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THE APPROXIMATE MAXIMUM PRINCIPLE 

IN CONSTRAINED OPTIMAL CONTROL 1 

BORIS S. MORDUKHOVICH and ILYA SHVARTSMAN 

Department of Mathematics, Wayne State University, Detroit, MI 48202 

boris@math. wayne.edu, ilya@math. wayne.edu 

Abstract. The paper concerns optimal control problems for dynamic systems governed by a parametric 

family of discrete approximations of control systems with continuous time. Discrete approximations play 

an important role in both qualitative and numerical aspects of optimal control and occupy an intermediate 

position between discrete-time and continuous-time control systems. The central result in optimal control of 

discrete approximations is the Approximate Maximum Principle (AMP), which is justified for smooth control 

problems with endpoint constraints under certain assumptions without imposing any convexity, in contrast 

to discrete systems with a fixed step. We show that these assumptions are essential for the validity of the 

AMP, and that the AMP does not hold, in its expected (lo.wer) subdifferential form, for nonsmooth problems. 

Moreover, a new upper subdifferential form of the AMP is established in this paper for both ordinary and 

time-delay control systems. This solves a long-standing question about the possibility to extend the AMP 

to nonsmooth control problems. 

Key words. optimal control, discrete approximations, approximate maximum principle, stability under 

perturbations, nonsmooth and variational analysis, lower and upper subgradients, time delays 

AMS subject classification. 49K15, 93C55, 49M25, 49J52, 49J53. 

1 Introduction and Preliminaries 

This paper is devoted to discrete approximations of continuous-time control systems that, viewed as 

a parametric process with a decreasing discretization step, occupy an intermediate position between 

control systems with discrete and continuous times. As the basic model for our study, we consider 

discrete approximations of the following Mayer-type optimal control problem governed by ordinary 

differential equations with endpoint constraints: 

(P) 

minimize J(x, u) := <po(x(ti)) 

subject to 

±(t) = f(t, x(t), u(t)) a.e. t E [to, t1], x(t0 ) = x0 E mn, 

u(t) E U a.e. t E [to, tl], 

<pi(x(ti)) ~ 0, i = 1, ... , m, 

<pi(x(ti)) = 0, i = m + 1, ... ,m + r, 
1 Research was partly supported by the National Science Foundation under grants DMS-0072179 and DMS-0304989. 
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over measurable controls u(·) and absolutely continuous trajectories x(·) on the fixed time interval 

T := [t0 , t 1]. It is well known that many other control problems (of Lagrange and Bolza types, with 

integral constraints, on variable time intervals, etc.) reduce to the form of (P). Observe also that 

the results of this paper can be easily extended to control problems with non-fixed initial vector 

(i.e., when <pi in (P) depend on both endpoints x(to) and x(ti) for all i = 0, ... , m + r) as well as 

to problems with continuously time-dependent control sets U = U(t). 

Problem (P) may be treated as an infinite-dimensional optimization problem with special 

equality-type dynamic constraints governed by differential operators as well with geometric con­

straints given by arbitrary control sets; this makes it to be nonsmooth even under all smooth 

functional data f and <fJi· On the other hand, it is natural to explore a different way to study 

continuous-time problems (P), which goes back to Leibnitz and Euler and which consists of approx­

imating (P) by a family of discrete-time systems arising when the time-derivative ±(t) is replaced 

with the finite differences 

'() x(t+h) -x(t) 
X t :::::::: ---'-----'------'--'--

h 
as h -7 0. 

Allowing also perturbations of the endpoint constraints (which is very essential for variational sta­

bility), problem (P) is replaced in this way by the following family of discrete-time problems (PN) 

depending on the natural parameter N = 1, 2, ... : 

minimize J ( x N, u N) : = <po ( x N (t 1)) 

subject to 

XN(t + hN) = XN(t) + hNf(t,XN(t),uN(t)), XN(to) = Xo E JRn, 

(PN) uN(t)EU, tETN:={to,to+hN, ... ,h-hN}, 

<fJi(XN(ti)) ::; /iN, i = 1, ... , m, 

l<fJi(XN(ti))I ::; t5iN, i = m + 1, ... , m + r, 
t1 -to 

hN := ~' N E IN:= {1,2, ... }, 

where 'YiN -7 0 and t5iN t 0 as N -7 oo for all i. For each fixed N E IN problem (PN) is finite­

dimensional and seems to be simpler than the continuous-time problem (P). Indeed, applying 

well-developed methods of finite-dimensional variational analysis, it is possible to derive necessary 

optimality conditions in problems (PN) even with nonsmooth data and general dynamic constraints 

governed by discrete inclusions and then obtain the corresponding results for optimal control of 

differential inclusions by passing to the limit from discrete approximations; see [4, 6, 13] for detailed 

proofs and discussions. However, this approach has some limitation regarding necessary optimality 

conditions of the maximum principle type. 
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As well known, the central result of the optimal control theory for continuous-time problems 

(P), the Pontryagin Maximum Principle (PMP) [11], holds with no convexity assumptions on the 

admissible velocity sets f(t, x, U). This specific result, from the general viewpoint of optimization 

theory, is strongly due to continuous-time dynamic constraints in (P) governed by differential 

operators. It happens that continuous-type control systems enjoy a certain hidden convexity, which 

is deeply related to the classical Lyapounov theorem on the range convexity of nonatomic vector 

measures and eventually leads the to maximum principle form. It is not surprising therefore that an 

analogue of the maximum principle for discrete-time control systems does not generally hold without 

a priori convexity assumptions. This may create troubles for applications of the PMP in numerical 

calculations of nonconvex continuous-time control systems, which inevitably involve finite-difference 

approximations via time discretization. To avoid such troubles, it is sufficient to justify not a full 

analogue of the PMP, with the exact maximum condition, but its approximate counterpart, where 

an error in the maximum condition depends on the discretization stepsize tending to zero when the 

latter is decreasing. 

The first result of this type in the absence of convexity assumptions was given by Gabasov 

and Kirillova [2, 3], under the name of "quasi-maximum principle," for parametric discrete systems 

with smooth cost and dynamics and with no endpoint constraints. The proof of this result, purely 

analytic, essentially exploited the unconstrained nature of the problem. 

The following Approximate Maximum Principle (AMP) for the noncopvex constrained problems 

(PN) was established by Mordukhovich [4, 5]. The proof in [4, 5] is geometric based on the discovered 

finite-difference counterpart of the hidden convexity property and the separation theorem. DenotP-

(1.1) H(t,x,p,u) := (p,f(t,x,u)), p E JRn, 

the Hamilton-Pontryagin function for the dynamic constraints under consideration. 

APPROXIMATE MAXIMUM PRINCIPLE. Let the pairs ( x N, u N) be optimal to ( PN) for all 

N E IN, where U is a compact subset of a metric space with the metric d( ·, ·), where f is continuous 

with respect to its variables and continuously differentiable with respect to x in a tube containing 

the optimal trajectories XN(t) for large N, and where each i.{)i is continuously differentiable around 

the limiting point(s) of {xN(ti)}. Impose the following assumptions: 

(a) The CONSISTENCY CONDITION on the perturbation of the equality constraints meaning that 

(1.2) lim ~N = 0 for all i = m + 1, ... , m + r. 
N-too UiN 

(b) The PROPERNESS of the sequences of optimal controls {UN}, which means that for every 

increasing subsequence { N} of natural numbers and every sequence of mesh points TO(N) E TN 

3 



satisfying TfJ(N) =to+ B(N)hN, B(N) = 0, 1, ... , N- 1, and TfJ(N) -+ t E [to, t1] one has 

as N -+ oo with any natural constant q. 

Then there are numbers { AiN I i = 0, ... 'm + r} and a function c(t, hN) -+ 0 as N -+ 00 uniformly 

.,; in t E TN such that 

(1.3} 

for all t E TN and that 

(1.4} 

( 1.5) 
m+r 

AiN 2:: 0, i = 0, ... , m, and L >..fN = 1 
i=O 

for all N E IN, where p N ( t), t E TN U { ti}, is the corresponding trajectory of the adjoint system 

(1.6) 

with the transversality condition 

m+r 
(1. 7) PN(tl) =- L AiNY''Pi(XN(tl)). 

i=O 

Observe that the closer hN is to zero, the more precise the approximate maximum condition 

(1.3) and the approximate complementary slackness condition (1.4} are. This means that the AMP 

in (PN) tends to the PMP in (P) as N-+ oo, which actually justifies the stability of the Pontryagin 

Maximum Principle with respect to discrete approximations under the assumptions made. 

