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OPTIMIZATION AND EQUILIBRIUM PROBLEMS WITH EQUILIBRIUM 
CONSTRAINTS IN INFINITE-DIMENSIONAL SPACES1 

B. S. MORDUKHOVICH 2 · 

Dedicated to Steve Robinson in honor of his 65th birthday 

Abstract. The paper is devoted to applications of modern variational f).nalysis to the study of con­
strained optimization and equilibrium problems in infinite-dimensional spaces. We pay a particular 
attention to the remarkable classes of optimization and equilibrium problems identified as MPECs 
(mathematical programs with equilibrium constraints) and EPECs (equilibrium problems with equi­
librium constraints) treated from the viewpoint of multiobjective optimization. Their underlying 
feature is that the major constraints are governed by parametric generalized equations/variational 
conditions in the sense of Robinson. Such problems are intrinsically nonsmooth and can be handled 
by using an appropriate machinery of generalized differentiation exhibiting a rich/full calculus. The 
case of infinite-dimensional spaces is significantly more involved in comparison with finite dimen­
sions, requiring in addition a certain sufficient amount of compactness and an efficient calculus of 
the corresponding "sequential normal compactness" (SNC) properties. 

Key words. nonsmooth and multiobjective optimization-equilibrium constraints-variational analysis­
generalized differentiation-necessary optimality conditions-exact penalization-infinite dimensions 

Mathematics Subject Classification {2000 ): 90C29, 90C30, 49J52, 49J53, 49K27 

1 Introduction 

The · main objective of this paper is to study constrained optimization {including vec­
tor/multiobjective optimization) problems, which have constraints of the type 

0 E q(x,y) + Q(x,y) {1.1) 

among possible constraints of other kinds. In (1.1), q: XxY ~Pis a single-valued mapping 
while Q: X x Y ==t P is a set-valued mapping between Banach spaces, y E Y stands for 
the decision variable, and x EX is a parameter. Models of type (1.1) were introduced by 
Robinson [26] in the end of 1970s, and since that time they have played a crucial role in 
many aspects of optimization and variational analysis. It seems that the original motivation 
for Robinson was to describe variational inequalities and complementarity problems in the 
form of "generalized equations," which are distinguished from standard .equations by the 
presence of the multivalued term Q while allowing one to explore this similarity for their 
qualitative study and numerical solution. Indeed, generalized equations (1.1) reduce to the 
parametric variational inequalities 

find y E 0 with {q(x,y),v- y) ~ 0 for all v E Q 

1Research was .partially supported by the National 'Science Foundation under grant DMS-o304989 and 
by the Australian Research Council under grant DP-0451168. 

2Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA; 
boris@math.wayne.edu 
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when Q(y) = N(y; 0) in (1.1) is the classical normal-cone mapping to a convex set 0. 
Based on formalism (1.1), Robinson and his followers developed strong results in sensitivity 
analysis and numerical methods of solving variational inequalities, complementarity and 
optimization problems, etc.; see particularly the seminal papers by Robinson [26, 27], his 
recent survey [29], and the fundamental 2-volume monograph by Facchinei and Pang [6]. 

It has been well realized that constraints (1.1) can describe certain equilibrium con­
ditions, in particular, those arising from the solution of lower-level parametric problems 
in hierarchical optimization (e.g., in bilevel programming). On this basis, minimization 
problems subject to constraints of type (1.1), which express sets of feasible solutions to the 
upper level of hierarchical optimization, are called mathematical programs with equilibrium 
constraints (MPECs); see the books by Luo, Pang, and Ralph [13] and by Outrata, Kocvara 
and Zowe [24] for various approaches and results for such problems; more recent extensive 
bibliographies and commentaries on MPECs can be found in [3, 6, 17]. 

Quite recently, a new class of problems has drawn attention of both researchers and 
practitioners. This class is generally related to seeking equilibria subject to equilibrium 
constraints, i.e., to considering problems with equilibrium conditions appearing in both 
costs and constraints (in other words, on both lower and upper level of hierarchy). Such 
problems are known as equilibrium problems with equilibrium constraints (EPECs); this 
term was coined by Stefan Scholtes in his talk at the 3rd International Conference on 
Complementarity Problems (2002, Cambridge, UK). We refer the reader to the papers by 
Fukushima and Pang [7], Hu and Ralph [9], and Outrata [23] for more discussions and other 
references on this class of problems with results mostly related to Nash equilibrium on the 
upper (or both lower and upper) level. 

Another approach to the study of EPECs was suggested by the author (15] from the 
viewpoint of multiobjective optimization on the upper level of hierarchy, with general equi­
librium constraints of type (1.1) on the lower level. This approach is more suitable for 
deriving optimality conditions in EPECs with Pareto-type equilibria (and other concepts of 
"generalized order optimality" and "closed preference relations" as given below) on the up­
per level; cf. also Ye and Zhu [32] for necessary conditions in certain multiobjective problems 
with variational inequality constraints, where the upper-level optimality is defined by some 
"regular" preference relations. The recent paper by Mordukhovich, Outrata and Cervinka 
[19] contains efficient implementations and developments of the approach in [15] to an im­
portant class of EPECs governed by complementarity conditions on the lower level and the 
classical weak Pareto optimality on the upper level of hierarchy, with applications to the 
oligopolistic market modeling. We refer the reader to the book [17] for more discussions on 
EPECs and related multiobjective problems with various constraints. 

Observe that all the results obtained in [15, 19, 32], as well as those in [7, 9, 23], 
concern EPECs in finite-dimensional spaces. The problems considered in [15, 19, 23, 32], 
being intrinsically nonsmooth, were treated via the generalized differential constructions of 
variational analysis and calculus rules in finite-dimensional spaces developed earlier by the 
author. The infinite-dimensional settings considered in this paper are significantly different 
from their finite-dimensional counterparts from both conceptional and technical viewpoints; 
see [16, 17]. One of the principal new ingredients of the infinite-dimensional theory is the 
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necessity to deal with "lack of compactness" in infinite dimensions, which requires the usage 
of certain appropriate "normal compactness" properties and workable .rules of their calculus. 

The primary goal of this paper is to derive effident necessary optimality conditions for 
general infinite-dimensional EPECs and MPECs o~ th!'l base of the advanced generalized 
differentiation theory of variational analysis in infinite-dimensional spaces. 

The rest of the paper is organized as follows. Section 2 presents a brief review of the 
basic generalized differential construetions of variational analysis and normal compactness 
properties needed for formulations and proofs of the main results. 

Section 3 is devoted to the study of infinite-dimensional EPECs from the viewpoint of 
multiobjective optimization with equilibrium constraints of type (1.1) on the lower level 
and equilibrium relations·on the upper level given by ·"generalized order optimality." .The 
results obtained are based on the extremal principle of variational ,analysis, which plays 
a fundamental role in the nonconvex variational theory. and applications similarly to con­
vex separation theorems under convexity assumptions. Its infinite-dimensional version in 
product spaces happens to be the most appropriate for applications· to EPECs. 

In Section 4 we study some classes of EPECs in infinit~dimensional spaces with equi­
librium criteria oil the upper level given by "closed preference relations." This eventually 
requires different tools of generalized differentiation and versions ofthe extremal prindple 
in comparison with. problems from Section 3, while leading to a series of independent re­
sults in problems of multiobjective optimization and EPECs. Certain special structures of 
equilibrium constraints are studied in more detail. 

In the final Section 5 we con8ider a . .general cla8s of infinite-dhnensional. MPECs and 
develop an approach to deriving necessary optimality conditions based on "exact penaliza­
tion" procedure combining with appropriate tools of generalized differentiation. In finite 
dimensions, this approach goes back to Ye and Ye [31] and Outrata [22], while the infinite­
dimensional case under consideration happens to be significantly more involved and offers a 
larger variety of qualification and optimality conditions. Note that the notion of "calmness" 
(or "upper-Lipschitzian" property), which is essentially due to Robinson {26, 28], plays a 
crucial role in this approach. 

Our notation is basically standard; see [16, 17]. Recall that, .given a set-valued mapping 
F: X =t X* between a Banach space X and its topological dual X*, the sequential Painleve­
Kuratowski upperjouter limit ofF as x- x with respect to the norm topology of X and 
the weak* topology w* of X* is 

Lims!lpF(x) := { x* EX"' I 
:J:->:1: . 

w• 
3 sequences Xk - x and xk - x* 

with xk E F(xk) for all k E IN}, 
(1.2) 

where IN:= {1, 2, ... }. Recall also that the symbols x ~ x and x ~ x signify, respectively, 
that x .._. x with x E n and that x - x with 'P(x) - 'P(x) for sets n c X and extended­
real-valued functions 'P: X.._. 1R := [-oo, oo]. Unless otherwise stated, all the·spaces under 
consideration are Banach with the norm II · II and the canonical pairing ( ·, ·) between the 
space in question and its dual. We use JBx to denote the closed unit ball of X, where the 
subindex "X" is omitted when there is no confusion; JB* stands for the closed unit ball of 
the dual 'Space in question. 
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2 Preliminaries in Variational Analysis 

We start with a brief review pf the basic generalized differential constructions of variational 
analysis and some of their properties widely used in what follows. This is taken from the 
author's book [16], where the reader canfind a comprehensive theory for these constructions 
with extensive discussions, references, and commentaries. 

