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'OPTIMIZATION AND EQUILIBRIUM PROBLEMS WITH EQUILIBRIUM
- CONSTRAINTS IN INFINITE-DIMENSIONAL SPACESl

B. S. MORDUKHOVICH 2.

Dedicated to Steve Robinson in honor of his 65th birthday

Abstract. The paper is devoted to applications of modern variational analysis to the study of con-
strained optimization and equilibrium problems in infinite-dimensional spaces. We pay a particular
attention to the remarkable classes of optimization and equilibrium problems identified as MPECs
(mathematical programs with equilibrium constraints) and EPECs (equilibrium problems with equi- .
librium constraints) treated: from the viewpoint of multiobjective optimization. Their underlying
feature is that the major constraints are governed by parametric generalized equations/variational
conditions in the sense of Robinson. Such problems are intrinsically nonsmooth and can be handled
by using an appropriate machinery of generalized differentiation exhibiting a rich/full calculus. The
case of infinite-dimensional spaces is significantly more involved in comparison with finite dimen-
sions, requiring in addition a certain sufficient amount of compactness and an efficient calculus of
the corresponding “sequential normal compactness” (SNC) properties.

~ Key words. nonsmooth and multiobjective optlmlzatlon—ethbnum constramts—vanatlonal analysis—
genera_llzed differentiation—necessary optimality conditions-exact penalization—infinite dimensions

" Mathematics Subject Classification (2000): 90C29, 90C30, 49352, 49153, 49K27

1 Introduction

The main objective of this paper is to study constrained optimization {including vec-
tor/multiobjective optimization) problems, which have constraints of the type '

0€q(z,y) + Qlwy) (1)

among possible constraints of other kinds. In (1.1), ¢: X XY — P is a single-valued mapping
while @: X xY = P is a set-valued mapping between Banach spaces, y € Y stands for
the decision variable, and ¢ € X is a parameter. Models of type (1.1) were introduced by
Robinson [26] in the end of 1970s, and since that time they have played a crucial role in
many aspects of optimization and variational analysis. It seems that the original motivation '
for Robinson was to describe variational inequalities and complementarity problems in the
form of “generalized equations,” which are distinguished from standard equations by the
~ presence of the multivalued term Q while allowing one to explore this similarity for their
qualitative study and numerical solution. Indeed, generalized equatlons (1.1) reduce to the
parametric variational inequalities

find y € Q with {g(z,y),v—y) =20 forall veQ
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when Q(y) = N(y;9Q) in (1.1) is the classical normal-cone mapping to a convex set Q.
Based on formalism (1.1), Robinson and his followers developed strong results in sensitivity
analysis and numerical methods of solving variational inequalities, complementarity and
optimization problems, etc.; see particularly‘ the seminal papers by Robinson [26, 27], his
recent survey [29}, and the fundamental 2-volume monograph by Facchinei and Pang [6]..

It has been well realized that constraints (1.1) can describe certain equilibrium con-
ditions, in particular, those arising from the solution of lower-level parametric problems
in hierarchical optimization (e.g., in bilevel programming). On this basis, minimization
problems subject to constraints of type (1.1), which express sets of feasible solutions to the
upper level of hierarchical optimization, are called mathematical programs with equilibrium
constraints (MPECs); see the books by Luo, Pang, and Ralph [13] and by Outrata, Ko&vara
and Zowe [24] for various approaches and results for such problems; more recent extensive
* bibliographies and commentaries on MPECs can be found in [3, 6, 17].

* Quite recently, a new class of problems has drawn attention of both researchers and
practitioners. This class is generally related to seeking equilibria subject to equilibrium
constraints, i.e., to considering problems with equilibrium conditions appearing in both
costs and constraints (in other words, on both lower and upper level of hierarchy). Such
.problems are known as equilibrium problems with equilibrium constraints (EPECs); this
term was coined by Stefan Scholtes in his talk at the 3rd International Conference on
Complementarity Problems (2002 Cambridge, UK). We refer the reader to the papers by
Fukushima and Pang [7], Hu and Ralph [9], and Outrata [23] for more discussions and other
" references on this class of problems with results mostly related to Nash equilibrium on the

upper (or both lower and upper) level.

' Another approach to the study of EPECs was suggested by the author [15] from the
viewpoint of multiobjective optimization on the upper level of hierarchy, with géneral equi-
librium constraints of type (1.1) on the lower level. This approach is more suitable for
deriving optimality conditions in EPECs with Pareto-type equilibria (and other concepts of .
“generalized order optimality” and “closed preference relations” as given below) on the up-
per level; cf. also Ye and Zhu [32] for necessary conditions in certain multiobjective problems
with variational inequality constraints, where the upper-level optimality is defined by some
“regular” preference relations. The recent paper by Mordukhovich, Outrata and Cervinka,
[19] contains efficient implementations and developments of the approach in [15] to an im-
portant class of EPECs governed by complementarity conditions on the lower level and the
classical weak Pareto optimality on the upper level of hierarchy, with applications to the
oligopolistic market modeling. We refer the reader to the book [17] for more discussions on
EPECs and related multiobjective problems with various constraints.

Observe that all' the results obtained in {15, 19, 32}, as well as those in (7, 9, 23],
concern EPECs in finite-dimensional spaces. The problems considered in [15, 19, 23, 32],
being intrinsically nonsmooth, were treated via the generalized differential constructions of
variational analysis and calculus rules in finite-dimensional spaces developed earlier by the
author. The infinite-dimensional settings considered in this paper are significantly different
from their finite-dimensional counterparts from both conceptional and technical viewpoints;
see [16, 17]. One of the principal new ingredients of the infinite-dimensional theory is the



necessity to deal with “lack of compactness” in infinite dimensions, which requires the usage
of certain appropriate “normal compactness” properties and workable rules of their calculus.

The primary goal of this paper is to derive eﬁiclent necessary optimality conditions for

general infinite-dimensional EPECs and MPECs on the base of the advanced generalized
- differentiation theory of variational ana,lys1s in mﬁmte—dlmenslona.l spaces. '

The rest of the paper is organized as follows. Section 2 presents a brief review of the
basic generalized differential constructions of variational analysis and normal compactness
properties needed for formulations and proofs of the main results.

_ Section 3 is devoted to the study of infinite-dimensional EPECs from the viewpoint of
multiobjective optimization with equilibrium constraints of type (1.1) on the lower level
and equilibrium relations on the upper level given by “generalized order optimality.” The
results obtained are based on the extremal principle of variational analysis, which plays
a fundamental role in the nonconvex variational theory and applications similarly to con-
vex separation theorems under convexity assumptions. Its infinite-dimensional version in
product spaces happens to be the most appropriate for applications to EPECs.

In Section 4 we study some classes of EPECs in infinite-dimensional spaces with equi-
librium criteria on the upper level given by “closed preference relations.” This eventually
requires different tools of generalized differentiation and versions of the extremal principle
in comparison with problems from Section 3, while leading to a series of independent re-
sults in problems of multiobjective optlmlzatlon and EPECs. Certam special structures of
equilibrium constraints are studied in more detail. : : '

In the final Section 5 we consider a.general class of 1nﬁmte-d1mens1onal 'MPECs and

. develop an approach to deriving necessary optimality conditions based on “exact penaliza-
tion” procedure combining with appropriate tools of generalized differentiation. In finite
dimensions, this approach goes back to Ye and Ye [31) and Outrata {22], while the infinite-
dimensional case under consideration happens to be significantly more involved and offersa

* larger variety of qualification and optimality conditions. Note that the notion of ‘ ‘calmness”

(or “upper-Lipschitzian” property), whxch is essentlally due to Robinson {26, 28], plays a

crucial role in this approach.
Our notation is basically standard; see [16, 17]. Recall that, glven a set-valued mapping

F: X = X* between a Banach space X and its topological dual X*, the sequential Painlevé-

Kuratowski upper/outer limit of F as x — & with respect to the norm topology of X and

the weak* topology w* of X* is v

lesup F(z):= {:v € Xx*

T-F

3 sequences z — T and I} — z*

1.2)
with 1} € F(zs) forall ke IV}, |

where IV := {1,2,...}. Recall also that the symbols = AL andz 5 7 signify, respectively,
_that z — % with 2 € Q and that £ — & with p(z) — (%) for sets @ C X ‘and extended-
real-valued functions ¢: X — R := [—00, 00]. Unless otherwise stated, all the spaces under
consideration are Banach with the norm || - || and the canonical pairing (-, ) between the
space in question and its dual. We use IBx to denote the closed unit ball of X, where the
subindex “X” is omitted when there is no confusion; IB* stands for the closed unit ball of
the dual space in question. '



2. Preliminaries in Variational Analysis

We start with a brief review of the basic generalized differential constructions of variational
analysis and some of their properties widely used in what follows. This is taken from the
author’s book [16], where the reader can find a comprehensive theory for these constructions '
with extensive discussions, references, and commentaries. :

Developing a geometric approach to generalized dlﬁerentlatxon, let us ﬁrst define the .
(basic, llmltlng) normal coneto 2 C X at T € Q by