It has been shown in [4, 5] that the consistency condition in (a) is essential for the validity of 

the AMP in problems with equality constraints. The first goal of the paper is to examine the other 

two significant assumptions made in the above theorem: the properness condition in (b) and the 

smoothness of the initial data. We show in Section 2 that both of these assumptions are essential 

for the validity of the AMP. 

Note that the properness of the sequence of optimal controls in (b) is a finite-difference counter­

part of the piecewise continuity (or, more generally, of Lebesgue regular points having full measure) 

for optimal controls in continuous-time systems. It turns out that the situation when sequences of 
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optimal controls are not proper in discrete approximations is not unusual for systems with non­

convex velocities, and it leads to the violation of the AMP al~eady in the case of smooth problems 

with inequality constraints. 

The impact of nonsmoothness to the validity of the AMP happens to be even more striking: 

the AMP does not hold in the expected conventional subdifferential form already for minimizing 

convex cost functions in discrete approximations of linear systems with no endpoint constraints, as 

well as for problems with nonsmooth dynamics. It seems that the AMP is one of very few results 

on necessary optimality conditions that do not have expected counterparts in nonsmooth settings. 

On the other hand, we derive the AMP in problems (PN) with nonsmooth functions describing 

the objective and inequality constraints in a new upper subdifferential (or superdifferential) form, 

which is also new for necessary optimality conditions in continuous-time control systems. The 

main difference between the conventional subdifferential form, which does not hold for the AMP 

but holds for the PMP, and the new one is that the latter involves upper (not lower) subgradients 

of nonsmooth functions in transversality conditions. This form applies to a class of uniformly 
I 

upper subdifferentiable functions described in this paper, which particularly contains smooth and 

concave continuous functions being closed with respect to taking the minimum over compact sets. 

The results obtained solve a long-standing question about the possibility to establish the AMP in 

nonsmooth control problems. We also derive the upper subdifferential form of the AMP in discrete 

approximations of control systems with time delays, for which no results of this type have been 

known before. The main results of this paper have been announced in [9] 

The rest of the paper is organized as follows. Section 2 contains examples on the violation 

of the AMP in smooth problems (PN) without the properness condition as well as in problems 

with nonsmooth cost functions and/or nonsmooth dynamics. In Section 3 we discuss appropriate 

tools of nonsmooth analysis paying the main attentions to the concepts of upper regularity and 

uniform upper subdifferentiability, which are new in the study of minimization problems. The main 

Section 4 is devoted to the derivation of the AMP for the discrete approximation problems (PN) 

in the upper subdifferential form; it contains three slightly different modifications of this results in 

somewhat distinct settings. In the final Section 5 we extend the AMP to discrete approximations of 

constrained time-delay systems, where the results obtained are new in both smooth and nonsmooth 

frameworks. We also present an example on the violation of the AMP in discrete approximations 

of functional-differential control systems of neutral type, even under smoothness assumptions in the 

absence of endpoint constraints. 

Throughout the paper we use standard notation with some special symbols defined in the text 

where they are introduced. 
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2 Counterexamples 

Let us start with an example on the violation of the AMP in discrete approximations of linear 

control systems with linear cost functions and linear endpoint inequality constraints but with no 

properness condition. 

Example 2.1 (AMP does not hold in smooth control problems with no properness 

condition). There is a two-dimensional linear control problem with an inequality constraint such 

that optimal controls in the sequence of its discrete approximations do not satisfy the Approximate 

Maximum Principle. 

Proof. Let us consider a linear continuous-time optimal control problem (P) with a two-dimensional 

state x = (xi, x2) E JR2 in the following form: 

(2.1) 

minimize <p(x(1)) := -xi(l) 

subject to 

:h = u, x2 =XI- at, x1(0) = x2(0) = 0, 

u(t) E U := {0, 1}, 0::; t::; 1, 
a-1 

X2(1) ::; --
2
-, 

where a > 1 is a given constant. Observe that the only "unpleasant" feature of this problem is 

that the control set U = {0, 1} is nonconvex, and hence the feasible velocity sets f(t,x, U) are 

nonconvex as well. It is clear that u(t) = 1 is the unique optimal solution to problem (2.1), and 
a- 1 2 that the corresponding optimal trajectory is x1(t) = t, x2 (t) = --

2
-t . Moreover, the inequality 

. . . . (1) a- 1 constramt IS act1ve, smce x2 = --
2
-. 

Let us now discretize this problem with the stepsize hN := 2}-,r, N E IN. For the notation 

convenience we omit the index N in what follows. Thus the discrete approximation problems (PN) 

corresponding to (2.1) are written as: 

(2.2) 

minimize <p(x(1)) = -xi(1) 

subject to 

x1(t +h)= xl(t) + hu(t), Xl(O) = 0, 

X2(t +h)= X2(t) + h(x1(t)- at), X2(0) = 0, 

u(t)E{0,1}, tE{O,h, ... ,1-h}, 
a -1 2 X2(1) ::; --

2
- + h , 

i.e., we put /N := h~ in the constraint perturbation for (PN ). 
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To proceed, we compute the trajectories of (2.2) corresponding to u(t) = 1. It is easy. to see 

that x 1(t) = t for this u. To compute x2(t), observe that 

t2 th 
[y(t +h) = y(t) + ht, y(O) =OJ ===? y(t) = 2 - 2· 

Indeed, one has by the direct calculation that 

t-h f;-1 l( l.- 1) t2 th 
y(t) = h 2:: = [put r = khJ = h2 2:: k = h2 h h = __ -. 

r==O k==O 2 2 2 

Therefore for x2(t) corresponding to u(t) = 1 in (2.2) we have 

t-h 1 1 '""""' a- 2 a-x2(t) = h ~ (r- ar) = --
2
-t + -

2
-ht. 

r==O 

By this calculation we see that, for h sufficiently small, x2(t1) no longer satisfies the endpoint 

constraint, and thus u(t) = 1 is not a feasible control to problem (2.2) for all h close to zero. This 

implies that an optimal control to (2.2) for small h, which obviously exists, must have at least one 

switching points such that u(s) = 0, and hence the maximum value of the corresponding endpoint 

x1 ( 1) will be less than or equal to 1 - h. Put 

and show that 

(2.3) 

{ 

1 t -=!= s, 
u(t) := 

0 t = s 

{ 

-a- 1 t2 + a- 1 ht. t :::; s, 
X2 ( t) = 2 1 2 1 . a- 2 a- 2 

--
2
-t + -

2
-ht- h(t- s) + h , t;::: s + h, 

for the corresponding trajectories in (2.2) depending on hands. We only need to justify the second 

part of this formula. To compute x2(t) for t ;::: s + h, substitute x1 (t) = t- h into (2.2). It is easy 

to see that the increment ~x2(t) compared to the case when u(t) = 1 is 

t-h 

h L ·(-h)= -h(t-h-s) = -h(t-s)+h2, 
r==s+h 

which justifies (2.3). Now let us specify the parameters of the above control putting a = 2 and 

s = 0.5 for all N, i.e., considering the discrete-time function 

{ 

1 t-=!= 0.5, 
u(t) := 

0 t = 0.5; 

note that the point t = 0.5 belongs to the grid TN for all N due to hN := 2~. Observe that the 

sequence of these controls does not satisfy the properness property in· the assumption (b) of the 

7 



AMP formulated in Section 1. It follows from (2.3) that the corresponding trajectories satisfy the 

endpoint constraint in (2.2) for all N E IN, since adl) = -~t2 + h2• Moreover, it is clear from the 

above calculations that the control u(t) is optimal to problem (PN) in (2.2) for any N. Let us show 

that the sequence of optimal controls u(t) does not satisfy the approximate maximum condition 

( 1.3) at the point of switch. 

