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OPTIMAL CONTROL OF SEMILINEAR EVOLUTION INCLUSIONS 

VIA DISCRETE APPROXIMATIONS1 

by 
Boris S. Mordukhovich and Dong Wang 

Department of Mathematics, Wayne State University, Detroit, MI 48202 
boris@math.wayne.edu, dwang@math.wayne.edu 

Dedicated to Czeslaw Olech 

Abstract: This paper studies a Mayer type optimal control problem with general 
endpoint constraints for semilinear unbounded evolution inclusions in reflexive and separable 

Banach spaces. First, we construct a sequence of discrete approximations to the original 

optimal control problem for evolution inclusions and prove that optimal solutions to discrete 

approximation problems uniformly converge to a given optimal solution for the original 

continuous-time problem. Then, based on advanced tools of generalized differentiation, 

we derive necessary optimality conditions for discrete-time problems under fairly general 
assumptions. Combining these results with recent achievements of variational analysis in 

infinite-dimensional spaces, we establish new necessary optimality conditions for constrained 

continuous-time evolution inclusions by passing to the limit from discrete approximations. 

Keywords: optimal control, variational analysis, generalized differentiation, semilinear 

evolution inclusions, discrete approximations, necessary optimality conditions. 

1 Introduction 

Let X be a reflexive and separable Banach space, and let F: X x [a, b] =I X be a set-valued 

mapping. The primary object of this paper is the following Mayer-type problem (P) for 

semilinear evolution inclusions with general endpoint constraints: 

minimize J[x] := cp(x(b)) (1.1) 

over mild continuous trajectories x: [a, b] --+X for the semilinear evolution inclusion 

x(t) E Ax(t) + F(x(t), t), x(a) = xo EX (1.2) 

subject to the endpoint constraint 

x(b) E !1 C X, (1.3) 

where A: X --+ X is an unbounded generator of the C0-semigroup { eA'] t 2': 0} and where 

!1 c X is a closed set. A special case of F(x, t) = f(x, U, t) with a control set U relates 

1This research was partly supported by the National Science Foundation under grant DMS-0304989 and 

by the Australian Research Council under grant DP-0451168. 
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(1.2) to semilinear control evolution equations considered in PDE control theory for smooth 

data; see, e.g., the books by Fattorini [6] and Li and Yang [10] with their references and 
comprehensive discussions. 

Optimal control problems governed by differential inclusions with finite-dimensional 

state spaces X= mn (when there is no need to single out the linear term in (1.2)) have been 

intensively studied in many publications, mostly from the viewpoint of deriving necessary 
optimality conditions; see Clarke [3], Ioffe [9], Loewen and Rockafellar [11], Mordukhovich 

[12], Smirnov [18], Vinter [20], and the references therein. 

Differential/evolution inclusions in infinite dimensions are essentially more involved and 
require new tools for their analysis, even in the case when A is a bounded operator (or 

A = 0) and F is a compact-valued mapping; see Tolstonogov [19] and Mordukhovich [13, 14] 

regarding various results for such inclusions. However, the above boundedness/compactness 

assumptions are quite restrictive for a number of important applications, especially to dy­

namic systems governed by partial differential equations and inclusions. 

Although semilinear models of type (1.2) with control representations F(x, t) = f(x, U, t) 
involving smooth functions f(·, u, t) have been studied in the literature in connection with 

optimal control problems for partial differential equations (see the references above), the 
inclusion models (1.2) have not drawn much attention. Let us mention the paper by 

Frankowska [7], where semilinear inclusions (1.2) were studied from the viewpoint of re­

laxation/ convexification results and reachable set properties. We are not familiar with any 

work on necessary optimality conditions for semilinear evolution inclusions or even semilin­

ear evolution equations with nonsmooth dynamics. Our previous results were announced 

in Mordukhovich and Wang [16] for problem (P) involving autonomous inclusions (1.2). 

The primary goal of this paper is to extend the method of discrete approximations devel­

oped by Mordukhovich [12, 13, 14] for optimal control systems governed by bounded/compact 
differential inclusions. The unboundedness of the operator A in (1.2) is a principal issue for 

applications to control problems for partial differential equations and inclusions. First we 
establish well-posedness/stability of discrete approximations in the sense of the uniform con­

vergence of their optimal solutions to the reference optimal solution for the original problem. 

Based on the advanced tools of variational analysis and generalized differentiation, we de­

rive necessary optimality conditions for discrete-time problems and then, by passing to the 

limit from discrete approximations, obtain necessary conditions of the Euler-Lagrange type 

for the original problem (P). 
The rest of the paper is organized as follows. Section 2 is devoted to the construction and 

justification of a well-posed discrete approximation for the original continuous-time problem. 

We first establish, under fairly general assumptions, that any mild continuous trajectory for 

(1.2) can be strongly approximated, in the C([a, b]; X)-norm, by feasible trajectories of the 

corresponding discrete inclusions that are piecewise linearly extended to the continuous­

time interval [a, b]. This allows us to justify the uniform convergence of optimal solutions 

for discrete approximation problems to given optimal solution for problem (P), thus making 
a bridge between discrete-time and continuous-time dynamic optimization problems. 
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In Section 3 we briefly review basic tools of generalized differentiation in variational anal­

ysis needed for deriving necessary optimality conditions in discrete approximation problems 

and then establishing, by passing to the limit, adequate necessary conditions for optimality 

of the given solution to (P). 
Section 4 is devoted to necessary optimality conditions for the discrete-time problems 

appeared in our discrete approximation procedure. We pay the main attention to "fuzzy" 
optimality conditions that are more convenient and less restrictive for passing to the limit. 

In Section 5 we develop the limiting procedure to establish necessary optimality con­
ditions for the original continuous-time problem (P) by passing to the limit from discrete 

approximations. In this way we obtain new conditions in the extended Euler-Lagrange form 

involving mild solutions to a certain adjoint evolution inclusion. 

