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DISCRETE APPROXIMATIONS OF DIFFERENTIAL INCLUSIONS IN
' INFINITE-DIMENSIONAL SPACES

BORIS S. MORDUKHOVICH !

Department of Mathematics, Wayne State Unipersity, Detroit, Mzchzgan 48202
borls@math wayne.edu

Abstract: In this paper we study discrete approximations of continuous-time evolution syétems
governed by differential inclusions with nonconvex compact values in infinite-dimensional spaces.
Our crucial result ensures the possibility of a strong Sobolev space approximation of every feasible
solution to the continuous-time inclusion by its discrete-time counterparts extended as Euler’s “bro-
ken lines.” This result allows us to establish the value and strong solution convergences of discrete
approximations of the Bolza problem for constrained infinite-dimensional d1fferent1al/evolut10n in-
clusions under natural assumptions on the initial data,

Keywords:  differential inclusions, infinite dimension, discrete a,ppfoximations, optimal control,
- Bolza problem, relaxation stability, value and strong solution convergences.

‘Mathematics Subject Classifications (2000): 49J52, 49M25, 90C30.

-1 Introduction

This paper is devoted to discrete/finite difference _aipproximations of evolution systems with the
'~ continuous-time dynamics governed by differential inchisions in-Banach spaces. It has been well
recognized that discrete approximations of continuous-time systems (which go back to Leibniz and
~ Euler in the classical calculus of variations) play a significant role in the study and applications
of variational problems. Ndwadays difference methods are mostly investigated and employed from
the viewpoint of numerical analysis in order to. approx1mate and compute solutions to continuous-
time systems; see, e.g., the excellent survey by Dontchev and Lempio [5] devoted to these aspects
of discrete approximations for differential inclusions in finite-dimensional spaces. On the other
hand, discrete approximations can be considered as an éfﬁcie_nt tool to derive qualitative results for
continuous-time systems by reducing them, in a sense, to discrete-time systems and subsequently
to the corresponding non-dynamic problems. The latter viewpoint was taken by Mordukhovich (9]
in his study of necessary optimality conditions for optimal control problems governed by differential
inclusions in finite dimensions. Then this approach was developed in many publications for various
problems concerning optimal control of ordinary differential equations and inclusions, time-delay
‘and functional differential systems, differential-algebraic systems, etc.; see the book {11) and the
* references therein. In the majority of publications in this direction, the method of discrete approx-
imations was used for deriving new necessary optimality conditions for continuous-time systems
based on their reduction to special problems of constrained mathematical programming with the
usage of appropriate tools of variational analysis and generalized differentiation [10].
In this paper, we draw the main attention to the well-posedness of discrete approximations for

'Research was partly supported by the National Science Foundation under grant DMS-0304989 and by the Aus-
tralian National Research Council under grant DP-0451168.



evolution éystems governed by differential inclusions in infinite-dimensional spaces. By this we
mean establishing results of the following three kinds:

(a) strong approzimation (in the appropriate Sobolev space) of any feasible solution to the
differential inclusion by solutions to its discrete-time counterparts extended as Euler’s broken lines;

(b) constructing discrete approximations of the generalized Bolza problem for differential in-
clusions in such a way that optimal values of the cost functionals in the corresponding discrete
problems converge to the optimal value in the original continuous-time problem;

(c). constructing discrete approximations of the generalized Bolza problem for differential in-
clusions'in such a way that optimal solutions to corresponding discrete problems strongly converge
to the given local optimal solution for the original problem.

In what follows we obtain general results of the types (a)—(c) under natural assumptions on the
initial data. The notation used is standard in variational analysis; see, e.g., [10, 11, 14].

2 Differential Inclusions and Their Discrete Approxifrllations'

Let X be a Banach space (called the state space in what follows), and let T := [a,b] be a time
interval of the real line. Consider a set-valued mapping F: X x T = X and define the differential
or evolution inclusion

() € Flat),t) ae. t€lab | (2.1)

‘ generated' by F, where 2(t) stands for the time derivative of z(t), and where a.e. (almost everywhere)
means as usual that the relation holds up to the Lebesgue measure zero on IR. Let us give the
precise definition of solutions to the differential inclusion (2.1), which is used in this paper.

Definition 2.1 (solutions to differential inclusions). By a SOLUTION to inclusion (2.1) we
understand a mapping x:T — X, which is Fréchet differentiable for a.e. t € T', satisfies (2.1) and
the NEWTON-LEIBNIZ FORMULA

: t
z(t) = z(a) + / z(s)ds for all teT,
a
where the integral in taken in the BOCHNER SENSE.

It is well known that for X = IR", z(t) is a.e. differentiable on 7' and satisfies the Newton- -
Leibniz formula if and only if it is absolutely continuous on T in the standard sense, i.e., for any
€ > 0 there is § such that

! !

S le(tjs) — a(t)ll < & whenever 3 [tj41 — ;] < 6

Jj=1 _ j=1
for the disjoint intervals (t;,%;4+1] C T. However, for infinite-dimensional spaces X even the Lip-
schitz continuity may not imply the a.e. differentiability. On the other hand, there is a complete
characterization of Banach spaces X, where the absolute continuity of every z: T — X is equivalent
to its a.e. differentiability and the fulfiliment of the Newton-Leibniz formula. This is the class of
spaces with the so-called Radon-Nikodgm property.



