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VARIATIONAL ANALYSIS OF EVOLUTION INCLUSIONS1 

B. S. MORDUKHOVICH 2 

Abstract. The paper is devoted to optimization problems of the Bolza and Mayer types for evolution 
systems governed by nonconvex Lipschitzian differential inclusions in Banach spaces under endpoint con­
straints described by finitely many equalities and inequalities. with generally nonsmooth functions. We 
develop a variational analysis of such problems mainly based on their discrete approximations and the usage 
of advanced tools of generalized differentiation satisfying comprehensive calculus rules in the framework of 
Asplund (and hence any reflexive Banach) spaces. In this way we establish extended results on stability of 
discrete approximations (with the strong W1•2-convergence of optimal solutions under consistent perturba­
tions of endpoint constraints) and derive necessary optimality conditions for nonconvex discrete-time and 
continuous-time systems in the refined Euler-Lagrange and Weierstrass-Pontryagin forms" accompanied by 
the appropriate transversality inclusions. In contrast to the case of geometric endpoint constraints in infinite 
dimensions, the necessary optimality conditions obtained in this paper do not impose any nonempty interior­
ity /finite codimension/normal compactness assumptions. The approach and results developed in the paper 
make a bridge between optimal control/dynamic optimization and constrained mathematical programming 
problems in infinite-dimensional spaces. 

Key words. variational analysis, dynamic optimization and optimal control, evolution and differential inclu­
sions, Banach and Asplund spaces, discrete/finite-difference approximations, nondifferentiable programming, 
generalized differentiation, necessary optimality conditions 

AMS subject classification. 49J53, 49J52, 49J24, 49M25, 90030 

1 Introduction 

This paper concerns the study of dynamic optimization problems governed by constrained evolution 
systems in infinite-dimensional spaces. We pay the main attention to variational analysis of the 
following generalized BoZza problem (P) for differential inc;lusions in Banach spaces with endpoint 
constraints described by finitely many equalities and inequalities. ·. 

Let X be a Banach state space with the initial state xo eX, and letT:= (a,b] C 1R be a fixed 
time interval. Given a set-valued mapping F: X x T ~ X and real-valued functions 'Pi : X - 1R as 
i = 0, ... , m + r and -n: X x X x T - JR, consider the problem: 

(1.1) minimize J(x] := r.p0 (x(b)) + 1b -n(x(t),x(t),t)dt 

subject to dynamic·constraints governed by the evolution/differential inclusion 

(1.2) x(t) E F(x(t), t) a.e. t E (a, b] with x(a) = Xo 

with junctional endpoint constraints of the inequality and equality types given by 

(1.3) 'Pi(x(b)) $ 0, i = 1, ... , m, 

(1.4) 'Pi(x(b)) =0, i=m+1, ... ,m+r. 

Note that x(t) stands in (1.1) for the time derivative of x(t) and that "a.e." (almost everywhere) 
signifies as usual that the inclusion holds up to the Lebesgue measure zero on JR. The initial state x0 
and the time interval Tare fixed in problem (P) for simplicity; the methods developed in this paper 
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allow us to include x(a) and [a, b] in the optimization process and to derive necessary optimality 
conditions for these variable data. 

Dynamic optimization problems for differential inclusions with the finite-dimensional state space 
X = IRn have been intensively studied over the years, especially during the last decade, mainly from 
the viewpoint of deriving necessary optimality conditions; see [3, 8, 12, 14, 17, 19] for various results, 
methods, and more references. Dynamic optimization problems .governed by infinite-dimensional 
evolution equations have also been much investigated, motivating mainly by applications to optimal 
control of partial differential equations; see, e.g., the books [7, 10] and the references therein. To the 
best of our knowledge, deriving necessary optimality conditions in dynamic optimization problems 
for evolution systems governed by differential inclusions in infinite-dimensional spaces has not drawn 
attention in the literature till the very recent time. 

In the book [14], the author developed the method of discrete approximations to study optimal 
control problems of minimizing the Bolza functional (1.1) over appropriate solutions to evolution 
systems governed by infinite-dimensional differentia~ inclusions of type (1.-2) with endpoint constrains 
given in the geometric form 

(1.5) x(b) E 0 C X 

via closed subsets of Banach spaces satisfying certain requirements. The major assumption on n 
made in [14] is the so-called sequential normal compactness (SNC) property of n at the optimal 
endpoint x(b) E 0; see [13] for a comprehensive theory for this and related properties, which play 
a significant role in infinite-dimensional variational analysis and its applications. Loosely speaking, 
the SNC property means that n should be "sufficiently fat" around the reference point; e.g., it 
never holds for singletons unless X is finite-dimensional, where the SNC property is satisfied for 
every nonempty set. For convex sets in infinite-dimensional spaces, the SNC property automat­
ically holds when int n =F 0. Furthermore, it happens to be closely related 114] to the so-called 
"finite-codimension" property of convex sets, which is known to be essential for the fulfillment of 
an appropriate counterpart of the Pontryagin maximum principle for infinite-dimensional systems 
of optimal control; see the books by Fattorini [7] and by Li and Yong [10] for the corresponding 
results, discussions, counterexamples, and more references. 

In this paper we show that the dynamic optimization problem (P) formulated above, with the 
functional endpoint constraints (1.3) and (1.4) given by finitely many Lipschitz continuous functions 
on a broad class of Banach spaces (that particularly includes every reflexive space), admits neces­
sary optimality conditions in the extended Euler-Lagrange form accompanied by the corresponding 
Weierstrass-Pontryagin/maximum and transversality relations with no SNG and similar assump­
tions imposed on the underlying endpoint constraint set. Moreover, the case of endpoint constraints 
(1.3) and (1.4) under consideration allows us to partly avoid some other rather restrictive assump­
tions (like "strong coderivative normality," which may not hold in infinite-dimensional spaces; see 
Sections 6, 7 for more details) imposed in [14] in the general case of geometric constraints (1.5). 
Our approach is based, in addition to [14], on certain delicate properties of appropriate subdifferen­
tials of locally Lipschitzian functions on infinite-dimensional spaces, as well as on dual/ coderivative 
characterizations of Lipschitzian and metric regularity properties of set-valued mappings. 

The rest of the paper is organized as follows. In Section 2 we formulate the standing assumptions 
on the initial data of ( P), make more precise the solution concept for the evolution inclusion ( 1.1) and 
the types of local minimizers to (P) under consideration, and also discuss the relaxation procedure 
used for some results and proofs in the paper. The main attention in this paper is paid to the so­
called intermediate local minimizers, which occupy (strictly) an intermediate position between the 
classical weak and strong minima, being nevertheless closer to strong minimizers from the viewpoint 
of necessary optimality conditions for differential inclusions. 

In Section 3 we construct a sequence of the well-posed discrete approximations (PN) to the original 
Bolza problem (P), which take into account specific features of the functional endpoint constraints 
(1.3) and (1.4) involving consistent perturbations of these constraints in the discrete approximation 
procedure. Then we present a major result on the strong stability of discrete approximations that 
justifies the W 1•2-norm convergence of optimal solutions for (PN) to the fixed local minimizer for 
the original problem (P). 
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Section 4 contains an overview of the basic tools of generalized differentiation needed to perform 
the subsequent variational analysis of the discrete-time and continuous-time evolution systems under 
consideration in infinite-dimensional spaces. Most of the material in this section is taken from the. 
author's book [13], where the reader can find more results and commentaries in this direction and 
related topics. 

Section 5 is devoted to deriving necessary optimality conditions for the constrained discrete­
time problems arising from the discrete approximation procedure whose well-posedness and stability 
are justified in Section 3. These problems are reduced to (non-dynamic) constrained problems of 
mathematical programming in infinite dimensions, which happen to be intrinsically nonsmooth and 
involve finitely many functional and geometric constraints generated by those in (1.2)-(1.4) via the 
discrete approximation procedure. Variational analysis of such problems requires applications of the 
full power of the generalized 'differential calculus in infinite-dimensional spaces developed in [13]. 

In Section 6 ·we derive necessary. optimality conditions of the extended Euler-Lagrange type for 
relaxed intermediate minimizers to the original Bolza problem (P) by passing to the limit from 
those obtained for discrete-time problems in Section 5. It worth emphasizing that the realization of 
the limiting procedure requires not only the strong convergence of optimal trajectories to discrete 
approximation problems established in Section 3 but also justifying an appropriate convergence of 
adjoint trajectories in necessary optimality conditions for the· sequence of discrete-time inclusions. 
The latter becomes passible due to specific properties of the basic generalized differential construc­
tions reviewed in Section 4, which include complete dual characterizations of Lipschitzian and metric 
regularity properties of set-valued mappings. 

The concluding Section 7 concerns necessary optimality conditions for arbitrary (non-relaxed) 
intermediate minimizers to problem (P), considering for simplicity the Mayer form (PM) with no 
integral term in (1.1), that are established in terms of the extended Euler-Lagrange inclusion ac­
companied by the Weierstrass-Pontryagin/maximum and transversality relations without imposing 
any SNC assumptions on the target/endpoint constraint set described by (1.3) and (1.4). The ap­
proach is based on an additional approximation procedure that allows us to reduce (PM) to an 
unconstrained (while nonsmooth and nonconvex) Bolza problem of the type treated in Section 6, for 
which any intermediate local minimizer happens to be a relaxed one. The passage to the limit from 
the latter approximation is largely similar to that developed in Section 6, not requiring however any 
relaxation requirement due to the usage of Ekeland's variational principle. 