The adjoint·system (1.6) for problem (2.2) with any his 

p(t) = p(t +h)+ h ~~* (t,x1,x2,u)p(t +h), 

where the Jacobian matrix of fox and its adjoint/transposed one equal 

of = ( o o ) , 
ax 1 0 

of* = ( o 1 ) . 
ox 0 0 

Thus we have the adjoint trajectories 

Pl (t) = Pl (t +h) + hp2(t +h) and P2(t) = const, 

where (p1,p2) satisfy the transversality condition (1.7) with the corresponding signfnotriviality 

conditions (1.5) written as 

This implies that p1 ( t) is a linear nondecreasing function. The corresponding Hamilton-Pontryagin 

function ( 1.1) equals 

H(t,x(t),p(t +h), u(t)) = Pl(t + h)u(t) +terms not depending on u. 

Examining the latter expression and taking into account that the optimal controls are equal to one 

for all t butt= 0.5, we conclude that the approximate maximum condition (1.3) holds only if p1 (t) 

is either nonnegative or tends to zero everywhere except t = 0.5. Observe that Pl (t) = 0 yields 

.A1 = .A2 = 0, which contradicts the nontriviality condition. Hence Pl (t) must be positive away 

from t = 0. Therefore a sequence of controls having a point of switch not tending to zero as h .j.. 0 

cannot satisfy the approximate maximum condition at this point. This shows that the AMP does 

not hold for the sequence of optimal controls to (2.2) built above. D 

Many examples of this type can be constructed based on the above idea, which essentially means 

the following. Take a continuous-time problem with active inequality constraints and nonconvex 

admissible velocity sets f(t, x, U). It often happens that after the discretization the "former" 

optimal control becomes not feasible in discrete approximations, and the "new" optimal control in 
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the sequence of discrete-time problems has a singular point of switch (thus making the sequence of 

optimal controls not proper), where the approximate maximum condition does not hold. 

The next example demonstrates that the AMP may be violated in problems of minimizing 

nonsmooth cost functions in linear systems with no endpoint constraint. 

Example 2.2 (AMP does not hold for linear systems with nonsmooth and convex cost 

functions). There is a one-dimensional control problem of minimizing a nonsmooth and convex 

cost function over a linear system with no endpoint constraints such that a proper sequence of 

optimal controls to discrete approximations does not satisfy the Approximate Maximum Principle. 

Proof. Consider the following sequence of one-dimensional optimal control problem (PN ), N E IN, 

for discrete-time systems: 

(2.4) 

minimize <p(xN(1)) := lxN(1)- rl 

subject to 

XN(t + hN) = XN(t) + hNuN(t), XN(O) = 0, 

UN(t) E U := {0, 1}, t E TN:= {0, hN, ... , 1- hN }, 

where r is a positive irrational number less than 1 whose choice will be specified below. The 

dynamics in (2.4) is a discretization of the simplest ODE control system x = u. Observe that, since 

r is irrational and hN is rational, we have XN(1) '# r for the endpoint of an optimal trajectory to 

(2.4) as N E IN, while obviously x(1) = r for optimal solutions to the continuous-time counterpart. 

It is also·clear that for sufficiently small hN an optimal control to (2.4) will be neither uN(t) = 0 

nor UN(t) = 1, but it will have at least one point of switch. 

Suppose that for some subsequence Nk---+ oo one has XNk(1) > r; put {Nk} =IN without loss 

of generality. Let us show that in this case the approximate maximum condition does not hold at 

points t E TN for which ilN(t) = 1. Indeed, we have 

for the Hamilton-Pontryagin function and the adjoint trajectory in (1.6) and (1.7), since xN(1) > r 

along the optimal solution to (2.4). Thus 

at the points s E TN of control switch, where uN(s) = 1 regardless of hN. 

Let us specify the choice of r in {2.4) ensuring that XN(1) > r along some subsequence of 

natural numbers. We claim that xN(1) > r if r E (0, 1) is an irrational number whose decimal 
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representation contains infinitely many digits from the set {5, 6, 7, 8, 9}; e.g., r = 0.676676667 .... 

Indeed, put hN := 10-N, which is a subsequence of hN = N'-1 as required in {2.4). It is easy to 

see that in this case the set of all reachable points at t = 1 is the set of rational numbers between 

0 and 1 with exactly N digits in the fractional part of their decimal representations. In particular, 

for N = 3 this set is {0, 0.001, 0.002, ... , 0.999, 1 }. Therefore, by the construction of r, the closest 

point to r from the reachable set is greater than r, and such point must be the endpoint of the 

optimal trajectory x N ( 1). 

It remains to show that one always can choose a sequence of optimal control to (2.4) satisfying 

the properness condition. Taking r as above, we denote by s(N) E TN the point of the grid closest 

to r. It is easy to see that the control 

{ 

1, 
UN(t) := 

0, 

t:::; s(N), 

t ~ s(N) + hN, 

is optimal to (2.4) for each N E IN, and the sequence {UN} satisfies the properness condition. D 

Example 2.2 contradicts the AMP with the transversality condition in the conventional subdif­

ferential form, which is 

for problems with no endpoint constraints. In our example the function <p(x) = lx - rl is convex, 

and hence the subdifferential8 is understood in the sense of convex analysis. Note that we actually 

showed that the subdifferential agrees with the gradient 

o<p(xN(1)) = {V'<p(xN(1))} = {1} for all N E IN 

along the optimal trajectories in (2.4) due to the choice of r. Since any reasonable (lower) sub­

differential for nonsmooth functions must reduce to the convex subdifferential for convex ones, 

Example 2.2 proves that there is no hope for an extension of the AMP in the conventional subdif­

ferential form to problems with nonsmooth costs. 

The next example, complemented to Example 2.2, shows that the AMP fails even for problems 

with differentiable but not continuously differentiable cost functions. 

Example 2.3 (AMP does not hold for linear systems with differentiable but not C1 cost 

functions). There is a one-dimensional control problem of minimizing a Frechet differentiable but 

not continuously differentiable cost function over a linear system with no endpoint constraints such 

that a proper sequence of optimal controls to discrete approximations do not satisfy the Approximate 

Maximum Principle. 
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Proof. Consider the same control system as in (2.4) and construct a minimizing function <p(x) 

satisfying the above requirements. Let '1/J(x) be a C1 function with the properties: 

'1/J(x) ;::: 0, '1/J(x) = '1/J( -x), '1/J(x) = 0 if lxl > 2, 

IY''l/J(x)l :=:; 1 for all x, and \7'1/J(-1) =a> 0. 

Define the cost function <p(x) by 

which is continuously differentiable around every point but x = b, where it is differentiable and 

attains its absolute minimum at. As in Example 2.2, we put hN := w-N, and then the point 

x = b cannot be reached by discretization. It is not hard to check that the endpoint of the optimal 

trajectory x N for each N is 

N 

XN(1) = L w-k with \7<p(xN(1)) =a+ eN, 
k=l 

where eN ..!. 0 as N --+ oo. Proceeding as in Example 2.2, with the same sequence of optimal 

controls, we have H(xN(t), PN(t + hN ), u) = -au, and the approximate maximum condition (1.3) 

does not hold at those points where ilN(t) = 1. D 

The last example in this section concerns systems with nonsmooth dynamics. We actually 

consider a finite-difference analogue of minimizing an integral functional over a one-dimensional 

control system, which is equivalent to a two-dimensional optimal control problem of the Mayer 

type. The discrete "integrand" in this problem is nonsmooth with respect to the state variable x; it 

happens to be continuously differentiable with respect to x along the optimal process { x N (·),UN ( ·)} 

under consideration but not uniformly in N. Thus the example below demonstrates that the 

uniform smoothness assumption on f in a tube containing optimal trajectories is essential for the 

validity of the AMP formulated in Section 1. 

Example 2.4 (violation of AMP for control problems with nonsmooth dynamics). The 

AMP does not hold in discrete approximations of a minimization problem for an integral functional 

over a one-dimensional linear control system with no endpoint constraints such that the integrand 

is linear with respect to the control variable while convex and nonsmooih with respect to the state 

one. Moreover, the integrand in this problem happens to be C 1 with respect to the state variable 

along the sequence of optimal solutions to the discrete approximations (PN) for all N E IN but not 

uniformly in N. 
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Proof. First we consider the following continuous-time optimal control problem: 

(2.5) 

minimize J(x,u) :=loti (u(t) + lx(t)- t2 /2l)dt 

subject to 

:i; = tu, x(O) = 0, 

u(t) E U := {1,c}, 0:::; t:::; t1, 

where the terminal time t1 and the number c > 1 will be specified below. It is obvious that the 

optimal control to (2.5) is u(t) = 1 and the corresponding optimal trajectory is x(t) = t 2 /2. 