Definition 2.2 (Radon-Nikodym property). A Banach space X has the RADON-NIKODYM
PROPERTY if for every finite measure space (E,%, ) and for each p-continuous vector measure
m: S => X of bounded variation there is g € L' (u;E) such that

7ME%=Lg@LﬁTEEZ. |

This fundamental property is well investigated in the general vector measure theory and in the,
geometric theory of Banach spaces; we refer the reader to the classical text by Diestel and Uhl (3]
for the comprehensive study of the RNP and its applications. In particular, in [3, pp. 217-219] '
one can find the summary of equivalent formulations/charactetizations of the RNP and the list of
specific Banach spaces for which the RNP automatically holds. It is important to observe that the
latter list contains every reflexive space and every weakly compactly generated dual space, hence all
 separable duals. On the other hand, the: classical spaces ¢, ¢, [°°, L[0,1], and L®[0,1] don’t have
the RNP. Let us mention a nice relationship between the RNP and Asplund spaces used in what
follows: given a Banach space X, the dual space X* has the RNP if and only‘ if X is Asplund.
Recall that a Banach space is Asplund if its every separable subspace has a separable dual; the
reader can find more details, equivalent descriptions, and various implementations of the Asplund
property in the book by Phelps [12] and the references therein. '

~ Thus for Banach spaces with the RNP (and only for such spaces) the solution concept of .
Definition 2.1 agfees with the standard definition of Carathéodory solutions dealing with absolutely
continuous mappings. In general Definition 2.1 postulates what we actually need for our purposes
~ without appepling to Carathéodory solutions and the RNP. However, the RNP along with the
, Asplund property of X are essentially. used for deriving some important results of this paper’ (but

not all of them) from somewhat dlfferent prospéctives not directly related to the adopted concept

of solutions to differential inclusions in infinite-dimensional spaces.
| It has been well recognized that differential inclusions, which are certainly of their own interest,
provide a useful generalization of control systems governed by differential /evolution equatwns with
control parameters: '

b= f(zut), weU(), | | 2.2)

“where the control sets U(-) may also depend on the state variable = via F(z,t) = f(z,U (z,1),1).
In some cases, especially when the sets F'(z,t) are convex, the differential inclusions (2.1) admit
parametric representations of type (2.2), but in general they cannot be reduced to parametric
control systems and should be studied for their own sake. Note also that the ODE form (2.2)
in Banach spaces is strongly related to various control problems for evolution partial differential
equations of parabolic and hyperbolic types, where solutions may be understood in some other

appropriate senses; see, e.g., the books by Fattorini [6] and by Li and Yong [8].

~ Our principal method to study differential inclusions involves finite-difference replacements of

the Fréchet derivative '

imz$“+2_“Q

where the uniform Euler scheme is considered for simplicity. To formalize this process, we take any
natural number N € IN and consider the discrete grid/mesh on T defined by

Ty = {a,a + hpn,...,b—hy,b}, hy:=(b-a)/N,

h — 0,



with the sltepsz'ze of discretization hy and the mesh points t; := a + jhy as j = 0,...,N, where
to = a and ty = b. Then the differential inclusion (2.1) is replaced by a sequence of its finite-
difference/discrete approzimations '

on(tjs1) € an(t) + AnF(zn (), t), 7=0,...,N-1. _ (2.3)

Given a discrete trajectory zn(t;) satisfying (2.3), we consider its piecewise linear extension
zn(t) to the continuous-time interval T', i.e., the Euler broken lines. We also define the piecewise
constant extension to T of the corresponding discrete velocity by

_ o (tj+1) — zn(ts)

o (t) 1= - . tE[tihtis) 3=0,...,N—1.

It follows from the véry definition of the Bochner integral that

t
zn(t) = zn(a) +/ vn(s)ds for teT.
a T
I . . . i
Our first goal is to show that every solution to the differential inclusion (2.1) can be strongly
approzimated, under reasonable assumptions, by extended trajectories to the discrete inclusions
(2.3). By strong approximation we understand the convergence in the norm topology of the classical

Sobolev space W'2([a,b]; X) with the norm

' b N1/2
=) = max o)+ ( [ ol de) ™,
where the norm on the right-hand side is taken in the space X. Note that the convergence in
W2([a,b]; X) implies the uniform convergence of the trajectories on [a', b] and the pointwise (a.e.
t € [a,b]) convergence of (some subsequence of) their derivatives. The latter is crucial for our
purposes, especially in the case of nonconvez values F(z,1t).

Let us formulate the basic assumptions for our study that apply not only to the next theorem
but also to the subsequent results on differential inclusions via discrete approximations, Never-
theless these assumptions can be relaxed in some settings; see the remarks and discussions below.
Roughly speaking, we assume that the set-valued mapping F: X x [a,b] = X is compact-valued,
locally Lipschitzian in z, and Hausdorff continuous in ¢ a.e. on [a,b). More precisely, the following
hypotheses are imposed along a given trajectory Z(-) to (2.1), which is arbitrary in the next theorem
but then will be a reference optimal solution to the variational problem under consideration.

(H1) There are an open set U C X and positive numbers mp and £r such that Z(t) € U for
all t € [a,b], the sets F(z,t) are nonempty and compact for all (z,t) € U X [a,b], and one has

F(z,t) CmpB for all (z,t) € U x [a,b]. | (2.4)

F(z1,t) C F(zg,t) + £p||z1 — z2||B for all z1,z2 € U, t € [a,b]. (2.5)

(H2) F(z,-) is Hausdorfl continuous for a.e. ¢ € {a, b] uniformly in z € U.



Note that inclusion (2.5) is equivalent to the uniform Lipschitz continuity
baus(F(s,0), Flu, 1) < trlle —ul, suel,

of F(. .'t) with respect to the Pompieu-Hausdorff metric haus(-, ) on the space of nonempty 'and
compact subsets of X; see Rockafellar and Wets [14].

To handle efficiently the Hausdorff contmulty of F(z,) for a.e. t € [a, b] define the for F in !
te[ab]whllear:EUby ' , . A

|
T(F;h) = /ab o(F;t,h) dt, . : (2.6)
“where o(F;t,h) 1= sup {w(F;w,t, h)| z € U} with a
w(F;z,t,h) := sup {haus(F(x;tl),F(zv,t'g))l t1,t2 €t - -’Zly,t + %] N |a, b]}
The following obsérvaﬁon is due to Dontchev and Farkhi [4)].

Proposition 2.3 (avexfaged modulus of contimiity). The Hausdorff continuity property (H2)
holds if and only if T(F;h) — 0 as h — 0.

Note that for single-valued map'ping f:[a,b] = X the property 7(f;h) = 0 as h — 0 is equivalent
to the Riemann integrability of f on [a,b]; see Sendov and Popov [13]. The latter holds, as well
known, if and only if f is continuous at almost all ¢ € [a, b].