N (%) := Limsup Ny(z; 9), g . (2.1)
where Ne(:c, Q) stands for the set of e—normals (e 0) toQat x € X given by

(&%, u — x)

*
No(a;0) = {a: eX o

hmsup < e}, Tz €Q,

and ﬁe(w, Q) := 0 if z ¢ Q. If the space X is Asplund (i.e., each of its separable subspace
has a separable dual) and if the set ) is locally closed around Z, then we can equivalently
put € =0 in (2 1) and replace: N by the generally smaller prenormal (or Fréchet normal)
cone N (z;Q) := No(a: 2). Observe that the class of Asplund spaces is sufficiently large
partlcula.rly including every reflexive Banach space and every space w1th a separable dual
see, .€.g., the book by Phelps [25] for more details and references. _

Given a set-valued mapping F': X =3 Y and a point (Z,7) from its graph

gph F:= {(z,y) € X x Y|y € F(x)},
consider two kinds of limiting coderivatives of F" at (Z,J): the normal coderivative
DyF(z,9)() = {z* € X*| (z*,~y") € N((%,9);eph F)}, §* €Y, (2.2)

and the mized coderivative

. D}/F(%,5)(7") ;= Limsup D:F(z,y)(y*), §* €Y* (2.3)
(z,y)"’(%u) -
¥ -y
€l0

where f);F(w; y) is defined similarly to (2.2) with the replacement of N by N., and where -
we can equivalently put e = 0 if both spaces X and Y are Asplund and if the graph of F
is locally closed around (%, 7). As follows from definitions (2.2), (2.3), and (1.2), the only
difference between the normal and mixed coderivatives is that the norm convergence of

y* — §* mixed with the weak* sequential convergence of z* ¥, z* are used in (2.3) instead

of both weak* sequential convergences y* N g* and z* N z* in the limiting representation of
D}. Obviously D}, F(%,7)(y*) € DNF(%,5)(v*), where the equality holds if dimY < oco.
In general, the equality '

Dy F(#,7)(y*) = DyF(Z,5)*), v* €Y,

4



is postulated in [16] as the strong coderivative normality of F' at (Z, 7). This property holds
for important classes of set-valued and single-valued mappings between infinite-dimensional
spaces including convex-graph mappings, the so-called “strictly Lipschitzian” mappings (see
below), etc., and it is preserved under various operations; see cases {a)—(i) summarized in’
- [16, Proposition 4.9]. f F.= f: X — Y is single-valued and strzctly dzﬁerentzable at T
(which is automatic when fis C! around this pomt), then

Dif@) (") = Dif@ W) = {VI@v} v ev”,

via the adjoint derivative operator Vf(Z)*: Y* — X*. In [16, 17], the reader can find
equivalent analytic representations of both normal and mixed coderivatives and their effi-
cient calculations for various classes of nonsmooth single-valued and set-valued mappings.

Let ¢: X — IR be an extended-real-valued function finite at-#. Then '

690“(5:)"':: Lim sup 8,¢(z) ' (24)
o -

is the (basic, limiting) subdzﬁerentzal of @ at Z, where

o) = pla) ~ (a*,u~ x>>_€}’

e— * *
ascp(a;) : {x €eX ||u ol

- is the’ e—subdzﬁerentzal of p at =, for each ¢ > 0. When ¢ = 0, the set 8<p(w) = Bo(,o(m) is
known also as the presubdifferential, or the Fréchet (regular, viscosity) subdifferential of @
at 2. If X is Asplund and if the function A is lower semicontinuous (l.s.c.) around Z, the
sets d:¢(z) can be equivalently replaced by dy(z) in (2.4). Furthermore, the subdlfferentla.l
(2.4) admits the geometric description -

09(2) = {a* € X*| (&, -1) e N (@ 0l epie)

via the normal cone (2.1) to the epigraph epiy := {(w u) € X X Rl uw> <p(:c)}, useful in
the geometric approach to generahzed differentiation and applications to optimization. On-
the other hand, the geometrically defined coderivatives (2.2) and (2.3) admit, in the case of
single-valued mappings f: X — Y, the followmg representatlons

Dif(@) =04, @), DRf@W) =00\ NG ss y*eY*  (@28)

via the basic subdifferential (2.4) of the scalarized function (y*, f}(z) = (¥*, f(z)). The
- first representation in (2.5) holds for every locally Lipschitzian mapping f between Banach
spaces, while the second one requires in addition that X is Asplund and that f is sirictly
Lipschitzian at & in the sense that the sequence

‘ f(wk+tkv)—f(wk)} kel
tk H b

contains a norm convergent subsequence whenever z, — Z and v belongs to some neigh-
borhood of the origin; see {16, Subsection 3.1.3] for characterizations, verifiable sufficient



conditions, and applications of the latter property when the space Y" is infinite-dimensional -
(otherwise it obviously reduces the the classical Lipschitz continuity of f around Z).
Observe that our basic constructions (2.1)—-(2.4) may have nonconver values even in
very simple situations: e.g., 8(—|x|)(0) = -{-1,1}. It seems surprising therefore, from
_the viewpoint of conventional techniques in convex analysis totally based on separation
theorems, that they enjoy full calculus (mostly in’ Asplund spaces, although a number
of strong and useful results are available in the arbitrary Banach space setting). The
main driving force for this calculus and many other results of variational analysis is the
fundamental extremal principle (see [16, Chapter 2] for the detailed study and discussions),
wh1ch is a variational counterpart of convex separation in nonconvex settmgs S

Next we recall “normal compactness propertles of sets, set-valued mappmgs, and
extended-real-valued functions that are automatic in finite dimensions while playing a cru-
cial role in infinite-dimensional variational analysis and its applications; see [16, 17]. Since
these properties are employed in the paper only in the Asplund space setting, we give
simplified definitions equivalent to the general ones (16] for the cases under consideration.

A (locally) closed-graph mapping F: X =2 Y is sequentially normally compact (SNC) at -
the point (Z, ) € gph F if for any sequences-(z, yk, %, ¥§) € (gph F) X X* x Y™ satisfying

(@) = (2,3), wzeﬁ*F(wk,yk)(y;:) and (a,35) % (0,0) (26)

one has ||(z},yf)l| — 0 as & — oo, A set Qis SNC at & € € if the constant mapping -
~F() = Q is SNC at this pomt The latter property always holds of Q is compactly epi-
Lipschitzian (CEL) around Z in the sense of Borwein and Stréjwas (2] although in general
the implication CEL=-SNC is strict even for convex cones in nonseparable Asplund spaces;
'see [5] for a comprehensive study of the relationships between the SNC and CEL properties.
A mapping F': X 3Y is partially SNC (PSNC) at (&, ) if for any sequences satisfying -
" (2.6) one has ||lzf] — O provided that |lyzll — O as k& — oo. The PSNC property is
significantly less restrictive than the SNC one and always holds, in particular, for mappings
F having Aubin’s Lipschitz-like (“pseudo-Lipschitz”) property around (%,%), in the sense
that there are nelghborhoods U of Z and V of y and a number £ > 0 such that

F(z) NV C F(u) + {||z — ul| B whenever z,u€U." - 2.7

When V =Y, the latter property reduces to the classical (Hausdorff) Lipschitz continuity
of F around Z. Moreover, the simultaneous fulfillment of the PSNC property of F at (Z, §)
and the mixed coderivative condition :
- DpF(2,5)(0) = {0} , ' (2.8)

~ is necessary and suﬁ’iczent for F to be Lipschitz-like around (z,9); see [16, Theorem 4.10].

Finally, F: X =3 Y is strongly PSNC around (Z, ) if for any sequences satisfying (2.6)
one has |jz}|| — 0 as k — .0o. This always holds for mappings F' partially CEL around (Z,7)
in the sense of Jourani and Thibault [12].

We refer the reader to [16, 17] for other efficient condltlons implying the SNC/PSNC
properties for specific classes of set-valued and single-valued mappings and to the well-



developed SNC calculus ensuring the preservation of such properties under various opera- B
tions; this seems to be the most important for apphcatlons Note that the proofs of the
maJor rules of SNC calculus are also based on the extremal principle. '

3 MultlobJectlve Optlmlzatlon and EPECs via Generahzed
Order Optimality

In this section we study. EPECs, where equilibrium/efficiency relations on the upper level -
are given by a certain “generalized order optimality” that can be treated from the view-
- point of multiobjective optimization. First we formulate this notion in the vem of [17
Subsection 5.3.1}; see also the references therein.

- Definition 3.1 (generahzed 01__'d_er optlmahty under constraints). Given a “cost”
mapping f: X — Z between Banach spaces, an “ordering” set © C Z with 0 € ©, and a
constraint set @ C X, we say that a point & € Q is LOCALLY (f,©, Q)-OPTIMAL if there are
‘a neighborhood U of & and a sequence {2} C Z with ||zx|l — 0 as kK — oo such that .

f(@) - (&) ¢ €~z forall z€QNU and ke . -

The set © in Definition 3.1 can be viewed as a genierator of an extended order/preference .
" relationbetween z), 29 € Z defined by 21 —22 € 6. Inthescalarcaseof Z = Rand© = R_,
* the above notion clearly reduces to the standard optimality with the cost function f.