Discretizing (2.5), we get the sequence of finite-difference control problems: 

(2.6) 

minimize J(xN, UN) := hN L (uN(t) + lxN(t)- t 2 /21) 
tETN 

subject to 

XN(t + hN) = XN(t) + hNiUN(t), XN(O) = 0, 

UN(t) E U = {1,c}, t E TN :=.{khN}f,:(/. 

Let us first show that uN(t) = 1 remains to be the (unique) optimal control to (2.6) if the stepsize 

hN is sufficiently small and (t1, c) are chosen appropriately. Indeed, similarly to Example 2.1 we 

compute the trajectory to (2.6) corresponding to the control uN(t) = 1: 

t2 thN 
x N ( t) = 2 - 2 for all N E IN. 

The value JN(1) of the cost functional at uN(t) = 1 equals 

2 ~ t tfhN 
JN(1) = t1 + hN ~ 2 = t1 + -

4
- + o(hN)· 

tETN 

(2.7) 

If we replace uN(t) = 1 by uN(t) =cat some point t E TN, then the increment of the summation 

hN L uN(t) equals (c- 1)hN. Hence 
tETN 

for any feasible control uN(t) to (2.6), which is not uN(t) = 1. Comparing the latter with (2.7), we 

conclude that the control UN(t) = 1 is optimal to (2.6) if tf/4 < c- 1 and N is sufficiently large. 

Let us finally show that for t 1 > 2 and c > t 2 /4 + 1 (e.g., for t 1 = 3 and c = 4) the sequence 

of optimal controls UN = 1 does not satisfy the approximate maximum condition (1.3) at points 

t E TN sufficiently close tot= ti/2. Compute the Hamilton-Pontryagin function (1.1) as a function 

oft E TN and u E U at the optimal trajectory XN(t) corresponding to the optimal control under 

consideration with the adjoint trajectory PN(t) to (1.6). Reducing (2.6) to the standard Mayer form 
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and taking into account that xN(t) < t2 /2 for all t E TN due to above formula for the trajectory of 

(2.6) corresponding to uN(t) = 1, we get 

H(t, XN(t),pN(t), u) = tpN(t + hN )u- u- ixN(t)- t2 /21 
= (tpN(t + hN) - 1)u + (xN(t) - t2 /2), 

where PN(t) satisfies the equation 

whose solution is PN(t) = t1 - t. Therefore 

H(t, XN(t),pN(t), u) = (t(t1- t + hN)- 1)u + O(hN) = ( -t2 + t1t- 1)u + O(hN ). 

The multiplier -t2 + t1 t - 1 is positive in the neighborhood oft = t!/2 if its discriminant tr - 4 is 

positive. Thus u = c, but not u = 1, provides the 1?-aximum to the Hamilton-Pontryagin function 

around t = t!/2 if hN is sufficiently small. D 

Observe that the constructions in Example 2.2 and 2.4 are actually based on the same idea. The 

crucial point in Example 2.2 (and similarly in Example 2.3) is that, due to the incommensurability of 

the reachable set and the ideal point of minimum x N ( 1) = r, the endpoint of the optimal trajectory 

XN(1) turns out to be in the zone, where the discontinuous derivative of the cost function has the 

"wrong sign". A similar situation is in Example 2.4, but in this case the function ~~ is discontinuous 

with respect to x, and the optimal trajectory in the discrete problem deviates to the "wrong side" 

of the ideal (continuous-time) optimal trajectory. 

3 Uniformly Upper Subdifferentiable Functions 

In this section we present some tools of nonsmooth analysis needed for the formulation and proofs 

of the main positive results of the paper: the Approximate Maximum Principle for ordinary and 

time-delay systems in the new upper subdifferential form. Results in this form are definitely non­

traditional in optimization, since they concern minimization problems for which lower subdiffer­

ential constructions are usually employed. However, we saw in the preceding section that results 

of the conventional lower type simply do not hold for the AMP. In Sections 4 and 5 we are go­

ing to employ upper subdifferential constructions for nonsmooth minimization problems of optimal 

control, which happen to work for a special class of uniformly upper subdifferentiable functions we 

describe and discuss in this section. 
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Given an extended-real-valued function cp: mn --+ JR := [-oo, oo] finite at x, we first define its 

Frechet upper subdifferential by 

(3.1) fJ+cp(x) := {x* E JRnllimsup cp(x)- cp(x)(:*,x- x) ~ o}. 
x-+x JJx - xJJ 

This construction is known also as the "Frechet superdifferential" or the "viscosity superdifferen­

tial"; it is extensively used in the theory of viscosity solutions. The set (3.1) is symmetric to the 

(lower) Fnkhet subdifferential 

a+cp(x) = -8( -cp)(x), 

which is widely used in variational analysis under the name of "regular" or "strict" subdifferential; 

see, e.g., [12] and [14]. The upper subdifferential (3.1) is our primary generalized differential 

construction in this paper. This set is closed and convex but may be empty for many functions 

useful in minimization. In fact, both §+cp(x) and fi.cp(x) are nonempty simultaneously if and only 

if cp is Frechet differentiable at x in which case 

§+cp(x) = Bcp(x) = {\7cp(x)}. 

Following [5], we define the basic upper subdifferential of cp at x by 

and call cp to be upper regular at x if a+cp(x) = §+cp(x). This class includes, in particular, all 

strictly differentiable functions as well as proper concave functions. In the concave case §+cp(x) 

reduces to the upper sub differential of convex analysis, which is nonempty whenever x E ri( dom cp). 

Moreover, fJ+cp(x) # 0 if cp is upper regular at x and Lipschitz continuous around this point. In 

the latter case the upper regularity of cp agrees with the subdifferential regularity of -cp at the 

same point in the sense of [12]. It is interesting to observe that, for Lipschitzian upper regular 

functions, the Frechet upper subdifferential (3.1) agrees with Clarke's generalized gradient Bcp(x) 

of [1]. Indeed, one has 

if cp is Lipschitz continuous around x; see, e.g., [5, Theorem 2.1]. Since a+cp(x) = §+cp(x) for upper 

regular functions and since a+cp(x) is always convex, we arrive at 8cp(x) = a+cp(x). 

Let us now define a class of functions for which we obtain an extension of the AMP to nonsmooth 

control problems in the next section. 
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Definition 3.1 (uniform upper subdifferentiability). A function c.p: lRn --+ lR is UNIFORMLY 

UPPER SUBDIFFERENTIABLE around a point x where it is finite, if there is a neighborhood V of x 
such that for every x E V there exists x* E mn with the following property: given any E > 0, there 

is 'f} > 0 for which 

(3.2) c.p(v)- c.p(x)- (x*, v- x) ::; cllv- xll 

whenever v E V with llv- xll :S 'fJ· 

It is easy to check that the class of uniformly upper subdifferentiable functions includes all con­

tinuously differentiable functions, concave continuous functions, and also it is closed with respect 

to taking the minimum over compact sets. The uniform upper subdifferentiability property of r.p 

around x is actually a localization of the so-called weak convexity property for -<p in the sense of 

[10], which has been broadly used in numerical optimization. Note that if c.p is Lipschitz contin­

uous and differentiable at some point, it may not be uniformly upper subdifferentiable around it. 

Example: c.p(x) = x2 sin(1/x) for x =/= 0 with c.p(O) = 0. The following result shows, in particular, 

that uniformly upper subdifferential functions enjoy upper regularity and fully describes the set of 

x* satisfying (3.2). 

Proposition 3.2 (upper regularity of uniformly upper subdifferentiable functions). Let 

c.p be uniformly upper regular around x. Then it is upper regular at x, Lipschitz continuous around 

this point, and property (3.2) holds for all x* E 8+c.p(x) with x around x, 

Proof. Denote by G(x) the set of x* for which (3.2) holds. This set is nonempty and, as directly 

follows from (3.2), it is closed, convex, and bounded for all x E V. One can immediately observe 

from the comparison of (3.1) and (3.2) that G(x) C 8+c.p(x). Let us show that in fact G(x) = §+c.p(x) 

whenever x E V. 