3 Strong Approximation of Solutions to Differential Incluéions'

The strong approzimation theorem established in this section plays a crucial role in the subsequent
results based on discrete approximations of differential inclusions.

Theorem 3.1 (strong approximation by discrete trajectories). Let Z(-) be a solution to
the differential inclusion (2.1) under assumptions (H1) and (H2), where X is an arbitrary Banach
“space. Then there is a sequence of solutions Zn'(t;) to the discrete inclusions (2.3) such that

Zn(a) =Z(a) forall NeIN
and the extensions Tn(t), a <t < b, converge to F(t) strongly in W2([a,b]; X) as N = co.

Proof. By Definition 2.1 involving the Bochner integral, the derivative mapping z(-) is strongly
- measurable on [a, b}, and hence we can find (rearranging the mesh points ¢; if necessary) a sequence of
simple/step mappings wn(-) on T such that wy (t) are constant on [t;, ;1) for every j = 0,..., N—1
and wy (-) converge to Z(+) in the norm topology of L!([a,b}; X) as N = oco. Combining this
convergence with (2.1) and (2.4), we get

N-1
[ o @lldt =Y ot G551~ ) < Gmp + 1o -0 CE
a ]=0 .



for all large N. In the estimates below we use the numerical sequence

Ex = /ab 15(t) — wn ()] dt — 0 as N — oo,
Let us define the discrete functions u ~(t;) by
un(tj+1) = un(t;) + hvwn(t;), 7=0,... N =1, uy(to) := z(a)
and observe that the functions
un(t) := Z(a) + /at wn(s)ds, a<t<b,

are piecewise linear extensions of un(t;) to the interval [a,b] and that

Jue(e) = 3O < [ () - #(6)lds < & for t € o, 62

i . +
Therefore uy(t) € U for all t € [a,b] whenever N is sufficiently large

Taking the distance function dist(-; ) to a set in X, one can directly check that the L1psch1tz
condition (2.5) is equivalent to

dlst(w F(z1,t)) < dist(w; F(mz, t)) + Lrllz1 — 2]
| whenever wEX, 31,22 € U and t € [a,b]. By deﬁmtlon (2. 6) of 7(F; k) and the obvious relation

“dist(w; F(z,t1)) < dlst(w,F(a:,tg)) + haus(F(q;,tl),F(w t2))

one has the estimate

N-1

(v =Y hdist(wn(); F(uN(t)tJ))—Z / dist(wn (t); F(un (t), 1) dt

j=0

< Z /:j"'l dist(wy (t5); F(un(t),t)) dt + 7(F;hy).

’i‘he Lipschitz pfoperty of F and the construction of wy(-) imply
dist(wn (5); Pun(5),1)) < dist(wn () Flun(t5),8) + brun(6) ¢ — 1)
whenever t € [tj,tj+1), and then |
dist(wn (t); F(un(¢),1)) < dist(wn (2); F(2(2), 1)) + Lrilun(t) — 2(2)]]
< lwn(t) = 2| + Lrén ae. t€[a,b].
Employing further (3.1) and (3.2), we arrive at the estimate

(v <av =1+ Lp(b—a))én + Lr(b—a)(mp + 1)/2 + 7(F; hy). (33)



Observe that the functions uy(t;) built above are not trajectories for the discrete inclusi'ons
(2.3), since one doesn’t have wy(t;) € F(un(t;),t;). Now we use wn(t;) to construct actual
trajectories Ty (t;) for (2.3) that are close to un(t;) and enjoy the convergence property stated in
the theorem. ' . . ' .

Let us define Zy(t;) recurrently by the following prozimal algorithm, which is realized due to
the compactness assumption on the values of F: | '

En(to) = Z(a), Bn(tj+1) = Bn(tj) + hvon(ts), §=0,...,N -1, Co

- where un(t;) € F(Zn(t)),t;) with . (3.4)

Tow(ts) — wnt)ll = dist(wn (t); F@En (t5), 1)

First we prove that algorithm (3.4) kéeps Zn(t;) inside the neighborhood U from (H1) ‘whenever
N is sufficiently large. Indeed, let us consider any number N € IN satisfying Z(t) + nyB C U for
all ¢ € [a, b], where ‘ :

NN = YN eﬁib (€r(b - a)) +&n

~with £y and vy defined above. We have ny — 0 as N — oo, since {y — 0 by the construction
of £y -and since vy — 0 due to assumption. (H2) equivalent to 7(F;hy) — 0 by Proposition 2.3.
Arguing by induction, we suppose that Zy(t;) € U for all i = 0,...,j and show that this also holds
- for ¢ = j + 1. Using (2.5), (3.3), and (3.4), one gets . '

[ 51) —un (o)l < i) = ()1 + bl i) — i)
< [ (ty) — (i) + hvdist(un (6); Flun(t3), 1))

+epllEn () — un ()] < ..
< hy f;(l + Lphy ) “Hdist(wn (4); F(un (4), 1)
=0 . )

' ]
< hyexp [lr(b—a)] D dist(wan (t:); Fun (t:), ti))
2 v

| < v exp (¢r(b - a)).
-~ Due to (3.2) the latter implies that
12N (tj41) = En(tj41)l| < v exp (Er(b — a)) +&n =: 1N, (3.5)

which proves that Zy(t;) € U for all j = 0,...,N. Taking this into account, we have by the
previous arguments that

N N-1
S BN () — un(E) < (b - a)exp (Ur(b—a)) Y dist(wn (t5); Flun(tj), t;)).
j=0 j=0



Now let us estimate the quantity

b,
In :=/ 5N () — wn ()| dt as N — oo.
a

| Using the last estimate above together with (3.3) and (3.5), we have

N-1 N-1

= 3" hwliEn ) —wn )l = > hdist wN(t]) F(Zn(t)),t5))
§=0 ‘ j=0 ‘
L N-1 N-1
' . < Z h,NdlSt(’u)N(tJ) F(’U,N(t]) t:, + IR Z hN”.’BN(tJ) - uN(t )|
j=0 _ =0
L N(1 +£r(b - a)exp (¢r(b — a))).
Thus one ﬁnally gets | ' A

[len@ -s@1a < [ 1@ -0+ [ Tov() - 50 d

< n(l+ EF(b —a)exp (br(b—a))) + &N = an.

| (3.6)

" Since oy = 0 as N — 00, this obviously implies the desired convergence Zny(-) — Z(-) in the norm

" of Wh2([a,d]; X) due to the Newton-Leibniz formula for Z N(t) and :L'(t) and due to the uniform

boundedness assumptlon (2.4).

