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OPTIMIZATION AND EQUILIBRIUM PROBLEMS 
WITH EQUILIBRIUM CONSTRAINTS1 

Mordukhovich, B.S. 

Wayne State University, Detroit, U.S.A. 
boris@math. wayne. edu 

Abstract 

The paper concerns optimization and equilibrium problems with the so-called equilibrium constraints (MPEC 
and EPEC), which frequently appear in applications to operations research. These classes of problems can be 
naturally unified in the framework of multiobjective optimization with constraints governed by parametric 
variational systems (generalized equations, variational inequalities, complementarity problems, etc.). We 
focus on necessary conditions for optimal solutions to MPECs and EPECs under general assumptions in finite
dimensional spaces. Since such problems are intrinsically nonsmooth, we use advanced tools of generalized 
differentiation to study optimal solutions by methods of modern variational analysis. The general results 
obtained are concretized for special classes of MPECs and EPECs important in applications. 

Keywords: multiobjective optimization, equilibrium constraints, optimality conditions, variational analysis, 
generalized differentiation. 

1 Introduction 

This paper is devoted to the study of some classes of optimization and equilibrium problems that 
are particularly important for various applications in operations research, engineering, mechanics, 
economics, and other theoretical and practical areas. One class of such problems is known as 

Mathematical Programs with Equilibrium Constraints (MPECs). This class consists of minimizing 
real-valued functions subject to constraints given by some parametric variational systems (varia
tional inequalities, complementarity problems, and the like) that often describe a certain kind of 
equilibrium given often (but far from always) as parametric solution sets to lower-level optimiza
tion problems. Classical representatives of such problems include bilevel programs and Stackelberg 

games. We refer the reader to the seminal book [2] and the recent papers [1, 13] for many results, 
practical examples, and discussions on MPECs, which have drawn an increasing attention of both 

researchers and practitioners. Another class of problems of increasing interest, known as Equilib
rium Problems with Equilibrium Constraints (EPECs), focus on finding some equilibrium (rather 
than minimum) points subject to constraints described by parametric variational systems. 

In this paper we study both classes of MPECs and EPECs from a unified viewpoint of multiob
jective optimization with equilibrium constraints, which reduces to MPECs in the case of real-valued 
objective functions and gives EPECs when a (vector) objective means to find some kind of equi

librium. Our main goal is the derive necessary optimality conditions for such problems that are 

intrinsically nonsmooth and hence require generalized differentiation for their variational analysis. 

1Research was partly supported by the National Science Foundation under grant DMS-0072179 
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In Section 2 we define and discuss the basic generalized differential constructions of our study: 
normp.ls to arbitrary sets, coderivatives for set-valued mappingsjmultifun.ctions, and subgradients 
for extended-real-valued functions in finite-dimensional spaces. We review some of their properties 
important for applications in this paper. 

The main Section 3 concerns multiobjective problems with equilibrium constraints, where opti
mal solutions are understood in the sense of 'minimization" of a vector function with respect to a 
certain generalized order defined by a given subset (may be nonconic and nonconvex) of the range 
space. Such a generalized order optimality covers, in particular, many conventional concepts in 
multiobjective optimization and equilibrium. We obtain optimality conditions for multiobjective 
problems of this type (including those for EPECs) using the the above tools of generalized differen
tiation. We also briefly consider multiobjective problems, where optimization of vector functions is 
conducted with respect to general nonreflexive preference relations satisfying certain local satiation 
and almost transitivity requirements. 

Throughout the paper we use the standard notation; see, e.g., [12]. Recall that given a set-valued 
mapping F: IRn =t mm, its Painleve-Kuratowski upper/outer limit at xis defined by 

LimsupF(x):={yE1RmJ:3xk-7x, 3yk-7Y with YkEF(xk) as k-7oo}. 
X-+X 

2 Tools of Variational Analysis 

Let us describe the basic generalized differential constructions employed in this paper, which were 
introduced in [3] and then were developed and applied in many publications; see, e.g., [4, 5, 12] for 
more details and references. Using a geometric approach, we start with normals to sets. 

Given n C IRn and x E n, the (basic, limiting) normal cone ton at x is defined by 

N(x; n) := Lims!lp [cone (x- IT(x; n))], 
x-+x 

(2.1) 

where "cone" stands for the conic hull of a set and where II(·; n) denoted the Euclidean projector 
of X to the Closure cl n, i.e., 

II(x; n) := { w E cl nlllx- wJJ = dist(x; n)}. 