It follows from the results of [10, Section 1.1] that c.p is locally Lipschitzian around x. directionally 

differentiable on V in any direction, and its directional derivative admits the representation 

(3.3) cp'(x;w) = min{(x*,w)l x* E G(x)} for all x E V, wE lRn. 

As well known, the Fnkhet upper subdifferential (3.1) of a locally Lipschitzian.function r.p at x is 

representable as 

Comparing the latter with (3.3), we get G(x) = §+cp(x) for all x E V. Furthermore, it is not hard 

to show directly from the definition that the mapping G: V =1 mn is closed-graph on any compact 
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subset of V. Taking finally into account the construction of the basic sub differential, we conclude 

that a+<p(x) = §+<p(x) for all X E V. 0 

Note that Proposition 3.2 is in accordance with [12, Theorem 9.16], which gives a characteriza­

tion of the simultaneous Lipschitz continuity and subdifferential regularity of a function on a open 

set via the existence of the classical directional derivative and its upper semicontinuity with respect 

to directions. Note also that we need an extra requirement on the uniform upper subdifferentiabil­

ity in Definition 3.1, which essentially restricts the class of functions suitable for applications to the 

AMP in the upper subdifferential form, due to the parametric nature of finite-difference systems 

viewed as a process as N-+ oo. In particular, the Lipschitz continuity and upper regularity are not 

needed for upper subdifferential results related to necessary optimality condition for fixed solutions 

in various problems of constrained optimization and optimal control; cf. [7, 8]. 

4 AMP in Upper Subdifferential ·Form 

This is a central section of the paper, which collects the main positive results on the fulfillment 

of the AMP in the upper subdifferential form for' the discrete approximation problems (PN ). We 

derive three closely related versions of the AMP in somewhat different settings of (PN ). The first 

version applies to problems with no endpoint constraints and establishes the upper subdifferential 

form of the AMP with no properness requirement on the sequence of optimal controls and with an 

error estimate as c(t, hN) = O(hN) in the approximate maximum condition. The second result, 

with a different proof, is the major version of the AMP for the constrained nonsmooth problems 

(PN ), which extends the one formulated in Section 1. The last version of the AMP concerns 

discrete approximation problems in the case of incommensurability of the time interval t1 - to and 

the discretization step h N. This version is basic for the extension of the AMP to time-delay systems 

obtained in the next section. 

Let us start with the upper subdifferential form of the AMP for problems with no endpoint 

constraints. Throughout this section impose the following standing assumptions on the mapping f 
and the control set U: 

(Hl) f = f ( t, x, u) is continuous with respect to all its variables and continuously differentiable 

with respect to the state variable x in some tube containing optimal trajectories for all u from che 

compact set U in a metric space and for all t E TN uniformly in N E IN. 

Theorem 4.1 (AMP for problems with no endpoint constraints). Let the pairs (x N, UN) . 

be optimal to problems (PN) with <pi = 0 for all i = 1, ... ,m + r. Assume in addition to (H1) 

that <po is uniformly upper subdifferentiable around the limiting point(s) of the sequence { x N ( tl)}, 
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N E IN. Then for every sequence of upper subgradients xjy E §+cpo(xN(ti)) there is c:(t, hN) -7 0 

as N -7 oo uniformly in t E TN such that the approximate maximum condition (1.3) holds for all 

t E TN, where each PN(t) satisfies the adjoint system (1.6) with the transversality condition 

( 4.1) PN(tl) = -xjy for all N E IN. 

Moreover, c(t, hN) = O(hN) in (1.3) if cpo is locally concave around XN(tl) uniformly in N while 

aj(·,u, t)jax is locally Lipschitz around XN(t) with a constant uniform in u E U, t E TN, N EN. 

Proof. Considering a sequence of optimal solutions (xN, UN) to (PN ), we suppose that XN(t) 

belong to the uniform neighborhoods in the assumptions made for all N E IN. It follows from 

the uniform upper subdifferentiability of cpo by Proposition 3.2 that a+cpo(xN(tl)) I- 0 and that 

inequality (3.2) holds for any x* E §+cpo(xN(ti)) as N -7 oo. Now taking an arbitrary sequence of 

xjy E a+cpo(xN(h)), we get 

(4.2) 

· o(llx- XN(tl)ll) . . · · 
where llx _ XN(tl)ll -7 0 as x -7 XN(ti) uniformly m N. Moreover, one can clearly ehmmate o, 

i.e., put o(llx-xN(tl) II) = 0 if cpo is assumed to be uniformly locally concave. LettingpN(h) := -x'N 

as in (4.1), we derive from (4.2) that 

with b.xN(t) := XN(t)- XN(t), for all feasible processes (xN,uN) to (PN) whenever xN(ti) is 

sufficiently close to XN(tl). From the identity 

(p N ( t 1), b.x N ( tl)) = L ( P N ( t + h N) - p N ( t), b.x N ( t)) + L ( p N ( t + h N), b.x N ( t + h N) - b.x N ( t)) 
tETN tETN 

and ( 4.3) we get 

0 :S J(xN,UN)- J(xN,ilN) :S -(pN(ti),b.xN(tl)) + o(llb.xN(ti)II) = 

(4.4) =- L (PN(t + hN) - PN(t), b.xN(t))- hN L (PN(t + hN ), ~~ (t, XN, ilN)b.xN(t)) 
tETN tETN 

-hN L b.uH(t, XN(t),pN(t + hN ), ilN(t)) + hN L rtN(t) + o(llb.xN(ti)II), 

where the remainder rtN(t) is computed by 

(4.5) 
(

aH aH 
'r/N(t) = ax (t, XN(t),pN(t + hN ), UN(t))- ax (t, XN(t),pN(t + hN ), UN(t)), 

b.xN(t)) + o(llb.xN(t)il), 
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with o(llb..xN(t)ll) uniform inN due to (H1), and where 

One can easily see that o(llb..xN(t)ll) = O(llb..xN(t)ll 2 ) in (4.5), uniformly inN, under the additional 

Lipschitzian assumption on 8 f ( ·, u, t) j ox in the theorem. 

Now let us consider needle variations of the optimal controls UN in the following form: 

(4.6) 
if t = T, 

if t E TN \ { T} , 

where v E U and T = T(N) E TN as N E IN. All the controls (4.6) are feasible to the discrete 

problems with no endpoint constraints. The trajectory increments corresponding to the needle 

variations ( 4.6) satisfy 

Taking this into account and substituting ( 4.6) into ( 4.4), we get 

where one obviously has o(hN) = O(h'Jv) under the additional concavity and Lipschitzian assump­

tions made in the theorem. Arguing by contradiction, we derive from ( 4. 7) the approximative 

maximum condition {1.3), with the specification of c(t, hN) under the additional assumptions, and 

complete the proof of the theorem. D 

Remark 4.2 (upper versus lower subdifferential forms of transversality conditions). 

The main difference between the conventional (lower) subdifferential form, which is not actually 

fulfilled in the case of AMP, and the upper subdifferential form of Theorem 4.1 is that the transver­

sality condition (4.1) holdsfor every upper subgradient xjy E §+cpo(xN(tl)) instead of just for some 

lower subgradient in the conventional transversality conditions for continuous-time and discrete­

time (with a fixed step) systems. In particular, for discrete-time systems with convex velocity sets 

both lower and upper sub differential forms of the (exact) discrete maximum principle hold; see [8], 

where the upper subdifferential/ superdifferential form of the discrete maximum principle has been 

established under milder assumptions on <po in comparison with Theorem 4.1. If <po is Lipschitz 

continuous and upper regular and hence a+cp0 (x) = 8cp0 (x), which is the case for uniformly upper 

subdifferential functions by Proposition 3.2, there is indeed a dramatic difference between the upper 

subdifferential form of transversality conditions and a well-recognized form in terms of the Clarke 
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subdifferential: instead of the fulfillment transversality just for some element of Bcpo(x(tl)) we es­

tablish its fulfillment for the whole set! Similar situation takes place for continuous-time systems, 

where the upper subdifferential form of transversality in the maximum principle can be proved, in 

problems with no endpoint constraints, in the line of arguments of Theorem 4.1. Observe, however, 

that there is a more subtle lower subdifferential form of transversality conditions for continuous­

time and discrete-time (of a fixed step) systems that involves basic/limiting subgradients but not 

Clarke ones; see [5, 14]. This form is generally independent on the upper subdifferential form of 

transversality conditions. Note that the major drawback of the upper subdifferential form is that 

it applies to a restrictive class of functions. But, as we saw in Section 2, there is no alternative to 

this form for the Approximate Maximum Principle. 