Note that we do not assume that the ordering set © is either convex or of nonempty
interior. If it is a convex subcone of Z with ri © # 0, then the concept of Definition 3.1
encompasses a Pareto-type efficiency/equilibrium requiring that there is no z € QN U with

- f(x)— f(%) € ri ©; to see this, we put 2, := zp/k, k € IN, with some 29 € ri ©. The standard
weak Pareto efficiency corresponds to the more restrictive relation f(z)~— f(Z) € int ©, while -
the Pareto efficiency means that there is no x € QN U for which f(z) — f() € © and
f(Z) - f(z) ¢ ©; compare, e.g., the book by Jahn [11] and its references.

Our goal in this sectlon is to derive necessary optlmahty ‘conditions for EPECs with
equilibrium relations given by the generalized order optimality on the upper level. To begin
with, consider the following abstract EPEC: given f: X xY — Z,0€ © C Z, and a
set-valued mapping S: X =Y, ' '

‘fz'nd a local (f, 9);optz'n1'al point (5;-, ) subjecttoy € S(;'c)._ | - q{3.1)

The set-valued mapping S in (3.1) can be viewed as a parametric solution map to
abstract constraints of a generalized equilibrium type, which particularly cover those (1.1)
of our main interest in this paper. We begin with necessary conditions for local optimal
solution to (3.1) in Asplund spaces. For brevity and simplicity, consider only the case
when the cost mapping f is locally Lipschitzian; more general cases can. be treated in the
line of [17, Section 5.3]. Note that the primary driving forces for provmg the results of this
section are the ezact eztremal principle in product spaces [17] along with the comprehenswe
generalized differential and SNC calcuh developed in [16]



Theorem 3.2 (necessary conditions for generalized order optimality in abstract
EPECs). Let (Z,5) be an optimal solution to (3.1), where f: X XY — Z 'is a mapping
between Asplund spaces that is locally Lipschitzian around (%,§), and where the sets gph S
and © are locally closed around Z := f(%,7) and 0 € O, respectwely Assume also that:

(a) either © is SNC at 0,

(b) or the inverse mapping f™1: Z =X xY is strongly PSNC at (z,m y) and

[@,9) € DR (@,0)(0), ~a* € DYS@ ") = a*=y"=0.  (32)
Then there is 2* € N(0;0) \ {0} satisfying | 7 _ |
0 € D} £(z,7)(z *>+N((w,y) gph 9). @3)

Moreover, the qualification condition (3.2) is automatzc and the necessary optzmalzty con-
dition (3.3) is equwalent to :

promded that f is stmctly szschztzzan at (Z, y)

Proof. 1t is easy to observe that the point (a:, ) islocally (f, O, gph S)-optimal in the sense
of Definition 3.1 in the product space X x Y. Since both spaces X and Y are assumed to be
Asplund, their product X X Y is also Asplund, by the well-known fact from the theory of -
Asplund spaces [25]. Thus we can apply the results of [17, Theorem 5.59] that give necessary -
conditions for general problems of constrained multiobjective optimization. According to
" assertion {ii) of the latter theorem, whose proof employs the full power of the exact extremal
" “principle in product of Asplund spaces {17, Lemma 5.58] and the corresponding generalized
differential and SNC calculi, we find 2* € N(0;©) \ {0} such that

0 € Dy (f + A(-;gph S)) 59) - 3.5)
prov1ded that elther © is SNC at 0, or the inverse mapping
Glx,y) = [f(z,9) + A(z,9)ieph S)] 7" . (36)

is PSNC at (%,%,%). In (3.5), A(-;€) stands for the indicator mapping of the given set
Qcw @@= gphS CXxYin our case) with respect to the i 1mage space Z defined by

) 0Oew 1fw€Q
A(w’m"{m  fwén

Further, we need to present the optima.lity condition (3. 5) and the PSNC assumption on
(3.6) in terms of the initial data of the problem (3.1) under consideration.

- Applying the coderivative sum rule from [16, Proposition 3.12] and taking into account_
that the Lipschitz continuity of f around (Z,7) yields D},f(Z,7)(0) = {0} by (2.8), we
conclude that (3.3) follows from (3.5), since '

DyA((2,7);6ph S) (") = N((3,7);gph S) for all 2 € 2%,

8



This justifies the necessary optimality condition of the theorem in case (a). .
To establish (3.5) in case (b), it remains to show that the the assumptions therein ensure

" that the mapping G in (3.6) is PSNC at (Z, %,7). To proceed, we fix. a.rbltrary sequences ‘

(T, Yks TF, YE, 25) With (zk, yi) — (:v, 7) sat:sfymg
(@} y%) € D*(f + A(;gph 9)) (zk, yr) (25), ||(w;,y,‘;)|| —0, and 2t %0

" and show that ||z:||-¥-> 0ask — 60’, which means that the required PSNC property of G
holds. Observe that the qualification condition (3.2) implies the existence of some sequences
ek L 0, (Zik, Yix) — (:’1‘:, ;17) for i = 1,2, and (&}, 75, Z) satisfying the inclusion :

(30,30) € D*F @ ) (3D) + N ((z2x,vox);gPh S) (3.7)
and tfle estimate
(%, i 22) — (ks v 20 <e - 38

for each k € IN. This can be derived from [16, Lemma 3.1] similarly to the proof of the
coderivative sum rule in [16, Theorem 3.10}. Therefore, by 3. 7) there exist

(mlk’ ylk) e D*s (a’lk,ylk)(zk) and (wzk,yzk) eEN (($2k,y2k)7gphs) - (3.9)

_ ensuring the equalltles
(52, gl:) = (w‘{k’ y;k) + (xslm y;k)a ke N (3.10)

It follows from zj % 0 and estimate (3.8) with respect to the 2-component that 15 0
as k — oo. Hence, by the classical uniform boundedness principle, the sequence {2} is
bounded in Z*. Since f is locally Lipschitzian around (Z,§) with some modulus £ >0, the
first inclusion in (3.9) implies by {16, Theorem 1.43] that

@t yhe)l| < LIZE| for all k€ N,

which ensures the boundedness of the sequence {(z},,%},)} in X* x Y*. Thus, by the
sequential weak* compactness of bounded sets in dual to Asplund spaces {25, the latter
sequence contains a subsequence weak* converging to some (z*,y*) € X* x Y*. It fol-
lows from the first inclusion in (3.9) with Zj ¥} 0 and from definition (2.2) of the normal
coderivative that (z*,y*) € D} f(Z,7)(0). We similarly conclude from (3.8) and (3.10) that
{(x%s, y3;,)} weak* converges to some (z3,73) € X* x Y™ along a subsequence and that ac-
tually (z3,33) € N((Z,7); gph S) due to (2.1) by passing to the limit in the second inclusion
of (3 9). Moreover, (3, y2) = (—a: ,—y*) by passing to the limit in equality (3.10). Thus

(&",5") € Diyf@ 9O N [ - V(@ 9ieph )], |
and hence (=*, y*.) = (0,0) by the qualification condition {3.2). The latter implies that

(@3 Uik 28) = 0 with {(zf, k) € D sk yue)(zk), ke IV



Invoking now the strong PSNC property of f~! at (,%, ), we conclude that ||2}|| — 0 as
k — oo, which justifies the required PSNC property of G in (3.6) and thus the optimality
condition (3.3) under the assumptions in' (b). ‘ :

Suppose finally that f is strictly Lipschitzian at (%, 7). Then

D}y f(®,9)(=") = 8(z", )(&,) for all 2" € 2°

by the scalarization formula of (16, ‘Theorem 3. 28] Hence (3.3) is equivalent to (3.4) in this
case and the qualification condition (3.2) trivially holds due to DN f (:c, 7)(0) = {0}. This
completes the proof of the theorem. - : A

Observe that the necessary conditions of Theorem 3.2 are established in the normal
form, with a nonzero “multiplier” z* corresponding to the cost mapping f. This is due to
the imposed qualification condition (3.2). Since the optimality and qualification conditions
. obtained are of the same (dual) nature, they can be unified in a single necessary optimality
condition written in the non-qualified form, which ensures the nontriviality of the whole
collection of “multipliers” corresponding to the cost mapping and constra.lnts, whlle does
not exclude that the “cost multlpller equals zero. '

Corollary 3.3 (non-quahﬁed necessary condltlons for abstract EPECs) Assume
that, in the geneml framework of Theorem 3.2, either © is SNC at 0 or f71 is strongly
- PSNC at (2,%,7). Then there are 0 # (z*,y*,2*) € X* x Y* x Z* satisfying

(=*,4") € Dy f(@5)(="), —a* € D}S (EJﬂ)(y*), € N(0;6). (3.1

Proof. When © is SNC at 0, (3.11) is the same as (3.3) with z* € N(0;0) \ {0} by the
normal coderivative definition (2.2). When f~! is strongly PSNC at (%, %, §) and the quali-
fication condition (3.2) is satisfied, (3.11) also reduces to (3.3) with z* € N(0;©)\ {0}. On
the other hand, the negation of (3.2) means that (3.11) holds with some (z*,3*) #0. A