2 Discrete approximations 

The main goal of this section is to construct a well-posed sequence of discrete approximation 

problems to the continuous-time optimal control problem (P) under consideration. To 

achieve this goal, we obtain also some other results on discrete approximations that are 

certainly of independent interest. 
We begin with clarifying the definition of mild solutions to the evolution inclusion (1.2), 

where A is an unbounded generator of the C0-semigroup {eA'I t :;:: 0}. A continuous 

trajectory/arc x: [a, b] --> X is a mild solution to (1.2) if there is a Bochner integrable 

mapping v E L1([a, b]; X) such that 

{ 

x(t) = eA(t-a)x0 + l eA(t-s)v(s) ds for all t E [a, b] (
2

.
1

) 

with v(t) E F(x(t), t) a. e. t E [a, b]. 

In contrast to strong solutions for differential inclusions, we do not require the a.e. Frechet 

differentiability of feasible arcs (which is not realistic for unbounded operators A) and actu­

ally replace (1.2) by the integral inclusion (2.1) considered in the space C([a, b]; X). 
In what follows we always assume that the Banach space X is reflexive and separable 

and that A generates a compact C0-semigroup eAt on X. We also suppose that A generates 

a semigroup of contractions on X, which does not restrict the generality. Indeed, given a 

Banach space X with the original norm II · II and an arbitrary Co-semigroup {eAt I t 2: 0} on 
X with JleAtll :$ M, let us renorm X by 

llxll1 =sup lleAtxll 
t;:::o 

and observe that llxJI :$ llxlh :$ Mllxll for each x EX. In addition one has 

lleAtxll1 =sup II eAr eAtxll :'S sup lleAtxll = llxll1, 
T~D t~O 

which shows that {eAt I t 2: 0} is a contraction semigroup on (X, ll·ll1l. It is easy to conclude 

that {eAt It 2: 0} is a C0-semigroup on the renormed space (X, 11·11 1); see, e.g., the book by 
Ahmed [1] for more details. 
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Fix an arbitrary mild trajectory x(·) for the original inclusion (1.2) and impose the 

following standing assumptions on the set-valued mapping F: 

(Hl) There are an open set U c X and positive numbers ip, mp such that x(t) E U as 

t E [a, b] and the sets F(x, t) are compact and convex for all x E U and almost all 

t E [a, b]. Moreover, one has 

F(x, t) c mplB, (x, t) E U x [a, b], and (2.2) 

F(x1, t) C F(x2, t) + fp[[xl- x2[[JB, x1, X2 E U, t E [a, b], (2.3) 

where IB stands for the closed unit ball of the space in question. 

(H2) F(x, ·) is Hausdorff continuous for a. e. t E [a, b] uniformly in x E U. 

Note that (2.3) signifies the local Lipschitz continuity ofF(·, t) around x(t). To clarify 

the meaning of (H2), consider the so-called averaged modulus of continuityT(F, h) for F(x, t) 

in t E [a, b] when x E U defined by 

T(F; h) := t a(F; t, h) dt, (2.4) 

where a(F;t,h) := sup{w(F;x,t,h)[ x E U}, where 

w(F; x, t, h) :=sup {haus(F(x, tl), F(x, t2lll tt, t2 E [t- h/2, t + h/2] n [a, bl}, 

and where haus(·, ·)stands for the Hausdorff distance between compact sets. It is proved by 

Dontchev and Farkhi [5] that if F(x, ·) is Hausdorff continuous for a.e. t E [a, b] uniformly 

in x E U, then T(F;h)---> 0 ash---> 0. 

Observe that the convex-valuedness assumption on F(x, t) in (H1) is imposed for sim­

plicity; it can be replaced by the so-called relaxation stability and can be actually dropped 

at all in some settings; cf. Mordukhovich [12, 13, 14] with A = 0 as well as Theorem 2.1 

stated below in the general case. Note also that, everywhere except Theorem 2.1, we need 

the validity of assumptions (H1) and (H2) around a given optimal solution x(·) to (P). In 

fact, the global optimality of x(·) can be replaced by its local strong optimality, i.e., relative 

to a C([a, b]; X)-neighborhood. 

Our first step is to build well-posed discrete approximations of the integral system (2.1), 

i.e., for mild solutions of the initial inclusion (1.2) without taking into account the minimiz­

ing functional (1.1) and the endpoint constraint (1.3) in the original Mayer problem (P). 

For any natural number N E IN:= {1, 2, ... } consider the grid/partition 

b-a 
TN:= {tJ =to+ jhNI j = 0, ... ,N} with to= a, IN= b, and stepsize hN := --y;r· 

The sequence of discrete inclusions approximating (2.1) is constructed as follows: 

{ 
xr:'(tj+l~ E eAhNxN(tj) + hNeAhN F~N(Ij), IJ) 

Wlth J- 0, ... ,N -1 and XN(to)- xo. 
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Denote by XN(t), a:::; t :::; b, piecewise linear extensions of discrete trajectories XN(tj) for 

(2.5) to the continuous-time interval [a, b]. The following result ensures, under the standing 

assumptions made, the uniform approximation of an arbitrary mild trajectory for (1.2) by 

a sequence of extended trajectories for the discrete inclusions (2.5). 

Theorem 2.1 (uniform approximation of mild trajectories). Let x(·) be an arbitrary 
mild trajectory for (1.2), i.e., satisfy the integral inclusion (2.1) under all the assumptions in 
(H1) and (H2) except the convex-valuedness of F(x, t). Then there is a sequence of extended 
discrete trajectories XN(·) for (2.5) that converges to x(·) in the norm ofG([a,b];X). 

Proof. Without loss of generality, assume in what follows that the operator A generates 

a 0 0-semigroup {eAt I t <': 0} of contractions on X. Let {wN(·)}, N = 1, 2, ... be an 

arbitrary sequence of functions in [a, b] such that WN(·) are constant on [tj, tj+l) for every 

j = 0, ... , N- 1 and wN(t) converge to some v(t) E F(x(t), t) as N --+ oo in the norm 

of L2 ([a, b]; X). Such a sequence always exists because of the density of step-functions in 

L2([a, b]; X). It is easy to see that 

1'wN(s)ds--+ 1'v(s)ds as N--+oo uniformly on [a,b]. 