Developing a geometric approach to generalized differentiation, let us first define the 
(basic, limiting) normal cone to 0 C X at x E 0 by 

N(x;O) := LimsupNe(x;O), 
X->X 
e!O 

where Ne(x; 0) stands for the set of e-normals (e ~ 0) to 0 at x E X given by 
I 

-. ( n) { * X* I . {x*, u - x) } 
Ne x;u := x E hm:up llu-xll $e ~ 

U->X 

xEO, 

(2.1) 

and Ne(x; 0) := 0 if x ¢. 0. If the space X is Asplund (i.e., each of its separable subspace 
has a separable dual) and if the set 0 is locally closed around x, then we can equivalently 
put e = 0 in (2.1) and replace Ne by the generally smaller prenorinal (or. Frechet normaQ 
cone N(x; 0) := No(x; 0). Observe that the class of Asplund spaces is sufficiently large 
particularly including every reflexive Banach space and every space with a separable dual; 
see, e.g., the book by Phelps (25] for more details and references. 

Given a set-valued mapping F: X =t Y and a point (x, y) from its graph 

gphF := {(x,y) E.X x Yl y E F(x)}, 

consider two kinds of limiting coderivatives ofF at (x, y): the normal coderivative 

D'NF(x,y)(y*) := {x* E X*l (x*,-y*) E N{(x,y);gphF)}, y* E Y*, (2.2) 

and the mixed coderivative 

DMF(x,y)(y*) := Limsup .D;F(x,y)(y*), y* E Y*, 
(x,y)->(x,ti) 

y•-.y• 
e!O 

(2.3) 

where .D;F(x, y) is defined similarly to (2.2) with the replacement of N by Ne, and where 
we can equivalently put e · = 0 if both spaces X and Y are Asplund and if the graph of F 
is locally closed around (x, y). As follows from definitions (2.2), (2.3), and (1.2), the only 
difference between the normal and mixed coderivatives is that the norm convergence of 

y*--+ y* mixed with the wealt sequential convergence of x* ~ x* are used in (2.3) instead 

of both wealt sequential convergences y* ~ y* and x* ~ x* in the limiting representation of 
D'N. Obviously DMF(x, y)(y*) c D'NF(x, y)(y*), where the equality holds if dim Y < oo. 
In general, the equality 

DMF(x,y)(y*) = D'NF(x,Y)(y*), y* e Y*, 
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is postulated in (16) as the strong coderivative normality ofF at (x, jj}. This property holds 
for important classes of set-valued and single-valued mappings between infinit~dimensional 
spaces including convex-graph mappings, the so-called "strictly Lipschitzian" mappings (see 
below}, etc., and it is preserved under various operations; see cases (a)-(i) summarized in 
[16, Proposition 4.9). If F = f: X - Y is single-valued and strictly differentiable at x 
(which is automatic when f is C1 around this point), then 

D'Mf(x)(y*) = Divf(x)(y*) = {V/(x)*y*}, y* E Y*, 

via the adjoint derivative operator V/(x)*: Y* - X*. In (16, 17), the reader can find 
equivalent analytic representations of both normal and mixed coderivatives and their effi­
cient calculations for various classes of nonsmooth single-valued and set-valued mappings. 

Let t.p: X -IR be an extended-real-valued function finite at x. Then 

8<p(x):= LimsupBe<p(x) 
a:~:il 
e!O 

is the (basic, limiting) subdifferential of <p at x, where 

Bet.p(x) := {x* EX* I t.p{u)- <p(x)- (x*,u- x} ~ -c:} 
. llu-xll 

(2.4} 

· is the c:-subdifferential of '{J at x, for each e ~ 0. When e = 0, the set Bcp(x) := BQt.p(x) is 
known also as the presubdifferential, or the Frechet (regular, viscosity) subdifferential of I.P 
at x. If X is Asplund and if the function t.p is lower semicontinuous (l.s.c.) around x, the 
sets Bet.p(x) can be equivalently replaced by B<p(x) in (2.4}. Furthermore, the subdifferent1al 
(2.4) admits the geometric description 

8<p(x) = {x* E X*l (x*,-1} E N((x,<p(x));epi<p)}, 

via the normal cone (2.1} to the epigraph epi<p := {(x, J.t) E X x JR! J.t ~ <p(x}}, useful in 
the geometric approach to generalized differentiation and· applications to optimi?:ation. On· 
the other hand, the geometrically defined coderivatives (2.2} and (2.3} admit, in the case of 
single-valued mappings f: X - Y, the following representations 

D'Mf(x) = 8(y*, f}(x}, Divf(x)(y*) = 8{y*, f}(x) as y* € Y* {2;5} 

via the basic subdifferential (2.4} of the scalarized function (y*, J)(x) := {y", f(x)}. The 
first representation in (2.5} holds for every locally Lipschitzian mapping f between Banach 
spaces, while the second one requires in addition that X is Asplund and that f is strictly 
Lipschitzian at x in the sense that the sequence 

contains a norm conver{!;ent subsequence whenever Xk - x and v belongs to some neigh­
borhood of the origin; see [16, Subsection 3.1.3) for characterizations, verifiable sufficient 
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conditions, and applications of the latter property when the space· Y is infinite-dimensional · 
(otherwise it obviously reduces the the classical Lipschitz continuity off around x). 

Observe that our basic constructions (2.1)-(2.4) may have nonconvex values even in 
very simple situations: e.g.; 8( -lxi)(O) =. { -1, 1}. It seems surprising therefore, from 
the viewpoint of conventional techniques in convex analysis totally based on separation 
theorems, that they enjoy full calculus (mostly in Asplund spaces, although a number 
of strong and useful results are available in the arbitrary Banach space setting). The 
main driving force for this calculus and many· other results of variational analysis is the 
fundamental extremal principle (see (16, Chapter 2] for the detailed study and discussions), 
which is a variational counterpart of convex separation in nonconvex settings. · . 

Next we recall "normal compactness" properties of sets, s~t-valued mappings, and 
extended-real-vltlued functions that are automati~ in finite. dimensions while playing a cru­
cial role in infinite-dimensional variational analysis and its applications; see (16, 17). Since 
these properties are employed in the paper only in the Asplund space setting, we give 
simplified definitions equivalent to the general ones [16) for the cases under consideration. 

A (locally) closed-graph mapping F: X :::::t Y is sequentially nornially compact (SNC) at 
the point (x, y) E gph F if for any sequences (xk, Yk, xk, yk) E (gph F) ·x X* x Y* satisfying 

(2.6) . 

one has ll(xk,yk)ll -+ 0 ask-+ oo. A set n is SNG at x E 0 if the constant mapping 
F( ·) := 0 is SNC at this point. The latter property always holds of 0 is compactly epi­
Lipschitzian (CEL) around x in the sense of Borwein and.Str6jwas [2] although in general 
the implication CEL=>SNC is strict even for convex cones in nonseparable Asplund spaces; 
see (5] for a comprehensive study of the relationships between the SNC and CEL properties. 

A mapping F: X :::::t Y is partially BNG (PSNC) at (x, y) if for any sequences satisfying 
(2.6) one has llxkll -+ 0 provided that IIYkll -+ 0 as k -+ oo. The PSNC property is 
significantly less restrictive than the SNC one and always holds, in particular, for mappings 
F having Aubin's Lipschitz-like ("pseudo-Lipschitz") property around (x,y), in the sense 
that there are neighborhoods U of x and V of y and a number i ~ 0 such that 

F(x) n V c F(u) + illx- uii.IB whenever x, u E U. · (2.7) 

When V = Y, the latter property reduces to the classical (Hausdorff) Lipschitz continuity 
ofF around x. Moreover, the simultaneous fulfillment of the PSNC property ofF at (x, y) 
and the mixed coderivative condition 

DuF(x, y)(O) = {0} (2.8) 

is necessary and sufficient for F to be Lipschitz-like around (x, y); see (16, Theorem 4.10). 
Finally, F: X :::::t Y isstrongly PSNC around (x, y) iffor any sequences satisfying (2.6) 

one has llxkll -+ 0 as k -+ oo. This always holds for mappings F partially GEL around (x, y) 
in the sense of Jourani and Thibault (12). 

We refer the reader to [16, 17) for other efficient conditions implying the SNC/PSNC 
properties for specific classes of set-valued and single-valued mappings and to the well-
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developed SNC calculus ensuring the preservation of such properties under various opeta­
ti~ns; this seems t? be, the most important for applications. Note that the proofs of the 
major rules of SNC calculus are also based on the extremal principle. 

3 Multiobjective Optimization and EPECs via Generalized 
Order Optimality 

In this section we study. EPECs, where equilibrium/efficiency relations on the upper level 
are given by a certain "generalized order optimality" that can be treated from the view­
point of multiobjective optimization. first we formulate t~is notion in the vein of (17' 
Subsection 5.3.1); see also the references therein. , 

Definition 3.1 (ge~eralized order optima:lity. under constraints). Given a "cost" 
mappif!-g f: X --t Z between Banach spaces, an "ordering" set 9 c Z with 0 E e, and a 
constmint set fl C X, we say that a point X E fl is LOCALLY (!, 9, fl)-OPTIMAL if there are 
a neighborhood U of x and a sequence {zk} c Z with llzkll-+ 0 ask--too such that 

. . . . . . 

f(x)- f(x) ¢. 9- z~ for aUx E nn U and k E JN. 