Next let us consider our main problem in this section when the mapping S(-)} in the
abstract EPEC (3.1) is given in the form of equilibrium constraints (1.1), i.e., S(:) is the
solution map to the parametric generalized equations/variational systems =

S(z):={ye Y|oe a(z,y) + Q(a:, )} R (3.12)

For brevity and simplicity, we restrict ourselves to the case of sirictly Lipschitzian single-
valued mappings under consideration. These assumptions can be dropped or significantly
relaxed on the base of Theorem 3.2 and appropriate rules of generalized differential and SNC

“calculi (cf. [17]); however, it leads us to results technically more involved and complicated
in formulation. The result formulated in the theorem is given in the general non-qualified
form, which can be equivalently formulated in the corresponding normal form under the
so-called Fredholm qualification condition. Note also that we consider in (3.12) the case of
pammeter—dependent multivalued fields Q = Q(z,y) of generalized equations, in contrast to
the majority of other studies in this direction.
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Theorem 3.4 (necessary conditions for EPECs governed by parameter-dependent
generalized equations). Let (Z,7) be a solution to (3.1) with S(-) given by (3.12), where
f: XxY —=2,: XXY > P;andQ: X XY = P are maj)pz'ngs between Asplund spaces,
and where © C Z with 0 € ©. Assume that f and g are strictly Lipschitzian at (Z,7),

- that © s locally closed around the origin, and that Q is locally closed around (;Tc,-?,i)‘) with
P :=—q(Z,§). Then there are (2*,p*) € Z* x P*, not both zero, such that

0 € 3", f)(2,9) + 0(p",0)(Z,9) + DN Q(%,7:P)(p") and 2* € N(0;6)  (3.13)
in each of the following cases: | |
(a) © zs SNC at 0;

(b) f-1 is strongly PSNC at (2,7, y) with Z := f(Z,7) and either Q is SNC at (%, 7, p),
or dim P < oo. RET A

Proof. We are based on the assu}nptions and results of Corollary .3.3, whei‘e_
(*,9") € DRF@ 0)(z") <= (a°,4") € (=", )@, ) AT

due to the strict Lipschitzian requirement on f at (%, ). Thus, under the latter assumption
in addition to the other assumptions of Corollary 3 3, it ensures the existence of (z*,y*, 2*)
satisfying (3.11) with z* # 0.

‘ Let us now express/estimate the normal coderivative D NS (Z, ) for the mapping S in -
" (3.12) via the initial data of (3.12) and the requirements imposed dlrectly on ¢ and Q.
Employing {16, Theorem 4.46], we get the upper estimate

DyS@ 9w ¢ {2* € X*| 3" € P* with . "
(@, ~9") € 00", Q)& 0) + Dy Q@ BAF}

provided that the adjoint generalized equation to (1.1) has only the trivial solution:
[0 € 865", 0)(2,9) + D} Q& 5, P (") = 5 = 0 (3.16)

and that either Q is SNC at (Z,§,p), or dim P < co. Substituting (3.14) and (3.15) into
(3.11), we arrive at (3.13) with 2* # 0 under the quahﬁcatlon condition {3.16) and the
assumptlons made in the theorem.

On the other hand, the negation of {3.16) means that there is0 -;é p*e P* satisfying

_.0 € a{p*,q)(w,y) + DNQ(E, 9, P) (")

This gives (3.13) with z* = 0 and p* # 0, which completes the proof of the tﬁeorem. A

The qualification condition (3.16) and its counterparts for more general mappings g in
(1.1) play a significant role in the analysis of equilibrium constraints {sensitivity, optimality
conditions for MPECs and EPECs, etc.); see [16, 17]. It reminds us Fredholm’s alternative -
for integral equations, where the triviality of solutions to the adjoint equation is a crucial
condition for solvability of the original one. For this reason, we call {3.16) the Fredholm
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qualification condition for generalized equations and the associated MPECs and EPECs.
As follows from the proof of Theorem 3.4, the qualification assumptlon (3.16) ensures the
normal form of the necessary conditions in (3.13) with 2* #0.

‘Let us next present further elaborations of the résults obtained for some important
classes of EPECs, where the multivalued part (field) of the equilibrium constraints (1.1)
is given in a subdifferential form typical for the majority of applications. Usually subdif-
ferential structures arising in applications involve certain compositions.- We pay the main
attention to the composite subdifferential structures given in the following forms:

Qo) =0os)wy) o Qeg) = (Bog)me), (1)

where g is a single-valued mappmg between Banach spaces and where 1,/1 is an extended-
real-valued function. For convemence, we refer (borrowing mechamcal terminology) to the
first structure in (3.17) as to that with composite potentials, while the second structure
the second structure in (3.17) is that with composite ﬁéld.é. The subdifferential in (3.17) is
taken in our basic sense (2.4), while other subdifferential constructions can be considered
as well in a similar way.; compare, e.g., [18]. Parametric generalized equations (equilib-
rium constraints) with multivalued parts given in both forms (3.17) éncompass a variety of
parametric variational systems including particularly variational inequalities and nonlinear
complementarity (as well as implicit complementarity) problems, set_s of stationary solu-
~ tions in nonlinear programming, hemivariational and quasivariational inequalities, etc.; see --
more discussions and examples in the books {6, 13, 16, 24] and the references therein.

Observe that equilibrium constraints (1.1) with subdifferential structures (3.17) contain -
" by construction a first-order information arising, in particular, from first-order necessary
conditions in lower-level optimization problenis; Thus necessary conditions (and related
results) for upper-level problems with equilibrium constraints of the (first-order) subdiffer-
ential type naturally require certain second-order generalized differential objects.

Recall the second-order subdifferential notion for extended-real-valued functions used in
what follows; see the book [16] and its references for more details and historical comments.
Given ¢: X — IR finite at Z and given §j € dp(Z), the (normal) second-order subdzﬁ‘erentzal
of ¢ at F relative to § is defined by

Po@ ) = (DYO)EDW), weX™, (318

i.e., as the (normal) coderivative (2.2) of the first-order subdifferential mapping (2.4). When
¢ € C? around Z, the set (3.18) is a singleton for each u € X** reducmg to the classical
second-order derivative (Hessmn) of p at T:.

Po)w) = {Tol@ru), ueX™,

where the adjoint operation is not needed’ in finite-dimensional spaces, due to the sym-
metricity of the classical Hessian matrix. In general, (3.18) defines a positively homogeneous
set-valued mapping from X** into X™*, which possesses an extensive calculus in both finite
and infinite dimensions; see [16]. Besides various situations and examples considered in the
books {16, 17] and the references therein, we particularly refer the reader to the papers
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[4, 18, 19] containing precise calculations of the second-order subdifferential for favorable
classes of extended-real-valued functions arising in various optlmlzatlon and equlhbrmm
problems motivated by numerous apphcatlons :

Let us first consider EPECs whose equilibrium constramts are governed by the subdif- "
- ferential genemlzzed equatzons with composite potentzals -

0€q(@,y) +8(¥og)(@y), - (3.19)

whereq XxY — X*xY*,g XxY - W, and v: W — R. Thefollowmgtwo'
theorems distinguish between problems with parameter-independent fields when g = g(y) -
in (3.19), and those with g = g(z,y). Although the second framework obviously includes
. the first one, the results presented below are independent of each other, since in the first
case we are able to work with general spaces,’due to the available calculus. As before, we -
restrict our consideration to EPECs with strictly Lipschitzian costs. Note that the closed-
graph assumption (in the norm topology of W x W*) on the subdifferential mapping J1
imposed in the next and subsequent results of this section is automatic if elther Yis loca.lly’
continuous, or it is amenable at the reference point; see below. ‘

»Theorem 3.5 (necessary conditions for EPECs with parameter-independent po-
tentials). Let (z,7) be a solution to the EPEC given in (3.1) with N

5(w) = {ye Y| 0 € g(z,y) + 0% °og)®)}r

~ where f: X XY — Z is strictly Lipschitzian at (Z,7), where ©cZis loca,lly closed
around 0 € ©, where g is strictly differentiable at (Z,q) with the surjective partial derivative
V2q(Z,7), and where g = g(y) € C? around § with the surjective derivative Vg(j). Assume ~
. also that the spaces X and Z are Asplund while dimY < oo and W is Banach, and that
~ the graph of the subdifferential mapping 8 is locally closed around ( ?) with w := g(7)
and U being a unique solution to the system '

~q(z,5) = Vg(z?)*ﬁ, CAS 3¢(w) 3 ' (3.20)

Then there are z* € N(0;0)\ {0} and u € Y satisfying

0 8(z" f)(%7)+ Vq(Z,§)*u
] 2% U =\k 2,0 (= = m (3‘21)
+(0, V3(8,9)(3)*u + Vo(5)"0*$(w,5)(Vo(@)u) ) -
provided that either © is SNC at 0, or f~1.is strongly PSNC at (2,%,9) with z:= f(z,7).
Proof. We are based on Theorem 3.4, where P = Y* (= R™), Q(y) = 6(¢ o g){y); and
8(u,0)(&,9) = Va(&,§)'u, ueY,
due to the assumed strict diﬂ'efentiability of g at (%, ;17) Observe that Q = d(og) is locally

closed-graph by the assumptions on 8¢ and g. Since the partial derivative Vq(%,§) is
surjective and Q@ = Q(y), the Fredholm qualification condition (3.16) is fulfilled. Thus the .
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necessary optlmahty conditions in (3. 13) hold in the normal form, ie., w1th z* # 0. We
need to compute -

DNQ(y,p)(u) 62(¢°g)(y,p)(U) Wlth pi= —q(w, 7).