Our notation is basically standard; cf. [13, 14]. Unless otherwise stated, all the spaces considered 
are Banach with the norm II · II and the canonical dual pairing (-, ·} between the space in question, 
say X, and its topological dual X* whose weak* topology is denoted by w*. We use the symbols lB 
and JB* to signify the closed unit balls of the space under consideration and its dual, respectively. 
Given a set-valued mapping F: X~ X*, its sequential Painleve-Kuratowski upper/outer limit at x 
is defined by 

(1.6) 
Lhns?pF(x) := {x* EX* I 3 sequences Xk-+ x, xk ~ x* with ., ..... ., 

2 The Generalized Bolza Problem for Evolution Inclusions 

Just for brevity and simplicity, we consider in this paper the Bolza problem (P) with autonomous 
(time-independent) data, i.e., when iJ = v(x, v) in (1.1) and F = F(x) in (1.2). The case of non­
autonomous systems can be studied similarly to [14, Chapter 6] devoted to problems with geometric 
constraints of type (1.5). Let us start with the precise definition of solutions (trajectories, arcs) to 
the differential inclusion (1.2) following the book by Deimling [6]. 

Definition 2.1 (solutions to differential inclusions in infinite-dimensional spaces). By a 
SOLUTION to inclusion (1.2) we understand a mapping x: T -+ X, which is F'rechet differentiable 

3 



for a.e. t E T satisfying (1.2} and the NEWTON-LEIBNIZ FORMULA 

x(t) = Xo + 1t :i:(s}ds for all t E T, 

where the integral in taken in the BOCHNER SENSE. 

It is well known that for X = mn I x(t) is a.e. differentiable on T and satisfies the Newton-Leibniz 
formula if and only if it is absolutely·continuous on Tin the standard sense. However, for infinite­
dimensional spaces X even the Lipschitz continuity may not imply the a.e. differentiability. On the 
other hand, there is a complete characterization of Banach spaces X, where the absolute continuity 
of every x: T ~ X is equivalent to its a.e. differentiability and the fulfillment of the Newton-Leibniz 
formula: this is the class of spaces having the so-called Radon-Nikodym property {RNP}, which is 
well investigated in the .geometric theory of Banach spaces [4]. Observe, in particular, that every 
reflexive space enjoys the RNP. 

Recall further that a Banach space X is Asplund if any of its separable subspaces has a separable 
dual. This is a major subclass of Banach spaces that particularly includes every space with a F'rechet 
differentiable renorm off the origin (i .. e., every reflexive space}, every space with a separable dual, 
etc.; see [4] for more details, characterizations, and references. There is a deep relationship between 
spaces having the RNP and Asplund spaces, which is used in what follows: given a Banach space 
X,· the dual space X* has the RNP if and only if X is Asplund. 

It has been well recognized that differential inclusions (1.2}, which are certainly oftheir own in­
terest, provide a useful generalization of control systems governed by differential/evolution equations 
with control parameters: 

(2.1} x=f(x,u), ue U, 

where the control sets U(·) may also depend on time and state variables via F{x, t) = f{x, U{x, t), t). 
In some cases, especially when the ·sets F(·) are convex, the differential inclusions (1.2) admit 
parametric representations of type (2.1), but in general they cannot be reduced to parametric control 
systems and should be studied for their own sake. Note also that the ODE form {2.1) in Banach 
spaces is strongly related to various control problems for evolution· partial differential equations of 
parabolic and hyperbolic types, where solutions may be understood in some other appropriate senses; 
see, e.g., the books [7, 10, 14] for more discussions. 

In what follows, we pay the main attention to the study of intermediate local minimizers for 
problem (P) introduced by the author in f12]. Recall that a feasible arc to (P) is a solution to 
the differential inclusion (1.2), in the sense of Definition 2.1, for which J[x] < oo in (1.1) and the 
endpoint constraints (1.3) and (1.4} are satisfied. 

Definition 2.2 (intermediate local minimizers). A feasible arc x(·) is an INTERMEDIATE LO­
CAL MiNIMIZER (i.l.m.} of rank p E [1, oo) for (P) if there are numbers E > 0 and a 2: 0 such that 
J[x] ::; J[x] for any feasible arcs to (P) satisfying the relationships 

(2.2) llx(t) - x(t)ll < E for all t E [a, b] and 

(2.3) a 1b ll:i:(t) - if(t)IIP dt <E. 

In fact, relationships (2.2) and (2.3) mean that we consider a neighborhood of x(·) in the Sobolev 
space W1•P([a, b]; X) with the norm 

(1 b )1/p 
llx(·)llwl,p := max llx(t)ll + ll:i:(t)IIP dt , 

tE(a,b] a 

where the norm on the right-hand side is taken in the space X. If there is only the requirement .(2.2} 
in Definition 2.2, i.e., a= 0 in (2.3), then we .get the classical strong local minimum corresponding 
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to a neighborhood of x( ·) in the norm topology of C ([a, b]; X). If instead of (2.3) one puts the more 
restrictive requirement · 

llx(t) - :C(t)li < e a.e. t E [a, b], 

then we have the classical weak local minimum in the framework of Definition 2.2. Thus the in­
troduced notion of i.l.m. takes, for anyp E [1, oo), an intermediate position between the classical 
concepts of strong (a = 0) and weak (p = oo) local minima, being indeed different from both classical 
notions; see various examples in [20, 14]. Clearly all the necessary conditions for i.l.m. automatically 
hold for strong (and hence for global) minimizers. 

Considering the autonomous Bolza problem (P) in this paper, we impose the following standing 
assumptions on its initial data along a given intermediate local minimizer x(·): 

(Hl) There are a open set U C X and a number iF> 0 such that x(t) E U for all t E [a, b], the 
sets F(x) are nonempty and compact for all x E U and satisfy the inclusion 

(2.4) F(x) C F(uf+iFiix- u!IIB whenever x,u E U, 

which implies the uniform boundedness of the sets F(x) on U, i.e., the existence of some constant 
1 > 0 such that 

F(x) C 718 for all x E U. 

(H2) The integrand 1J is Lipschitzian continuous on U x ('YIB). 

(H3) The endpoint functions cpi, i = 0, ... , m + r, are locally Lipschitzian around x(b) with the 
common Lipschitz constant i > 0. 

Observe that (2.4) is equivalent to say that the set-valued mapping F is locally Lipschitzian 
around x( ·) with respect to the classical Hausdorff metric on the space of nonempty and compact 
subsets of X. 

In what follows, along with the original problem (P), we consider its "relaxed" counterpart 
significantly used in some results and proofs of the paper. Roughly speaking, the relaxed problem is 
obtained from (P) by a convexification procedure with respect to the velocity variable. It follows the 
route of Bogolyubov and Young in the classical calculus of variations and of Gamkrelidze and Warga 
in optimal control; see the book [14] and the references therein for more details and commentaries. 

To construct an appropriate relaxation of the Bolza problem (P) under consideration, we first 
consider the extended-real-valued function 

1JF(x,v) := '19(x,v) + o(v;F(x)), 

where o(·; n) is the indicator function of the set n equal to 0 on nand to oo out of it. Denote by 

i?F(x,v) := (t9F)~*(x,v), (x,v) EX x X, 

the biconjugatejbypolar function to '19 F ( x, ·), i.e., the greatest proper, convex, and ·lower semi contin­
uous (l.s.c.) function with respect to v, which is majorized by '19F. Then the relaxed problem (R) to 
(P), or the relaxation of (P), is defined as follows: 

(2.5) minimize J[x] := cp(x(b)) + 1b i?F(x(t),x(t)) dt 

over a.e. differentiable arcs x: [a, b] - X that are Bochner integrable on [a, b] together with 
t9F(x(t),x(t)), satisfy the Newton-Leibniz formula and the endpoint constraints (1.3), (1.4). 

Note that the feasibility requirement J[x] < oo in (2.5) is fulfilled only if x(·) is a solution (in 
the sense of Definition 2.1) to the convexified differential inclusion 

(2.6) x(t) E cleo F(x(t), x(t)) a.e. t E (a, b] with x(a) = xo, 
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where "cleo" stands for the convex closure of a set in X. Thus the relaxed problem (R) can be 
considered under explicit dynamic constraints given by the convexified differential inclusion {2.6). 
Any trajectory for (2.6) is called a relaxed trajectory for (1.2), in contrast to the ordinary (or originaf:) 
trajectories for the latter inclusion. 

There are deep relationships between relaxed and ordinary trajectories for differential inclusions,. 
which reflect the fundamental hidden convexity inherent in continuous-time (nonatomic measure) 
dynamic systems defined by differential and integral operators. In particular, any relaxed trajec­
tory of (1.2) under assumption (Hl) can be uniformly approximated (in the C([a, b]; X)-norm) by a 
sequence of ordinary trajectories; see, e.g., [6, 18]. We need the following version ·[5] of this approx­
imation/ density property involving not only differential inclusions but also minimizing functionals. 