The set 9 in Definition 3.1 can be viewed as a generator of an extended order/preference 
relation between Zl, Z2 E z defined by Zl-Z2 € e. In the scalar case of z = lR and e = JR_, 
the above notion clearly reduces to the standard optimality with the cost·function f. 

Note that we do not ass~e t,l:lat the ordering set 9 is either convex or of nonempty 
interior. If it is a convex subcone of~ with ri 9 :P 0, then the concept of Definition 3.1 
e~compasses a Pareto-type efficiency/equilibrium requiring that there is no x E Q n U with 
f(x)-f(x) E ri9; to see this, we put Zk := zo/k, k E JN, with some zoE ri9. The standard 
weak Pareto efficiency corresponds to the more restrictive relation f(x)- f(x) E int 9, while 
the Pareto efficiency means that there is no x E fl n U for which f(x)- f{x) E 9 and 
f(x)- f(x) ¢. 9; compare, e.g., the book by Jahn (11] and its references. 

Our goal in this section ·is to derive necessary optimality conditions for EPECs with 
equilibrium relations given by the generalized order optimality on the upper level. To begin 
with, consider the following abstmct EPEO. .given f: X x Y --t Z, 0 E 9 c Z, and a 
set-valued mapping S: X =t Y, 

find a local (!, 9)-optirrial point (x, jj) subject toy e S{x). {3.1) 

The set-valued mapping S in (3.1) can be viewed as a parametric solution map to 
abstract constraints of a genemlized equilibrium type, which particularly cover those (1.1) 
of our main interest in this paper. We begin with necessary conditions for local optimal 
solution to (3.1) in Asplund spaces. For brevity and simplicity, consider only the case 
when the cost mapping f is locally Lipschitzian; more .general cases .can. be treated in the 
line of [17, Section 5.3]. Note that the primary driving forces for proving the results of this 
section are the exact extremal principle in produ~t 1:1paces {17] along with the comprehensive 
generalized differential .and SNC calculi developed in [16]. 
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Theorem 3.2 (necessary conditions for generalized order optimality in abstract 
EPECs). Let (x,y) be an optimal solut.ion to (3.1), where f: X x Y ~ Z is a mapping · 
between Asplund spaces that is locally Lipschitzian around ( x, y), and where the sets gph S 
and 9 are locally closed around z := f(x, y) and 0 E 9, respectively. Assume also that: 

(a) either 9 is SNC at 0, 
(b) or the inverse mapping f-1 : Z =t X x Y is strongly PSNC at (z,x;·y) and 

[(x*,y*) ED}d(x,y)(O), · -x* E D/vS(x,y)(y*)] => x* = y* = 0; (3.2) 

Then there is z* E N(0;9) \ {0} satisfying 

0 E D/vf(x,jj)(z*) + N((x,y);gphS). (3.3) 

Moreover, the qualification condition (3.2) is automatic and the necessary ~ptimality cort­
dition (3.3) is equivalent to 

0 E 8(z*, f}(x, Y) + N ( (x, y); gph S) (3.4) 

provided that f is strictly Lipschitzian at (x, y). 

Proof. It is easy to observe that the point (x, y) is locally (!, 9, gph 8)-optimal in the sense 
of Definition 3.1 in the product space X x Y. Since both spaces X andY are assumed to be 
Asplund, their product X x Y is also Asplund, by the well-known fact from the theory of 
Asplund spaces [25]. Thus we can apply the results of [17, Theorem 5.59] that give necessary 
conditions for general problems of constrained multiobjective optimization. According to 
assertion {ii) of the latter theorem, whose proof employs the full power of the exact extremal 

·principle in product of Asplund spaces [17, Lemma 5.58] and the corresponding generalized 
differential and SNC calculi, we find z* E N(O; 9) \ {0} such that 

0 E D/v(f + ~(·;gphS))(x,y) (3.5) 

provided that either 9 is SNC at 0, or the inverse mapping 

G(x,y) := [f(x,y) + A{(x,y);gphS)F
1 . (3.6) 

is PSNC at (z, x, y). In (3.5), ~(·; 0) stands for the indicator mapping of the given set 
0 c W (0 = gphS C X x Yin our case) with respect to the image space Z defined by 

.·A( . O) ·= { 0 E W if w E 0, 
w, · 0 if w ¢ o. 

Further, we need to present the optimality condition (3.5) and the PSNC assumption on 
(3.6) in terms of the initial data of the problem (3.1) under consideration. 

Applying the coderivative sum rule from [16, Proposition 3.12] and taking into account. 
that the Lipschitz continuity of f around (x, y) yields D&r f(x, y}(O) = {0} by (2.8), we 
conclude that (3.3) follows from {3.5), since 

D/vA((x,y);gphS){z*) = N((x,y);gphS) for all z* E Z*. 
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This justifies the necessary optimality condition of the theorem in case (a). 
To establish (3.5) in case (b), it remains to show that the the assumptions therein ensure 

that the mapping G in (3.6) is PSNC at (z, x, y). To proceed, we fix .arbitrary sequences 

(xk, Yk, xt:, yz, zk:) with (xk, Yk) --+ (x, y) satisfying 

and show that llzk:ll --+ 0 ask--+ oo, which means that the required PSNC property of G 
holds. Observe that the qualification condition (3.2) implies the existence of some sequences 

ek L 0, (Xik, Yik) --+ (x, y) for i = 1, 2, and (xA:, iik:, zk:) satisfying the inclusion 

(3.7) 

and the estimate 

(3.8) 

for each k E IN. This can be derived from [16, Lemma 3.1] similarly to the proof of tlie 
coderivative sum rule in [16, Theorem 3.10]. Therefore, by {3.7) there exist 

(xik, Yik) E iJ• f(xlk, Ylk)(zk:) and (x2k, Yak) E N{(x2k, Y2k);gphS) {3.9) 

ensuring the equalities 

kE IN. {3.10) 

- w* · w• 
It follows from zk: --+ 0 and estimate (3.8) with respect to the z-component that zk: --+ 0 
as k --+ oo. Hence, by the classical uniform boundedness principle, the sequence { zk} is 
bounded in z•. Since f is locally Lipschitzian around .(x, y) with some modulus t ~ 0, the 

first inclusion in (3.9). implies by (16, Theorem 1.43] that 

which ensures the boundedness of the sequence {(xik' Yik)} in X* x Y*. Thus, by the 
sequential weak* compactness of bounded sets in dual to Asplund spaces {2'5], the latter 
sequence contains a subsequence weak* converging to some (x*, y*) E X* x Y*. It fol­

lows from the first inclusion in (3.9) with zk: ~ 0 and from definition (2.2) of the normal 
coderivative that (x*, y*) E Dj.;/(x, y)(O). We similarly conclude from (3.8) and {3.10) that 

{(x2k' Y2k)} weak* converges to some (x2, Y2) E X* x Y* along a subsequence and that ac­
tually (x2,y2) E N((x,y);gphS) due to (2.1) bypassing to the limit in the second inclusion 
of (3.9). Moreover, (x2, Y2) = ( -x•, -y*) by passing to the limit in equaiity · (3.10). Thus 

(x*,y*) E D'j.;J(x,y)(O) n (- N((x,y);·gphS)], 

and hence (x*, y*) = (0, 0) by the qualification condition {3.2). The latter implies that 

(xik, Yik, zk:) ~ 0 with {xik, Yik) E fj• /{Xlk, Ylk)(zk:), k .E IN. 
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Invoking now the strong PSNC property of f-1 at (z,x,y), we conclude that llik;ll- 0 as 
k - oo, which justifies the required PSNC property of G in (3.6) and thus the optimality 

. . 
condition (3.3) under the assumptions in (b). 

Suppose finally that f is strictly Lipschitzian at (x, y). Then 

D!vf(x,y)(z*) = 8(z*,f)(x,y) for all z* E Z* 

by the scalarization formula of (16, Theorem 3.28). Hence (3.3) is equivalent to (3.4) in this 
case and the qualification condition (3.2) trivially holds due to Div f(x, y)(O) = {0}. This 
completes the proof of the theorem. . ~ 

Observe that the necessary conditions of Theorem 3.2 are established in the normal 
form, with a nonzero "multiplier" z* corresponding to t;he cost mapping f. This is due to 
the imposed qualification condition (3.2). Since the optimality and qualification conditions 
obtained are of the same ( duaQ nature, they can be unified in a single necessary optimality 
condition written in the non-qualified form, which ensures the nontriviality of the whole 
collection of "multipliers" corresponding to the cost mapping and constraints, while does 
not exclude that the "cost multiplier" equals zero. 