Then by the boundedness assumption in (2.2) and by the triangle inequality one gets 

II[ WN(s) dsll $ mF(t- a) whenever t E [a, b] and N--+ oo. (2.6) 

In the arguments and estimates below we use the numerical sequence 

~N := 111b (v(t)- WN(t)) dtll--+ 0 as N--+ oo. 

Define the sequence of discrete functions {YN(tJ)I j = 0, ... , N} by 

{ 
yr:(tj+l) = eAhNyN(tj) + hNeAhNwN(tj) 

w1th J =O, ... ,N -1 and YN(to) =xo. 

Note that the functions 

are piecewise linear extensions of (2.8) on the interval [a, b] satisfying 

[[YN(t)- x(t)ll:::; ~N whenever t E [a, b]. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The latter implies that YN(t) E U for all t E [a, b] if N is sufficiently large. To proceed with 

the estimates below, observe that the Lipschitz condition (2.3) is clearly equivalent to 

dist(w, F(x1, t)) $ dist(w, F(x2, t))HF[[x!-X2[[ whenever wE X, XJ, x2 E U, and t E [a, b]. 
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Furthermore, for any w, x EX and t1, t2 E [a, b] one has 

dist(w, F(x, t1)):::; dist(w, F(x, t2)) + haus(F(x, t1), F(x, t2)). 

Now using the average modulus of continuity (2.4), we get 

Since WN(t) are constants on [tj, tJ+J), it follows from (2.3), (2.6), (2.10), and the contraction 

property of the Go-semigroup {eAt I t ~ 0} that 

dist(wN(tJ ), F(yN(tJ ), t)) :::; dist(wN(t), F(yN(t), t)) +fFIIYN(tJ) - eA(t-t;)YN(tj) II 
+fFmF(t- tj) 

for all t E [tj, tJ+J), and that 

dist( WN(t), F(yN(t), t)) :::; dist( WN(t), F(x(t), t)) + fFIIYN(t) - x(t)ll 

:::; llwN(t)- v(t)ll + fF~N 
for a.e. t E [a, b]. Thus one has 

(2.11) 

Observe that the discrete functions (2.8) are not trajectories for (2.5) because the inclusions 

wN(tJ) E F(yN(tj),tJ) are not generally guaranteed for allj = O, ... ,N -1. Now we use 

WN(tj) to define trajectories for (2.5), which are close to YN(tJ) and have the convergence 

property stated in this theorem. 

Let us construct the desirable trajectories {xN(tJ)I j = 0, ... , N} by using the following 
proximal algorithm: 

Then the piecewise linear extensions of XN(tj), j = 0, ... , N, are given by 

XN(t) = eA(t-a)xo + 1' eA(t-s)qN(s) ds, t E [a, b]. 

Now following the scheme of proving Theorem 2.1 in Mordukhovich [12] and adapting it to 

the case under consideration involving semilinear evolution inclusions in infinite-dimensional 

6 



spaces, we show that the extensions xN(t), t E [a, b], of the above discrete trajectories 

converge to x(t) in the norm of C([a, b]; X). This completes the proof of the theorem. 6 

Next suppose that x(·) is an optimal solution to (P) and construct a sequence of opti­

mization problems (PN) for discrete inclusions (2.5) in such a way that optimal solutions to 

(PN) strongly (in the norm of C([a, b]; X)) converge to x(·) as N--> oo. Imposing assump­

tions (H1) and (H2) along x(·) and using Theorem 2.1, we approximate x(·) by discrete 

trajectories { XN( tj)] j = 0, ... , N} and compute the numerical sequence 

(2.13) 

where €N and "'N are defined in (2.7) and (2.11), respectively. Define a sequence of discrete 
approximation problems (PN), N E IN, as follows: minimize 

N-1 
JN[XN] := rp(XN(b)) + hN L j]xN(tj+1)- x(t)jj 2 (2.14) 

j=D 

subject to the discrete-time inclusions (2.5) and the perturbed endpoint constraints 

(2.15) 

Note that nonzero perturbations 'IN in (2.15) of the original endpoint constraint (1.3) are 
crucial for the validity of the next result, which makes a bridge between the continuous-time 

and discrete-time optimization problems under consideration. 

Theorem 2.2 (uniform convergence of discrete optimal solutions). Let x(·) be an 
optimal solution to problem (P), and let the sequence {'IN} be constructed in (2.13). In 
addition to the standing assumptions on A and F, suppose that the cost function <p is lower 
semicontinuous on U and continuous at x(b) and that the constraint set l1 is locally closed 
around this point. Then for each N E IN the discrete-time optimization problem (PN) 
admits an optimal solution. Furthermore, any sequence {xN(t)}, t E [a, b], of extended 
optimal solutions for (PN) converges to x(·) strongly in C([a, b]; X) as N--> oo. 

Proof. It follows from the proof of Theorem 2.1 and the choice of 'IN in (2.13) and (2.15) 
that the discrete trajectories {xN(tj)] j = 0, ... ,N} constructed in Theorem 2.1 for the 
given optimal solution x(·) to (P) are feasible solutions to (PN) for all N E IN sufficiently 

large. Then the classical Weierstrass theorem ensures the existence of optimal solutions 

XN(·) = (xN(to),xN(tt), ... ,xN(iN)) to (PN) with XN(to) = xo for such N under the 
assumptions made. Let us prove that for any sequence of optimal solutions XN(·) to (PN) 
we have the inequality 

limsup JN[xN] ::; J[x] (2.16) 
N~oo 

To accomplish this, it suffices to show that 

N-1 
JN[xN] = rp(xN(b)) + hN ,L ]]xN(tj+t)- x(t)]] 2

--> J[x] = rp(x(b)) as N--> oo (2.17) 
j~O 
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for the sequence of discrete trajectories XN(·) approximating x(·) due to Theorem 2.1. 