Lemma 2.3 (approximation property for the relaxed Bolza problem). Let x(·) be a relaxed 
trajectory for the differential inclusion (1.2} with a separable state space X, where F and{} satisfy 
assumptions (Hl) and (H2), respectively. Then there is sequence of the ordinary trajectories xk(·) 
for (1.2) such that Xk(·) -+ x(·) in C([a, b]; X) ask-+ oo and 

liminflb iJ(xk(t),:i;k(t)) dt $1b ;?F(a;(t),:i;(t)) dt. 
k-+oo a a 

Note that Theorem 2.3 does not assert that the approximating trajectories Xk(·) satisfy the 
endpoint constraints (1.3) and (1.4). Indeed, there are examples showing that the latter may not be 
possible and, moreover, the property of relaxation stability · 

(2.7) inf(P) = inf(R) 

is violated; in (2.7) the infima of the cost functionals (1.1) and (2.5) are taken over all the feasible 
arcs in (P) and (R), respectively. 

An obvious sufficient condition for the relaxation stability is the convexity of the sets F(x, t) and 
of the integrand {} in v. However, the relaxation stability goes jar beyond the standard convexity due 
to the hidden convexity property of continuous-time differential systems. In particular, Theorem .2.3 
ensures the relaxation stability of nonconvex problems (P) with no constraints on the endpoint 
x(b). There are various efficient conditions for the relaxation stability of nonconvex problems with 
endpoint and other constraint; see [14, Subsection 6.1.2] with the commentaries therein for more 
details, discussions, and references. 

A local version of the relaxation stability property (2.7) regarding intermediate minimizers for 
the Bolza problem (P) is postulated as follows. 

Definition 2.4 (relaxed intermediate local minimizers). A feasible arc x(·) to the Bol~a 
problem (P) is a RELAXED INTERMEDIATE LOCAL MINIMIZER (r.i.l.m.) of rank p E (1, oo) for (P) 
if it is an intermediate local minimizer of this rank for the relaxed problem (R) providing the same 
value of the cost junctionals: J[x] = J[x]. 

It is not hard to observe that, under the standing assumptions formulated above, the notions of 
intermediate local minima and relaxed intermediate local minima do not actually depend on rank 
p, i.e., they either hold or violate for all p E [1, oo) simultaneously. In what follows we always take 
(unless otherwise stated in Section 7) p = 2 and a= 1 in (2.3) for simplicity. 

The principal method of our study. in this paper involves discrete approximations of the origi­
nal Bolza problem (P) for constrained continuous-time evolution inclusions by a family of dynamic 
optimization problems of the Bolza type governed by discrete-time inclusions with endpoint con­
straints. We show that this method generally leads to necessary optimality conditions for relaxed 
intermediate local minimizers of (P). Then an additional approximation procedure allows us to 
establish necessary optimality conditions for arbitrary (non-relaxed) intermediate local minimizers 
by reducing them to problems, which are automatically stable with respect to relaxation. 



3 Stability of Discrete Approximations 

In this section we present basic constructions of the method of discrete approximations in the theory 
of necessary optimality conditions for differential inclusions following the scheme of [12, 14] developed. 
for the case of geometric constraints, with certain modifications required for the functional endpoint 
constraints (1.3) and (1.4) under consideration in infinite-dimensional spaces. 

Since we use discrete approximations mostly from a "theoretical" viewpoint (as a vehicle to 
derive necessary optimality conditions), we use in what follows just the simplest finite-difference 
replacement of the derivative by the uniform Euler scheme: 

. (t) __; x(t +h)- x(t) h 0 X "" h ' ~ • 

To formalize this process, we take any natural number N E IN and consider the discrete grid/mesh 
on T defined by · . 

TN:= {a,a+hN, ... ,b-hN,b}, hN := (b-a)/N, 

with the stepsize of discretization hN and the mesh points t; := a+ jhN as j = 0, ... , N, where 
to = a and tN = b. Then the differential inclusion {1.2) is replaced by a sequence of its finite­
difference/ discrete approximations 

(3.1) XN(t;+l) E XN(t;) + hNF(xN(t;)), j = 0, ... , N- 1, :c(to) = Xo. 

Given a discrete trajectory XN(t;) satisfying (3.1), we consider its piecewise linear extension 
XN(t) to the continuous-time interval T = [a, b], i.e., the Euler broken lines. We also define the 
piecewise constant extension to T of the corresponding discrete velocity by 

XN(t;+l)- XN(t;) . 
VN(t) := hN , t E (t;,t;+l), J = 0, ... ,N -1. 

It follows from the very definition of the Bochner integral that 

XN(t) = Xo + 1t VN(s) ds for t E T. 

The next result, which plays a significant role in the method of discrete approximations, establish 
the strong W 1•2-norm approximation of any trajectory for the differential inclusion (1.2) by extended 
trajectories of the sequence of discrete inclusions (3.1) under the general assumptions made in (H1). 
Note that the norm convergence in W1•2 ([a, b]; X) implies the uniform convergence of the trajectories 
on [a, b] and the pointwise, for a.e. t E [a, b], convergence of( some subsequence of) their derivatives. 
The latter is crucial for the. purposes of this paper, especially in the case of nonconve:zrvalued 
differential inclusions. The proof of this result in given in [14, Theorem 6.4], which is an infinite­
dimensional counterpart of the one in [12, Theorem 3.1]. 

Lemma 3.1 (strong W1•2-approximation by discrete trajectories). Let x(·) be an arbitrary 
solution to the differential inclusion (1.2) under the assumptions in (H1), where X is a general 
Banach space. Then there is a sequence of solutions XN(t;) to the discrete inclusions {3.1) such that 
their extensions XN(t), a ::;;· t ::;; b, converge to x(t) strongly in the space W1•2 ([a, b]; X) as N ~ oo. 

Observe that the proof of the above result given in [12, 14] is constructive and provides efficient 
estimates of the convergence rate being of certain independent interest for numerical analysis. 

Now fix an intermediate local minimizer x(-) for the Bolza problem (P) and construct a se­
quence of discrete approximation problems ( PN), N E IN, admitting optimal solutions x N ( ·) whose 
extensions converge to x( ·) in the norm topology of W1•2 ([a, b]; X) as N ~ oo. 

To proceed, we take a sequence of the discrete trajectories XN(·) approximating by Lemma 3.1 
the given local minimizer x(-) to (P) and denote 

(3.2) 'TIN := . max llxN(t;)- x(t;)ll ~ 0 as N ~ oo. 
JE{l, ... ,N} 
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In [14, Subsection 6.1.1], the reader can find more information on computing and estimating 7JN, 
which is not needed in what follows: it is suffiCient to know that 7JN -+ 0 as N -+ oo. 

Having e > 0 from relations (2.2) and (2.3) for the intermediate minimizer x(·) with p = 2 and 
a= 1, we always suppose that 

x(t) + e/2 E U for all t E [a, b], 

where U is a neighborhood of x(·) from (H1). Let i > 0 be the common Lipschitz constant of 'Pi, 
i = 1, ... , m + r, from (H3). Construct problems (PN ), N E IN, as follows: minimize 

= cpo(XN(tN)) +hN I: 1?(xN(t;), XN(t;+l~ -XN(t;)) 
i=O N 

+ ~ 1t.i+1 II XN(t;+l)...:.. XN(t;) - ii:(t>ll2 dt 
, i=O t; hN 

(3.3) 

over discrete trajectories XN = XN(·) = (xo,xN(tl), ... ,xN(tN)) for the difference inclusions (3.1) 
subject to the constraints 

{3.4) 

(3.5) 

(3.6) lixN(t;)- x(~;)ll :5 ~ for j = 1, ... , N, and 

(3.7) ~ lt;+l IIXN(t;+l)- XN(t;) - iC{t>ll2 dt :5 ~. 
i=O t; hN 2 

Considering in the sequel (without mentioning any more) piecewise linear extension of XN{·) to 
the whole interval [a, b], we observe the relationships: 

{ 

XN(t) = xo + 1at XN.(s) ds for all t E [a, b] and 
(3.8) 

XN(t) = XN(t;) E F(xN(t;)), t E [t;, t;+l), j = 0, ... , N- 1. 

In the next theorem, we establish that the given relaxed intermediate local minimizer {r.i.l.m.) 
x(·) to (P) can be approximated by optimal solutions to (PN) strongly in W1•2 (!a, b]; X); the latter 
implies the a.e. pointwise convergence of the derivatives significant for the main results of the paper. 
To justify such an approximation, we need to impose the Asplund structure on both the state space X 
and its dual X*, which is particularly the case when X is reflexive. Note also there are nonreflexive 
(even separable) spaces for which both X and X* are Asplund; see, e.g., [4]. 