For convex sets this cone reduces to the normal cone of convex analysis, but it is generally nonconvex 
even in simple settings, e.g., for the epigraphical and graphical sets associated with nonsmooth real 
functions as n = epi ( -JxJ) and n = gph JxJ. Note that the well-known Clarke normal cone ton at 
x agrees with the convex closure to N(x; n). 

Given a set-valued mapping F: mn =t mm and a point (x, y) from its graph gphF := {(x, y)J y E 
F(x)}, the coderivative D* F(x, y): mm =t mn ofF at (x, y) is defined by 

D*F(x,y)(y*) := {x* E IRnJ (x*,-y*) E N((x,y);gphF)}. (2.2) 

In general, D* F(x, y)(-) is a positively homogeneous mapping that reduces to the adjoint Jacobian 

D* F(x)(y*) = {\7 F(x)*y*}, y = F(x), y* E JRm, 

when F is single-valued and strictly differentiable at x (in particular, C1 ). 
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Given an extended-real-valued function c.p: mn -t JR :== [-oo, oo) finite at x, we define its basic 

subdifferential 8 and singular subdifferential 800 at this point by 

8c.p(x) := D* E~(x, <p(x))(1) and 800c.p(x) := D* E~(x, c.p(x))(O) (2.3) 

via the coderivative of the epigraphical multifunction E~(x) := {~-t E IRI~-t 2': c.p(x)}. There are 
various equivalent descriptions of the constructions (2.1)-2.3) that can be found in [4, 5, 12). Note 
that EJ00 c.p(x) = {0} and 8c.p(x) =f. 0 if <p is Lipschitz continuous around x, and that 

D* F(x)(y*) = EJ(y*, F)(x) =f. 0 for all y* E JRm (2.4) 

when the mapping F: mn -t JRm is single-valued and locally Lipschitzian around this point. 
Among the most important advantages of our basic tools (2.1)-2.3) in comparison with other 

generalized differential constructions of nonsmooth variational analysis, let us mention a compre
hensive calculus allowing one to compute and estimate normals, subgradients, and coderivatives of 
various compositions, and also complete coderivative characterizations of metric regularity, open
ness, and Lipschitzian properties of multifunctions that play a fundamental role in many aspects 
of nonlinear analysis, especially those related to optimization, stability, and equilibrium; see the 
books [4, 12] and the references therein. An adequate machinery to deal with nonconvex sets and 
associated functional objects is provided by the so-called extremal principle, which can be viewed 
as a proper variational counterpart of the classical separation principle in nonconvex settings; see 
the survey paper [6) for detailed discussions and various applications. 

3 Multiobjective Optimization with Equilibrium Constraints 

Let us first consider multiobjective problems whose optimal solutions are understood with respect 
to following concept of generalized order optimality that particularly includes conventional notions 
of efficiency and equilibrium in various problems of vector optimization. 

Definition 3.1 (generalized order optimality). Given a mapping f: JRn -t JRd and a set 
e C JRd containing the origin, we say that a point X EX is LOCALLY (!,e)-OPTIMAL if there are 
a neighborhood U of x and a sequence {zk} C JRd with llzkll -t 0 ask-too such that 

f(x)- f(x) ~ e- Zk for all x E U and k E IN:= {1, 2, ... }. (3.1) 

The set e in Definition 3.1 generates an order/preference relation between z1,z2 E JRd defined 
via z1- z2 E e. In the scalar case of d = 1 and e = JR_ the above optimality notion clearly reduces 
to the standard local optimality. Note that we don't generally assume that e is either convex or its 
interior is nonempty. If e is a convex sub cone of JRd, then the above optimality concept covers the 
conventional notions of Pareto-type optimality (equilibrium, efficiency) and the like requiring that 
there is no z E U with f(x)- f(x) Erie. To see this, it suffices to take Zk := -z0 jk fork E IN in 
(3.1) with some z0 Erie. In classical cases it can be expressed via utility functions. 