Corollary 3.3 (non-qualified necessary conditions for abstract EPECs). Assume 
that, in the general framework of Theorem 3.2, either e is SNC at 0 or j-1 is strongly 
PSNC at (z, x, y). Then there are 0 =f: (x*, y*, z*) E X* x Y* x Z* satisfying 

(x*,y*) E D'Nf'(x,y)(z*), -x* E DjyS(x,"y)(y*), z*·e N(0;9)~ . (3.11) 

Proof. When 9 is SNC at 0, (3.11) is the same as (3.3) with z* E N(O; 9) \ {0} by the 
normal coderivative definition (2.2). When f-1 is strongly PSNC at (z, x, y) and the quali­
fication condition (3.2) is satisfied, (3.11) also reduces to (3.3) with z* E N(O; 9) \ {0}. On 
the other hand, the negation of (3.2) means that (3.11) holds with some (x*, y*) =f: 0. ~ 

Next let us consider our main problem in this section when the mapping S(-) in the 
abstract EPEC (3.1) is given in the form of equilibrium constraints (1.1), i.e., S(·) is the 
solution map to the parametric generalized equations/variational systems 

S(x) := {y E Yl 0 E q(x, y) + Q(x, y).}. (3.12) 

For brevity and simplicity, we restrict ourselves to the case of strictly Lipschitzian single­
valued mappings under consideration. These assumptions can be dropped or significantly 
relaxed on the base of Theorem 3.2 and appropriate rules of-generalized differential and SNC 
calculi (cf. (17]); however, it leads us to results technically more involved and complicated 
in formulation. The result formulated in the theorem is given in the general non-qualified 

. . 

form, which can be equivalently formulated in the corresponding normal form under the 
so-called Fredholm qualification condition. Note also that we consider in {3.12) the case of 
parameter-dependent multivalued fields Q = Q(x, y) of generalized equations, in contrast to 
the majority of other studies in this direction. 
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Theorem 3.4 (necessary conditions for EPECs governed by parameter-dependent · 
generalized equations). Let (x,y) be a solution to (3.1) with S(·) given by (3.12), where 

~ . . . 

f: X x Y - Z, q: X x Y - P,. and Q: X x Y =t P are mappings between Asplund spaces, 
and where 8 c Z with 0 E 8. Assume that f and q are strictly Lipschitzian at (x, y), 
that e is locally closed around the origin, and that Q is locally closed around (x, jj, p) with 

p := -q(x,y). Then there are (z"',p*) E Z* x P*, not both zero, such that 

0 E 8(z*,J}(x,y) + 8(p"',q)(x,y) + DivQ(x,y,p)(p*) and z"' E N(0;8) · 

in each of the following cases: 

(a) e is SNC at 0; 

(3.13) 

(b) f-1 is strongly PSNC at(z, x, y) with z := f(x, y) and either Q is SNC at (x, y,p); 

ordimP < oo. 

Proof. We are based on the assumptions and results of Corollary 3.3, where 

(x"',y*) E Divf(x,jj)(z*) *==> (x"',y*) E 8(z"',f)(x,jj) {3.14) 

due to the strict Lipschitzian requirement on fat (x, y). Thus, under the latter assumption 
in addition to the other assumptions of Corollary 3.3, it ensures the existence of.(x*, y*, z*) 
satisfying (3.11) with z"' :f: 0. 

Let us now· express/ estimate the normal coderivative DivS( x, jj) for the mapping S in 
(3.12) via the initial data of (3.12) and the requirements imposed directly on q and Q. 
Employing (16, Theorem 4.46], we .get the upper estimate 

DivS(x, y)(y"') c { x* E X* 13p* E P* with 

(x*, -y*) E 8{p*, q)(x, y) + DivQ(x, y,p){p*)} 
{3.15) 

provided that the adjoint generalized equation to ( 1.1) has only the trivial solution: 

[o E a(p"',q)(x,y) +DivQ(x,y,p)(p*)] ====* p* = o '(3.16) 

and that either Q is SNC at (x, y, p), or dim P < oo. Substituting (3.14) and (3.15) into 
(3.11), we arrive at (3.13) with z"' :f: 0 under the qualification condition {3;1'6) and the 
assumptions made in the theorem. 

On the other hand, the negation of {3.16) means that there is 0 ·:f: p* E P* satisfying 

o E a(p"',q)(x,y) + DivQ(x,y,p)(p*). 

This gives (3.13) with z"' = 0 and p* :f: 0, which completes the proof of the theorem. l~. 

The qualification condition (3.16) and its counterparts for more .general mappings q in 
(1.1) play a significant role in the analysis of equilibrium constraints {sensitivity, optimality 
conditions for MPECs and EPECs, etc.); see (16, 17]. It reminds us Fredholm's alternative· 

for integral equations, where the triviality of 'Solutions to the adjoint equation is a crucial 
condition for solvability of the original one. For this reason, we call {3.16) the Fredholm 
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qualification condition for generalized equations and the associated MPECs and EPECs. 
As follows from the proof of Theorem 3.4, the qualification assumption (3.16) ensures the 
normal form of the necessary conditions in (3.13) with z"' :f: 0 .... 

Let us next present further elaborations of the results obtained for some important 
classes of EPECs, where the multivalued part (field) of the equilibrium constraints (1.1) 
is given in a subdifferential form typical for the majority of applications. Usually subdif­
ferential structures arising in applications involve certain compositi()ns. · We pay the main 
attention to the composite subdifferential structures given in the following forms: 

Q(x,y) = 8('1/Jog)(x,y) or Q(x,y) = (8'1/Jog)(x,y), (3.17) 

where g is a single-valued mapping between Banach spaces and where 1/J is ali extended­
real-valued function. For convenien~e, we refer (borrowing mechanical terminology) t.o ·the ' 
first structure in (3.17) as to that with composite potentials, while the second structure 
the second structure in· (3.17) is that with composite fields. The subdifferential in (3.17) is 
taken in our basic sense (2.4), while other subdifferential constructions can be con5idered · 
as well in a similar way.; compare, e.g., [18). Parametric generalized equationS (equilib­
rium constraints) with multivalued parts given in both forms (3.17) eilcompa8s a variety of 
parametric variational systems including particularly Va.riational inequalities and nonlinear 
complementarity (as well as implicit complementarity) problems, sets of stationary solu­
tions in nonlinear programming, hemivariational and quasivariational inequalities, etc.; see 
more discussions and examples in the books {6, 13, 16, 24) and the references therein. 

Observe that equilibrium constraints (1.1) with subdifferential structures (3.17) contain 
by construction a first-order information. arising, in particular, from first-order necessary 
conditions in lower-level optimization problems·. Thus necessary conditions (and related 
results) for upper-level problems with equilibrium constraints of the (first-order) subdiffer­
ential type naturally require certain second-order generalized differential objects. 

Recall the second-order subdifferential notion for extended-real-valued functions used in 
what follows; see the book [16) and its references for more details and historical comments. 
Given cp: X- IR finite at x and given fj E 8cp(x), the (normal) second-order subdifferential 
of cp at x relative to fj is defined by 

82cp(x, y)(u) := (Div8cp)(x, fi)(u), u EX"'"', (3.18) 

i.e., as the (normal) coderivative (2.2) of the first-order subdifferential mapping (2.4). When 
cp E 0 2 around x, the set (3.18) is a singleton for each u E X"'"' reducing to the classical 
second-order derivative (Hessian) of cp at x: 

where the adjoint operation is not needed· in finite-dimensional spaces, due to the sym­
metricity of the classical Hessian matrix. In general, (3.18) defines a positively homogeneous 
set-valued mapping from X"'"' into X"', which possesses an extensive calculus in both finite 
and infinite dimensions; see [16). Besides various situations and mcamples considered in the 
books [16, 17) and the references therein, we particularly refer the reader to the papers 
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[4, 18, 19] containing precise calculations of the second-order subdifferential for favorable 
classes of extended-real-valued functi~ns arising in various opti~ization and equilibrium 
problems motivated by numerous applications. 

· Let us first consider EPECs whose equilibrium constraints a!e governed by the subdif- · 
ferential genemlized equations with composite potentialS · · · 

0 E q(x,y) +8(.,Pog)(x,y), (3.19) 

where q: X x Y - X* x Y*, g: X x Y - W, and .,P: W -JR. The following two 
theorems distinguish between problems with parameter-independent fields when g = g(y) · 
in (3.19), and those with g = g(x, y). Although the second framework obviously includes 
the first one, the results presented below are independent of each other, since in the first 
case we are able to work with general spaces,~ due to the available calculus. As before, we 
restrict our consideration to EPECs with strictly Lipschitzian costs. Note that the closed­
gmph assumption (in the norm topology of W x W*) on the subdifferential mapping 81/J 
imposed in the next and subsequent results of this section is automatic if either 1/J is locally 
continuous, or it is amenable at the reference point; see below. 

Theorem 3.5 (necessary conditions for EPECs with parameter.:.independent po­
tentials). Let (x,y) be a solution to the EPEC given in (3.i) with 

S(x) := {y E Yl 0 e q(x, y) + 8('1/1 o g)(1j)}, 

where f: X x Y- Z is strictly Lipschitzian at (x,Y), wher:e.e c:; Z.is locally closed 
around 0 E e, where g is strictly differentiable at (x, y) with the surjective partial derivative 
V zq(x, y), and where g = g(y) e C2 around y with the surjective derivative V g(y). Assume· ·· · 
also that the spaces X and Z are Asplund while dim Y < oo and W is Banach, and that 
the gmph of the subdifferential mapping 81/l is locally closed around ( w, v) with w == g{y) 
and v being a unique solution to the system 

-q(x, y) = v g{y)*v, v E 81/l(w). (3.20) 

Then there are z* E N(O; 6) \ {0} and u e Y satisfying 

o e 8(z*, f)(x, y) + V Cf(x, Y)*u 

+( o, V2(v,g)(Y)*~ + Vg(y)*821{J(w, v)(Vg(y)u)) 
(3.21) 

provided that either e is SNC at 0, or f-1 is strongly PSNC at {z, x,y) with z := f(x,y). 