Theorem 3.2 (strong convergence of discrete optimal solutions). Let x(·) be an r.i.l.m. for 
the Bolza problem (P) under the standing assumptions (H1)-(H3) in the Banach state space X, and 
let ( PN), N E IN, be a sequence of discrete approximation problems built above. The following hold: 

(i) Each (PN) admits an optimal solution. 
(ii) If in addition both X and X* are Asplund, then any sequence {xN(·)} of optimal solutions 

to (PN) converges to x(·) strongly in W1•2([a,b];X). 

Proof. To justify assertion (i), we first observe that the set of feasible solutions to each problem.( PN) 
is non empty for all N E IN sufficiently large. Indeed, pick the discrete trajectory x N{ ·) approximating 
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the given local minimizer x(·) by Lemma 3.1 and show that it satisfies all the constraints (3.4)-(3.7) 
for large N. By assumption (H3) we have 

IIPi(xN(tN )) - IPi(x(b)) I :5 l.llx(tN)- x(tN )II :5 i'TJN for all i = 1, ... ,m + r 

due to (3.2). This implies the fulfillment of the endpoint constraints (3.4) and (3.5) for XN(·), since 
those in (1.3) and (1.4) hold for x(·). The fulfillment of (3.6) for XN(·) follows directly from the 
construction of 'T/N -t 0 in (3.2). Further, it is easy to check that 

for the piecewise linear extension of XN(·) to [a, b]. By the W 1•2-approximation in Lemma 3.1 we 
have that ow -t 0 as N -t oo, which justifies the fulfillment of (3.7) for large N. The existence of 
optimal solutions to (PN) follows now from the classical Weierstrass theorem due to the compactness 
and continuity assumptions made in (H1)-(H3). 

Let us now prove the convergence assertion (ii) under the additional assumptions on the state 
space. Check first the value convergence 

(3.9) 

along a subsequence of N -too. Considering the expression for JN[XN] in (3.3) and using assump­
tions (H2) and (H3), we observe that (3.9) follows from 

N-1 ~ (t ) ~ (t ) N-11t;+l 
hN L: -o(xN(t3), XN H\- XN 3 ) = L: -&(xN(t3).~N(t)) dt 

j=O N j=O t; . 

= 1b -&(xN(t),~N(t)) dt + O(hN) -t 1b -&(x(t),x(t)) dt as N -too, 

which hold by Lemma 3.1 ensuring the a.e. convergence ~N(t) -t x(t) along a subsequence and by 
the Lebesgue dominated convergence theorem valid for the Bochner integral. 

All the previous arguments did not use either the relaxation property of the intermediate min­
imizer, or the Asplund property of X and X*. Now we are going to employ these properties to 
justify the relationship 

(3.10) lim .[f3N := lb llxN{t)- x(t)ll 2 dt] =0 
N-+oo a 

for every sequence of optimal solutions XN(·) to (PN)· 
Arguing by contradiction, pick a limiting point /3 > 0 of {f3N} in (3.10) and suppose for simplicity 

that f3N -t /3 for all N -t oo. To proceed, observe that both spaces X and X* enjoy the RNP. 
Indeed, the one for X* is equivalent to the Asplund property of X, while the Asplund property 
of X* ensures the RNP for X due to the latter fact and that of X C X**. Taking into account 
(H1) and (3.8), we apply tothe sequence {xN(·)} the Dunford theorem [4, Theorem IV.1] on the 
weak compactness in L1 ([a, bJ; X), which allows us to find a subsequence of { x N ( ·)} and a mapping 
v( ·) E L1 ({a, bj; X) such that 

(3.11) XN(·) -tv(·) weakly in L1([a,b];X) as N -too. 

Using (3.8) and the compactness in C([a,b];X) of solution sets for differential inclusions that holds 
under the assumptions made in (H1) (see, e.g., {18, Theorem 3.4.2]), we conclude that the sequence 
{ x N ( ·)} contains a subsequence that converges to some x E C ([a, b]; X) in the norm topology of the 
space C([a,b];X). Passing to the limit in the first relationship of (3.8), with taking into account 
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(3.11) and the weak continuity of the Bochner integral as an operator from £ 1 ([a, b]; X) to X, we 
arrive at the representation 

x(t) = xo + lt v(s) ds for all t E [a, b], 

which implies that v(t) = i(t) for a.e. t E (a, b]. 
Furthermore, the classical Mazur weak closure theorem ensures that x(·) is a solution to the 

convexified differential inclusion (2.6). By the structure of problems (PN) and by the construction 
of x(·),' it is not hard to conclude that x(·) satisfies the endpoint constraints {1.3) and (1.4) and 
that it belongs to the prescribed €-neighborhood of x( ·) in the norm topology of W1•2 ([a, b]; X). By 
passing to the limit in the obvious inequality 

JN[XN] ~ JN[XN] for all large N E IN, 

with taking into account (3.9) and the lower semicontinuity of the convexified integrand iF(x, ·) 
from (2.5) in the weak topology of L2([a, b]; X), we get 

J[X] = <po(X'(b)) + lb iF(x{t),i{t)) dt + {3:::; J[x]. 

Since {3 > 0 and J[x] = J[x], the latter gives J[X] < J[x], which contradicts the choice of x(·) as a 
relaxed intermediate local minimizer for {P). Thus (3.10) holds, and so ·xN(·) --+ x(·) as N --+ oo 
strongly in W1•2 ([a, b]; X). This completes the proof of the theorem. b. 

The strong convergence result of Theorem 3.2 makes a bridge between the original continuous­
time dynamic optimization problem (P) and its discrete-time counterparts (PN ), which allows us 
to derive necessary optimality conditions for (P) by passing to thelimit from those for (PN)· The 
latter ones are intrinsically nonsmooth and require appropriate tools of generalized differentiation 
for their variational analysis. 

4 Generalized Differentiation 

In this section, we define the main constructions of .generalized differentiation used in what follows. 
Since our major framework in this paper is the class Asplund spaces, we present simplified definitions 
and some properties held in this setting. All the material reviewed and employed below is taken 
from the author's book [13], where the reader can find more details and references. 

We start with generalized normals to closed sets n c X. Given x E n, the (basic, limiting) 
normal cone to n at x is defined by 

(4.1) N(x;n) := LimsupN(x;n), 
a:-+~ 

where "Lim sup" stands for the sequential upper/outer limit (1.6) of the F'rechet normal cone (or 
the prenormal cone) to 0 at X E 0 given by 

(4.2) ~ { I . (x* u - x) } N(x;O) := x* eX* limsup ' :::; 0 , 
n llu-xll 

U-+:1: 

where X E. X signifies that X --+ X with X E n, and where N(x; n) := 0 for :i; ¢ n. 
Given a set-valued mapping F: X ~ Y of closed .graph 

gphF := {(x,y) EX x Yl y E F(x)}, 

define its normal coderivative and F'rechet coderivative at {x, fi) e gph F by, respectively, 

(4.3) D*F(x,jj)(y*) := {x* E X*l (x*,-y*) E N{(x,jj);gphF)}, 
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(4.4) D* F(x,fi)(y*) := {:c* eX* I (:c*, -y*) e N((x,fi);gphF)}. 

IfF= f: X--+ Y is strictly differentiable at x (in particular, iff E 0 1 
), then 

D*f(x)(y*) = D*f(x)(y*) = {Vf(x)*y*}, y* e Y*, 

i.e., both coderivatives (4.3) and (4.4) are positively homogeneous extensions of the classical adjoint 
derivative operator to nonsmooth and set-valued mappings. 

Finally, consider a function r.p: x· --+ lR locally Lipschitzian around x; in this paper we do not 
use more general functions. Then the (basic, limiting) subdifferential of r.p at x is defined by 

(4.5) 8r.p(x) := Limsupar.p(:c), 
:Z:-t-3: 

where the sequential outer limit (1.6) of the F'rechet subdifferential mapping ar.p(·) is given by 

(4.6) ar.p(:c) := {x* EX* I r.p(u)- r.p(:c)- (:1;*, u- :c} ~ o}. 
llu -:ell 

We are not going to review in this section appropriate properties of the generalized differential 
constructions (4.1)-(4.6) used in Sections 5-7: these properties will be invoked with the exact 
references to [13] in the corresponding places of the proofs in the subsequent sections. Just note 
here that our basic/limiting constructions (4.1), (4.3), and (4.5) enjoy full calculus in the framework 
of Asplund spaces, while the Frechet-like ones (4.2), (4.4), and (4.6) satisfy certain rules of "fuzzy 
calculus." Both of these calculi are employed in what follows. The reader can find some additional 
and related material in the books byRockafellar and Wets [16], Smirnov [17], and Vinter [19] 
(concerning exact/full calculus in finite dimensions) and in the book by Borwein and Zhu [1] on 
fuzzy calculus in infinite dimensions; see also the references therein. 

5 Optimality Conditions for Discrete Inclusions 
In this section we derive necessary optimality conditions for the sequence of discrete approximation 
problems (PN) defined in (3.1) and (3.3)-(3.7). We only present results in the "fuzzy" form, which 
are more convenient to derive necessary conditions for the original problem (P) by the limiting 
procedure in Section 6. "Pointwise" necessary conditions for {PN) and for related discrete-time 
problems (not used in this paper) can be found in [14, Subsection 6.1.4]. 