A

Remark 3.2 (numerical efficiency of discrete approximations). It follows from (3.6) by the

Newton-Leibniz formula that

IZn () - 3@)]| < / "GN () — E©)]l dt < - for all £ € [a,b].

Thus the error estimate and numerical efficiency of the discrete approximation in,Theorém 3.1
depend on the evaluation of the averaged modulus of continuity 7(F;h) from (2.6) and the approx-

imating quantity £y defined in the proof of Theorem 3.1. Denoting

k-1
o(F) :=sup { 3 sup [haus(F (z, ti41), F(w, 1)), 2 € U], a<t1 <. <t b},
k' ti=1 :

it is not hard to check that

7(F; h) <v(F)h = O(h)

whenever F(z,-) has a bounded variation 'v(F) < oo uniformly in z € U; see Dontchev and Farkhi

[4]. Furthermore, one has the estimate

Ev < 21(Z;ha)

by taking wy (t) = Zn(t) = Z(t;) for t € [t;,t; + hn) if Z(-) is Riemann integrable on [a, b). -



‘4 The Bolza Problem for Nonconvex Differential Inclusions and
Relaxatidn Stability

Let us consider the following generalized Bolza problem (P) of dynarﬂic optimization over solutions
(in the sense of Definition 2.1) to differential inclusions in Banach spaces: minimize the functional

Tel = plaa) o) + [ S, 2008 @y

: ' I
over trajectories z:[a,b] — X for the differential inclusion (2.1) such that 9(z(t), (t),t) is Bochner
integrable on the fixed time interval 7' := [a, b] subject to the endpoint constraints

(@(a),zb) €QC X% | (4.9)

We use the term arc for any solution z = (-) to (2.1) with J[z] < co and the term feasible arc
for arcs z(-) satisfying the endpoint constraints (4.2)., Since the dynamic (2.1) and endpoint (4.2)
constraints are given exphc1tly, we may assume that both functions ¢ and ¥ in the cost functional
(4.1) take finite values.
The formulated problem (P) covers'a broad range of various problems of dynamic optimization
_ in finite-dimensional and infinite-dimensional spaces. In particular, it contains both standard and .
nonstandard models in optimal control for parameterized control systems (2.2) with possibly closed-
loop control sets U(z,t). Note also that problems with free time (non-fixed time intervals), with
* integral constraints on (z; %), and with some other types of state constraints can be reduced to the
form of (P). v L R
In what follows, we study optzmal solutzons to (P) in the $ense of intermediate local minimizers
introduced by the author [9] and then employed in many publications; see, e.g., [1, 7, 17, 16] and
the references therein. : :

Definition 4.1 (intermediate local minima). A feasible arc T is an INTERMEDIATE LOCAL
MINIMIZER. (i.l.m.) of rank p € [1,00) for (P) if there are numbers ¢ > 0 and a > 0 such that
Jz| < J [:z:] for any feasible arcs to (P) satisfying

llz(¢) — ﬁ(t)” <¢ forall t€la,b] and (4.3)

o /b ll&() — ()P dt < €. . (4.4)

Relationships (4.3) and (4.4) actually mean that we consider a neighborhood of Z in the Sobolev
~ space WYP([a,b]; X). If there is only requirement (4.3) in Definition 4.1, i.e., @ = 0 in (4.4), that
one gets the classical strong local minimum corresponding to a neighborhood of Z in the norm
topology of C([a, b]; X). If instead of (4.4) one puts the more restrictive requirement

Jl&(t) = 2(@)] < e ae. tE[a,b],

then we have the classical weak local minimum in the framework of Definition 4.1. This corresponds
to considering a neighborhood of Z in the topology of W°([a, b); X). Thus the introduced notion
of i.L.m. takes, for any p € [1,00), an intermediate position between the classical concepts of strong

9



(a = 0) and weak (p = 00) local minima. Clearly all the results for intermediate local minimizers
automatically hold for strong (and hence for global) minimizers. We refer the reader to [9, 11, 17]
for various examples that illustrate relationships between weak, intermediate, and strong local
_ minimizers in variational (particularly optimal control) problems.

In what follows, along with the original problem (P), we consider its relazed counterpart that,
roughly spéaking, is obtained from (P) by the convezification procedure with respect to the velocity
variable. Taking the integrand 9¥(z,v,t) in (4.1), we consider its restriction '

dp(z,v,t) = 9(z,v,t) + 6(v; F(z,t))
to the sets F(m,t) in (2.1) and denote by ) r(z,v,t) the biconjugate function to Ip(z, ,t), i.e.,
Ip(z,v,t) = (Or), (z,v,t) forall (z,v,t) € X x X x [a,b].

It is well known that 9 F(z,v,t) is the greatest proper, convez, l.s.c. function with respect to v,
which is majorized by 9. Moreover, Ip = Op if and only if 9p is proper convex, and l.s.c. with
respect to the veloc1ty variable v.

Given the original variational problem (P), we define the relazed problem (R), or the relazation
of (P), as follows: :

minimize J[:c] —-<p( (a) +/ Ir(z (), (),t) dt (4.5)

"over a.e. differentiable arcs z:[a,b] — X that are Bochner integrable on [a, b] together with
- Ip(z(t), (= )( )st), satlsfy the Newton-Leibniz formula on [a,}] and the endpoint constraints (4.2).
Note that, in contrast to (4.1), the integrand in (4.5) is extended-real-valued. Furthermore, the
natural requirement Jz] < oo yields that z(-) is a solution (in the sense of Definition 2. 1) to the
convezified differential inclusion

i(t) € cleo F(s(t), 5(£),2) ae. € [a,b]. (4.6)

Thus the relaxed problem (R) can be considered under explicit dynamic constrained given by the
convexified differential inclusion (4.6). Any trajectory for (4.6) is called a relazed trajectory for
" (2.1), in contrast to original trajectories/arcs for the latter inclusion.