Since XN(b) -> x(b), the convergence <p(xN(b)) -> <p(x(b)) as N -> oo follows directly 

from the continuity of <pat x(b). To justify (2.17), it remains showing that 

N-l 

hN 2:::: llxN(tj+J)- x(t)ll 2
-> 0 as N-> oo. 

j=O 

The latter follows from the estimate 

which can be distilled from the proof of Theorem 2.1; cf. Mordukhovich [12]. 
To proceed further, observe that the piecewise linear extensions of the optimal solutions 

XN(·) to (PN) admit the integral representation 

XN(t) = eA(t-a)xo + 1' eA(t-s)vN(s) ds, a :5 t :5 b, 

with some VN(t) E F(xN(t), t) a.e. t E [a, b] for all N E JN. Let us prove that XN(t)-> x(t) 
uniformly on [a, b]. Assuming the contrary, we have without loss of generality that 

c := lim max llxN(t)- x(t)ll > 0. 
N~oo tE[a,b] 

Now following the scheme in the proof of Theorem 2.7 from Frankowska [7], we find a mild 

solution x(·) to (1.2) such that XN(t)-> x(t) uniformly on [a,b]. Since 

N-l b 

hN 2:::: llxN(tJ+J)- x(t)ll 2 :51 c2 dt = c2(b- a) 
j=O a 

for all N sufficiently large, we get from (2.14) and (2.16) that 

The latter contradicts the optimality of x(·) in the original problem (P). Hence c = 0, 

which completes the proof of the theorem. 6 

3 Tools of generalized differentiation 

This section contains some preliminary material on generalized differentiation widely used 

in the variational analysis of evolution inclusions conducted in what follows. We refer the 

reader to the book by Mordukhovich [14] for more details, discussions, and the extensive 

bibliography; a finite-dimensional counterpart of the generalized differential theory is avail­

able in the book by Rockafellar and Wets [17]. Since the standing framework of the paper 
confines ourselves to reflexive and separable Banach spaces, we present formulations of the 

main constructions and results holding in this setting. Note however that all the results 
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presented in this section hold true in the (essentially more general) framework of Asplund 

spaces, while some of them are valid in other (even arbitrary) Banach space settings under 

appropriate modifications of definitions. 

Given n C X, define the (limiting, basic) normal cone to n at x E [1 by 

N(x; n) := LimsupN(x; n), 
n_ 

x~x 

(3.1) 

where "Lim sup" signifies the sequential Painleve-Kuratowski upper/outer limit of a set­

valued mapping from X to X* in the norm topology of X and the weak'(=weak) topology 

of X', where x E. x means that x --> x with x E n, and where N(x; D) stands for the 

prenormal (or Fhichet norma0 cone to n at X E n given by 

N(x;D) := {x' E X'llimsup (x',u- x) :s; o} 
n llu-xll 

u~x 

(3.2) 

via the classical upper limit "lim sup" for scalar functions. 

Given a set-valued mapping F: X ::1 Y and a point (x, y) E gph F, define the coderiva­
tive ofF at (x, y) as a positive homogeneous mapping D' F(x, y): Y' ::1 X' with 

D'F(x,y)(y') := {x' EX'I (x',-y') EN((x,y);gphF)}. (3.3) 

IfF is single-valued and C1 around x (or merely strictly differentiable at this point), then 

D' F(x)(y') = {\7 F(x)'y'} for any y' E Y*, 

i.e., the coderivative (3.3) is an appropriate extension of the classical adjoint derivative 
operator to nonsmooth and set-valued mappings. Note that (3.3) can be equivalently rep­

resented in the limiting form 

D'F(x,y)(y') = { x' E x•l , ( ) gphF (- _) ( , ') w ( , ') 
:::1 sequences Xk, Yk ---+ x, y , xk, Yk ---+ x , Y 

with xJ: E D'F(xk,Yk)(yj.), k E IN}, 

where w signifies the weak convergence on X', IN := {1, 2, ... }, and where 

fj• F(x, y)(y') := { x' E X' I (x', -y') E N((x, y); gph F)} (3.4) 

stands for.the Frechet coderivative ofF at (x, y) E gph F. Using (3.4), we have the following 
characterization of the classical local Lipschitzian property of compact-valued multifunc­

tions: F is locally Lipschitzian around x E dam F with modulus fp if and only if there is 

'7 > 0 such that 

sup{llx'lll x' E D'F(x,y)(y')} :O:fFIIY'II (3.5) 

whenever x Ex+ rylB, y E F(x), andy' E Y'. 
Given an extended-real-valued function <p: X_, IR := (-oo,oo) at x with <p(x) < oo, 

the (limiting) subdifferential of <p at x is defined by 

a<p(x) := LimsupB<p(x), 
x~X 

9 
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where x :f., x means that x---> x with tp(x)---> tp(x), and where fi<p(x) stands for the Frechet 

subdifferential of 'P at x defined by 

fitp(x):={x'EX'Ilimi!_lftp(u)-<p(x)-(x',u-x) 2:0}. 
x~x [[u-x[[ 

(3.7) 

The subgradient set (3.7) is widely used in the theory of viscosity solutions to nonlinear 
partial differential equations under the name of "viscosity subdifferential." Observe that 

N(x; !1) = 86(x; !1) and N(x; !1) = Eio(x; !1), 

where 0(·; !1) stands for the indicator function of !1 defined by O(x; !1) = 0 for X E !1 and 
o(x; !1) = 00 otherwise. 