Observe first that each discrete optimization problem (PN) can be equivalently written in a 
special form of constrained mathematical programming (MP) problem in infinite-dimensional spaces: 

minimize 1/Jo(z) subject to 

1/J;(z) =5, 0, j = 1, ... , s, 
(5.1) 

f(z) = 0, 

z E 6; C Z, j = 1, ... , l, 

where 1/J; are real-valued functions on·some Banach space Z, where f: Z--+ Eisa mapping between 
Banach spaces, and where 6; C Z. To see this, we let 

z := (:c~, .. . ,:CN,Vo, ... ,VN-1) E z := X 2N, E := xN, s := N +2 +m+2r, l := N -1 

and rewrite (PN) as an (MP) problem (5.1) with the following data: 

N-1 N-1

1
t.1+ 1 

(5.2) 1/Jo(z) := r.po(:CN) + hN L: 19(:c;, v;) + L: llv;- x(t)ll2 dt, 
j=O j=O t; 
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llxi-1 - x(tj-1)11 - e/2 for j = 1, ... , N + 1, 

(5.3) 1/Jj(Z) := 

'Pi(XN)-R:rJN, for j=N+2+i, i=1, ... ,m+r, 

-rpi(XN) -irJN, for j = N+ 2 + m+r + i, i = m+ 1, ... ,m +r, 

(5.4) 
{ 

f(z) = (/o(z), ... , fN-1 (z)) with 

/j(z) := Xj+l- Xj- hNVj, j = 0, ... ,N -1, 

(5.5) ei:={zeX2NivjEF(xj)} for j=O, ... ,N-i 

in terms of the initial data of problem ( PN). 
The next theorem establishes necessary optimality conditions for each problem (PN) in the 

approximate/fuzzy form of refined Euler-Lagrange and transversality inclusions expressed in terms 
of Frechet-like normals and subgradients. The proof is based on applying the corresponding fuzzy 
calculus rules and neighborhood criteria for metric regularity and Lipschitzian behavior of mappings 
from [13]. Note that fuzzy calculus rules provide representations of Frechet subgradients and normals 
of sums and intersections at the reference points via those at points that are arbitrarily clc>se to 
the reference ones. Just for notational simplicity, we suppose in the formulation and proof of the 
next theorem that these arbitrarily close points redu.ce to the reference points in question. This 
convention does not restrict the generality from the viewpoint of our main goal to derive necessary 
optimality conditions in the continuous-time problem (P). Indeed, the possible difference between 
the mentioned points obviously disappears in the limiting procedure. 

Theorem 5.1 (fuzzy Euler-Lagrange conditions for discrete approximations). LetxN(·) = 
{xN(tj)l j = 0, ... , N} be local optimal solutions to problems (PN) as N- oo under the assumptions 
(H1 )-(H3) with the Asplund state space X. Consider the quantities 

(5.6) ()Nj := 21t.1+1 II xN(tj+l~- xN(tj) - x(t>ll dt, i = o, ... , N- 1. 
ti N 

Then there exists a· sequence EN ! 0 along some N - oo, and there are sequences of Lagrange 
multipliers >.iN, i = O, ... ,m+r, and adjoint trajectoriespN(·) = {PN(tj) E x•1 j = O, ... ,N} 
satisfying the following relationships: 

-the sign and nontriviality conditions 

(5.7) 
m+r 

AiN 2:0 for all i = 0, ... ,m +r, E >.iN= 1; 
i=O 

-the complementary slackness conditions 

(5.8) 

-the extended Euler-Lagrange inclusion in the approximate form 

(
PN(t;+1)-PN(tj) p (t· )->. ()Njb*) E>. 8 ..... {}(- (t·) XN(tj+l)-XN(tj)) 

hN ' N 3+1 ON hN Ni ON XN 3 , hN 
(5.9) . 

+N((xN(tj),xN(ti+l~;xN(tj));gphF)+elB• with b'j.yieJB•, j=O, ... ,N-1; 
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-the approximate transversality inclusion 

m · m+r 

-PN(tN) e L:>-iNall'i(xN(t~)) + E >-iN [all'i(xN(tN)) U8( -lpi)(xN(tN))] 
(5.10) i=O i=m+l 

+eiB*. 

Proof. Consider problem (PN) for any fixed N EN in the equivalent (MP) form (5.1) with the 
initial data (5.2)-(5.5). Denote 

Z := (xN(h), ... ,XN(tN), VN(to), · .. , iiN(tN-1)) 

and takeN so large that the W1•2-constraints (3.6).and (3.7) for XN(·) hold with the strict inequality, 
which is possible by Theorem 3.2. Thus the latter constraints can be simply ignored in what follows. 

To prove the theorem, it is sufficient to examine the following two mutually exclusive cases, which 
completely cover the situation. 

Case 1. Assume that the operator constraint mapping f: X 2N-.. xN in (5.1) and (5.4) is metrically 
regular at Z relative to the set e := eon ... n eN-1 in (5.5) in the sense that there is a constant 
p, > 0 and a neighborhood U of z satisfying the distance estimate 

dist(z; S) ~ p, llf(z)- f(z)ll for all z E en U, where S := { z E e1 f(z) = f(z) }. 

Then applying Joffe's exact penalization theorem (see [14, Theorem 5.16]) and taking into account the 
specific structures of the inequality constraint functions 1/J; in (5.3) for j = N +2+i as i = 1, ... , m+r, 
we conclude that z is a local optimal solution to the unconstrained penalized problem: 

(5.11) . minimize max { 1/Jo(z) - 1/Jo(z), . m~ l/'i(XN)} + JL(IIf(z)ll + dist(z; e)) 1 
IEI(mN) · 

for all p, > 0 sufficiently large, where 

l{xN) := {i E {1, ... ,m}lll'i(XN) = i7]N} 

U { i E {m + 1, ... ,m + r}l either l/'i(xN) = i71N or -«pi(XN) = i71N }. 

Applying the generalized Fermat rule [13, Proposition 1.114] to the local optimal solution z for 
(5.11), we arrive at the subdifferential inclusion 

(5.12) 0 E a[ max {'1/Jo(·)- 1/Jo(z), . m~ l/'i(·)} + P, 11/(·)11 + p,dist(·; e)] (z). 
IEI(mN) 

Fix any e > 0 and employ in the fuzzy sum rule for Frechet subgradients from [13, Theorem 2.33(b)] 
in (5.12). It gives (remember out notational convention) 

0 E a[ max { 1/Jo(·)- 1/Jo(z), . m~ C,Oi(·)}] (z) + p,BII/(·)II(z) + JLBdist(z; e)+ (e/4)JB*. 
IEI(:DN) 

Computing now by [13, Proposition 1.85] the Frechet subdifferential of the distance function dist(z; e) 
and using the simple chain rule for the composition 11/(z)ll = (4> o f)(z) with </J(y) := IIYII and the 
smooth mapping f from (5.4), we get 

N-1 
0 E a[ max { 1/Jo(·)- 1/Jo(z), . m~ ll'i(·)}] (z) + LV' J;(z)*ej + N(z; e)+ (e/4)JB* 

· IEI(mN) j=O 

for some ej EX* with, by the structure off in (5.4), 

N-1 
(5.13) E 'VJ;(z)*ej = (- el),el)- er, ... ,eN-2- eN-1• e:N-1, -hNel), ... , -hNeN-1)· 

j=O 
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To proceed further, we use the fuzzy intersection rule from [13, Lemma 3.1] ensuring that 

N(z; e) c N(z; eo)+ ... + N(z; eN-1) + (e/4)/B* 

and also employ the fuzzy rule for Frechet subgradients of the maximum function (cf. {13, Theo­
rem 3.46] and its proof) giving, by the structure of the index set I(xN ), the inclusion 

m+r 

+ 2: >.iN[acp;{xN)Ua<-cpi){xN)] +(e/4)JB*. 
i=m+l 

where the multipliers >.iN, i = 0, ... , m + r, satisfy the sign, nontriviality, and complementary 
slackness conditions in {5.7) and {5.8). 

Applying the afore-mentioned fuzzy sum rule to the cost function {5.2) and taking into account 
the classical relationship 

oll·ll2(x) c 2llxlliB* for any X EX, 

as well as the subdifferentiation formula under the integral sign in {5.2) well known from convex 
analysis, we have the inclusion 

N-1 
8-,po(z) c Ocpo(xN)+hN 2: [aD{x;,v;)+ (0,20N;IB*)] +(e/4)/B*, 

i=O 

where ON; are defined in {5.6). Finally, choose PN(to) e x• arbitrarily and let 

PN(t;) := ej_1, j = 1, ... , N, 

with e"= given in {5.13). Then taking into account the special separated structures of the sets 8; 
in (5.5}, we arrive at the EuleJ;-Lagrange and transversality inclusions {5.9) and {5.10) with eN = e 
by substituting the corresponding fuzzy relationships derived above into the generalized Fermat 
stationary condition (5.12). This completes the proof ofthe theoremin Case 1. 