Proof. We are based on Theorem 3.4, where P = Y* (= !Rm), Q(y) = 8(1/1 o g)(y), and 

8(u, q)(x, y) = 'Vq(x, y)*u, u e Y, 

due to the assumed strict differentiability of qat (x, y). Observe tliatQ = 8(1/Jog) is locally 
closed-graph by the assumptions on 8'1/1 and g. Since the partial derivative V :r;q{x, Y) is 
surjective and Q = Q(y), the Fredholm qualification condition(3.16) is fulfilled. Thus the 
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necessary optimality conditions in (3.13) hold in the normal form, i.e., with z* =F 0. We 
need to compute 

D'NQ(y,p)(u) = tP('I/1 o g)(y,p)(u) with p := -q(x, y). 

Employing the second-order subdifferential chain rule fr<;>m [16, Theorem 1.127] held in 
general Banach spaces under the surjectivity assumption on V g(jj) for the mapping g E C 2 , 

we get the equality 

where v is uniquely determined by (3.20). Substituting this into (3.13) with Q = Q(y) 
and taking into account that P = Y* is finite-dimensional,_ we ari'ive at (3.21) under the 
assumptions ,made and thus complete the proof of the theorem. b. 

The next result concerns EPECs (3.1) governed by pammeter-dependent equilibrium 
constraints in the subdifferential form with composite potentials (3.19). In contrast to the 
preceding theorem, we consider the case when all the spaces involved but the image space 
Z for the cost mapping are finite-dimensional. At. :the same time, the structure of the 
composite potential 1/J o g is significantly more general than in Theorem 3.5: besides the 
parameter-dependence, we allow V g(x, y) .to be non-surjective. More precisely, we consider 
the so-called strongly amenable potentials 1/J o g, where 1/J is l.s.c. and convex while g is C2 · 

around the reference points under the first-order qualification condition 

8001/J( w) n ker v g(x, y)* = {0} with w := g(x, y); 

see [30] and also [16] for more details concerning this remarkable class of functions largely en­
countered in finite-dimensional variational analysis and parametric optimization. In (3.22), 

81/l(w) := {w* e W*l(w*,-::1) e N{(w,'I/J(w));gph'I/J)} 

stands for the singular subdifferential of 1/J at w, which reduces to the singleton {0} if 1/J is 
locally Lipschitzian around w. 

Theorem 3.6 (necessary conditions for EPECs with parameter-dependent amenable 
potentials). Let (x, y) be a solution to the EPEC given in (3.1) with 

S(x) := {y E JRml 0 E q(x, y) + 8(1/1 o g){y) }, 

where f: JRn X JRffl "'-+ z is strictly Lipschitzian at (x, tl), where z is Asplund and e c z is 
locally closed around 0 E e, where q: JRn x JRm __,. JRn x JRm is locally Lipschitzian around 

(x, y), and where the potential '~/Jog is strongly amenable at this point with g: JRn xJRm "'-+ JRl, 
w := g(x,y). Denote 

M(x,y)':= {v e JR1
1 v e 81/l(w), Vg(x,y)*v = -q(x,y)} 

and impose the second-order qua,lification condition: 

821/l(w,v)(O)nker'\lg(x,y)* = {0} for all v e M(x,y). (3.23). 
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.. '•· 

Then there are z* E N{O; 9) and u E JW" .x IRm, not both zero, such that 

OEa(z*,f)(x,y)+a(u,q)(x,y)+ . U [v2(v,g)(x,y)(u) 
iiEM(x,y) 

+Vg(x,Y)*a2'1jJ(w,v)(Vg(x,.y)u)] 
. . 

provided that either 9 is SNC at 0, or j-1 is strongly PSNC at (z, x, y) with z := f(x, y). 

Proof. We are now based on Theorem 3.4, where P = IRn x IRm and where 

Q(x, y) = 8('1/J o g)(x, y). 

To proceed, we employ the second-order chain rule from [16, Corollary 3. 76] involving 
strongly amenable fun~tions under the assumptions made. Then the second-order qualifi­
cation condition (3.23) ensures that 

a2 (1/J o g)(x,y)(u) C U [v2(v,g){x,y)(u) + Vg(x,y)*a2'1jJ(w,v)(Vg(x,y)u)] (3.24) 
iiEM(x,y) 

for !ttl u E JRn x !Rm. Substituting {3.24) into (3.13), we arrive at ihe necessary optimality 
conditions of the theorem for the EPEC under consideration. b. 

Observe that the second-order q~alification condition {3.23) automatically holds when 
either·'I/J E C 1•1 around w (i.e., it/js C1 with the local Lipscbit:~:ian derivative V'I/J), or the 
derivative Vg(x, y) is surjective. In general, none of these assumptions is required. 

Finally in this section, consider EPECs whose eqUilibrium constraints are governed by 
the subdifferential generalized equations with composite fields 

o E q(x,y) + (a'I/J o g)(x,y), 

where g: X x Y - W, 'ljJ: W - JR, and q: X x Y - W*. 

Theorem 3.7 (necessary conditions for EPECs with .general composite 'fields)~ 
Let (x, y) be a solution to the EPEC given in (3.1) with 

S(x) := {y E Yj 0 E q(x,y) + (8'1/J o g)(x,y)},. 

where .f: X x Y - Z is a mapping between Asplund spaces that is strictly Lipschitzian at 
(x,y), where 8 C Z is locally. closed around 0 E 8, where the mappings q: X X Y- JRl 
and g: X x Y - JRl are. locally Lipschitzian around ( x, y), and .where the graph of (}'ljJ is 
locally closed around (w,p) with w := g(x,y) and p := -q(x,y); the latter is automatic 
when .'1/J: JRl - lR is· either amenable at w or continuous around this point. Impose also the 
second-order qualification condition 

a2'1jJ(w,p)(O) n {v E IRll o E a(v,g)(x,y)} = {0}. (3.25) 

Then there are z* E N(O; 9) and u E JRl, not both zero, such that 

0 E a(z* ,J)(x, y) + a(u, q)(x, y) + { a(v, g)(x, y) I v E a2'1jJ( w, p)( u)} (3.26) 

provided that eithere is SNC at 0, or J-1 is strongly PSNC at (z,x,y). 
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Proof. Again we are based on Theorem 3.4, where P = JRl and where 

Q(x,y) = (8'1/Jog)(x,y). 

To apply the necessary condition (3.13) of the latter theorem, we need to express the 
coderivative D* = D'N of the composition 8'1/J o g with values in JRl via the generalized dif­
ferential constructions for '1/J and g at the corresponding points. The appropriate coderiva­
tive chain rule of [16, Theorem 3.13), the scalarization formula of [16, Theorem 3.28), and 
construction (3.18) of the second-order subdifferential yield the upper estimate 

D*(8'1/J o g)(x,y,p)(u) c { 8(v,g}(x,y)l v e 82'1/J(w,p)(u)} (3.27) 
. . 

under the second-order qualification condition (3.25). Substituting (3.27) into (3.13), y.re 
arrive at the necessary optimality condition of the theorem. ·D. 

If the inner mapping g in the equilibrium constraint composition happens to be strictly 
differentiable at (x, y), the results of Theorem 3.7 admit significant: simplifications. 

Corollary 3.8 (necessary conditions for EPECs with composite fields of special 
structure). Suppose that in the framework of Theorem 3.7 the inner composite .mapping 
g: X x Y--+ JRl is strictly differentiable at (x,jj). Then all the conclusions of this theorem 
hold with the replacement of the qualification condition (3.25) and the necessary optimality 
condition (3.27) by, respectively, (3.23) and 

0 e 8(z*, f}(x, y) + 8(u, q}(x, y) + \lg(x,y)*82,P(w,p)(u). 

Proof. It follows from the subdifferential representation 

8{v,g)(x,y) = {Vg(x,y)*v} 

held for strictly differentiable mappings. 

4 Multiobjective Optimization and EPECs with Closed Pref­
erence Relations 

The main objective ofthis section is to study EPECs whose preference/equilibrium relations 
on the upper level are defined via the so-called . closed preferences. The results obtained in 

. this ways are gener8.lly independent of those in Section 3. 
Given a Banach space Z and a subset R c Z x Z, we say that Zl is preferred to z2 

(notation Zl -< z2) if (zl! z2) E R. In what follows, we consider nonreflexive preference 
relations, i.e., such that the preference set R does not contain the diagonal. 

Definition 4.1 (closed preference relations). Let 

.C(z) := {u E zj u-< z} 
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be a LEVEL SET at z E Z with respect to the given preference-<. We say that-< ·is LOCALLY 

SATIATED around z if z E cl:C(z) for all z in some neighborhood of z. F'urthermore, the, 
preference -< is ALMOST TRANSITIVE on Z provided that for all u -< z and v E cl.C( u) one 
has v -< z. The preference relation -< is called CLOSED around z if it is loca~ly satiated and 
almost transitive simultaneously. 