The above normal cones, subdifferentials, and coderivatives enjoy comprehensive calcu­

lus rules: in fuzzy/approximate forms for Frechet-like constructions (3.2), (3.4), (3.7), and 

in exact/pointwise forms for their limiting counterparts. The driving force for these calculi 

is the usage of certain variational principles, or extremal principles in the geometric frame­
work, which are at the very heart of variational analysis. We formulate the fuzzy rule for 

Frechet subgradients of semi-Lipschitzian sums used in what follows, where JB* stands for 

the closed unit ball of X': given any e > 0, one has the inclusion 

fi('Pl +'P2)(x) c U{ &'P1(x1)+fi'P2(x2)l x; E x+elB, 

[tp;(x;)- tp;(x)[ ::; e, i = 1, 2} + elB' 
(3.8) 

provided that 'Pl is Lipschitz continuous around x while 'P2 is finite at x and lower semi­
continuous around this point. 

Besides calculus rules for generalized differentiation that are equally important in finite 

and infinite dimensions, major ingredients of infinite-dimensional variational analysis are 
"normal compactness" properties of sets, set-valued mappings, and extended-real-valued 

functions that are automatic in finite dimensions while playing a crucial role in many aspects 

in infinite-dimensional analysis, especially those related to passing to the limit. In this paper 

we employ only one of such properties needed for closed sets. This property called sequential 

normal compactness (SNC) is defined as follows: !1 c X is SNC at x E !1 if for any sequences 

of (xk. xi,) E X x X* satisfying 

Xk---> x with Xk E !1 and xi, E N(xk; !1) as k E JN 

one has the implication x'k .'!'. 0 => [[x'k[[---> 0 ask---> oo. When !1 is convex with rill oJ 0, 
its SNC property is equivalent to !1 being of finite codimension; the latter is widely used in 
optimal control of partial differential equations; cf. Fattorini [6] and Li and Yang [10]. 

Finally, let us mention an extension of the limiting normal cone (3.1) to the case of 

moving (parameter-dependent) sets useful in the study of nonautonomous objects. Given 

a moving set !1: T ==? X on a topological space of parameters, define the extended normal 

cone to !1(t) at x E !l(t) by 

N(x; !1(t)) := Lim sup N(x; !l(t)). 
(x,t)g~F(f,x) 
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Furthermore, no is said to be normally semicontinuous at (x, f) if N(x; n(t)) = N(x; n(t)). 
The latter property holds not only for parameter-independent sets O(t) = n but in much 

more general settings; see, e.g., Bounkhel and Thibault [2] and Mordukhovich [12, 14]. 

4 Optimality conditions for discrete approximations 

The primary objective of this section is to obtain necessary conditions for optimal solutions 

to the discrete approximation problems (PN) governed by difference evolution inclusions 

in infinite-dimensional spaces. We reduce these dynamic optimization problems to "non­

dynamic" problems ( M PN) of mathematical programming with operator and many geomet­
ric constraints. To conduct a variational analysis of problems (MPN) and then of (PN), we 

employ the tools and calculus rules of generalized differentiation discussed in Section 3. The 

main attention is paid to "fuzzy" results derived under minimal assumptions. They happen 

to be more convenient for furnishing limiting procedures to establish necessary optimality 

conditions in the original problem ( P) developed in Section 5. 
Fix N E IN and consider a "long" vector z E X 2N+l defined by 

Z = (x{j, xfl, ... , X~, y{j, ... , y~_1 ) := (xN (to), XN (ti), ... , XN (tN ), YN (to) .. ·, YN (tN-I)), 

with x{! = xN (to)= xo, where the discrete "mild derivative" vectors yf are given by 

xf:l 1 - eAhN xf:l 
yf = J+ J 

hN 
as j = 0, ... , N - 1. 

For each N E IN consider the following problem of mathematical progmmming (MPN): 
minimize the cost function 

N-I 
¢o(z) := cp(x~) + hN L ]]eAhN xf + hNY]'- x(t)]] 2 

j=O 

subject to the constraints 

·( ) ,_ N AhN N h N- 0 ' . - 0 N 1 g1 z .- xj+l - e xj - NYj - 10r J - , ... , - , 

A;:={(x{!,xfl, ... ,y~_ 1)1YfEeAhNF(xf,t;)} for j=O, ... ,N-1, 

AN:= {(x{!,xf, ... ,y~-Ill X~ E nN}. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Note that constraints (4.2) are of the operator type, while constraints (4.3) and (4.4) are 

geometric the number of which is increasing as N -> oo. It is easy to see that each problem 

(MPN) defined in (4.1)-(4.4) is equivalent to the discrete approximation problem (PN) 
given in (2.5), (2.14), and (2.15) as N E IN. Denote 

N 

g(z) := (go(z),gi(z), ... ,gN-I(z)) and A:= n A;. 
j=D 

The next fuzzy intersection rule for the sets A; is implied by the general result in Mor­

dukhovich [14, Lemma 3.1] due to the automatic fulfillment of the "fuzzy qualification 

condition" therein that follows from the specific structure of (4.3) and (4.4). 
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Lemma 4.1 (fuzzy intersection rule}. Let ;zN = (x0,xfl, ... ,x~,y[;', ... ,f}~_ 1 } be an 

optimal solution to problem (M PN). Assume that the sets l1 and gphF(·, tj) are locally 

closed. Then for any e > 0 and z E ;zN + e!B we have 

with some Zj E Aj n (z + dB} as j = 0, ... , N. 

The following theorem gives necessary optimality conditions of a fuzzy Lagrange mul­

tiplier type for the infinite-dimensional mathematical programming problems (M PN) with 

operator and many geometric constraints. 

Theorem 4.2 (fuzzy Lagrange multiplier rule). Let ;zN = (x0, xfl, ... , x~, y[;', · · · , f}~_ 1 ) 

be an optimal solution to problem (MPN) as N E IN. Assume that the cost function cfJo is 

locally Lipschitzian and that the sets l1 and gphF(·, tj) are locally closed around zN Then 

for any e > 0 there are a number Jto :::>: 0 and adjoint vectors '1/Jj E X' as j = 0, ... , N - 1 

and zj E (X')2N+l as j = 0, ... , N satisfying the relationships 

zj EN(zj;Aj) with some Zj EAjn(zN +dB} as j=O, ... ,N, (4.5) 

N N-l 

- L:zJ E Jto0¢o(z0} + 2::: 'Vgj(Z)*..Pj +elB' with some z0, zE :zN +e!B (4.6} 
j=O j=O 

and the nontriviality condition 
N-l 

Jto + 2::: 11'1/Jj II :::>: 1. 
j=O 

(4.7} 

Proof. By the above construction and notation made, each :zN is an optimal solution to 

the optimization problem 

minimize ¢0 (z} subject to g(z) = 0 and z E A, 

where the index "N" is omitted for simplicity. 