.Employing the second-order subdlfferentlal chain rule from [16, Theorem 1.127] held in -
general Banach spaces under the surjectivity assumption on Vg(#) for the mapping g € C?,
‘we get the equality =

(0 g)(u) = V(0,00 + Vo(0)' 54, ) (Vi)

_ where 3 is uniquely determined by (3.20). ‘Substituting this into (3.13) with Q = Q(y) |
and taking into account that P = Y™* is finite-dimensional, we arrive at (3.21) under the
- assumptions made and thus complete the proof of the theorem. , o A

The next result concerns EPECs (3.1) governed'by parameter-dependent equilibrium
constraints in the subdifferential form with composite potentials (3.19). In contrast to the
preceding theorem, we consider the case when all the spaces involved but the image space
Z for the cost mapping are finite-dimensional. At the same time, the structure of the .
composite potential 1 o g is significantly more general than in Theorem 3.5: besides the
parameter-dependence, we allow Vg(&, §) to be non-surjective. More precisely, we consider
the so-called strongly amenable potentials 1 o g, where % is L.s.c. and convex while g is C2
- around the reference points under the first-order qualification condition '

8%y (w) Nker Vg(:i,g)* = {0} with w:= g(é, 9); | o (3.22)

see [30] and also [16] for more details concerning this remarkable class of functions largely en-
countered in finite-dimensional variational analysis and parametric optimization. In (3.22),

(@) = {w* € W*|(w',~1) € N((@v(@)eph )}

stands for the singular subdzﬁerentzal of 9 at w, whlch reduces to the smgleton {0} 1f ¥ is
locally Lipschitzian around w@.

' Theorem 3.6 (necessary conditions for EPECs with pai'ameter-dependent amenable
potentials). Let (Z,9) be a solution to the EPEC given in (3. 1) with

S(z) = {y € R™0€ a(z,y) +6(¢°y)(y)}

where fiR*"XR™ — Z is stmctly szschztzwn at (% ,y)_, where Z is Asplund and © C Z is
' locally closed around 0 € ©, where q: IR" x R™ — IR™ x IR™ is locally Lipschitzian around

(%,9), and where the potential yyog is strongly amenable at this point with g: IR"XR’" — R,
= g(%,7). Denote -

M(z,5) = {v € R’I ve 3¢(w), Vg(w, y)*'v = —q(z, y)}

and impose the second-order qualzﬁcatzon condztzon »
(@, 0)(0) Nker Vg(%,5)* = {0} forall 5€ M(z,5).  (3.23)
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Then there are z* € N(0;©) and v € IR® x R™, not both zero, such that
Ve NEN+AmaEDN+ U [VAE9)E9)(w)
+V9(@,8)0%(@,0)(Vo@,9)v) |
promded that ezther © is SNC at 0, or f~1 is strongly PSNC at (z, %,7) with 7 := f(Z, y)

Proof. We are now based on Theorem 3.4, where P = R" X IR™ and where

Q(z,y) = 8@ 0 g)(x, ).

To proceed, we employ the second-order chain rule from [16, Corollary 3. 76] involving
strongly amenable functions under the assumptions made Then the second-order qualifi-
cation condition (3.23) ensures that '

32(1# o g)(z-, pwe U [vi 0@ D))+ V(3,9)" 0 9(@,9) (Vg<w,y)u)] (3:24)
- 9EM(2,5) .

for all w € R™ x IR™. Substituting {3 24) mto (3.13), we arnve at the necessary optlmahty |

~ . conditions of the theorem for the EPEC under consideration. - A

Observe that the second-ord_er qualification condition {3.23) automatically holds when
either ¢ € C1! around @ (i.e., it-is C! with the local Lipschitzian derivative V), or the
~ derivative Vg(Z, ;47) is surjective. In general, none of these assumptions is required.

Finally in this sectlon, consider EPECs whose equlhbnum constramts are governed by
the subdzﬁemntzal generalized equatzons with composite fields

0 € g(,9) + (0w 0 9) (=,1),
whereg XxY—-»W P: W—)R andq X XY W™

Theorem 3.7 (necessary conditions for EPECs with general composrte fields),
Let (%, ) be a solution to the EPEC given in (3.1) with

S(z):={yeY|0ecg(z,y)+ (B¥og)(z,9)},. -

where f: X XY — Z is a mapping between Asplund spaces that is strictly Lipschitzz'an at
(%,7), where © C Z is locally closed around 0 € ©, where the mappings ¢: X XY — R

~and g: X x Y — IR! are locally Lipschitzian around (Z,7), and where the graph of 8y is
locally closed around (@,p) with @ := g(%,9) and p := —q(%,7); the latter is automatic
when 9: R' — IR is either amenable at @ or continuous around this point. Impose also the
second-order qualification condition

| %(@,7)(0) N {v € R'| 0 € 8(v, 9)(z,5)} ={0}. | (3.25)
Then there are z* € N(0;©) and u € IR}, not both zero, such that '
0€ 8", )@, ) + 0w, 0@, ) + {0 )@, D) v e Po@ P} B2)

provided that either © is SNC at 0, or f~1 is strongly PSNC at (2, %,).
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Proof. Again we are based on Theorem 3.4, where P = IR! and where
Q(z,y) = (8¢ 0 9) (z,v)-

'To apply the necessary condition (3.13) of the latter theorem, we need to express the
coderivative D* = D}, of the composition d¢ o g with values in IR via the generallzed dif- -
ferential constructions for 1 and g at the correspondmg points. The appropriate coderiva-
tive chain rule of [16, Theorem 3. 13}, the scalarization formula of [16, Theorem 3. 28], and
construction (3.18) of the. second-order subdifferential yleld the upper estimate :

D*(@% 2 9)(2,5,)(w) < {2(v.9)(2,9)] v e 321/}(@,1")(“)} ~ (3.27)

under the second-order qua,llﬁca.tlon condition 3. 25) Substltutmg (3. 27) into (3. 13), we
arrive at the necessary optlmahty condltlon of the theorem. ‘ v - A

If the inner mapping g in the equxhbnum constramt composition happens to be strictly -
d1fferent1able at (=, 9), the results of Theorem 3.7 admit significant. simplifications.

Corollary 3.8 (necessary conditions for EPECs with composite fields of special

structure). Suppose that in the framework of Theorem 3.7 the inner composite mapping

g: X xY — IR is strictly differentiable at (Z,7). Then all the conclusions of this theorem

hold with the replacement of the qualification condition (3. 25) and the necessary optimality '
" condition (3.27) by, respectively, (3.23) and

0 € 8(", £)(%,) + Bur ) (2, 37) + V9(2,9)* 0*¢(, p) ().
Proof. It follows from' the subdifferential representation

8(v, 9)(,9) = {Vy(a, ) v}

held for strictly differéntiable mappings. : - A

4 Multiobjective Optlmlzatlon and EPECs with Closed Pref-
erence Relations

The main obJectlve of this section is to study EPECs whose preference / equilibrium relations
on the upper level are defined via the so-called .closed preferences. The results obtained in
. this ways are generally independent of those in Section 3.

Given a Banach space Z and a subset R C Z X Z, we say that 2; is preferred to z
(notation z1 < 22) if (21,22) € R. In what follows, we consider nonreflerive preference
relations, i.e., such that the preference set R does not contain the diagonal.

Definition 4.1 (closed preference relations). Let

L(z):={u€Z|u=z}
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be a LEVEL SET at 2 € Z with respect to the given preference <. We say that < is LOCALLY
SATIATED around Z if z € clL(2) for all z in some neighborhood of Z. Furthermore, the_
preference < is ALMOST TRANSITIVE on Z provided that for all u < 2 and v € clL(u) one
has v < z. The preference relation < is. called CLOSED around zZifit zs locally satiated and
almost transztwe szmultaneously :

Observe that the main difference between the preference concepts from Definition 4.1
and Definition 3.1 is the following: instead of the linear translation of sets in the extremal
- system induced by generalized order optimality, preference relations of Definition 4.1 in-
A volve nonlinear transformations. The reader can find detailed discussions and references
in [17, Subsection 5.3.1], which particularly show that the two concepts are generally in-
dependent. It happens that the main restriction in Definition 4.1 is the almost transitivity
requirement on the preference <, which does not hold for a number of preferences important
in applications (e.g., for the lexicographical order), while Definition 3.1 is applied.