Observe that the main difference between the preference concepts from Definition 4.1 
and Definition 3.1 is the following: instead of the linear tmnslation of sets in the extremal 

· system induced by generalized order optimality, preference relations of Definition 4.1 in­
volve nonlinear tmnsformations. The reader can find detailed discussions and references 
in [17, Subsection 5.3.1], which particularly show that the two concepts are generally in­
dependent. It happens that the main restriction in Definition 4.1 is the almost transitivity 
requirement on the preference -<, which does not hold for a number of preferences important 
in applications (e.g., for the lexicographical order), while Definition 3.1 is applied. 

To proceed in deriving necessary conditions for EPECs with closed preference relations 
on the upper equilibrium level, we recall two generalized differential and normal compactness 
notions for moving sets needed in what follows. Since the results presented below concern 
closed-graph mappings between Asplund spaces, we give simplified versions of these notions 
equivalent to the general ones ( [17, Subsection 5.3.3] in the settings under consideration. 

Definition 4.2 (extended normals and sequential normal compactness for mov­
ing sets). Let 0: Z ==t X with (z,x) E gphrl. Then: 

(i) The conic set 

N+(x;O(z)) := Limsup N(x;O(z)) 
· (z,z)-+(z,x) 

(4.1) 

is called the EXTENDED NORMAL CONE to O(z) at x. 
(ii) The mapping n(~) is IMAGELY SNC (or just ISNC) at (z,x) E gphrl if for any 

sequences (zk, Xk, xk) satisfying 

one has llxkll --+ 0 as k --+ oo. 

Observe that we always have the inclusion (in the setting under cons~deration) 

N(x;O(z)) c N+(x;O(z)), 

where the equality holds under the so-called normal semicontinuity of Q at (i, x), which 
is the case for a broad class of mappings under reasonable assumptions; see !17, Subsec­
tion 5.3.3] for more discussions and sufficient conditions. 

The ISNC property is obviously automatic in finite dimensions, while in infinite dimen­
sions it holds under certain uniform Lipschitz-type ass~mptions; see the above. reference 
and [21] for precise results and discussions. Note also that full calculus is availablefor the 

. ISNC property of moving sets, similarly to that for "non-moving'' objects. 
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Consider first an abstract EPEC, where equilibrium relations on the upper level are 
described by an arbitrary closed preference -<, while equilibrium constraints are formalize 
via a general set-valued mapping 8(·). Given f: X x Y-+ Z and 8: X =t Y, a local optimal 
solution (x,y) E gph8 to the following problem is understood as such a feasible point that. 
f(x,y) is not preferred to f(x,y), with respect to thegiven closed preference-< on Z, to 
any other feasible point . (x, y) E gph 8 around ( x, y): 

find a local optimal solution to f(x, y) with respect to -< subject toy E 8(x). (4.2) 

Theorem 4.3 (necessary conditions for abstract EPECs with closed preference 
relations). Let (x, y) be a solution to the abstract EPEC.given in (4.2), where-< is a closed 
preference on Z with the level set .C( ·), where f: X x Y -+ Z is a mapping between Asplund 
spaces that i$ locally continuous around (x,y) with z := f(x,fi)~ and where 8: X =t Y 
is closed-graph around (x,y). Then there is a nonzero triple (x*,y*,z*) EX* x Y* x Z* 
satisfying the relationships 

(x*,y*) E Divf(x,y)(z*), ~x* E Div8(x,Y)(y.*), and z* E N+(z;cl.C(z)) · (4.3) · 

provided that either f is 8NC at (x,y), or 8 is 8NC at (x,y) and cl.C: Z =t Z is 18NC at 
(z, z). Furthermore, (4.3) with (x*' y*' z*) '# 0 is equivalent to 

OE8(z*,f)(x,y)+N((x,y);gph8) with z*EN+(z;cl.C(z))\{0} (4.4) 

iff is strictly Lipschitzian at (x, Y). In the latter case, the 8NC assumption on f implies 
that the space Z is finite-dimensional. 

Proof. Given{!,-<, 8) in the theorem, consider the set-valued mapping 81: z =t X X y X z 
and the set 82 c X x Y x Z defined by 

8t(z) := gph8 x .C(z) and 82 := gphf. (4.5) 

It is not hard to check that the point (x, y, z) belongs to 8i(z) n 82 {by the local satiation 
property of the preference-<) and happens to be locally extremal for the system {811 82} at 
(z, 0) in the sense that there is a neighborhood U of (x, y, z) such that 

for any point z E .C(z) close to z but not equal to the latter by the preference -< nonre­
fiexivity. This follows directly from the local optimality of (x, y) in (4.2) and the almost 
transitivity property of-<; see [17, Example 5.65) for more details. 

Since the spaces X, Y, and Z are assumed to be Asplund, its product X x Y x Z is 
Asplund as well, and we can apply to the system { 81, 82} the extended extremal principle 
for multifunctions (see {20, Theorem 4.3) and [17, Theorem 5.68]). Note that the mapping 
81 is locally closed-graph {which is essential for the latter result), since the preference -< is 
assumed to be closed around z. 
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Given e > 0 and applying the afore-mentioned extremal principle to system ( 4.5) in 

X x Y x Z, find zo E z + eiBz; (xi, Yi, Zi) E (x, y, z) + elBxxYxz,, and (xi, Yi, zi) E 
X* X Y* X Z* fori= 1,2 such that (Xl!Yl) E gphS, Zl E cl.C(zo), Z2 = l(x2,Y2), and 

(xi,yi,zi) E N((xl,Yl!Zl)iSl(zo)), (x2,y2,z2.)E N((x2,Y2,z2);S2),. (4.6) 

Taking into account the structure of {81, 82} in (4.5) and using the product property 
N ( ·; fh x fh) = N ( ·; fh) x N ( ·; 02) for Frechet normals (which can be easily checked 
by definition), we get from (4.6) that 

(xi,yi) E N((xl!Yl);gphS), zi E N(zl;cl.C(zo)), (x2,y2) E D*l(x2,Y2)(-z2). (4.8) 

Now pick the sequence e := 1/k as k --+ oo and add the subindex '~k" to the cor­
responding elements above. By construction, we immediately have that zok --+ z and 
(xik, Yik 1 Zik) --+ (x, y, z) as k --+ o6 for i = 1, 2. Furthermore, by normalization if nec­
essary, we can always suppose th~t the sequences {(xik, Yik, z;k)} C X* x Y* x Z*, i = 1, 2, 
are bounded. Therefore, they are sequentially weak* compact in X* x Y* x Z* due to the 
Asplund property of X x Y x Z.; see {25]. Without loss of generality, suppose that 

i = 1,2. 

Passing to the limit in the first relationship of ( 4. 7), we have 

Then we arrive to all the three inclusions in (4.3) by passing the limit in (4.8) and taking 
into account the definitions ofthe basic (2.1) and extended (4.1) normal cones. 

Let us justify the nontriviality condition (x*, y*, z*) :f: 0 under the SNC/ISNC assump­
tions made. To proceed by contradiction, suppose that {x*, y*, z*) = 0. Then 

(4.9) 

Assuming the SNC property of I at (x, y), we have from (4.9) that ll(xik, Yik' zik)ll --+ 0, 
which contradicts the second relationship in (4.7). On the other hand, if both the SNC as­
sumption on Sat (x, y) and the ISNC assumption on Cat (z, z) hold, then ll(x2k, Yak' z2k)ll --+ 

0, which contradicts ( 4. 7) as well. 
To complete the proof of the theorem, it remains to consider the case when I is strictly 

Lipschitzian at (x, y). In this case, the scalarization formula of {16, Theorem 3.28] ensures 
that the first inclusion in (4.3) is equivalent to .. · . 

(x*, y*) E 8(z*, l)(x, y), 

which implies that (x*,y*) = 0 whenever z* = 0 and that {4.3) with (x*,y*,z*) :f: 0 is 
equivalent to (4.4). Moreover, the SNC property of strictly Lipschit?Jian mappings implies 
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the finite-dimensionality of the range space by [16, Corollary 3.30]. 

Next consider EPECs defined in (4.2) with equilibrium constraints y E S(x) described 
by solution maps to the generalized equations (1.1). H~r simplicity, w~ present necessary 
conditions for optimal solutions to such problems when both mappings f and q are strictly 
Lipschitzian at (x, y). 

Theorem 4.4 (necessary cor,.ditions for EPECs with generalized equation con­
straints and closed preferences). Let (x, fi) be an optimal solution .to the EPEC defined 
in (4.2) with the equilibrium constraints y E S(x) given by 

· S(x) := {y E Yl 0 E q(x, y) + Q(x, y)}, 

where f: X x Y --+ Z and q: X x Y --+ P are mapping between Asplund spaces that are 
strictly Lipschitzian at ( x, y), where -< is a closed preference relation on· Z, and where 
Q: X x Y =t Pis closed-graph around (x,y,p) withp := -q(x,y) e Q(x,y). Then there 
are (z*,p*) E Z* x P*, not both zero, satisfying 

0 E o(z*,f)(x,fi) + o(p*,q)(x,y) + DNQ(x,y,p)(p*) and z* E N+(z;cl.C(z)) (4.10) 

in each of the following two cases: 
(a) cl.C is ISNC at (z,z), where z := f(x,fi)i 
(b) f is SNC at (x, y) and either Q is SNC at (x, y,p), or dimP < oo; in this case .Z 

must be finite-dimensional. 