There are deep relationships between relaxed and original trajectories for differential inclusion,
which reflect hidden convezity inherent in continuous-time (nonatomic measure) dynamic systems
defined by differential operators; see [11, Chapter 6] for various implementations of the hidden
convexity phenomenon with more references and discussions. In particular, any relared trajectory
of compact-valued and Lipschitz in z differential inclusion in Banach spaces may be uniformly
approzimated (in the space C([a,b}; X)) by original trajectories starting with the same initial state
z(a) = zg. We need a version of this approximation/density property involving not only differential
inclusions but also minimizing functionals. The following result, which holds when the underlying
Banach space is separable, is proved in [2]; results of this type go back to the classical theorems of
Bogolyubov and Young in the calculus of variations; see [2, 11] for more details.

Theorem 4.2 (approximation property for relaxed trajectories). Let z(:) be a relazed
trajectory for the differential inclusion (2.1), where X is separable, and where F: X X [a,b] = X

10



. . _ » .. i
is compact-valued and uniformly bounded by o summable function, locally Lipschitzian in x, and
measurable in t. Assume also that the integrand 9 in (4.1) is continuous in (x,v), measurable in

_t, and uniformly bounded by a summablé function nearx(-). Then there is sequence of the original

trajectories xy(-) for (2.1) satisfying the relations

z(a) =a(a), () = a() in C(la,bX), ond

 timint [ 9o eu(0 00 < [ Tr(a) 0, )

Note that Theorem 4.2 does not assert that the approximating trajectories zx(-) satisfy the
endpoint constraints (4.2). Indeed, there are examples showing that the latter may not be possible:
If they do, then problem (P) has the property of relazation stability:

inf(P) = inf(R), = ' , (4.7)
where the infima of the cost functionals (4. 1) and (4.5) are taken over all the feasible arcs in (P)
and (R), respectively. ' :
An obvious sufficient condition for the relaxation stability is the convezity of the sets F(z, t) and
of the integrand f in v. However, the relaxation stability goes far beyond the standard convexity
due to the hidden convexity property of continuous-time differential systems. In particular, The-
orem 4.2 ensures the relaxation stability of nonconvex problems (P) with no constraints on x(b).
" There are other efficient conditions for the relaxation stability of nonconvex problems discussed,
e.g, [11] and the references therein. ‘Let us mention the classical Bogolyubov theorem ensuring
the relaxation stability in variational problems of minimizing (4.1) with endpoint constraint (4. 2)
~ but with no dynamic constraints (2.1); relaxation stability of control systems linear in state vari-
ables via the fundamental Lyapunov theorem on the range convexity of nonatomic vector measures
that largely justifies the hidden convexity; the calmness condition by Clarke for differential inclu-
sion problems with endpoint constraints of the inequality type; the normahty condition by Warga
involving parameterized control systems (2.2), etc.

An essential part of our study relates to local minima that are stable with respect to relazation.

‘The corresponding counterpart of Definition 4.1 is formulated as follows.

Definition 4.3 (relaxed intermediate local minima). The arc ¥ is a RELAXED INTERMEDIATE
LOCAL MINIMIZER (r.%.L.m.) of rank p € [1,00) for the original problem (P).if T is a feasible solution
to (P) and provides an intermediate local minimum of this rank to the relazed problem (R) with
the same cost JF) = J[z].

The notions of relazed weak and relazed strong local minima are defined similarly, with the
same relationships between them as discussed above. Of course, there is no difference between
" the corresponding relaxed and usual (non-relaxed) notions of local minima for problems (P) with
convex sets F(z,t) and integrands f convex with respect to velocity. It is also clear that any
relaxed intermediate (weak, strong) minimizer for (P) provides the corresponding non-relaxed local
minimum to the original problem. The opposite requires a kind of local relaxation stability.

~ Next build well-posed discrete approximations of a given r.i.lm. Z(-) in problem (P) such that
optimal solutions to discrete-time problems strongly converge to Z(-) in the space W1?([a,b]; X).
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This issue is of undoubted interest for both qualitative and numerical aspects of variational anal-
ysis for differential inclusions. In particular, it is used in [11] (following the finite-dimensional
development of [9]) for deriving necessary conditions for intermediate local minimizers.

5 Strong Convergenée of Optimal Solutions

Considering differential inclusions and their finite-difference counterparts in Section 2, we estab-
lished there that every trajectory for a differential inclusion in a general Banach space can be
strongly approzimated by extended trajectories for finite-difference inclusions under the natural as-
sumptions made. This result doesn’t directly relate to optimization problems involving differential
inclusions, but we are going to employ it now in the optimization framework. The primary ob _]ectxve
of this section is as follows.

Given a trajectory Z(-) for the differential inclusion (2.1), which provides a rela.z'ed intermediate
local minimum (r.i.l.m.) to the optimization problem (P) defined in the previous section, construct
a well-posed family of approximating optimization problems (Py) for finite-différence inclusions
(2.3) such that (extended) optimal solutions Zn(-) to (Pn) strongly converge to Z(-) in the norm
topology of W2([a, b]; X).

Imposing the standing hypotheses (H1) and (H2) formulated in Sectlon 2, observe that the
boundedness assumption (2.4) implies that the notion of r.i.l.m. from Definition 4.3 doesn’t depend

" on rank p from the interval [1, 00). This means that Z(-) is an r.i.L.m. of some rank p € [1, 00), then
it is'also an r. ilm. of any other rank p > 1. In what follows we take p =2 and a =1 in (4 4) for
. -simplicity,

To proceed ‘we need to impose proper assumptlons on the other data 3J, ¢, and Q of problem
(P) in addition to those imposed on F. Dealing with the Bochner 1ntegral, we always identify mea-
surability of mappings f:[a,b] = X with strong measurability. Recall that A [ is strongly measurable
if it can be a.e. approximated by a sequence of step X-valued functions on measurable subsets of
[a,b]. Given a neighborhood U of Z(-) and a constant mf from (H1), we further assume that:

(H3) 9(-, -, t) is continuous on U x (mpIB) uniformly in ¢ € [a, b], while ¥(z,v, ) is measurable
on [a,b] and its norm is majorized by a summable function uniformly in (z,v) € U x (mpB).
(H4) ¢ is continuous on U x U; © C X x X is locally closed around (Z(a), Z(b)) and such that

the set proj 12N (Z(a) + ¢IB) is compact for some ¢ > 0, where proj 1§ stands for the projection of
2 on the first space X in the product space X x X.