Assume first that :zN is a regular point for ¢0 relative to A, i.e., there are a > 0 and a 

neighborhood U of ;zN such that 

dist(x; Q):::; a]]¢o(z)- ¢o(:zN)]] for all z E An U, 

where Q := {z E A] ¢o(z) = ¢0 (:zN)} and where dist(·; Q) stands for the distance function. 

Then by the reduction theorem from Ioffe [8], :zN is a local solution to the following problem: 

minimize ¢o(z) + Jt]]g(z)]] subject to z E A 

for allJt > 0 sufficiently large. This easily implies that 

0 E 0[</Jo(-) + Jt]]g(·)IJ + o(·; A)j (:zN). (4.8) 
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Picking any c > 0 and applying the fuzzy sum rule (3.8) to ( 4.8) and then the intersection 

rule of Lemma 4.1 to the set A, we find (zj,zj) satisfying (4.5) as well as z0 , z E zN +clB, 

zo E B¢o(zo), and 1/Jj EX' satisfying 

k-l k 

0 E zo + L 'Vgj(Z)''I/!j + :LzJ + c.IB'. 
j=O j=O 

Thus we arrive at (4.5)-(4.7) with f.J.o = 1 in the regular case. 

Consider next the remaining case, which implies that the mapping 9A := g+A(·; A) is not 

metrically regular around 2N in the conventional sense; here A(z; A) stands for the indicator 

mapping of A defined by A(z; A) = 0 if z E A and A(z; A) = 0 otherwise. Applying the 

coderivative criterion of metric regularity from Mordukhovich and Shao [15, Theorem 5.6], 

for any c > 0 we find z E zN + c.IB and 1/J' = (1/!/i, ... , 1/J'N_1) E (X')N such that 

0 E D'gA(Z)('IjJ') with 111/!'11 > 1. 

By Lemma 4.1 and elementary coderivative calculus involving a smooth mapping g, we have 

o E D'gA(ZJ( 1/!') = i5• (g(·) + A(·; A)] (ZJ( ..P'l = v g(ZJ'..P* + N(z; A) 
N-l 

C L 'Vgj(Z)'..Pj + N(zo; Ao) + · · · + N(zN; AN)+ c.IB' 
j=O 

with some ZJ E AJ n (z + ciB) as j = 0, ... ,N. 
and thus completes the proof of the theorem. 

The latter implies (4.5)-(4.7) with f.J.o = 0 

A 

Based on the above necessary optimality conditions for problems of mathematical pro­

gramming, we now derive the following "fuzzy" necessary optimality conditions in the ex­

tended Euler-Lagrange form for discrete approximations of the original problem. 

Theorem 4.3 (fuzzy Euler-Lagrange conditions for discrete approximations). 
Let a;N(·) = (xo,xf', · .. ,x%) be an optimal solution to problem (PN) with any fixed N E IN. 

Assume that the cost function <pis locally Lipschitzian and that the sets f! and gphF(·, tj), 

j = 0, ... , N- 1, are locally closed around XN(·). Then, given an arbitrary c > 0, there 

exist a number ;>..N 2: 0 and a discrete adjoint trajectory pN(·) = (pf', ... ,p%) E (X')N 

satisfying the following relations: 

-the fuzzy Euler-Lagrange inclusion: there are (xf,yf), (xf,yf) E (xf,iifl + c.IB, 
and aj E .IB' for j = 1, ... ,N -1 such that 

A*hN N N 

(
e Pj+! - Pj ,NoN , N ) N~(( N N)· h ( AhNF( ·))) JB* hN - " "J aj, Pj+! E xj , Yj , gp e ., t1 + c (4.9) 

as j = 1, ... , N- 1, where the numbers ef are defined by 

(4.10) 
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-the fuzzy transversality inclusion: there are x{;i, x{;i E xj;i + ElB such that 

-the nontriviality condition: 

N 

;..N + L llvfll ~ 1 for all N E IN. 
j=l 

Proof. Apply Theorem 4.2 to the optimal solution 

- -N ( -N -N -N -N ) z:=z = xa,x1 , ... ,xN,Yo , ... ,YN-1 

( 4.11) 

(4.12) 

for problem (4.1)-(4.4) as N E IN, where a;N = (x0 ,xf', ... ,x%) is a given optimal so­

lution to (PN ). According to this result, there are a real number P,o ~ 0 and adjoint 

vectors (.,P0, ... ,7/J'N_1) E (X*)N and zj E (X*)2N+J, j = 0, ... ,N, satisfying the extended 

Lagrange-type relations (4.5)-(4.7). Taking into account the structure of Ai in (4.3) and 

( 4.4), present zj and the corresponding vectors Zj from ( 4.5) as 

( N N N N ) X2N+l d * ( * * * * * ) Zj = Xo,xlj,···,XNj,YOj,···,YN-lj E an Zj = Xoj,xljl''''XNj,YOj,··•,YN-lj · 

It is easy to derive from (4.3)-(4.5) the following relationships: 

{ 
(~Jj:__Yj~) ~ N((xfJ,yfj);gph(~hNF(·,tj))),. 
xij- Yij- 0 otherWlse, 1-0, ... ,N -1, 

( 4.13) 

( 4.14) 

with some zj' E zN + ciB. Further, by the structure of 9j in (4.2) we observe that 

j=O (4.15) 

for any z E X 2N+l. Then applying the extended fuzzy Lagrange multiplier rule (4.6) with 

the notation ;..N := P,o ~ 0 and then the fuzzy sum rule (3.8) for the cost function ¢o 

in (4.1) with taking into account its specific structure as well as the above relationships 

(4.13)-(4.15), we arrive at the inclusions 

-xjj E hNAN0fD3* +'f/Jj_1 - eA•hN.,Pj +hNcD3* for j = 1, ... ,N -1, 

-xivN E ANXN + 7/JN-1 + hNe;D3*, 

-yjj E -hN'l/Jj + hNe;D3* for j = 0, ... , N- 1, 
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( 4.17) 

(4.18) 

(4.19) 



where the numbers Bf are defined in (4.10) with some (xf,iJf) E (xf,yfJ + clB for 

j = 1, ... ,N -1, and where 

xjy E Drp(X%) with some x% Ex%+ ciB. 

