important to emphasize that the extended normal cone (5.2) and the ISNC property 
of moving sets, as well their mapping/function counterparts and partial analogs, enjoy full 

calculi similar to those for· our basic constructions and SNC properties considered above; 
see [15] for various results and discussions in this direction. 

Now we are ready to formulate the afore-mentioned exact/pointwise extremal principle 
for two set-valued mappings/moving sets; cf. {13, Theorem 5.72]. 
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Lemma 5.1 (extremal principle for moving sets). Let 8i: M =t X, i = 1,2, be set­
valued mappings from metric spaces Mi to an Asplund space X. Assume that x is a local 
extremal point of the system {811 82} at (sb 82) with x E 8i(si) as i = 1, 2, where each 
mapping 8i is closed-valued around Bi and one of them are I8NC at the corresponding point 
(si, x). Then there is x* EX* satisfying 

The next result, based on the extremal principle for moving sets from Lemma 5.1, 
employs the notion of "strict" Lipschitzian behavior that goes back to Thibault [20] who 
introduced an equivalent "compactly Lipschitzian" property of single-valued mappings; see 
[12] for more details and comments. Recall that f: X ~ Y is strictly Lipschitzian at x if it 
is locally Lipschitzian around this point and if there is a neighborhood V of the origin in 
X such that the sequence 

{ 
f(xk + tktvk) - f(xk) }. kE1N, 

contains a norm convergent subsequence whenever v E V, Xk ~ x, and tk L 0 as k ~ oo. 
Obviously, this property reduces to the standard local Lipschitz continuity if Y is finite­

dimensional, while in general it is more restrictive. We refer the reader to [12, 13] (especially 
to Subsection 3.1.3 of [12]) for a comprehensive study and applications of this class of 
mappings with values in infinite-dimensional spaces. 

Theorem 5.2 (necessary conditions for constrained problems of multiobjective 
optimization defined by closed preferences). Let x be a local optimal solution to 
·problem (5.1) with a closed preference relation-< on Y, where f: X ~ Y is a mapping 
between Asplund spaces continuous around x and where the set Q c X is locally closed 
around this point. Assume that: 

(a) either the mapping cl.C: Y =t Y generated by the level set of the preference -< is 
1SNC at (f(x), f(x)) and the set n is SNC at x, 

{b) or the mapping f is SNC at x. 

Then there is a pair 0 # (x*, y*) E X* x Y* satisfying 

x* ED* f(x)(y*) n (- N(x;O)) and y* E N+(f{x);cl.C(f(x))). (5.3) 

If in addition f is strictly Lipschitzian at x, then {5.3) is equivalent to 

0 E 8(y*, f}(x) + N(x; 0) with y*E N+(f(x); cl.C(f(x))) \ {0}. (5.4) 

Proof. As proved in Proposition 2.5 above, the point (x, f(x)) happens to be local extremal 
at (f(x), o) for the system of set-valued mappings 8i: Mi =t X X Y, i = 1, 2, defined by 

{ 

81(s1) := 0 x cl.C(s1) with M1 := .C(f(x)) U {J(x)}, 

82{s2) = 82 := {(x,f(x))l x EX} with M2 := {0} 
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under the general assumptions imposed in the theorem. Observe that the product space 
X x Y is Asplund, since both spaces X and Y are. 

It easily follows from the above definition of the ISNC property and the structures 
of 8i in (5.5) that one of the mappings {81, 82} enjoys this property if either one of the 
assumptions (a) and (b) of the theorem holds. Furthermore, we check that 

N+((x,J(x));81(f(x))) = N(x;n) x N+(f(x);cl.C(f(x))) and 

N+((x,j(x));82) = {(x*,y*) EX* x Y*l x* E D*f(x)(-y*)}. 

Thus applying the extremal principle of Lemma 5.1 to the system {81, 82} in (5.5), we 
arrive at the optimality conditions (5.3). 

To get (5.4) from (5.3), it is sufficient to observe that 

D* f(x)(y*) = 8{y*, f) (x) whenever y* E Y* 

provided that f is strictly Lipschitzian at x; see {12, Theorem 3.28]. 

Applying comprehensive generalized differential and SNC calculus rules for the con­
structions involved, we can derived from (5.3) and {5.4) various consequences of the results 
obtained for more specific types of constraints and preferences. Some results in this di­
rection are presented in [13, Chapter 5]; see also [11, 14, 21] for previous developments in 
finite-dimensional settings. 
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