Note that symmetrically we may assume the local compactness of the second ‘projection of
) C X x X; the first one is selected in (H4) just form definiteness.

Now taking the r.il.m. Z(-) under consideration, let us apply to this feasible arc Theorem 3.1
on the strong approximation by discrete trajectories. Thus we find a sequence of the extended
discrete trajectories Zx(-) approximating Z(-) and compute the numbers 7y in (3.5). Having & >0
from relations (4.3) and (4.4) of the intermediate minimizer Z(-) with p = 1 and a = 1, we always
suppose that Z(t)+¢/2 € U for all t € [a, b]. Let us construct the sequence of discrete approximation
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problems (Py); N € IN, as follows: minimize the discrete-time Bolza functional

Inlon]: = p(zn(to),zn (tn) + llzn (to) — Z(a)|1?

Z/‘J“ xN(tj),m’,"(t”l)_””N(tj),t) gt

" b (5.1)
N-1 tj+.1 (BN(t' 1)—{12N(t') . 2 - ' '
' + / i) ZINGG) sl g
B et |
over discrete trajectories zy = zn() = (zn(to),...,zn(tn)) for the difference inclusions (2.3)
subject to the constraints
(z(to), 2N (tN)) € QX +nnIB, © | _ (5.2)
lzn(ts) — E(tj)" S.E for j=1,...,N, and _ (5.3)
L+l t]-l-l) "‘ﬁN(tJ) v <& . | '
/t “ t)“ 2 (5.4)

As in Section 2, Consider (without mentioning any mbre) piecewise linear extensions of z ()
~ to the whole interval [a, b] with piecewise constant detivatives, for which one has .

t . . :
zn(t) = zn(a) +/ Zn(s)ds forallt € [a,b] and
: ¢ - , (5.5) .
wN(t) = :i:N(tj) € F(:L'N(tj%tj')a te [tjatj+1)1 .7 =0,.. -aN -1

The next theorem establishes that the given local minimizer Z(-) to (P) can be approximated
by optimal solutions to (Py) strongly in W'2([a, b); X), which implies a.e. pointwise convergence of
-the derivatives essential in what follows. To justify such an appr0x1mat1on, we need to impose both
the Asplund structure and the Radon-Nikodym property (RNP) on the space X in question, which
ensure the validity of the classical Dunford theorem on the weak compactness in L'([a, b}; X). Tt is
worth noting that every reflexive space is Asplund and has the RNP simultaneously. Furthermore,
the second dual space X** enjoys the RNP (and hence so does X C X**) if X* is Asplund. Thus the
class of Banach spaces X for which both X and X* are Asplund satisfies the properties needed in
the next theorem. As well known in the geometric theory of Banach spaces, there are nonreflezive
~ (even separable) spaces that fall into this category.

Theorem 5.1 (strong convergence of discrete optimal solutions). Let Z(-) be an r.i.l.m.
for the Bolza problem (P) under assumptions (H1)-(H4), and let (Pn), N € IN, be a sequence of
discrete approzimation problems built above. The following hold:

(i) Each (Pn) admits an optimal solution.

(ii) If in addition X is Asplund and has the RNP, then any sequence {Zn ()} of optimal solutions
to (Pn) converges to Z(+) strongly in W'2([a,b]; X).
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Proof. T'o justify (i), we observe that the set of feasible trajectories to each problem (Py) is
nonempty for all large N, since the extended functions Zy(-) from Theorem 3.1 satisfy (2.3) and
the constraints (5.2)-(5.4) by construction. This follows immediately from (3.5) in the case of (5.2)
- and (5.3). In the case of (5.4) we get from (2.4) and (3.6) that

/tt1+1 “ :vN(tJ+1) - '(t)“ dt / En(2) - x(t)||2 &t

for large N by the formula for a in (3.6). The existence of optimal solutions to (Py) follows now
from the classical Weierstrass theorem due to the compactness and continuity assumptions made
in (H1), (H3), and (H4) _

It remains to prove the convergence assertion (ii). Check first that

In[EN] = J[E] as N — o0 : (5.6)

i . o . .
along some sequence of N € IN. Considering the expression (5.1) for Jy[Zn], we deduce from
Theorem 3.1 that the second terms therein vanishes, the forth term tends to zero due to (2.4) and

(3.6), and the first term tends to ©(Z(a), Z(b)) due to the continuity assumption on ¢ in (H4). It
is thus sufficient to show that '

on = Z/ N(tj),xN(tf+12‘ﬁN(tJ dt—)/ (E(0), 5(t), 1) dib

N

as N = . Usi‘ng the sign “~” for expressions that are equivalent as N — 00, we get the following
limiting relationships

Z /a+ N (), Bn(t), 1) dt~/ "9(517N(t) n(t),t)dt

b . b .
~ [ 9@, w0 de~ [ 0@, 50,0 dt

by Theorem 3.1 ensuring the a.e. convergence Zy(t) — #(t) along a subsequence of N — oo and

by the Lebesgue dominated convergence theorem for the Bochner integral that is valid under (H3).
Note that we have justified (5.6) for any intermediate (not relaxed) local minimizer () for the

original problem (P) in an arbitrary Banach space X. Next let us show tha,t (5.6) implies that

Jim_ [y = 3w (a) ~ 3(@)I + / lén(t) - 312 dt] =0 (5.7)

N—=oo

for every sequence of optimal solutions Zn(-) to (Py) provided that Z(-) is a relazed intermediate
local minimizer for the original problem, where the state space X is assumed to be Asplund and
to satisfy the RNP.