Proof. Based on Theorem 4.3, we need_ to obtain a upper estimate for the normal coderiva­
tive DNS(x, y) of the solution map given in (3.12) and also to justify its SNC property at 
(x,y) in terms of q and Q. The upper estimate (3.15) of DNS(x,y) is established in the 
proof of Theorem 3.4 above provided the Fredholm qualification condition (3.16) and that 
either Q is SNC at (x,y,p), or Pis finite-dimensional. This allows us to justify, based on 
Theorem 4.3 and proceeding similarly to the proof of Theorem 3.4, the necessary optimality 
conditions given in (4.10) in ~ase (b) of the theorem. 

To prove the theorem in case (a), it is sufficient to show, in view of Theorem 4.3 and 
the above discussions, that the solution map Sin (3.12) is SNC at (x, y) provided that Q is 
SNC at (x,y,p), g is locally Lipschitzian at (x,y), and the Fredholm qualification condition 
(3.16) is satisfied. To proceed, we observe that the graph of Sin (3.12) admits the inverse 
image representation 

gphS=g-1(gphQ) with g(x,y) := (x,y,--q(x,y)); (4.11) 

Then apply (16, Theorem 3.84), which gives efficient conditions on the preservation of the 
SNC property under taking inverse images; this is a part .. of the SNC calculus strongly de-. 
veloped in [16). It is not hard to check that the qualification condition of the latter theorem 
reduces, in the setting (4.11) under consideration, to the Fredholm qualification condition 
(3.16), while the SNC property of a set under the inverse image in {16, Theorem 3.84) is 
exactly the SNC property of Qat (x,y,p). Hence, to justify the SNC property of S by [16, 
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Theorem 3.84], we need to ensure that the mapping g defined in (4.11) is PSNC at (x, y). 
The latter follows from the fact that a~w single-valued mapping locally Lipschitzian around 
some point is automatically PSNC at this point; see [16, Corollaiy 1.69]. The required 
Lipschitz continuity of g in (4.11) is an obvious consequence of the assumed Lipschitzian 
property of the mapping q around ( x, Y). This completes the proof of the theorem. 6 

Having in hand Theorem 4.4, we can derive its specifications for the equilibrium con­
straints {1.1) given in each of the composite subdifferential forms {3.17). The formulations 
and proofs of results in this direction are similar to those presented in Section 3 for EPECs 
described via generalized order optimality on the upper level: they are fully based on the 
first,-order and second-ordercalculus rules developed in {16]. 

5 Optimality Conditions for MPECs via Exact Penalization 

The last section of this paper is devoted to the class of mathematical programs with equi­

librium constraints (MPECs), which can be considered as a particular case of EPECs with 
respect to standard minimization of real-valued cost functions. On the other hand, specific 
features of minimizing real-valued functions make it possible to develop necessary optimal­
ity conditions for MPECs that do not have any counterparts in the case of EPECs and 
general problems of multiobjectivefvector optimization. 

In particular, specific results of the upper subdifferential type were developed by the 
author [14] for MPECs and other constraint minimization· problems. Results of this type, 
which essentially exploit the nature of real-valued minimization, are signiftcant(y different 
from more conventional results of the lower subdifferential type in nonsmooth constrained 
minimization that are mainly based on the well-developed subdifferential calculus for basic 
subgradients (2.4); see [14, 17]. for more details and discussions. 

In this section, we follow another approach to (lower) subdifferential conditions for 
MPECs, which was developed by Ye and Ye [31] and Outrata [22] in finite-dimensional 
spaces. We consider here a general infinite-dimensional setting, which happens to be signif­
icantly more involved and leads us to a larger variety of results in comparison with MPECs 
in finite dimensions. 

The underlying feature of this approach is a preliminary exact penalization of the con­
strained problems under consideration with ·subsequent applications of the subdifferen­
tialf coderivative calculus to penalized problems whose spedai stiuctur.es are substantially 
different from the original ones and allow u8 to employ more suitable calculus results. 

Let us start with formulating the calmness property of multifunctions {30], which essen­
tially goes back to the "upper-Lipschitzian" property introduced by Robinson {26]. 

Definition 5.1 (calmness of 'Set•valued mappings). Let F: X =t Y be a set-valued 

mapping between Banach spaces, and let (x,y) E gph·F. Then F is CALM at (x,y) with 

modulus l ~ 0 if there are neighborhoods U of x and V of y such that 

F(x) n V c F(x) + illx- xiiJB for all x E U. (5.1) 
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When V =Yin (5.1), the calmness property of Definition 5.1 is known as Robinson's 
upper Lipschitzian property of F at x. The calmness terminology was suggested by Rock­
afellar and Wets [30], although the property itself was studied and applied earlier under 
different "names; see, e.g., Ye and Ye [31]. 

One can see that the only difference between the calmness (5;1) and Aubin's Lipschitz­
like (2.7) properties is that, instead of a pair of points (x, u) independently varying in the 
neighborhood U of the references point x in (2.7), only one point varies in (5.1) while the 
other is fixed being constantly equal to x .. In fact, calm~ess (5.~) is not a counterpart 
of the classical local Lipschitz continuity for the case· of set-valued mappings; it does not 
reduce to the latter when f is single-valued. This implies the non-robustness .of the calm­
ness/upper Lipschitzian properties (the sets F(x) may even be empty near x), in contrast to 
the Lipschitz-like/classical Lipschitzian ones. On the other hand, the requirement in (5.1) 
is less restrictive in comparison with that in (2.7). A major class of non-Lipschitzian while 
upper-Lipschitzian set-valued mappings between finite-dimensional spaces was discovered 
by Robinson {28] under the name of "piecewise polyhedral" multifunctions, i.e. 1 those whose 

· graph can be expressed as the union of finitely many convex polyhedral sets. 
Note that the calmness/upper Lipschitziati notion for set-valued mappings in Defini­

tion 5.1 is closely related, for inverse mappings, to metric regularity at·(not around) a point 
introduced by Ioffe and employed by him for exact penalization results in (10]; see also 
· [i 7] for more details and applications of this property under the name of ''weakened metric 
regularity." In fact, the following lemma proved by Ye and Ye [31] for calm mappings and 
earlier by Zhang [33] for upper Lipschitzian one~ in a more special case, is largely similar to 
the penalization/reduction theorem by Ioffe [10] established in somewhat different setting. 
The reader can find more results and information about applications of calmness and related 
properties in the recent paper by Henrion and Outrata (8] and the references therein. 

Lemma 5.2 (exact penalization under generalized equation constraints). Lett be 
a local optimal solution to the problem: 

minimize cp(t) subject to 0 E F(t), t E 0, (5.2) 

where cp: T -+ lR and F: T =t Z in the immework of Banach spaces. Assume that cp is 
locally lipschitzian around t with modulus llfJ and that the mapping 

(F-1 n O)(z) := F-1(z) n n {5.3) 

is calm at (0, t) with modulus l. Then there are neighborhoods V oft and U of 0 E Z such 
that (t, 0) E T x Z solves the penalized problem: 

minimize '1/J(t, z) := cp(t) + JLIIzll subject to z E F(t) n u, t E n n v (5.4) 

provided that JL ~ llfJ • l. 

Observe that the major constraint 0 E F(t) in (5.2) is given in the form of nonpammetric 
generalized equations, and thus problem (5.2) can be viewed as an abstract MPEC. The next · 
result; providing necessary optimality conditions for the abstract MPECs (5.2), is based on 
applying the generalized differential and SNC calculi (16) to the penalized·problem (5.4). 
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Theorem 5.3 (necessary optimality conditions for abstract MPECs). Lett be a· 
local optimal so}ution to the abstract MPEC given in (5.2}, where .the spaces T and Z are 
·Asplund and where the sets 0 and gph F are locally closed around f and {f, 0}, respectively. 
Assume that <p is locally Lipschitzian around f with modulus llfJ, that p-l n 0 defined in 
(5.3} is calm at (0, t) with modulus£, and t~at ~he mixed qualification condition 

· DuF(t, 0){0} n (- N(f; 0}) = {0} {5.5) 

is satisfied. Suppose also that either F is PSNC at (f,O}, or 0 is SNC at f. Then for any 
J.t;?:: llfJ • l there is z• E z• with liz* II ~ J.t such that 

0 E 8<p(f} + DNF(t, O}{z*}+ N(f; 0}. (5.6} 

Proof. By the exact penalization result of Leinma 5.2, the point {f, 0) E T x Z provides a 
local optimal solution to the penalization problem (5.4) with J.t;::: llfJ · £. Since both sets U 
and V are open in problem (5.4), it can be equivalently (from the viewpoint of necessary 
optimality conditions) written as: · 

minimize <p(t) + J.tllzll subject to z E F(t), t E 0. 