Next let us consider a sequence of the discrete approximation problems (PN) with endpoint 

constraints of the inequality and equality types. We are going to derive an extension of the AMP 

formulated in Section 1 to these problems involving nonsmooth functions that describe the cost 

and inequality constraints. The following upper subdifferential version of the AMP for constrained 

problems impose the uniform upper subdifferentiability property on the cost and inequality con­

straint functions, the properness assumption on the sequence of optimal controls, and the consis­

tency condition on perturbations of the equality constraints. As we saw in Section 2, all the three 

requirements are essential. 

The proof of the AMP for constrained problems is substantially different from the one in Theo­

rem 4.1 and much more involved, although it employs the same approach to handle nonsmoothness. 

The major part of the proof goes back to the smooth setting and is based on a finite-difference 

counterpart of the hidden convexity properties for sequences of discrete approximations. 

Before formulating and proving the ,theorem, we need an auxiliary result that actually reflects 

the hidden convexity property in the nonsmooth setting under consideration. Let us first recall 

some definitions from [4, 5]. Given a sequence of feasible solutions (xN,uN) to (PN), we say that 

the inequality constraint 

cpi(XN(tl))~'YiN with iE{1, ... ,m} 

is essential for XN along a subsequence M of natural numbers if cpi(xN(tl)) -'YiN = O(hN) as 

hN --t 0, i.e., there is Ki ;::::: 0 such that 

This constraint is unessential for x N along M if for any K > 0 there is No E IN such that 

cpi(xN(ti))- 'YiN ~ -KhN for all N;::::: No, N EM. 
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Note that the notion of essential constraints in sequences of discrete approximation corresponds 

to the notion of active constraints in nonparametric optimization problems. Without loss of gen­

erality we suppose that for the sequence of optimal trajectories x N to ( PN) under consideration 

the first l E { 1, ... , m} inequality constraints are essential while the other m - l constraints are 

unessential along all natural numbers, i.e., with M = N. 

Assume now that a+cpi(xN(tl)) -=f. (/J for all i = 0, ... , l and N E IN sufficiently large and fix 

some sequence of upper subgradients xiN E a+cpi(XN(t!)) for such i and N. Denote by .6.T,vXN(t!) 

the endpoint increment generated by the needle variation ( 4.6) of the optimal control UN with some 

T E TN and v E U. Form the set 

along the fixed sequences of the above upper subgradients xiN and consider the negative orthant 

in R1+1 given by 

JR~+l := {(xo, ... ,xl) E JRl+1
1 Xi< 0 for all i = 0, ... ,l}. 

The following result is due to the hidden convexity property of finite-difference systems established 

in [4, 5], with the adjustment to nonsmoothness via uniform upper subdifferentiability. 

Lemma 4.3 (hidden convexity). Let (xN,uN) be a sequence of optimal solutions to prob­

lems (PN) with no equality constraints and with the inequality constraints such that the first 

l E { 1, ... , m} of them are essential for the sequence of x N while the other are unessential for 

this sequence. In addition to (Hl) assume that each 'Pi, i = O, ... ,l, is uniformly upper subdiffer­

entiable around the limiting point(s) of {xN(t!)}, N E IN, and that 

(H2) the sequence of optimal controls {UN} is proper. 

Then there is a sequence of (l +!)-dimensional quantities of order o(hN) as hN ..1- 0 such that 

(4.9) (co SN + o(hN )) n JR~+l = (/J for large N E IN, 

where co SN stands for the convex hull of the set SN in ( 4.8) built upon the given sequences of upper 

subgradients xiN E [j+cpi(XN(t!)), i = 0, ... , l. 

Proof. It follows the proof of Lemma 3 in [4] based on the hidden convexity property of Theorem 1 

therein (respectively, Lemma 16.3 and Theorem 15.1 in [5]). The only essential difference is that 

the equalities 
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in the smooth case of [4, 5] are replaced with the inequalities 

<f'i(XN(tl))- <f'i(XN(tl))- (x'JN, ~XN(h)) + o(ll~xN(tl)IJ) ~ 0, i = 0, · · ·, l, 
I 

due to the uniform upper subdifferentiability of <f'ii cf. the proof of Theorem 4.1. D 

Based on Lemma 4.3, we get the following extension of the AMP to finite-difference problems 

with nonsmooth inequality and smooth equality constraints. 

Theorem 4.4 (AMP for problems with endpoint constraints). Let the pairs (xN,ilN) be 

optimal to problems ( PN), where the first l E { 1, ... , m} inequality constraints are essential for x N, 

N E IN. In addition to (H1) and (H2) assume that Cfli are uniformly upper subdifferentiable around 

the limiting point( s) of { x N ( tl)} for i = 0, ... , l and continuously differentiable around them for 

i=m+1, ... ,m+r, andthat 

(H3) the consistency condition (1.2) holds for the perturbations &iN of the equality constraints. 

Then for any sequences of upper subgradients xiN E §+cpi(xN(tl)), i = 0, ... , l, there are numbers 

P.·iNI i = 0, ... , l, m + 1, ... , m + r} and a function c(t, hN) -+ 0 as N-+ oo uniformly in t E TN 

such that the approximate maximum condition (1.3) is fulfilled with the adjoint trajectory PN(t) to 

(1.6) satisfying the transversality condition 

l m+r 

(4.10) PN(tl) =-I: AiNXiN- L AiN"V<pi(XN(tl)) 
i=O i=m+l 

along with 

(4.11) <f'i(XN(tl)) -liN= O(hN) for i = 1, ... ,l, 

l m+r 

(4.12) AiN ~ 0 for i = 0, ... , l, and L >-.tN + L >-.tN = 1. 
i=O i=m+l 

Proof. Let us first consider the case of inequality constraints, i.e., when <f'i = 0 for the indices 

i = m + 1, ... ,m + r in (PN)· Take arbitrary sequences of xiN E §+cpi(xN(ti)) as i = 0, ... ,l. 

By Lemma 4.3 we apply the separation theorem to the convex sets in (4.9). It follows from the 

structures of these sets that there are AiN 2': 0 for i = 0, ... , l and all N sufficiently large satisfying 

)..~N + ... + >-.[N = 1 and 

l 

L (xiN, ~T,vXN(tl)) + o(hN) 2': 0 
i=O 

for any T E TN and v E U. Then considering the trajectory PN(t) of the adjoint system (1.6) with 

the transversality condition 

l 

p(tl) =-L AiNXiN 
i=O 
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and arguing as in the proof of Theorem 4.1, we get the inequality 

held for all r E TN and v E U. This easily implies the approximate maximum condition (1.3). 

Since ( 4.11) just means that the inequality constraints are essential for x N as i = 1, ... , l, we arrive 

at all the conclusions of the theorem for the case of inequality constraints. Observe that the result 

obtained ensures the fulfillment of the AMP with zero multipliers corresponding to unessential 

inequality constraints. 

Next let us consider the general case of (PN) when the equality constraints are present as well. 

Each equality constraint <fJiN ( x) = 0 can be obviously represented as the two inequality constraints 

(4.13) 

fori= m + 1, ... , m + r. Let us show that if one of the constraints (4.13) is essential for XN along 

some subsequence M C IN, then the other is unessential along the same subsequence under the 

consistency condition (1.2). Indeed, suppose for definiteness that the constraint <ptN(xN(t1)) :::; 0 

is essential for some i E { m + 1, ... , m + r} along M. Then by (1.2) we have 

for any K > 0 as N -t oo, which means that the constraint <fJiN(xN(ti)) :S 0 is unessential. 