Suppose that (5.7) is not true. Take a limiting pomt B > 0 of the sequence {fy} in (5. 7) and
let for simplicity that By — § for all N — oo. We are going to apply the Dunford theorem on the
relative weak compactness in the space L([a, b); X) (see, e.g., [3, Theorem IV.1]) to the sequence
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{Zn()}, N € IN. Due to (5.5) and (H1) this sequence satisfies the assumptions of the Duni"ord
theorem. Furthermore, both spaces X and X* have the RNP, since the latter property for X* is
~ equivalent to the Asplund structure on'X, as mentioned above. Hence we suppose w1thout loss of
generality that there is v € L!([a, b]; X) such that

Zn(-) = v(-) weakly in Ll([al‘, b);X) as N — oo.

Since the Bochner integral is a linear continuous operator from L!([a,b]; X) to X, it remaips‘
continuous if the spaces L!([a,b); X) and X are endowed with the weak topologies. Due to (5.2)
and the assumptions on Q in (H4), the set {Zy(a)| N € IN} is relatively compact in X. Using (5.5)
and the compactness property of solution sets for differential inclusions under the assumptions made
in (H1) and (H2), we conclude that the sequence {Zn(-)} contains a subsequence that converges to
some Z(-) in the norm topology of the space C([a, b]; X). Now passing to the limit in the Newton-
Leibniz formula for Zn(-) in (5.5) and taking into account the ,above convergences, one has

a:(t) = T(a) -i-/ s)ds for all t € [a,b], .

which implies the absolute continuity and a.e. dlfferentlablhty of Z(-) on [a,b] with v(t) = F(¢t) for
a.e. t € [a,b]. Observe that Z(-) is a solution to the convexified differential inclusions (4.6). Indeed,
 since a subsequence of {Zx ()} converges to Z(-) weakly in L'([a, b]; X ), some convez combinations of '
Zn () converge to Z(-) in the norm topology of Lt ([a, b]; X), and hence pointwisely for a.e. t € [a, b].
" Passing to the limit in the differential inclusions for Zy(+) in (5.5), we conclude that Z(-) satisfies
(4.6). By passing to the limit in (5. 2) and (5. 3), we also conclude that :c( ) satisfies the endpoint
" constraints in (4.2) as well as ' ' |

\Z(t) - :L'(t)|| < 6/2 for all t € [a b].
Furthermore, the integral functional
. - .
1) = [ lott) - B0)1P at
is lower semicontinuous in the weak topology of L([a,b}; X) due to the convexity of the integrand

‘in v. Since the weak convergence of Zy(-) — #(-) in L!([a,b]; X) implies the one in L2([a,b]; X) by
the boundedness assumption (2.4), and since

/ “CBN(t) _ :L' t)“2 dt = Z /J+ “ IN t.7+1 ( —f(t)"2 dt,

“the above lower semicontinuity and relation (5.4) imply that

/ IE(t) — Z(®)|2 dt < lim inf Z /tﬁl " N t’“ — i) _ t)"

<t
=3

Thus the arc Z(-) belongs to the € neighborhopd of Z(-) in the space W2([a,b]; X).
Let us finally show that the arc Z(-) gives a smaller value to cost functional (4.5) than Z(:). One
always has

Jn[EN] < IN[ZN] for all large N € IN,
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since each ':’iN(-) is feasible to (Py). Now passing to the limit as N — oo and taking into account
the previous discussions as well as the construction of the convexified integrand J5 in (4.5), we get
from (5.6) that

o(Z(a), Z(b)) + /ab Ip(E(t), £(2), 1) dt+p< Jlz),

which yields by 8 > 0 that J[Z] < J[Z] = J[Z]. The latter is impossible, since #(-) is an r.i.L.m. for
(P). Thus (5.7) holds, which obviously implies the desired convergence Zy(-) = Z(-) in the norm
topology of the space W12([a,b]; X) and completes the proof of the theorem. ‘ A
The arguments developed in the proof of Theorem 5.1 allow us to establish efficient conditions
for the value convergence of discrete approximations, which means that the optimal/infimal values of
the cost functionals in discrete approximation problems converge to the one in the original problem
(P). Moreover, using the approximation property for relaxed trajectories from Theorem 4.2, we
obtain in fact a necessary and sufficient condition for the value convergence in terms of an intrinsic
property of the original problems. S

6 -Value Convergence of Discrete Approximations

" Observe that the cost functional (5.1) as well as the constraints (5.3) and (5.4) in the discrete
' approximation problems (Pn) explicitly contain the given local minimizer Z(-) to (P). Considering
. below the value convergence of discrete approximations, we are not going to involve any local
minimizer in the construction of discrete approximations and/or even to assume the ezistence of
optzmal solutions to the orlgmal problem. To furnish this, we ‘consider a sequence ‘of new discrete
approximation problems (PN) built as follows: minimize

N

Fylow] = <p(:ch (to), 2w (i) + z": /t i1 19(mN(tj),'$N(tj+1,)l — zn(t;) , t) &t
i=0 b

subject to the discrete inclusions (2.3) and the perturbed endpoint constraints (5.2), where the
sequence 7y is not yet specified. Note that problems (ISN) are constructively built upon the initial
data of the original continuous-time problem. In the next theorem the notation fg, := inf(Py),
inf(P), and inf(R) stands for the optimal value of the cost functional in problems (Py), (P), and
(R), respectively. Observe that optimal solutions to the discrete-time problems (Py) always ezist
due to the assumptions (H1)-(H4) made in Theorem 5.1 under proper perturbations ny of the
endpoint constraints; see its proof.

Theorem 6.1 (criterion for value convergence via relaxation stability). Let U C X be an
open subset of a Banach space X such that zx(t) € U ast € [a,b] and k € IN for a minimizing
sequence of feasible solutions to (P). Assume that hypotheses (H1)-(H4) are fulfilled with this set
U, where Z(a) + eB is replaced by clU in (H4). The following assertions hold:

(i) There is a sequence of the endpoint constraint perturbations ny | 0 in (5.2) such that

inf(R) < hm mf JY < limsup JY < inf(P), (6.1)

N—oo
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where the left-hand side inequality requires that X is Asplund and has the RNP. Therefore the
relazation stability (4.7) of,(P) is sufficient for the value convergence of discrete approzimations

inf(Py) = inf(P) as N = oo

provided that X is Asplund and has the RNP. S

- (i) Com;ersely, the relazation stability of (P) is also a necessary condition for the value con-

vergence mf(PN) — inf(P) of the discrete approzimations with arbitrary perturbations ny } 0 of
the endpoint constraints provided 'that X is reflexive and separable.