To proceed in deriving necessary conditions for EPECs with closed preference relations
on the upper equilibrium level, we recall two generalized differential and normal compactness
notions for moving sets needed in what follows. Since the results presented below concern
closed-graph mappings between Asplund spaces, we give sim'pliﬁed versions of these notions
equivalent to the general ones ([17, Subsection 5.3.3] in the settings under consideration.

Definition 4.2 (extended normals and éequential normal compactness for mov- |
 ing sets). Let Q: Z =3 X with (%,%) € gph Q. Then:
(i) The conic set '

N, (%;9(2)) := Limsup N(z;Q(z)) ' o (4.1)
’ (z@)""(z»i)
is called the EXTENDED NORMAL CONE to (2) at Z..

(ii) The mapping Q(:) is IMAGELY SNC (or just ISNC) at (2,%) € gth if for any -
sequences (2k, Tk, T},) satzsfyzng '

:z:,"c € N(mk; Qzk)),  (2k,Tk) ephQ (2, %), and- zj '—"—‘» 0
one has izl — 0 as k — oo.
Observe that we always have the inclusion (in the vsetting' ‘up_der consi,dératio;l) _
N(@9() < Ny (5:9(2),

where the equality holds under the so-called normal semicontinuity of Q at (Z,%), which
is the case for a broad class of mappings under reasonable assumptions; see [17, Subsec-
tion 5.3.3] for more discussions and- sufficient conditions.

The ISNC property is obviously automatic in finite dimensions, while in infinite dimen-
sions it holds under certain uniform Lipschitz-type assumptions; see the above reference
and [21] for precise results and discussions. Note also that full calculus is avaalable for the
 ISNC property of moving sets, similarly to that for “non-moving” objects.
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Consider first an abstract EPEC, where equilibrium- relations on the upper level are
described by an arbitrary closed preference <, while equilibrium constraints are formalize
via a general set-valued mapping S(-). Given f: XxY — Zand §: X = Y, a local optimal
solution (Z,7) € gph S to the following problem is understood as such a feasible point that
f(Z,7) is not preferred to f(x,y), with respect to the given closed preference < on Z, to .
any other feasible point (z,y) € gph S around (Z, 3): '

find a local optimal solution to f(x,y) with respect to <. subject toy € S(x). (4.2)

Theorem 4.3 (necessary conditions for abstract EPECs with closed preference

. relations). Let (Z,7) be a solution to the abstract EPEC given in (4.2), where < is a closed
preference on Z with the level set L(-), where f: X XY — Z is a mapping between Asplund

' spaces that is locally continuous around (%,y) with z := f(z, 7), and where S: X =Y
is closed-graph around (%,7). Then there is a nonzero triple (z*,y* z*) € X*xY*x 2Z*
satisfying the relationships

(@¥") € DRf@DE), —o* € DyS@ ), ond & € Np(BL(E)  (43)

proin'ded that either f is SNC at (%,7), or S is SNC at ( 7) and cl[, Z = Z is ISNC at
(2, 2). Furthenno're, (4 3) with (z*,y*,2*) #0 is equivalent to ‘

0€d(z*, f)(&,5)+ N((Z,7); gphS) with 2* € N+(z cl,C(z)) \ {0} | - (44)

if f is strictly Lipschitzian at (Z,7). In the latter case, the SNC assumptzon on f implies
_ that the space Z is finite-dimensional.

Proof. Given (f ,<,9) in the theorem, consider the set-valued mapping Sl Z =3 XxYxZ
and the set So C X x Y X Z defined by

S1 (2) :==gph S x L(2) and S2 := gph {. ' ) ‘. (4.5)

It is not hard to check that the point (Z, 7, %) belongs to S1(2) N Sz (by the local satiation
- property of the preference <) and happens to be locally extremal for the system {51, Sz} at
(2,0) in the sense that there is a neighborhood U of (2,7, z) such that

S1(z) NSNU = (0

for any pomt z € L(Z) close to Z but not equal to the latter by the preference < nonre-
flexivity. This follows directly from the local optimality of (Z, y) in (4. 2) and the almost
transitivity property of <; see [17, Example 5.65) for more details. '

~ Since the spaces X, Y, and Z are assumed to be Asplund, its product X x Y x Z is
Asplund as well, and we can apply to the system {S1,S52} the extended extremal principle

for multifunctions (see {20, Theorem 4.3] and [17, Theorem 5.68}). Note that the mapping

S} is locally closed-graph (which is essential for the latter result), since the preference < is
assumed to be closed around Z.
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Given € > 0 and applying the aforé-mentioned extremal principle to system (4.5) in
X XY x Z, find 20 € Z+¢eBg, (%i,4i,%) € (2,§,2) + eBxxyxz, and (¢},4],2]) €
X* xY* x Z* for i = 1,2 such that (x1,31) € gph S, 21 € c1 L(2), 22 = f(x2,12), and

‘(w{’y;z;) € ﬁ((wl’,yl’ Zl); Sl(Zo)), (w§, y;v Z;.)E ﬁ((wﬁiyé, 32); ‘5’2-),- ) (4'6) )

(=191, 20) + (23,93, ) <&, Lyl 2D + (293,22 21 -6 (47)

Ta.klng into account the structure of {S;,S2} in (4 5) and using the product property“
N9y x Q) = N(5Q) x N (:;§22) for Fréchet normals (which can be easﬂy checked
by definition), we get from (4.6) that

(@},33) € N((z1,31);80h S), 2} € N(z; c1£(2o)), _y(wE;yE’) E 5‘;f(¢z,yz)("—25)- (4.8)

Now pick the sequence € := 1/k as k — oo and add the subindex “k” to the cor-
responding elements above. By construction, we iminediately have that zor — Z and .
(ik, Yik» 2ik) — (Z,7,%) as k — oo for ¢ = 1,2. Furthermore, by normalization if nec-
essary, we can always suppose that the sequences {(z}, yfk, 2R C X*xY*x 2% i=1,2,
are bounded. Therefore, they are sequentially weak* compact in X* x Y* x Z* due.to the
Asplund property of X XY x Z.; see [25]. Without loss of generality, suppose that

(@l Uik 28) = (@3,07,20) € X* XY* X Z* as k— 00, i=1,2,
Passing to the limit in the first relationship of (4.7), we have
(3,43, 23) = ~ (21,91, 21) := (&*, 4", —2").

Then we arrive to all the three inclusions in (4.3) by passing the limit in (4.8) and taking
into account the definitions of the basic (2.1) and extended (4.1) normal cones.

Let us justify the nontriviality condition (z*,y*, 2*) # 0 under the SNC/ISNC assump-
tions made. To proceed by contradiction, suppose that {z*,y*,2*) = 0. Then

(@b Bk 21k) 25 0 and (wh, yhro 2k) 5 0 as k — o0 A- (4.9)

Assuming the SNC property of f at (%,7), we have from (4.9) that l(=3e ¥ips 23 — O,
which contradicts the second relationship in (4.7). On the other hand, if both the SNC as-
sumption on S at (%, §) and the ISNC assumption on £ at (2, Z) hold, then |[{=3;, ¥, 25;) || —
0, which contradicts (4.7) as well. » S B

To complete the proof of the theorem, it remains to consider the case when f is strictly -
Lipschitzian at (Z,7). In this case, the scalarization formula of [16, Theorem 3_.28] ensures
that the first inclusion in (4.3) is equivalent to T

(z*,y*) € O(z* ,f)(w,y),

which implies that (z * 4*) = 0 whenever 2* = 0 and that (4 3) with (=* ,y z*) # 0is
equivalent to (4.4). Moreover, the SNC property of strictly Lipschitzian mappings implies
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the finite-dimensionality of the range space by [16, Corollary 3.30). SO A

Next consider EPECs defined in (4.2) with equilibrium constraints y € S(x) described
by solution maps to the generalized equations (1.1). For simplicity, we present necessary
conditions for optimal solutions to such problems when both mappmgs 'f and q are strictly -
Lipschitzian at (Z, ). .

Theorem 4.4 (necessary conditions for EPECs with generalized equation con-
straints and closed preferences). Let (Z,%) be an optimal solution to the EPEC defined
in (4.2) with the eqmlzbrzum constmmts y€E S(w) gwen by 2

- S(x) = {y € YI 0 € g(z,9) + Q(=,9)},

where f: X XY — Z and ¢: X xY — P are mapping between Asplund spaces that are
‘ stmctly szschztzzan at (%,7), where < is a closed preference relation on Z, and where
Q: X xY =3 P is closed-graph around (,§, D) with p := —q(%,7) € Q(%,7). Then there -
are (2*,p*) € Z* x P*, not both zero, satisfying L S

0 € 8", )@ 0) + 00", 0)@:9) + DiQ(E,7.7)F") and =* & Ny (5icl£(3) - (4.10)

in each of the followmg two cases:
(a) cl £ is ISNC at (%, 2), where Z := f(Z, y),

(b) f is SNC at (%,7) and either Q is SNC at (Z, y,p), or dlmP < 00; in this case'Z
must be finite-dimensional.