Case 2. It remains to consider the situation when the mapping f from {5.4) is not metrically regular 
at z relative to the set intersection e :=eon ... n eN-1· Let us show that this never holds, along 
some subsequences eN! 0 and N --too, under the local Lipschitzian assumption imposed on F. 

Indeed, in this case the restriction fe : X 2N --t X N of f to e defined by 

fe(z) := { ~(z) if z e e, 
otherwise 

is obviously not metrically regular around z in the sense of {13, Definitio~ 1.47]. Then the char­
acterization of the latter property from [13, Theorem 4:5] allows us, for any fixed. e > 0, to find 
z e z + elB and e* = {e(j, ... , e;\r_1) e (X*)N such that 

lie* II > 1 and 0 e .B• fe(z)(e*) 

via the Frechet coderivative {4.4) of fa. Employing now the coderivative sum rule from [13, Theo­
rem 1.62] and the fuzzy intersection rule from [13, Lemma 3.1], we get 

N-1 N-l 

0 e L Y'f;(z)*ej + L N(z;;e;) +c:.IB* 
j=O j=O 
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with some Zj.E ejn(z+elB). According to our notation agreement, weput Zj = z = z for simplicity. 
Thus there are zj E N(z; ei) satisfying 

N-1 N-1 
(5.14) - 2: ~i E 2: V'fi(z)*ej + eiB*. 

j=O j=O 

Taking into account calculation (5.13) due to the form (5.4) of the mapping f and the specific 
structures of the sets ei in (5.5), we find from (5.14) dual elements 

* * ~((- XN(tj+l)-iiN(tj)) ) :·_ (xi3,vij)EN XN(tj), hN ;gphF3, J-O, ... ,N-1, 

satisfying the relationships 

{ 

-xji - ej_1 + ej E elB*, j = 0, ... , N- 1, 

-vji + hNej E eiB*, j = 0, ... ,N -1, 

-ej.,_1 E eiB*. 

Define now the adjoint discrete trajectory PN(tj ), j = 0, ... , N, as in Case 1. Then the above 
relationships ensure that the pair (xN(·),pN(·)) satisfies the Euler-Lagrange inclusion (5.9) and the 
transversality inclusion (5.10) with 

>.iN = 0 for all i = 0, ... , m + r 
and the following nontriviality condition: 

(5.15) IIPN(t1)11 + ... + IIPN(tN )II ~ 1 for all large N E IN. 

Let us show that condition (5.15) contradicts (5.9) and (5.10) with >.iN = 0 due the locally Lips­
chitzian property of F assumed in the theorem. 

To proceed, we observe that the Euler-Lagrange inclusion (5.9) with >.oN= 0 can be equivalently 
written as 

PN(ti+l~: PN(tj) E D*F( XN(tj), XN(ti+1~: XN(tJ)) (- PN(tJ+l)) + eiB*' j = 0, ... 'N -1. 

Then the local Lipschitzian property ofF with modulus eF yields, by the neighborhood·coderivative 
characterization of [13, Theorem 4.7j, that . 

llxjll :5 eFIIvjll whenever xj E fj• Fj(Xj, Vj)(vj) 

and (xi,vi) near (xN(tj),[xN(tj+l) -iiN(tj)J/hN)· Thus 

IIPN(tN-1)11 :5IIPN(tN)II(1 + hNeF) +ehN 

and then, as a discrete counterpart of the Gronwall lemma, 

(5.16) IIPN(tj )II :5 exp (eF(b- a)) IIPN(tN )II + e(b- a) for all j = 0, ... , N. 

Finally, take a sequence Vk! 0 ask-+ oo and choose numbers Nk and ek such that 

Nk := [1/vkj and ek :5 v~ as k E IN, 

where [·J stands for the .greatest integer less than or equal to the given real number. By (5.16) and 
by the transversality condition (5.10) with >.iN= 0 along the chosen sequences of ek =eN, ! 0 and 
Nk-+ oo ask-+ oo, we have the estimate 

N, 

2: IIPN,{tJ)II :5 vkexp(eF(b- a))+ vk(b- a)! 0 as k E IN, 
j=1 

which contradicts (5.15) and completes the proof of the theorem. 
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6 Extended Euler-Lagrange Conditions for Relaxed Mini­
mizers 

In this section we derive necessary optimality conditions in the refined forms of the extended Euler­
Lagrange and transversality inclusions for relaxed intermediate local minimizers of the original prob­
lem (P). The proof is based on the passing to the limit from the necessary optimality conditions 
for discrete approximation problems obtained in Section 5 and on the usage of the strong stability of 
discrete approximations established in Section 3. A crucial part of the proof involves the justification 
of an appropriate convergence of adjoint arcs; the latter becomes possible due to the coderivative 
characterization of Lipschitzian set-valued mappings taken from (13]. 

Theorem 6.1 (extended Euler-Lagrange and transversality inclusions for relaxed inter­
mediate minimizers). Let x(·) be a relaxed intermediate local minimizer for the Bolza problem 
(P) given in (1.1)-(1.4) under the standing assumptions of Section 2, where the spaces X and X* 
are Asplund. Then ther~ are nontrivial Lagrange multipliers 0 :j:. (..\o, ... 1 Am+r) E JRm+r+l and an 
absolutely continuous mapping p: (a, b] -+ X* such that the following necessary conditions hold: 

-the sign conditions 

(6.1) Ai ;::: 0 for all i = 0, ... , m + r, 

-the complementary slackness conditions 

(6.2) AiiPi(x(b)) = 0 for i = 1, ... ,m, 

-the extended Euler-Lagrange inclusion, for a.e., t E (a,b], 

{6.3) p(t) E cleo { u EX* I (u,p(t)) E ..\o8D(x(t),:f(t)) + N((x(t),:f(t));.gphF) }. 

-and the transversality inclusion 

m . m+r . 
{6.4) -p{b)) e E.xiaiPi(x(b)) + 2: .xi[ar;i(x(b))Ua( -r;i)(x(b))]. 

i=O i=m+l 

Proof. Given the intermediate local minimizer x(·) to (P), employ Theorem 3.2that ensures the 
strong W1•2-approximation of x(·) by a sequence of optimal solutions XN(·) to problems (PN). 
Applying now the necessary optimality condition of Theorem 5.1, we find sequence of multipliers 
>.m, i = 0, ... ,m+r, and adjoint trajectories PN(·) satisfying conditions {5.7)-{5.10). Without loss 
of generality, we can and do suppose that 

..\m -+ >.i as N -+ oo for all i = 0, ... , m + r, 

where the limiting multipliers Ai, i = 0, ... , m + r, are not zero simultaneously and satisfy the ·sign 
condition (6.1). Moreover, we .get the complementarity slackness conditions {6.2) by passing to the 
limit in {5.8) with 'f/N -+ 0 as N -+ oo. 

Let us next justify the possibility of passing to the limit in the approximate Euler-Lagrange 
(5.9) and transversality (5.10) inclusions for the discrete-time problems (PN ). Having ()Nj defined 
in (5.6), consider the corresponding sequence of functions ()N: {a, b] -+lR given by 

()N(t) := 0,:: bNj for t E (tj, tj+l), j = 0, ... , N- 1. 

It follows from the strong W 1•2-convergence of Theorem 3.2 that 

~ E ()Nj ~ 2 E 1tJ+l II XN(tj+l~- XN(tj) - :fN(t>ll dt 
j=O j=O tJ N 

= 21b llifN(t) - if(t)ll dt-+ 0, 
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which allows us to suppose without loss of generality that 

XN(t)-+ x(t) and (}N(t)-+ 0 a.e. t E [a,b] as N-+ oo. 

Furthermore, we derive from the approximate Euler-Lagrange condition (5.9) that there are 

j =O, ... ,N-1, 

such that the discrete-time inclusions 

D"'•p(- ( ) XN(tj+l)- Xfl(tj)) (\ * . \ (}Njb* ( ) .,.. ) E XN tj , hN ANVNj +"'ON hN Nj - PN ti+l + eNeNJ 

hold for all j = 0, ... , N - 1 and all N E IN. Observe that, due to [13, Proposition 1.85], the 
sequences { (xN i, vjN)} are uniformly bounded for all j = 0, ... , N ._ 1 by the Lipschitz constant of 
rJ. Since the mapping F is locally Lipschitzian with constant iF, we get by the coderivative condition 
for the Lipschitz continuity from [13, Theorem 1.43] that 

IIPN(tj+l)- PN(tj) \ * * II < n II\ * + \ (}Nj b* (t ) + .,.. II hN ~ ANXNj + eNeNJ _ ~F ANVNi AN hN Nj- PN i+l eNeNJ 

for j = 0, ... , N -1. This allows us to conclude that the piecewise extensions PN(t), a :S t :S b, of 
the adjoint discrete arcs PN(·) are uniformly bounded on [a,b] with 

(6.5) IIPN(t)ll :Sa+ ,BIION(t)ll a.e. t E [a, b], 

where the positive numbers a and {3 are independent of N. Using now the Dunford criterion for the 
weak compactness in £ 1 ([a, b]; X*) from [4, Theorem IV.1] (note that both X and X* enjoy the RNP 
due to their Asplund property assumed) and arguing similarly to the proof of Theorem· 3.2 above, 
we find. an absolute continuous mapping p: [a,b]-+ X* satisfying the Newton-Leibniz formula and 
such thatpN(·) -+p(·) as N-+ oo (with no loss of generality) in the weak topology of L1 ([a,b];X*). 