Since <fJi is assumed to be C1 for i = m + 1, ... , m + r, both <piN and <fJiN are uniformly upper 

sub differentiable around the reference points. Applying now the inequality case of the theorem that 

has been already proved, we find either >..tN or >..iN corresponding to one of the essential constraints 

<ptN(xN(ti)) :S 0 and <fJiN(xN(ti)) :S 0, respectively. Finally putting 

\.N._\+ 
"'~ .- "'iN i = m + 1, ... , m + r, 

depending on which constraint is essential, we complete the proof of the theorem. 0 

Note that both Theorems 4.1 and 4.4 concern the discrete approximation problems (PN) with 

t1 -to = NhN, i.e., when the time interval and the discretization step are commensurable. Of 

course, it is not always the case in applications. Moreover, to extend the AMP to time-delay 

systems in the next section, we reduce them to systems with no delays but with incommensurable 

t1 -to and hN. To proceed in this way, one needs to use modifications of the above results in the case 

of incommensurability. Let us present the corresponding modification of Theorem 4.1 for problems 

with no endpoint constraints. For simplicity we use the notation f(t, XN, UN) := f(t, XN(t), UN(t)) 

and consider the following sequences of discrete approximations with the grid 

- h ,_ti-to - [t1-to] TN:= {to, to+ hN, ... , t1- hN- hN }, N .- --y:.r-• hN := t1 :-to- hN --,;;;- , 

22 



where [a] stands as usual for the greatest integer less than or equal to the real number a. The 

modified problems are written as 

minimize J(xN,uN) := cp(xN(tl)) 

subject to 

(PN) XN(t + hN) = XN(t) + hN f(t, XN, UN), t E TN, XN(to) = Xo E JRn, 

XN(tl) = XN(tl- hN) + hNf(tl- hN,XN,UN), 

UN(t) E U, t E TN. 

Theorem 4.5 (AMP for problems with incommensurability). Let the pairs (xN,ilN) be 

optimal to problems ( PN). Assume in addition to (Hl) that cp is uniformly upper subdifferentiable 

around the limiting point(s) of the sequence {xN(tl)}, N E IN. Then for every sequence of upper 

subgradients x/v E §+cp(xN(tl)) there is c(t,hN)-+ 0 as N-+ oo uniformly in t E TN such that the 

approximate maximum condition 

H(t,xN,PN,uN) = maxH(t,xN,PN,u) + c(t, hN) 
uEU 

holds for all t E TN:= TN U {t1 - hN }, where the Hamilton-Pontryagin function is defined by 

H(t ) 
·- { (pN(t+hN),f(t,XN,u)) iftETN, 

,XN,PN,U .- _ 
(pN(t),f(t- hN,XN,u)) ift = t1- hN, 

and where each PN(t) satisfies the adjoint system 

af* 

{ 

PN(t) = PN(t + hN) + hN ax (:, XN, UN )PN(t + hN ), t E TN, 

- - 8f -
PN(tl- hN) = PNUd + hN ax {tl- hN,XN,UN)PN(tl) 

with the transversality condition PN(ti) = -x/v. 

Proof. It is similar to the proof of Theorem 4.1 with the following modification of the increment 

formula for the minimizing functional: 

0 ~ J(xN, UN)- J(xN, UN) ~ -(pN(tl), ~XN(tl)) + o(il~xN(ti)ii) 

=- L (PN(t + hN)- PN(t), ~XN(t))- (PN(tl)- PN(tl- hN ), ~XN(tl - hN)) 
tETN 

-hN L (PN(t + hN ), ~f (t, XN, UN )~xN(t))- hN(PN(tl), ~f (t1 - hN, XN, UN )~xN(tl - hN)) 
tETN X X 

-hN L ~uH(t,xN,PN,uN) + hN L 'TJN(t) + a(ll~xN(ti)Ii), 

where ~uH and 'TJN(t) are defined as above. Substituting now the adjoint trajectory into this 

formula and using the needle variation (4.6), we arrive at the conclusions of the theorem. D 

Similarly to the proof of Theorem 4.4 we can get its modification to the case of incommensura­

bility with the transversality and related conditions ( 4.10)-( 4.12). 
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5 AMP for Discrete Approximations of Delay Systems 

This section is devoted to the extension of the AMP in the upper subdifferential form to finite­

difference approximations of time-delay control systems. Actually we are not familiar with any 

previous results on the AMP for optimal control problems with delays, so the results obtained 

below seem to be new even for smooth delay problems. 

We pay the main attention to discrete approximations of the following time-delay problem with 

no endpoint constraints: 

minimize J(x,u) := <p(x(ti)) 

subject to 

(D) x(t) = f(t, x(t), x(t- 0), u(t)) a.e. t E [to, t1], 

x(t) = c(t), t E [to- 0, to], 

u(t) E U a.e. t E [to, t1] 

over measurable controls and absolute continuous trajectories, where 0 > 0 is the constant time­

delay, and where c: [to - 0, to] -+ mn is a given function defining the initial "tail" condition that 

is necessary to start the delay system. Based on the above constructions for non-delayed systems, 

one can derive similar results for delay systems with endpoint constraints. We may also extend 

the results obtained to more complicated delay systems involving variable delays, set-valued tail 

conditions, etc. On the other hand, we show in the end of this section that the AMP does not 

hold for discrete approximations of functional-differential systems of neutral type that contain time­

delays not only in state variables but in velocity variables as well. 

Let us build discrete approximations of the time-delay problem (D) based on the Euler finite­

difference replacement of the derivative. In the case of time-delay systems we need to ensure 

that the point t- 0 belongs to the discrete grid when t does. It can be achieved by defining the 

discretization step as hN := ~ in contrast to hN = t1 ~to for the non-delayed problems (PN ). In 

such a scheme the length of the time interval t 1 -to is generally no longer commensurable with the 

discretization step h N. 

To this end we consider the following sequences of discrete approximations of the delay problem 

(D) with the grid on the main interval [to, t1] given by 
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but also involving the grid ToN on the initial interval [to -(),to] as below: 

minimize J(xN,uN) := <p(xN(tl)) 

subject to 

XN(t + hN) = XN(t) + hNf(t,xN(t),xN(t- NhN),uN(t)), t E TN, 

XN(tl) = XN(tl- hN) + hNf(tl- hN,XN(tl- hN),uN(tl- hN)), 

XN(t) = c(t), tEToN:= {to-(), to- 0 + hN, ... , to}, 

UN(t) E U, t E TN. 

To derive the AMP for the sequence of problems ( D N), we reduce these problems to the ones 

without delays and employ the results of Section 4. This follows the "method of steps" developed 

by Warga [15) in the case of delay problems for continuous-time systems. Our assumptions on the 

initial data of (P) are similar to those in Section 4 for non-delay systems. A counterpart of (H1) is 

formulated as: 

(H) f = f(t, x, y, u) is continuous with respect to all its variables and continuously differentiable 

with respect to (x, y) in some tube containing optimal trajectories for all u from the compact set 

U in a metric space and for all t E TN := TN U { t 1 - hN} uniformly in N E IN. 

For convenience we introduce the following notation: 

~N(t) := (xN(t),xN(t- 0)), eN(t) := (xN(t),xN(t- 0)), 

j(t, ~N, UN) := j(t, XN(t), XN(t- ()), UN(t)), j(t,eN, UN) := j(t, XN(t), XN(t- ()), UN(t)), 

in which terms the adjoint system to (DN) is written as 

PN(t) 

along the optimal processes (xN, fLN) to the delay problems for each N E IN. Introducing the 

corresponding Hamilton-Pontryagin function 

(5.1) 

with YN(t) = XN(t- 0), we rewrite the adjoint system as 
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Theorem 5.1 (AMP for delay systems). Let the pairs (xN,UN) be optimal to problems (DN)· 

Assume in addition to (H) that cp is uniformly upper subdifferentiable around the limiting point(s) of 

the sequence {xN(tl)}, N E IN. Then for every sequence of upper subgradients xjy E §+cp(xN(ti)) 

the approximate maximum condition 

(5.3) 

holds with the Hamilton-Pontryagin function (5.1) and with some c(t, hN) -t 0 as hN -t 0 uniformly 

in' t E TN, where the adjoint trajectory PN satisfies (5.2) and the transversality relations 

(5.4) PN(t) = 0 as t > t1. 