Finally, by changing the notation in (4.13), (4.14), and (4.16)-(4.19) to 

(xf, yf) = (xf;, yf)), (xj, yj) := (xj;, Yj;), j = 0, ... , N, and pf := 1/Jj_1, j = 1, ... , N, 

we arrive at (4.9), (4.11), and (4.12), which ends the proof of the theorem. 

The nontriviality condition (4.12) in Theorem 4.3 can be essentially improved under the 

additional assumptions on F, which are parts of our standing hypotheses. 

Corollary 4.4 (fuzzy Euler-Lagrange conditions with enhanced nontriviality). 

In addition to the assumptions of Theorem 4.3, suppose that for each j = 0, ... , N - 1 the 

multifunction F(·,t;) is compact-valued and Lipschitz continuous around xf. Then there 

is a number 'Y > 0 independent of N and such that for some sequences of natural numbers 

N---+ oo and positive numbers f:N L 0 there are multipliers >.N and adjoint trajectories pN (·) 

satisfying (4.9)-(4.11) with f: = f:N and the enhanced nontriviality condition 

>.N + IIP%11 :2: 'Y as N---> oo. (4.20) 

Proof. It follows from the proof of Theorems 4.2 and 4.3 that either >.N = 1 or >.N = 0 

for all N E IN. It remains to show that if >.N = 0, then IIP%11 ;:::: 'Y for some number "f > 0 

and all N sufficiently large. To proceed, we first estimate llvfll via llv%11 when >.N = 0. 
Indeed, in the latter case the Euler-Lagrange inclusion ( 4.9) can be written in terms of the 

coderivative (3.4) as 

for all j = 0, ... , N - 1, where bj, cj E JB'. Since { eA'I t ;:::: 0} is a Co-semigroup of 
contractions, we have lleA'hN II :::; 1. Involving the coderivative characterization (3.5) of the 

local Lipschitzian property for compact-valued multifunctions, we derive from (4.21) that 

IIPfll :::; lleA'hNpf+l- pf- hNcbjll + lleA'hNpf+l- hNcbjll 

:::; (1 + hNfF) 11Pf+1 ll + hN(1 + fp )c 
:::; ......... 
< exp [fp(b- a)] [IIP%11 + (b- a)(l+ fp )c]. 

( 4.22) 

Suppose that the nontriviality condition (4.20) does not hold along with (4.9) and (4.11) 
in the case of >.N = 0 under consideration. Take a sequence 'Yk L 0 as k ---+ oo and choose 

numbers Nk and f:k such that 
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for k E IN, where [·] stands for the greatest integer less than or equal to the given real 

number. By the adjoint trajectory estimate (4.22) we have 

Nk 

2:: ]]pN•(t;)]] :::; Nk/'k exp [lp(b- a)] + EkNk(b- a)(1 HF) 
j=l 

:::; 'Yk exp [lp(b- a)] + 'Yk(b- a)(1 + lp) t 0 as k E IN, 

which contradicts ( 4.12) with >.N = 0. This completes the proof of the corollary. 

5 Optimality conditions for semilinear evolution inclusions 

In this section we derive necessary optimality conditions for the original problem (P) gov­

erned by infinite-dimensional evolution inclusions by passing to the limit from those for the 

discrete-time problems (PN) established in Section 4. Our limiting procedure is based on 

the stability/ convergence results for discrete approximations obtained in Section 2 and the 

robust tools of generalized differentiation reviewed in Section 3. A crucial component of 

the variational analysis developed in this section is justifying an appropriate convergence 

of adjoint arcs in the limiting procedure from discrete approximations. This is mainly 
based on the above coderivative criterion for the local Lipschitzian property of set-valued 

mappings. To furnish the limiting process, we keep in this section all the standing assump­

tions imposed in Section 2 with adding the following requirements on the cost function and 

target/constraint set in (1.1) and (1.3) around the optimal endpoint under consideration: 

(H3) The cost function <pis Lipschitz continuous around x(b) and the target set fl is SNC 

at this point. 

Note that the Lipschitzian requirement on <p can be weakened to the lower semicontinuity 

(with some change in the transversality condition; cf. Mordukhovich [12, 14]), while the 

SNC requirement is very essential in infinite dimensions. It has been well recognized that 

necessary optimality conditions of the Pontryagin maximum principle type do not hold even 
in simple control problems for the heat equation with a singleton target set, which is never 

SNC in infinite-dimensional spaces; cf. Fattorini [6] and Li and Yang [10]. 

To formulate the main result, consider the Hamiltonian function 

H(x,p,t):=sup{(p,v)lvEF(x,t)}, pEX*, 

and form the argmaximum sets defined by 

M(x,p,t) := {v E F(x,t)l (p,v) = H(x,p,t)}. 