In turn, the latter problem is equivalent to the minimization problem with geometric con­
straints given as the intersection of two sets: 

·minimize <p(t) + J.tllzll subject to (t;z) E.gphFn(n x Z), 

which can be written as the .following unconstrained problem with an infinite penalty via 
the indicator function of a set: 

minimize <p(t) + J.tllzll + o((t,z);gphF n (0 x Z)), (5.7) 

where o(x; A) := 0 if X E A and o(x; A) := 00 otherwise. Applying the generalized Fermat 
rule of [16, Proposition 1.114) to the optimal solution (f, 0) of (5.7), we have 

o e a( <p(·) + J.£11·11 + ao(·; gphF n (n x z)) )<t, o} {5.8) 

Now using (twice) the subdifferential sum rule of (16, Theorem 2.33{c)] in (5.8} with taking 
into account that both <p and II · II are locally Lipschitzian around (f, 0) and that 

8o(x; A)= N(x; A} as x E A, 811·11(z) C IB* for any z E Z, 

we arrive at the inclusion 

(0,0} E (8<p(f},O) + J.£(0,18*) + N({f,O);gphFn{O x Z)). {5.9) 

To proceed, we need representing the normal cone to the set intersection in (5;9} via general~ 
ized differential constructionS to the initial data F and 0 of the original problem (5.2} under 
appropriate qualification and SNC conditions. Observe that both sets from the intersection 
in (5.9) belong to the product of Asplund -spaces T x Z. Applying the basic intersection 



rule in product spaces from [16, Theorem 3.4) and taking into account the structure of the 
second set 0 x Z in the intersection, we get 

N((t,O);gphFn (0 x Z)) c N((t,O);gphF) + N(t;O) x {0} (5.10) 

providing the "limiting qualification condition" of the latter theerem and· that either F is 
PSNC at (f, 0), or 0 is SNC at f. It is not hard to check that the afore-mentioned lim­
iting qualification condition of (16, Theorem 3.4) is ensured,. due to the structures of the 
sets gphF and 0 x Z in the intersection (5.9), by the qualification condition (5.5) of this 
theorem involving the mixed coderivative DMF(t, 0). It rem8.i.ns to observe that (5.9) and 
(5.10) imply, due to definition (2.2) of the normal coderivative, the necessary optimality 
condition (5.6) with liz"' II :5 p,. This completes the proof of the theorem. .6. 

Note that F is automatically PSNC at (f, 0) and the qualification c::ondition (5.5) holds 
by (2.8) if F is Lipschitz-like around (f, 0). This is due to the characterization of the 
Lipschitz-like property from [16, Theorem 4.10). On the other hand. the calmness assump­
tion of Theorem 5.3 holds also for problems with no Lipschitz-like assumption ofF; see, 
e.g;, the results in Outrata [22] based on fundamental Robinson's developments (28) for 
calmness/upper Lipschitzian properties of piecewise polyhedral multifunctions. 

The following consequence of Theorem 5.3 and further rules of generalized differential 
and SNC calculi addresses abstract MPECs with the constraint mapping F of a special 
structure important for the subsequent application to the equilibrium constraints governed 
by parametric generalized equations/variational conditions. . .. · 

Corollary 5.4 (necessary conditions for abstract MPECs of special structure). 
Suppose that the constmint mapping in (5.2) admits the representation 

F(t) = g(t) + e '(5.11) 

in the fmmework of Theorem 5.3, where g: T- Z is continuous around t and 9 c Z is 
locally closed around z := -g(i) in addition to the geneml requirements on cp, 0 and the 
calmness property of F-1 n 0 in the theorem. Impose the qualification condition 

DMg(l)(O) n (- N(t; O)) = {O} (5.12) 

and assume that either the set 0 is SNC at x, or the mapping g is PSNC at this point; the 
latter property together with (5.12) are automatic when g is locally Lipschitzian around t. 
Then there is z"' E -N(x; S) with liz"' II :5 p, asp,~ lrp · £ such that 

0 E 8cp(l) + Dj.,g(l)(z"') + N(t; 0), (5.13) 

which is equivalent to 

0 E 8<p(l) + 8(z"', g)(l) + N(t; 0) 

if the mapping g is strictly Lipschitzian at t. 
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Proof. Considering the constant mapping 8(t) = e for. all t E T, it easy to see that it 
is PSNC at any point (t, 0) E T x 9 and that both coderivatives D"' = Di'l, Du of this . · 
mappings are represented in the form 

D'e(t, 9)(z') = { ~ if -z"' E N(O; 9), _ 
otherwise. 

·Then applying the coderivative sum rule from [16, Theorem 3.10] to both coderivatives 
D"' = Di'l, Du of the sum g + 9 in (5.11), we get 

D' F(l, O)(z') c { rg(t)(z') if -z"' e N('z; e), 
otherwise. 

(5.14) 

Substituting (5.14) into (5.5) and (5.6), we arrive at (5.12) and (5.13), respectively. To 
complete the proof of the corollary, it remains to obserV-e that the PSNC property of g at 
t implied the one for Fin (5.11) at (t,O) by the preservation/calculus result for the PSNC 
property of sums established in [16, Theorem 3.88]. b. 

Next let us consider the MPEC given in the form: 

minimize 1p(x,y) subject to 0 E q(x,y) + Q(x;y),_ (x,y) E fl (5.15) 

with equilibrium constmints governed by parametric generalized equations and also with 
geometric constmints depending on both variables (x, y); note that the latter constraints 
are additional in comparison with the previous EPEC studies in Sections 3 and 4. 

Theorem 5.5 (necessary optimality conditions for MPECs with generalized ~qua­
tion and geometric constraints). Let (x, y) be a local optimal solution to .the MPEC 
given in (5.15), where q: X x Y--+ Z and Q: X x Y =t Z are mappings between Asplund 
spaces. Assume that 1p: X x Y --+ lR is Lipschitz continuous around {x, y) with modulus 
fcp, that q is continuous around this point, and that the sets n and gph Q are ·locally closed · 
around (x, y) and (x, y, z) with z := ..;.q(x, jj), respectively. Suppose also that the mapping 
G: X x Y x Z =t X x Y given by 

G(u,v,w) := {(x,y) E Ol (u+x,v+y,w- q(x,y)) E gphQ} (5.16) 

is calm at (0, 0, 0, x, y) with modulus £, that the qualification condition 

Duq(x, y)(o) n (- N((x, y); n)) = {o} {5.17) 

is fulfilled, and that either q is PSNC at (x, y) or n is SNC at this point. 
Then there are dual elements ( x"', y"', z"') E X"' x Y* x Z"' with II ( x"', y*, z"') II $ icp • £ and 

(x*, y*) E Di'IQ(x, y, z)(z"') satisfying 

( -x"', -y"') E 81p(x, y) + Di'lq(x, y)(z"') + N((x, jj); 0), 

which implies that 

o E 8cp(x,y) + Di'lq(x,y)(z"') + Di'IQ{x,y,z)(z"') + N((x,y);O). (5.18) 
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Proof. We reduce problem (5.15) to the one considered in· Corollary 5.4 with the data 
t = (x,y) EX x Y and 

F(x, y) := g(x, y) + 9, 9 := gphQ, g(x, y) := {- x, -y, q(x, y)). (5.19) 

Applying Corollary 5.4 to the above problem with data (5.19) and taking into account that 

g(x,y) = (-x,-y,O)+(O,O,q(x,y)), 

we conclude from [16, Theorem 1.70] that g is PSNC at (x,.fi) if, and only iff is P~NC at 
this point. Then the coderivative sum rule from [16, Theorem 1.62(ii)] gives 

D*g(x, jj)(x*, y*, z*) = ( ~x*, -y*) + D*q(x, y)(z*) (5.20) 

for both coderivatives D* = D!v, Du. Substituting (5.20) into the relationships of Corol­
lary 5.4 and taking into account the special structure of (5.19), we arrive all the qualification 
and necessary optimality conditions of the theorem. Observe finally that the mapping (5.3) 
in Corollary 5.4 reduces toG in (5.16) for the data (5.19) under consideration.· ~ 

As usual, the strict Lipschitzian assumption on the base mapping q in the generalized 
equation (5.15) allows us to specify and simplify the results obtained in Theorem 5.5. 

Corollary 5.6 (optimality conditions for MPECs with strictly Lipschitzian bases 
in generalized equation constraints). Suppose in the genemlframework of Theorem 5.5 
that q is strictly Lipschitzian at (x, jj), that Q is .SNC at (x, jj, z), and that the relation 

(x*,y*) E [o(z*,q)(x,fi)+N((x,y);n)] n ( -D!vQ(x,y,z)(z*)). 

holds only for x* = y* = z* = 0. Then there is z* E Z* such that one has the condition 

o E 8cp(x, y) + 8(z*, q)(x, y)(z*) + D/vQ(x, y, z)(z*) + N{ (x, y); n). (5.21) 

Proof •. Considering the mapping h: X x Y x .z x X x Y --+ X x Y x Z defined by 

h(u,v,w,x,y) := (u+:i:,v+y,w-q(x,y)), 

we represent G from (5.16) in the form of the constmint system: 

G(u,v,w) = {(x,y) EX X Yl h(u,v,w,x,y) E gphQ, (u,v,w,x,y) EX X y X z X n}. 

It is not hard to check, due to the special structure of hand G, that the assumptions made 
in the corollary ensure by (16, Corollary 4.41] that the mapping G is Lipschitz-like around 
(0, 0, 0, x, jj), and hence it is calm at this point; Since the qualification condition (5.17) is 
automatic for Lipschitzian mappings, the optimality condition (5.21) follows from (5.18) by 
the scalarization formula of [16, Theorem 3.28]. 1::::. 

Similarly to the results of Section 3, we can derive specifications of necessary optimality 
and qualification conditions of Theorem 5.5 and Corollary 5.6 for the cases of MPECs 
with equilibrium constraints governed by parametric generalized equations with composite 

subdifferential structures given in each of the forms (5.17). 
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