Proof. Let us reduce the delay discrete approximation problems to the ones with no delay by the 

following multistep procedure. Denote 

YlN(t) := XN(t- hN), t E {to+ 2hN, ... , t1- hN }, 

YlN(t) := cN(t- hN), t E {to -8 + hN, ... , to+ hN }, 

Y2N(t) := YlN(t- hN), t E {to- 0 + 2hN, ... , t1- hN }, 

YNN(t) := YN-l,N(t- hN ), t E {to, ... , t1- hN }, 

and observe that the values of Y1N ( tl), ... , y N N ( tl) can be defined arbitrarily, since they do not 

enter either the adjoint system or the cost function. To match the setup of Theorem 4.1, define 

After the change of variables one has 

() 
{ 

XN(t-0), tE{to+O+hN, ... ,tl-hN}, 
YNN t = 

c(t-0), tE{to, ... ,t0 +0}. 

The original system in (DN) is thereby reduced, for each N E IN, to the following non-delayed 

system of dimension JRJN+l)n: 

(5.5) 
{ 

ZN(t+hN)=ZN~)+hN__g(t,ZN,u!!), tETN, 

ZN(tl) = ZN(tl- hN) + hNg(tl- hN,ZN,UN), 

with the state vector zN(t) := (xN(t),ylN(t), ... ,YNN(t))* (the star stands for transposing) and 

with the mapping g(t, ZN, UN) given by 

g(t, ZN(t), UN(t)) := 

f(t, XN(t), YNN(t), UN(t)) 
XN(t)- YlN(t) 

fm 

YN-l,N(t)- YNN(t) 
hN 
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where hN should be replaced by hN for t = t1 - hN in the last formula. 

Let us apply Theorem 4.1 to the minimizing the same functional as in ( D N) on the feasible 

pairs (zN,uN) of the non-delayed system (5.5). The adjoint system in this problem, with respect 

to the new adjoint variable q E JR(N+l)n, has the form 

(5.6) 

with the transversality condition 

(5.7) 

c · h · 89 
omputmg t e matnx az' we get 

of* 
1 0 0 hN-

ax 
ag* 1 0 -1 0 0 

az hN 

of* 
0 0 -1 hN--

OYNN 
Taking this into account and performing elementary calculations, we arrive at the adjoint system 

(5.2) and the transversality relations (5.4) for the first component PN(t) of the the adjoint trajectory 

qN(t) satisfying (5.6) and (5.7). Denoting by H(t, ZN, qN, u) the Hamilton-Pontryagin function (5.1) 

to the non-delayed system (5.5), one has 

H(t,zN,qN,u) = (qN(t+hN),g(t,zN,u)) = (PN(t+hN),j(t,[N,u)) +r(t,zN,qN,hN) 

= H(t,[N,PN,u) + r(t,zN,qN,hN), t E TN, 

and similarly for t = t1 - hN, where H is given in (5.1), and where the remainder r(t, ZN, qN, hN) 

does not depend on u. Finally applying the approximate maximum condition (1.3) from Theo-

rem 4.1 to system (5.5), we arrive at (5.3) and complete the proof of the theorem. 0 

Note that in the case of continuously differentiable cost functions <p around XN(tl) uniformly 

inN, the transversality relations (5.4) reduce to 

PN(t) = 0 as t >h. 

Similarly to the proof of Theorem 5.1 we can deduce from Theorem 4.4 its delay counterpart for 

discrete approximation problems with endpoint constraints. In this result we add assumptions 
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(H2) and (H3) to those in (H) and replace the transversality relations (5.4) in Theorem 5.1 by the 

conditions (4.10)-(4.12) with PN(t) = 0 as t > t1. 

Finally in this section, we consider optimal control problems for finite-difference approximations 

of the so-called functional-differential systems of neutral type 

(5.8) x(t) = j(t,x(t),x(t-O),x(t-fJ),u(t)) a.e. t E [to,ti), 

which contain time-delays not only in state but also in velocity variables. A finite-difference coun­

terpart of ( 5.8) with the stepsize h and with the grid T := {to, to + h, ... , t1 - h} is 

(5.9) 
x(t- 0 +h) - x(t- 0) 

x(t +h) = x(t) + hf(t, x(t), x(t- fJ), h , u(t)), t E T, 

and the adjoint system is given by 

(5.10) 
p(t) 

of* - of* -
=p(t+h)+h

0
x (t,~,u)p(t+h)+IJ 0Y (t+o,e,u)p(t+fJ+h) 

of* · - of* -
+h

0
z (t+O-h,e,u)p(t+fJ)-h

0
z (t+e,e,u)p(t+fJ+h), tET, 

where (x,u) is an optimal solution to the neutral analogue of problem (DN), and where 

~(t) := ( x(t), x(t- 0), x(t- 0 + hh- x(t- O)), t E T. 

It has been proved in [8] that optimal solutions to problems like (DN) for discrete systems of 

the neutral type (5.9) satisfy the exact discrete maximum principle with transversality conditions in 

the upper subdifferential form provided that the velocity sets j(t, x, y, z, U) are convex around [(t). 

What about an analogue of the approximate maximum principle with no convexity assumptions 

on the velocity sets? The following example shows that the AMP is not fulfilled for finite-difference 

neutral systems, in contrast to ordinary and delay ones, even in the case of smooth cost functions. 

Example 5.2 (AMP does not hold for neutral systems). There is a two-dimensional control 

problem of minimizing a linear function over a smooth neutral system with no endpoint constraints 

such that some sequence of optimal controls to discrete approximations does not satisfy the approx­

imative maximum principle regardless of the stepsize and a mesh point. 

Proof. Consider the following parametric family of discrete optimal control problems with the 
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parameter h > 0: 

(5.11) 

minimize J(x 1 , x2, u) := x2(2) 

subject to 

x1(t +h)= x!(t) + hu(t), t E T := {0, h, ... , 2- h}, 

x2(t +h)= x2(t) + h(x1(t - 1 + h~- x1(t- 1))
2

- hu2 (t), t E T, 

x1(t)=:x2(t)=:O, tETo:={-1, ... ,0}, 

lu(t)l :::; 1, t E T. 

It is easy to see that 

1-h 
x2(1) = -h L u2(t) and 

t=O 

J(x1, x2, u) := x2(2) = x2(1) +hI: (x1(t ~ 1 
+ h~- x1(t-

1
) )

2
- hI: u2(t) 

t=1 t=1 

Thus the control 

1-h 1-h 2-h 2-h 
= -h L u 2(t) + h L u2(t)- h L u2(t) = -h L u2(t). 

t=O t=O t=1 t=1 

{ 
0,. tE{0, ... ,1-h}, 

u(t) = 
1, tE{1, ... ,2-h}, 

is the only optimal control to (5.11) for any h. The correspon.ding trajectory is 

{ 

0, 
x1(t) = 

t-1, tE{l, ... ,2-h}; 

tE{0, ... ,1-h}, 

{ 

0, 
x2(t) = 

-t + 1, 

tE{0, ... ,1-h}, 

tE{1, ... ,2-h}. 

Computing the partial derivatives off in (5.11), we get 

8f=(o o). 
ax 0 0 

8j = (0 0) and 
8y 0 0 ' 

-(t + 1) =-8f 1 ( 0 
8z h 2(x!(t +h)- X1(t)) 

Hence the adjoint system (5.10) reduces to 

P1(t) = P1(t +h)+ 2(xl(t)- x1(t- h))p2(t + 1)- 2(x1(t +h)- x1(t))p2(t + 1 +h) 

P2(t) =:const, tE {0, ... ,2-h}, 

with the transversality conditions 

P1(2) = 0, P2(2) = -1; pi(t) = P2(t) = 0 for t' > 2. 
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The solution of this system is 

PI(t):=O, P2(t):=-1 forall tE{0, ... ,2-h}. 

Thus the Hamilton-Pontryagin function along the optimal solution is 

) ( h) ( h){(xl(t-1+h)-xi(t-1))2 2} 
H(t,fh,X2,Pl,P2,u =P1 t+ u+p2 t+ h -u 

= u 2 for all t E {0, ... , 1 - h }. 

This shows that the optimal control u(t) = 0 does not provide the approximate maximum to the 

Hamilton-Pontryagin function regardless of h and the mesh point t E {0, ... , 1 - h }. Note at the 

same time that another sequence of optimal controls with u(t) = 1 for all t E {0, ... , 2- h} satisfies 

the exact discrete maximum principle regardless of h. D 
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