Next we conclude. from the approximate transversality inclusion ( 5.10), the sign and nontriviality 
conditions in (5.7), and the local Lipschitz continuity of cpi, i = 0, ... , m + r, with the common 
constant i from (H3) that 

IIPN(b)ll :S i(m + 2) + 1 for sufficiently large N E IN 

· due to the uniform boundedness of Frechet subgradients of locally Lipschitzian functions by [13, 
Proposition 1.85]. Since X is Asplund, this implies the weak* sequential compactness of {PN(b)} 
in X*. Thus, passing to the limit in (5.10) as N -+ oo and using definition (4.5) of the basic 
subdifferential, we arrive at the transversality inclusion .(6.4). 

Considering now the approximate Euler-Lagrange inclusion (5.9), we equivalently rewrite it as 

(6.6) 

PN(t) e { u eX* I (u,p.N(ti+l)- >.oNON(t)) e >.oN8rJ(xN(tj),xN(t)) 

+N((xN(tj),xN(t});gphF) +eNlB"} 

for t E [tj, tj+l) with j = 0~ ... , N- 1. Obverse, by the weak continuity of the Bochner integral 
in the Newton-Leibniz formula and by PN(·)-+ p(·) weakly in L1 (a,b];X"), that the values PN{t) 
converge to p(t) weakly in X*. Furthermore, the Mazur weak closure theorem ensures that some 
sequence of convex combinations of {PN(·)} converges top(·) strongly in L1 ([a,b];X") as N-+ oo, 
and hence its subsequence converges to p( t) almost everywhere on [a, b]. Passing finally to the limit 
in (6.6) and taking into account the established pointwise convergence together with (6.5), we arrive 
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at the extended Euler-Lagrange inclusion (6.3) and complete the proof of the theorem. ~ 

Note that the results obtained in Theorem 6.1 are different from those derived in [14, Subsec­
tion 6.1.5] not only by the absence of any SNC-like assumptions on the target/constraint set but also 
by not imposing the "coderivative normality" property on F needed in [14] in similar settings. Ob­
serve also that the arguments developed above allow us to provide the corr~pondent improvements . 
in the case of Lipschitzian endpoint constraints of the Euler-Lagrange type necessary optimality 
conditions derived in [15] for evolution models governed by semilinear inclusions 

(6.7) x(t) E Ax(t) + F(x(t), t), 

where A is ·an unbounded infinitesimal generator of a compact 0 0 -semigroup on X, and where con­
tinuous solutions to (6.7) are understood in the mild sense. 

, 7 Euler-Lagrange and Maximum Conditions with No Relax­
ation 

The main objective of this section is to derive necessary optimality conditions for intermediate local 
minimizers if(·). of evolution inclusions without any relaxation. We show that it can be done under 
certain more restrictive assumptions on the initial data in comparison with those in Theorem 6.1. 
For simplicity, we consider here the Mayer version (PM) of problem (P) with{}= 0 in (1.1). In this 
case, the Euler-Lagrange inclusion (6.3) admits the coderivative form 

(7.1) p(t) E clcoD* F(if(t),~(t))(- p(t)) a.e. t E [a, b], 

which easily implies, due to the extremal property for coderivatives of convex-valued mappings given 
in [13, Theorem 1.34], the Weierstrass-Pontryagin maximum condition 

(7.2) (p(t),~(t))= max (p(t),v) a.e. tE[a,b] 
veF(:ii(t)) 

provided that the sets F(x) are convex near if(t) for a.e. t E [a, b]. Our .goal is to justify the above 
Euler-Lagrange and Weierstrass-Pontryagin conditions, together with the other necessary optimality 
conditions of Theorem 6.1, for intermediate minimizers of the Mayer problem (PM) subject to the 
Lipschitzian endpoint constraints (1.3) and (1.4), without any convexity or relaxation assumptions 
and with no SNC-like requirements imposed on the endpoint constraint set. To accomplish this.goal, 
we employ a certain approximation technique involving Ekeland 's variational principle combined 
with other advanced results of variational analysis and generalized differentiation, which allow us to 
reduce the constrained problem under consideration to an unconstrained (and thus stable with respect 
to relaxation) Bolza problem studied in Section 6. However, this requires additional assumptions on 
the initial data of (PM) imposed in what follows. 

Recall that a set-valued mapping F: X~ Y is strongly coderivatively normal at (if,Y) E gphF 
if its normal coderivative (4.3) admits the representation 

D* F(if, jj)(y*) = { x• E X*l3 sequences (xk, Yk) -.. (if, jj), xj; ~ x•, and yj; -.. y• 
(7.3) 

with Yk E F(xk) and xj; E fj• F(xk, Yk)(yk) .as k-+ oo} =: Di.tF(x, y)(y*), 

where D'MF(if, jj) is called the mixed coderivative of F at (x, jj). Observe that the only difference 
between the normal and mixed coderivatives of F at (if, jj) is that the mixed weak* convergence 

of xk ~ x• and the norm convergence of yj; -.. y* is used for D'MF(if, jj) in (7.3), in contrast 

to the weak* convergence of both components (xk,Yk) ~ (x*,y*) for D*F.(x,jj) in (4.3) via (4.1). 
Besides the obvious case of dim Y < oo, the strong coderivative normality holds in many important 
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infinite-dimensional settings, and the property is preserved under various compositions; see [13, 
Proposition 4.9] describing major classes of mappings satisfying this property. 

A mapping F: X~ Y is called sequentially nonnally compact (SNC) at (x,y) E gphF iffor any 

sequences (xk,Yk) g~F (x,y) and (xj;,y*) E N((xk,Yk);gphF) one has 

(xj;,yk) ~ 0 ==> ll(xj;,yj;)ll __. 0 as k __. oo. 

As discussed in Section 1, this property is a far-going extension of the "finite-codimension" and 
other related properties of sets and mappings. It always holds in finite dimensions, while in reflexive 
spaces agrees with the"compactly epi-Lipschitzian" property by Borwein and Str6jwas; see [13] for 
more details, discussions, and calculus. 

Finally, recall that the given norm on a Banach space X is Kadec if the strong and weak conver­
gences agree on the boundary of the unit sphere of X. It is well known that every reflexive space 
admits an equivalent Kadec norm. 

Theorem 7.1 (Euler-Lagrange and Weierstrass-Pontryagin conditions for intermediate 
local minimizers with no relaxation). Let x(·) be an intermediate local minimizer for the Mayer 
problem (PM) in (1.1}-(1.4} under the standing hypotheses (H1} and (H3) on F and cpi. Assume in 
addition that: 

(a) the state space X is separable and reflexive with the Kadec nonn on it; 
{b) the velocity mapping F is SNC at (x(t), x(t)) and strongly coderivatively nonnal with weakly 

closed graph around this point for a. e. t E [a, bj. 

Then there are nontrivial Lagrange multipliers 0 =f: (>.0 , .•. , >.m+r) E JRm+r+l and an absolutely 
continuous mapping p: [a, bj--. X* satisfying the following relationships: 

-the sign and complementarity slackness conditions in (6.1) and (6;2); 

-the Euler-Lagrange inclusion (7.1), where the closure operation is redundant; 

-the Weierstrass-Pontryagin maximum condition (7.2); and 

-the transversality inclusion (6.4}. 

Proof. Denote 

(7.4) cpri(x,v):=max{cpo(x}-v,O}, cpt(x):=max{cpi(x),O} for i=1, ... ,m 

and, following the method of metric approximations [llj, consider the parametric cost functional 

(7.5} 
m m+r · 1/2 

Ov[xj := [ (cpri)2{x(b), v) + L (cpt)
2

(x(b)) + L cpHx(b))] as v E 1R 
i=l i=m+l 

over trajectories for the evolution inclusion (1.1} with no endpoint constraints. Since x(·) is an 
intennediate local minimizer for (PM) and due to the constructions in (7.4) and (7.5}, we have 

(7.6} Ov[xj > 0 for any v < ii := cpo(x(b)) 

provided that x(·) is a trajectory for (1.2} belonging to the prescribed W1•1-neighborhood of the 
given intermediate local minimizer and such that x(t) E U for all t E [a, bJ, where the open set 
U C X is taken from the requirements in (H1} imposed on x(·). 

Form as in [2J the space X of all the trajectories x(·) for (1.2} satisfying the only constraint 
x(t) E clU as t E [a,bj with the metric 

d[x,yj := 1b ll:i:(t) -y(t)ll dt. 

We can easily check, based on Definition 2.1 of solutions to the original differential inclusion and 
on standard properties of the Bochner integral, that the metric space X is complete and that the 
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function Ov[·] is {Lipschitz) continuous on X for any v E JR. It follows from the above constructions 
that for every e > 0 there is v,. < ii such that v,. - ii as e ! 0 and 

0 5 Oe(x] < e 5 in{. 0,. [x] + e with 0,. := Ov •. 
xe .... 