Proof. Based on Theqrem 4.3, we need to obtain a upper estimate for the normal coderiva-
tive D}3S(Z,7) of the solution map given in (3.12) and also to justify its SNC property at
(Z,9) in terms of ¢ and Q. The upper estimate (3.15) of D} S(Z,7) is established in the
“proof of Theorem 3.4 above provided the Fredholm qualification condition (3.16) and that
either Q is SNC at (Z,,p), or P is finite-dimensional. This allows us to justify, based on
Theorem 4.3 and proceeding similarly to the proof of Theorem 3.4, the necessary optlmahty
conditions given in (4.10) in case (b) of the theorem.

To prove the theorem in case (a), it is sufficient to show, in view of Theorem 4. 3 and
the above discussions, that the solution map S in (3.12) is SNC at (%, §) provided that Q is
SNC at (w, 7,P), g is locally Lipschitzian at (Z, %), and the Fredholm qualification condition
(3.16) is satisfied. To proceed, we observe that the graph of § in (3.12) admits the inverse .
zmage representatxon :

gphS=g 1(gth) with g(z,y) —(w,y,-q(w,y)) | | | (4._11)

" Then apply [16, Theorem 3.84], which gives efﬁc1ent conditions on the preservation of the
SNC property under taking inverse images; this is a part of the SNC calculus strongly de- .
veloped in [16]. It is not hard to check that the qualification condition of the latter theorem
reduces, in the setting (4.11) under consideration, to the Fredholm qualification condition
(3.16), while the SNC property of a set under the inverse image in [16, Theorem 3.84] is
exactly the SNC property of Q at (%,7,P). Hence, to justify the SNC property of S by [16,
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Theorem 3.84}, we need to ensure that the mapping g defined in (4.11) is PSNC at (Z, 7).
The latter follows from the fact that any single-valued mapping locally Lipschitzian around
some point is automatically PSNC at this point; see {16, Corollary 1.69]. The required
Lipschitz continuity of g in (4.11) is an obvious consequence of the assumed Lipschitzian
property of the mapping ¢ around (Z, §). This completes the proof of the theorem. A

Having in hand Theorem 4.4, we can derive its specifications for the equilibrium con-
straints (1.1) given in each of the composite subdifferential forms (3.17). The formulations
and proofs of results in this direction are similar to those presented in Section 3 for EPECs
described via generalized order optimality on the upper level: they are fully based on the
first-order and second-order calculus rules developed in [16]..

5 Optimality Conditions for MPECs via Exact Penalization

The last section of this paper is devoted to the class of mathematical programs with equi-
librium constraints (MPECs), which can be considered as a particular case of EPECs with

. respect to standard minimization of real-valued cost functions. On the other hand, specific
features of minimizing real-valued functions make it possible to develop necessary optimal-
ity conditions for MPECs that do not have any counterparts in the case of EPECs and
general problems of multiobjective/vector optimization.

In particular, specific results of the upper subdifferential type were developed by the
author [14] for MPECs and other constraint minimization problems. Results of this type,
which essentially exploit the nature of real-valued minimization, are signiﬁééritly different
from more conventional results of the lower subdifferential type in nonsmooth constrained
minimization that are mainly based on the well-developed subdifferential calculus for basic
subgradients (2.4); see [14, 17] for more details and discussions. C :

“In this section, we follow another approach to (lower) subdifferential condltlons for
MPECs, which was developed by Ye and Ye [31] and Outrata [22] in finite-dimensional
spaces. We consider here a general infinite-dimensional setting, which happens to be signif-
icantly more involved and leads us to a larger variety of results in companson with MPECs

in finite dimersions. :

The underlying feature of this approach is a prelumnary ezact penalization of the con-
strained problems under consideration with subsequent applications of the subdifferen- .
tial/coderivative calculus to penalized problems whose *speciél structures are substantially
different from the original ones and allow us to employ more suitable calculus results.

Let us start with formulating the calmness property of multifunctions [30], which essen-
tially goes back to the “upper-Lipschitzian” property introduced by Robinson {26].

Definition 5.1 (calmness of set-valued mapbings). Let F: X = Y be a set-valued
mapping between Banach spaces, and let (, §) €.gph F. Then F is CALM at (Z,§) with
modulus £ > 0 if there are neighborhoods U of & and V' of §j such that

F(z) ﬂV C F(Z)+ |z —Z|B for al zeU. ‘ - (6.1)
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~ When V =Y in (5.1), the calmness. property of Definition 5.1 is known as Robinson’s
upper Lipschitzian property of F' at Z. The calmness terminology was suggested by Rock-
afellar and Wets [30], although the property itself was studied and apphed earlier under
different names; see, e.g., Ye and Ye [31].

One can see that the only difference between the calmness (5.1) and Aubm s Lipschitz-
like (2.7) properties is that, instead of a pair of points (z,u) independently varying in the
neighborhood U of the references point Z in (2.7), only one pbint varies in (5.1) while the
other is fixed being constantly equal to Z.. In fact, calmness (5. 1) is not a counterpart
of the classical local Lipschitz continuity for the case’ of set-valued mappmgs, it does not
reduce to the latter when f is single-valued. This implies the non-robustness of the calm-
ness/upper L1psch1tz1a1_1 properties (the sets F(z) may even be empty near %), i in contrast to
the Lipschitz-like/classical Lipschitzian ones. On the other hand, the requirement in (5.1)
is less restrictive in comparison with that in (2.7). A major class of non-Lipschitzian while
-upper-Lipschitzian set-valued mappings between finite-dimensional spaces was discovered
by Robinson [28] under the name of “piecewise polyhedral” multifunctions, i.e., those whose
* graph can be expressed as the union of finitely many convex polyhedral sets. ‘ ,

" Note that the calmness/upper Lipschitzian notion for set-valued mappings in Defini-
tion 5.1 is closely related, for inverse mappings, to metric régula‘n’ty at (not around) a point
introduced by Ioffe and. employed by him for exact penalization results in [10]; see also
[17] for more details and applications of this property under the name of “weakened metric_
~ regularity.” In fact, the following lemma proved by Ye and Ye [31] for calm mappings and
earlier by Zhang [33] for upper Lipschitzian ones in a more special case, is largely similar to
the penalization/reduction theorem by Ioffe [10] established in somewhat different setting.
* The reader can find more results and information about applications of calmness and related
properties in the recent paper by Henrion and Qutrata [8] and the references therein.

Lemma 5.2 (exact penalization undel_' generalized equatibn constraints). Let be
a local optimal solutzon to the problem: :

mzmmzze (p(t) subject to 0 € F(t), te Q, | (5.2)

where ¢: T — IR and F: T = Z ‘in the framework of Banach spaces. Assume that @ is
locally Lipschitzian around t with modulus £, and that the mappzng

.(F"lnﬂ)(z)—F"l(z)nQ E | , | {5.3)

- is calm at (O 1) with modulus ¢£. Then there are neighborhoods V of fand U of 0€ Z such
that (£,0) € T x Z solves the penalized problem:

minimize ¥(t, Z) = p(t) + pl 2|l subject to ze FO)NU, teQnV  (54)
provided that p2ly- Z, o : . L _

Observe that the maJor constraint 0 € F(t) in (5.2) is given in the form of nonparametric -
generalized equations, and thus problem (5.2) can be viewed as an abstract' MPEC. The next -
result, providing necessary optimality conditions for the abstract MPECs (5.2), is based on
applying the generalized differential and SNC calculi [16] to the penalized problem (5.4).
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Theorem 5.3 (necessary optimality conditions for abstract MPECs) Lett be a
local optzmal solution to the abstract MPEC given in (5.2), where the spaces' T and Z are
- Asplund and where the sets @ and gph F are locally closed around £ and (,0), respectively.

Assume that ¢ is locally Lipschitzian around t with modulus £,, that F1NQ defined in
© (5.3) is calm at (0,) with modulus £, and that the mized qualification condition

DLFEOON(-NER) =0} (6.5)

is satisfied. Suppose also that either F is PSNC at (t 0), or Q is SNC att Then for any
Bz 2 Ly - £ there is z* € Z* with ||z"‘|| <p such that '

0 € 8p(@) + DNF(t70)(z*).+ NER). ', N (5.6)

~ Proof. By the exact penalization result of Lemma, 5.2, the point (£,0) € T' x Z provides a.
local optimal solution to the penalization problem (5.4) with p > £, - £. Since both sets U/
and V are open in problem (5.4), it can’ be equivalently (from the viewpoint of necessary

“optimality conditions) written as:-

minimize cp(t) + pllz|l subJect to zZ€ F(t), teqQ.