Proof. Let us first prove that the right-hand side inequality in (6.1) holds in any Banach space X.
Taking the minimizing sequence of feasible arcs zx(-) to (P) specified in the theorem, we apply to
each z(-) Theorém 3.1 on the strong approximation by discrete trajectories. Involving the diagonal
process, we build the extended discrete trajectories Z(-) for (2.3) such that

v 1= @(a), B (8) — ( (2 (@), Thn (D)) = 0 28, N = 0

and consider the sequence of dlscrete approx1mat1on problems (PN) with these constraint pertur-
bations 7y in (5.2). Similarly to the proof of the first part of Theorem 5. 1, we show that each (Py)

- admits an optimal solution and, arguing by contradiction, one has the right-hand side inequality .

in (6.1). To justify the left-hand side inequality in (6.1); we follow the proof of the second part
of Theorem 5.1 assummg that X is Asplund and enjoys the RNP. This automatically implies the
value convergence of inf(Py) — inf(P) under the relaxation stability of (P).

To prove the conversed assertion (ii) in the theorem, we first observe that the'relaxed problem
(R) admits an optimal solution under the assumptions made; see Tolstonogov [15, Theorem A.1.3].

- It follows from the arguments in the second part of Theorem 5.1 that actually justify, under the

assumptions made, the compactness of feasible solutions to the relaxed problem and the lower
semicontinuity of the minimizing functional (4 5) in the topology on the set of feasible solutions z(-)
induced by the weak convergence of the derivatives &(-) € L'([a, b]; X) provided that X is Asplund
and has the RNP. Assume now that X is reflexive and separable and, employing Theorem 4.2,
approximate some relaxed optimal trajectory Z(-) by a sequence of the original trajectories z(-)
converging to Z(-) as established in that theorem. In turn, each zx(-) can be strongly approximated
in Wh2([a,b); X) by discrete trajectories Zy (-) due to Theorem 3.1. Using the diagonal process,
we get a sequence of the discrete trajectories Zn(-) approximating :i(-)‘and put

v = |(En(a),Zn (b)) ~ (Z(a),Z(b))|| » 00 as N — oo,

Now assume that problem (P) is not stable with respect to relaxation, i.e., inf(R) < inf(P), and
* then show that '

. . 030 .
1}\1/_11130{' Jy < inf(P)

for a sequence of discrete apprdxima.tion problems (ISN) with some perturbations 7y of the endpoint
constraints (5.2). Indeed, having

inf(R) = o(&(a), %( +/ Ir(z ), Z(t )dt<1nf( )
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for the relaxed optimal trajectory Z(-), we build gy as above and consider problems (Py) with
these perturbations of the endpoint constraints. Taking into account the approximation of Z(-) by

zx(-) due to Theorem 4.2, the strong approximation of zx(-) by the discrete trajectories Zn(-) in
. Theorem 3.1, and

J° < p(@n(to), Zn (tn)) + Z/ ””N (t), = (tﬁll)w ﬁN(tj)’t) dt

Pl (@) En(B) + 3 / B(En (), En(D),1) dt,

3=0

one gets by the absence of the relaxation stability that

_ | b |
lininf % < linint [o(@n (@), n () + [ 9G@n(t),En(0), 1) di]

< ¢(@(@),50) + [ G (3(0),5(0),1)de < inf(P).

Therefore we don’t have the value convergence of discrete approximations for problems (13N) corre-
~ sponding to the above perturbations of the endpoint constraints. This justifies (ii) and completes:
" the proof of the theorem. SR ‘ S A

Thus 't,he réla,xétion stability of (P), which is an intrinsic and natural property of continuous-
time dynamic Optlmlzatlon problems, is actually a criterion for the value convergence of discrete
approximations under appropriate perturbations of the endpomt constramts in (5.2). It follows:
from the proof of Theorem 6.1 that one can express the corresponding perturbatlons Ny via the
averaged modulus of continuity (2.6) by

v = T(Zhy) 00 as N o0

provided that (P) admits an optimal solution Z(-) with the Riemann integrable derivative Z(-) on
' [a, b]. Moreover, ny = O(hy) if Z(t) is of bounded variation on this interval; see Section 2.

Remark 6.2 (simplified form of discrete approximations). Observe that if ¥(z,v,-) is a.e.
continuous on [a, b] uniformly in (z,v) in some neighborhood of the optimal solution Z(-), then the -
cost functional in (5.1) in problem (Py) can be replaced in Theorem 5.1 by ’

Inlzn]: = o(zn(to),zn(tn)) + llzn (to) — Z(a))?

N-1

ha ;) 19(“,(%),:1cN(tj+1})”: SDN(tj),tj) -
= (6.2)
N-1

o5 [ et s

]:0 v N
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similarly for the cost functional in problem (Py) used in Theorem 6.1. Indeed, this is an e'asy

consequence of the fact that 7(9; hy) — 0 as N — oo for the averaged modulus of continuity (2.6)
~ when 9(z, v, ) is a.e. continuous. Denote by (Py) the discrete approximation problem that differs
from (Py) of that the cost functional (5.1) is replaced by the 81mp11ﬁed one (6.2). In what follows
we consider both problems (Py) and (Py) using them to derive necessary optimality cond1tlons
for the original problem. The results obtained in these ways are distinguished by the assumptions .
on the initial data that allow us to justify the desired necessary optimality conditions. Namely,
while the use of the simplified problems (Py) as N — oo requires the a.e. continuity assumption
on ¥ with respect of ¢ (versus the measurability), it relaxes the requirements on the state space X
needed in the case of (Py); see [11, Chapter 6]. B '
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