Now applying the classical Ekeland variational principle, find an arc x,.(·) EX satisfying 

(7.7) 

This distance estimate yields that x,(t} E U as t E (a, b] and that x,(·) belongs to the fixed W 1•1-

neighborhood of the intermediate local minimizer x(·) whenever e > 0 is sufficiently small. Hence 
Oe(x,.] > 0 for such e by (7.6}. 

Given positive numbers e and 11 > 0, we form the Bolza functional 

J,,71 (x] := O,[x] + Vtd(x, xe] + 11J1 + i} 1b dist((x(t}, x(t)); gphF) dt , 

and show, following the proof of Claim in (14, Theorem 6.27], that there is a number 11;:::: 1 such 
that for. every e E {0, 1/11) the arc x~(-) built above is an intermediate local minimizer for this 
functional over all absolutely continuous mappings x: [a, b] - X, not necessarily trajectories for 
(1.1}, satisfying the constraints 

x(a) = xo and x{t) E U for t E [a, b], 

where the one x(t) E U can be ignored from the viewpoint of necessary optimality conditions, since 
the set U is open in X. Taking into account the structures of 0,.[·] and d[·, ·],we conclude that x,.(·) 
is an intermediate minimizers for the ~ollowing unconstrained Bolza problem with Lipschitzian data: 

(7.8) minimize <p,(x(b}) + 1b n,(x(t),x(t),t) dt 

over absolutely continuous arcs x: [a, b] - X satisfying x(a) = x0 and lying in a W 1•1-neighborhood 
of x(·}, where the functions 'Pe: X- IR and 0,.: X x X x [a, b]- IR are given by 

(7.9) 
m m+r /2 

[( + 2 ""' ( +)2 ""' 2 ] 1 <p,.(x) := <p0 ) {x, v,.) + L., 'Pi (x) + L., 'Pi (x) , 
i=l . i=m+l 

(7.10) D,(x,v,t) := 11J1 +i}dist((x,v);gphF) + Vtllv- x,(t)ll. 

To apply the results of Theorem 6.1 to the case of problem (7.8}, we first note that every 
intermediate local minimizer for the unconstrained problem (7.8) provides a relaxed intermediate 
local minimum for this problem. It follows from the relaxation stability of unconstrained Bolza 
problems with finite integrands, which is ensured by an appropriate infinite-dimensional extension 
of the classical Bogolyubov theorem valid under the assumptions made; see Lemma 2.3 above and its 
"intermediate" local counterpart given in [9, Theorem 4] whose proof holds in the infinite-dimensional 
setting under consideration. FUrthermore, observe that, although Theorem 6.1 is presented for 
autonomous problems, its results hold true . with no change for the case of summable integrands 
as in {7.10); it can be justified similarly to the proof of [14, Theorem 6.22] given for problems 
with geometric endpoint constraints. Finally, it follows from the proof of Theorem 6.1 that the 
compactness of the velocity sets assumed in (H1) is, in fact, not needed for the unconstrained and 
W 1•1-bounded framework of the Bolza problem (7.8). 

Applying the optimality conditions of Theorem 6.1 to problem (7.8) with the initial data {7.9) 
and (7.10), for all small e > 0; we find an absolutely continuous adjoint arc p,.: [a, b] -X* satisfying 

(7.11) Pe(t) E co { u EX* I (u,p,(t)) E p8dist{(x,(t),xe(t));.gphF) + v'£(0, 18*)} 
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for a. e. t E [a, b] with p, := 77V1 + l~ and 

(7.12) 
.· . m m+r 1/2 · 

-pe(b)e8[(cpri)2(·,ve)+L(cpt)
2
(-)+ L cp~(·)] (xe(b)). 

i=1 i=m+1 

Note that the last term on the right-hand side of (7.11) ·appears due to employing the sum rule from 
[13, Theorem 2.33(c)] to the integrand (7.10) and using the well-known subdifferential formula for 
the norm function. The other difference between (7.10) and (6.3) is that (7.11) does not contain the 
closure operation as in (6.3). The norm~closure operation can be omitted in (7.11), since the basic 
subdifferential sets for Lipschitzian functions are weak compact in reflexive spaces·(which are weakly 
compactly generated) by [13, Theorem 3.59(i)], and hence the right-hand side of (7.11) is closed in 
the norm topology of the dual space X*. 

To deal further with (7.11), fix t E [a, b] and consider the two possible cases for the location of 
(xe(t), :i:e(t)) relative to the graph of the velocity mapping F(·): 

(i) (xe(t), :i:e(t)) E gph F and (ii) (xe(t), Xe(t)) ¢ gph F. 

In case (i) we use (13, Theorem 1.97] on basic subgradients of the distance function at set points, 
which gives the approximate adjoint inclusion 

(7.13) Pe(t) E co { u E X*l (u,pe(t)) E N{(xe(t),:i:e(t));gph F)+ ve(O, JB*) }. 

The out-of-set case (ii) is more involved and requires the Kadec norm structure of X together with 
the weak closedness assumption on the graph of F. Then we, by [13, Theorem 1.105], the relationship 

8dist((xe{t),:i:e(t));gphF) C u N((x,v);gphF) 

(o:,v)en( (.:, (t),:V,(t)); gphF) 

via the projection operator IT(·; gph F) at the reference point. Taking into account the a.e. pointwise 
convergence (xe(t),:i:e(t)) -+ (x(t),x(t)) as e! 0 that follows from (7.7), we come up to a modified 

inclusion(7.13) with the replacement of (xe(t),:i:e(t)) by some sequence (xe,V'e) g~F (x(t),x(t)) as 
e! 0, while we keep the form (7.13) for simplicity. 

Consider next the transversality condition (7.12) with cpt defined in (7.4). Employing the sum 
and chain rules (13, Subsection 3.2.1] for basic subgradients in (7.12) and taking into account rela­
tionships (7.5) and (7.6) with Ve j ii as e ! 0, we have 

m m+r 

(7.14) -Pe(b) E LAie8cpi(xe(b)) + L Aie[8cpi(xe(b))U8( -cpi)(xe(b))], 
i=O i=m+1 

where the multipliers Aie satisfy the conditions 

(7.15) 
m+r 

Aie ~ 0 for all i = 0, ... , m+ r, L >.~e = 1 as e! 0. 
i=O 

By (7.15), we suppose without loss of generality that Aie -+ >.i as e! 0 fori= 0, ... , m + r, where 
the limiting multipliers >.i are not zero simultaneously and satisfy the sign and complementary 
slackness conditions in (6.1) and (6.2). Furthermore, it follows from (7.14) and (7.15) that the 
family {Pe(b)}e>O is uniformly bounded in X* fore sufficiently small. To proceed similarly to the 
proof of Theorem 6.1, we observe that the strong coderivative normality assumption on F allows 
us, by (7.13), to use the mixed coderivative characterization of the Lipschitz property ofF from [13, 
Corollary 4.11] and thus to find an absolutely continuous arc p: [a,b]-+ X* such that .Pe(·)-+ p(-) 
weakly in £ 1 ([a, b]; X*) and Pe(t) -+ p(t) weakly in X* as e! 0 for each t E [a, b]. 

To complete the proof of the Euler-Lagrange and transversality inclusions of the theorem, we pass 
to the limit in (7.13) and (7.14) as e! 0 by using the Mazur theorem on the strong convergence of 

21 



convex combinations for {Pe ( ·)}. To accomplish this limiting procedure and to arrive at the desired 
inclusions (7.1) and (6.4), we use the closed-graph property of the basic normal cone in (7.13) and 
the basic subdifferential in (7.14). This follows from [13, Theorem 3.60] due to the SNC assumption 
on F and the Lipschitz continuity of 'Pi in the reflexive state space X. Observe that the closedness 
operation in (7.1) is redundant, similarly to (7.13), due to the uniform boundednessof { (Pe(·),pe(·))} 
in X* x X* and the arguments above involving now [13, Theorem 3.59(ii)]. 

The given proof justifies the extended Euler-Lagrange and transversality conditions in the theo­
rem for arbitrary intermediate local minimizers to problem (PM) with no relaxation. In the general 
nonconvex setting the Euler-Lagrange inclusion (7.1) does not automatically imply the maximum 
condition (7.2). To establish the latter condition supplementing the other necessary conditions of 
the theorem, we follow the proof of [19, Theorem 7.4.1] given for a Mayer problem of the type {PM) 
involving nonconvex differential inclusions in finite-dimensional spaces; it holds with minor changes 
in infinite-dimensions under the assUinptions imposed. The proof of the latter theorem. is based on 
reducing the constrained Mayer problem for nonconvex differential inclusions to an unconstrained 
Bolza (finite Lagrangian) problem, which in turn is reduced to a problem of optimal control with 
smooth dynamics and nonsmooth endpoint constraints first treated in [11] via the nonconvex normal 
cone (4.1) and the corresponding subdifferential (4.5) introduced therein to describe the appropriate 
transversality conditions in the maximum principle. 6 
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