In turn, the latter problem is equivalent to the mlmmxzatlon problem with geometmc con-
straints given as the intersection of two sets:

‘minimize ©(t) + pf|z|| subJect to (¢,2) egphF N (Q X Z),

Whlch can be written as the following unconstm'med problem with an infinite penalty via
the indicator function of a set:

minimize @(t) +p,||z|| +6((t,z);gpth(Q X Z)), v (B

where 6(z; A) := 0 if £ € A and §(z; A) := oo otherwise. Applying the generalized Fermat

 rule of [16, Proposition 1.114] to the optimal solution (Z,0) of (5.7), we have

0ed(p()+ul-I+B(G@RFN@x2))ED)  (58)

Now using (twice) the subdifferential sum rule of {16, Theorem 2.33(c)] in (5.8) with taking
into account that both ¢ and || - || are locally Lipschitzian around (£,0) and that

06(z;A) = N(z;A) asz€ A, |- |(z) c B* forany z € Z,
we arrive at the inclusion ]
(0,0) € (8(F),0) + (0, B*) + N((f, 0);gph F N{( x Z)). (5.9)

To proceed, we need representing the normal cone to the set intersection in (5.9) via general-
ized differential constructions to the initial data F and Q of the original problem {5.2) under
appropriate qualification and SNC conditions. Observe that both sets from the intersection
in (5.9) belong to the product of Asplund spaces T' x Z. Applying the basic intersection
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rule in product spaces from [16, Theorem 3. 4] and taking into account the structure of the
second set 2 X Z in the intersection, we get -

N((, 0);gph F N (2 x Z2)) c N((Z 0);gphF) + ’N({-’f:) x {0} - (5.10)

prov1d1ng the “limiting quahﬁca,tlon condition” of the latter theorem and ‘that either F is
PSNC at (£,0), or Q is SNC at . It is not hard to check that the afore-mentioned lim-
' iting qualification condition of [16, Theorem 3.4] is ensured, due to the structures of the
sets gph F and Q x Z in the intersection (5.9), by the qualification condition (5.5) of this
theorem involving the mized coderivative D},F(£,0). It remains to observe that (5.9) and
' (5 10) imply, due to definition (2.2) of the normal coderivative, the necessary optimality
condition (5.6) with ||2*|| < p. This completes the proof of the theorem. A
. Note that F is automatically PSNC at (£,0) and the qualification condition (5.5) holds
by (2.8) if F is Lipschitz-like around (£,0). This is due to the characterization of the
Lipschitz-like property from [16, Theorem 4.10]. On the other hand. the calmness assump-
tion of Theorem 5.3 holds also for problems with no Lipschitz-like assumption of F; see,
e.g:, the results in Outrata [22] based on fundamental Robinson’s developments [28] for
calmness/upper Lipschitzian properties of piecewise polyhedral multifunctions.
‘ The following consequence of Theorem 5.3 and further rules of generalized differential
and SNC calculi addresses abstract MPECs with the constraint mapping F' of a special
structure important for the subsequent application to the equlllbnum constramts governed »
by parametric generalized equa.tlons/ variational conditions.

" Corollary 5.4 ‘(neeessary conditions for abstract MPECs of special structure).
Suppose that the constraint mapping in (5.2) admits the representation

F(t)=g(t)+© - : "(5.1.1)‘

in the framework of Theorem 5.3, where g: T — Z is cont_z'r’tdous around £ and © C Z is
locally closed around z := —g(I) in addition to the general requirements on ¢, Q and the
calmness property of _F“1 N$Q in the theorem. Impose the qualification condition

Dig®©) N (- NED) = {0} (1)

and assume that either the set Q is SNC at Z, or the mappi'ng g is PSNC at this point; the
latier property together with (5.12) are automatic when g is locally Lipschitzian around f.
Then there is 2* € —N(%;©) with ||z*|| < p as p > £, - £ such that

0 € 9p(t) + Dyg(t)(2*) + N(5 Q) : - (5.13)
which is equivalent to |
0 € 8p() +8(z",9)(D) + N(E )

if the mapping g s strictly Lipschitzian at £.
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Proof. Considering the constant mapping O(t) = © for all t € T, it easy to see that it
is PSNC at any point (£,8) € T x © and that both coderlvatlves D* = D}, D}y, of this -
mappmgs are represented in the form :

car a4 0 if—zfeN(O—;e), i

e(t’ O)(z )v'.- { @ otherwise.

“Then applying the code’r.ivative sum rule from [16, Theorem 3.10] to both coderivatives
D* = DY, D}, of the sum g 4+ © in (5.11), we get

D'FE0E") { Dro@(er) i -2 €N(E),

0 ~ otherwise. (6519

Substituting (5.14) into (5.5) and (5.6), we arrive at (5.12) and (5.13), respectively. To
complete the proof of the corollary, it remains to observe that the PSNC property of g at
t implied the one for F in (5.11) at (£,0) by the preservation/calculus result for the PSNC -
property of sums established in {16, Theorem 3.88]. ' - A

Next let us consider the MPEC given in the form: _
minimize ¢(z,y) subject to 0 € g(x,y) + Q(z;,¥), (z,y) € L (5.15)

with equilibrium constraints governed by parametric generalized equations and also with
- geomelric constraints depending on both variables (z,y); note that the latter constraints
are additional in comparison with the previous EPEC studies in Sections 3 and 4.

Theorem 5.5 (necessary opfimality conditions for MPECs with generalized equa- '
tion and geometric constraints).' Let (Z,7) be a local optimal solution to the MPEC
given in (5.15), where ¢: X XY — Z and Q: X x Y = Z are mappings between Asplund
spaces. Assume that o: X x Y — IR is Lipschitz continuous around {Z,§) with modulus
£y, that q is continuous around this point, and that the sets Q and gph @ are locally closed -
around (2,9) and (%,7,2) with Z := —¢(Z,7), respectwely Suppose also that the mappzng
G: XxYxZ:’XxY given by

G(u,v,w) := {(z,y) € 9 ( u+a: v+y,w qx,y)Egth} . (5.16)
is calm at (0,0,0,%,§) with modulus ¢, that the qualification. condition .
- Dia(& 9)O)n (- N(Z9);2) ={0} {5.17)

is fulfilled, and that either q is PSNC at (&, 'g) or Q) is SNC at this poznt
_ Then there are dual elements (z*,y*, 2*) € X* x Y* x Z* with ||(z*,y*,2*)|| £ £, £ and
(z*,y*) € DNQ(Z,7,2)(2") satisfying

(—2*,~y*) € 8p(Z, §) + Diva(&, 5)(=*) + N((2,5); Q),
which zmplzes that

0 € 8p(@, 1) + Dya(8,7)(") + DQ(@ 5, 5)(=") + N((@, 7 ). (5.18)
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Proof. We reduce problem (5.15) to the one considered in Corolla.ry 5.4 with the data
t=(z,y) € X xY and :

F(z,y):=9(z,y)+O, ©:=gphQ, g(z,y) = (- =~y q(w, v)- (5.19)
Applying Corollary 5.4 to the above problem with data (5.19) and taking into account that
g(ma y) - (—ms —'yro) + (O Oa Q(fL', y))

we conclude from [16, Theorem 1. 70] that g is PSNC at (Z, ) if and only if f is PSNC at
this point. Then the coderivative sum rule from [16, Theorem 1. 62(11)] gives .

Do)t v ) = (-o",~9") + D@ D) (520)

for both coderivatives D* = D%, D%;. Substituting (5.20) into the relationships of Corol-
lary 5.4 and taking into account the special structure of (5.19), we arrive all the qualification
and necessary optimality conditions of the theorem. Observe finally that the mapping (5 3)
in Corollary 5.4 reduces to G in {5.16) for the data (5. 19) under consideration. - A

As usual, the strict szschztzzan assumptlon on the base mapping ¢ in the generalized
equation (5.15) allows us to specify and simplify the results obtained in Theorem 5.5.

Corollary 5.6 .(optimality conditions for MPECs with strictly Lipschitzian bases
_in generalized equation constraints). Suppose in the general framework of Theorem 5.5
that q is strictly Lipschitzian at (,7), that Q is SNC at (Z,7,2), and that the relation

(=*9") € [8(z", 0@ §) + N(@, 95 D) n (- DYQGE52(E) .
holds only for z* = y* =2*=0. Then there is z* € Z* such that one has the condition »
0 € 8p(Z, §) + (=", 9)(Z, §)(*) + DNQ(Z, §, 2)(2*) + N((Z, 5); ©). (5.21)
Proof. Cons1der1ng the mappmg h: X XY XZxXxY —=Xx Y x Z defined by
h(u,v, w,z,y) := (u+:v v+y,w (I(-"’,?/))
we represent G from (5.16) in the form of the constraint system:
G(u,v,w) = {(z,y) € X ><'Y| h(u,v_,w,:c,y) €gphQ, (w,v,w,z,y) € X XY x.Z x Q}.

It is not hard to check, due to the special structure of h and G, that the assumptions made
in the corollary ensure by [16, Corollary 4.41] that the mapping G is Lipschitz-like around
(0,0,0,%,3), and hence it is calm at this point. Since the qualification condition (5.17) is
automatic for Lipschitzian mappings, the optimality condition (5. 21) follows from (5.18) by
the scalarization formula of [16 Theorem 3.28]: o E : A

Similarly to the results of Section 3, we can derive specifications of necessary optimality
and qualification conditions of Theorem 5.5 and Corollary 5.6 for the cases of MPECs
with equilibrium constraints governed by parametric generalized equations with composite -
subdifferential structures given in each of the forms (5.17).
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