In what follows we use the (limiting) normal/coderivativefsubdifferential constructions 

of Section 3 with respect to all the variables but t. 
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Theorem 5.1 (extended Euler-Lagrange conditions for semilinear evolution in­

clusions). Let x(·) be an optimal solution to the continuous-time problem (P) under the 

standing assumptions made. Then there exist a number A ::0: 0 and a weakly continuous arc 

p: [a, b] --> X*, not both zero, satisfying: 

-the extended Euler-Lagrange inclusion l p(t) E eA'(b-t)p(b) + l eA'(s-t) { u EX* I (u,p(s)) E N((x(s),v);gphF(·,s)), 
(5.1) 

v E M(x,p, s)} ds for all t E [a, b[, 

which is equivalent to 

p(t) E eA'(b-t)p(b) + l eA'(s-t)D* F(x(s),v)(-p(s))l v E M(x,p, s)} ds (5.2) 

if gphF(·,t) is normally semicontinuous at (x(t),v) for all v E M(x(t),p(t),t) and a. e. 

t E [a, b], in particular, ifF is autonomous; 

-the Weierstrass-Pontryagin maximum condition 

(p(t),x(t)) = H(x(t),p(t),t) a.e. t E [a,b]; (5.3) 

-the transversality condition 

-p(b) E A8<p(x(b)) + N(x(b); n). (5.4) 

Proof. Assume without loss of generality that the operator A generates a Co-semigroup 
{eAt [ t ::0: 0} of contractions on X and build a sequence of discrete approximations ( PN) for 

(P), which approximates x(·) in the sense of Theorem 2.2. Employing necessary conditions 

of Corollary 4.4 for optimal solutions a;N (-) = (x0 , xf, ... , x},f) to (PN ), we find sequences of 

numbers AN ::0: 0 and adjoint discrete trajectories pN (·) = (pf, ... , p},f) satisfying conditions 

(4.9)-(4.11) and (4.20) with some f:N t 0 as N --> oo. Observe that the nontriviality 

condition ( 4.20) can be equivalently written as 

AN+ [lPN (b)ll = 1 for all N E IN, (5.5) 

since the number 1 > 0 therein is independent of N. We may always assume that AN 

converge to some A ::0: 0 as N --> oo. 
As usual, the notation xN (t) and pN (t) stand for the piecewise linear extensions of the 

corresponding discrete functions on [a, b]. From the proof of Theorem 4.3 and Corollary 4.4 
we observe that the adjoint trajectories pN ( t) are uniformly bounded on [a, b]. Furthermore, 

it follows from (4.9) that the functions 

pN(t) = eA'(b-t)pN(b) -lb eA'(s-t)gN(s)ds (5.6) 

are the piecewise linear extensions of pN = (pf, ... , p},f) on [a, b], where 

gN(t) E {uE x•l (u,pN(tj+t)) E N((xN(tj),yf);gph(eAhNF(·,tj))) +cNIB*} 
(5.7) 
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It follows from (5. 7) and the coderivative criterion (3.5) that the functions gN (·) are uni­

formly bounded. in L2([a, b]; X), and hence they weakly converge to some g(·) E L2([a, b]; X). 

By Theorem 2.2 we have that xN (t) -> x(t) uniformly on [a, b], and hence Bf -> 0 for all 

j = 1, ... , N- 1 as N-> oo. Observe also that 

( 

lim eA'(b-t)PN (b) = eA'(b-t)p(b) and 
N~oo 

lb lb (5.8) 
lim eA'(•-t)gN(s)ds= eA'(•-tlg(s)ds, 

N-oa t t 

since the C0-semigroup {eAt [ t ~ 0} is compact, which implies the compactness of the one 

{eA't[ t ~ O}.·By (5.8) and the weak continuity of the Bochner integral as a linear operator 

from L2 ([a, b]; X') to X', we get from (5.6) by passing to the limit as N -> oo that the 
adjoint arcs pN (t) weakly converge for each t E [a, b] to some function p(t) EX', which is 

weakly continuous on [a, b]. Furthermore, (5.7) and the convexity of the sets F(xN(tj ), tj) 

whenever j = 0, ... , N - 1 imply that 

gN (t) E {wE X* I (w, eA'hN (pN (tj+I)- I':Nbjy )) dV((xN (tj), v); gphF(·, tj)), 

v E M(xN(t1),eA'hN(pN(tJ+1) -cNbjy),t1)} + >,NefiB', 
(5.9) 

where w := u- I':Naiv with some ajy, bjy E JB*. Passing to the limit in (5.9) as N -> oo and 

using the classical Mazur weak closure theorem, we arrive at 

g(t) E co { u E x·l (u,p(t)) E N((x(t),v);gphF(·, t)), 

v E M(x(t),p(t), t)} a.e. t E [a, b], 
(5.10) 

where the closure operation for the convex hull in (5.10) can be omitted due to the reflexivity 

of the space X. Then passing to the limit in (5.6) as N-> oo with taking into account (5.8) 

and (5.10), we obtain the inclusion 

J p(t) E eA'(b-tlp(b) + [ eA'(•-tlco { u EX* I (u,p(s)) E N((x(s),v); gphF(·, s)), 

l v E M(x(s),p(s), s)} ds for all t E [a, b], 

where the convexity operation under the integral can be omitted due to the fundamental 

Lyapunov-Aumann integration theorem in reflexive and separable Banach spaces (see, e.g., 

Diestel and Uhl [4] and Tolstonogov [19]) by the above compactness arguments involving 

the compact semigroup {eA't[ t ~ 0}. Thus we have the extended Euler-Lagrange inclusion 

(5.1), which automatically implies the maximum condition (5.3) as well as the coderivative 

form (5.2) under the normal semicontinuity. The transversality condition (5.4) follows from 

(4.11) by passing to the limit as N-> oo and taking into account the structure (2.15) of 

the set fiN with 1'/N t 0. 
It remains to justify the nontriviality condition (p(·), >.) f' 0 under the SNC assumption 

imposed on the set flat x(b). Supposing the contrary, we have that pN (b) C". 0 as N-> oo. 

Due to the fuzzy transversality condition (4.11) with p~ = pN(b) and the convergence 

>,N -> 0 and x~ -> x(b), the latter implies that [jpN (b)[[ -> 0 as N -> oo by the SNC 
property of fl and the structure of fiN. This contradicts the discrete nontriviality condition 

(5.5) for large N E IN and completes the proof of the theorem. 6 
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