Let us first consider local (!,e)-optimal points of bivariate vector functions f(x, y) subject to 
abstract equilibrium constraints in the form y E S(x), where S: IRn =t IRm is an arbitrary set-valued 
mapping. In this context S(x) may be a collection of equilibrium points (or optimal solutions to a 
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lower-level problem) depending on the parameter x, while y is a decision variable in the upper-level 
optimization/equilibrium problem over y E S(x). The following theorem gives necessary conditions 
for (!,B)-optimal solutions (x, y) under abstract equilibrium constraints. 

Theorem 3.2 (generalized order optimality subject to abstract equilibrium constraints). 
Let (x,y) E gphS be locally (!,G)-optimal subject toy E S(x), where f:JRn x IRm--> JRd with 
z := f(x, y), where 8 C JRd with 0 E 8, and where S: JRn =t JRm. Then there is z* E JRd satisfying 

(0, -z*) E N((x, y, z); £(!, S, 8)), z* E N(O, 8) \ {0} (3.2) 

provided that the "generalized epigraphical" set 

£(!,8,8) := {(x,y,z) EX x Y X Zl f(x,y)- z E 8, y E S(x)} 

is closed around (x, y, z). The latter implies 

0 ED* f(x, y)(z*) + N((x, y); gphS), z* E N(O, 8) \ {0} (3.3) 

if f is continuous around ( x, y), 8 is closed around 0; and the qualification condition 

[(x*,y*) E D*j(x,y)(O), -x* E D*S(x,y)(y*)] ===? x* = y* = 0 (3.4) 

is fulfilled. Moreover, (3.4) holds automatically and (3.2) is equivalent to 

0 E o(z*,f)(x,y) + N((x,y);gphS), z* E N(0,8) \ {0} 

iff is Lipschitz continuous around (x, Y). 

Sketch of the Proof. The EPEC under consideration is equivalent to the following multiobjective 
optimization problem under geometric constraints: find a local (f, 8)-optimal point (x, Y) subject 
to (x, y) E gph S. One can check that (x, y, z) is an extremal point [5] for the system of closed sets 
{01, 02} in the space mn X mm X JRd, where 01 := E(f, s, 8) and 02 := cl u X {z}, and where u 
is from (3.1). Using the extremal principle from [5, Theorem 3.2], we arrive at (3.2). Since 

£(!, S, 8) = g-1 (8) with g(x, y, z) := f(x, y) + ~((x, y); gph S)- z, 

where .0..(u; 0) = 0 E JRd for u E 0 C X x Y and .0..(u; 0) = 0 otherwise, we derive (3.3) from (3.2) 

under the qualification condition (3.4) by the calculus rules of [5, Corollaries 4.5 and 5.5]. The last 
statement of the theorem follows from the scalarization formula (2.4). D 

Next let us consider "real" equilibrium constraints governed by the parametric variational sys
tems/generalized equations 

0 E q(x, y) + Q(x, y), (3.5) 

where q: JRn X JRm --> JRP and Q: JRn X JRm =t JRP are, respectively, single-valued and set-valued 
mappings both depending on the parameter x. It .is well known that model (3.5) covers a vast 
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majority of variational systems important in applications. In particular, (3.5) reduces to the para
metric variational inequality 

find y ED such that (q(x, y), u- y) 2:: 0 for all u E 0 

when Q(y) = N(y; D) is the normal cone mapping generated by a convex set n C mm. This gives 
the classical nonlinear complementarity problem when n = IRf:. 

The next theorem provides necessary conditions for generalized order optimality subject to 
the equilibrium constraints (3.5). For simplicity we present results only in the case of locally 
Lipschitzian mappings f and q. 

Theorem 3.3 (optimality conditions for EPECs governed by generalized equations). 
Let (x, y) be locally (f, e)-optimal subject to the equilibrium constraints (3.5), where f: mn X mm---* 
JRd and q: mn X mm ---* JRP is Lipschitz continuous around (x, y) with j5 := -q(x, y), and where 
8 C JRd and gphQ C JRn X JRm X JRP are closed around 0 E 8 and (x,y,p), respectively. Assume 
that the adjoint generalized equation 

o E 8(p*,q)(x,iJ) + D*Q(x,y,p)(p*) (3.6) 

has only the trivial solution p* = 0. Then there are z* E N(O; 8) \ {0} and p* E JRP such that 

o E 8(z*,f)(x,Y) + 8(p*,q)(x,y) + D*Q(x,iJ,p)(p*). 

Proof. This follows from Theorem 3.2 with 

S(x) := {y E IRml 0 E q(x, y) + Q(x, y)} 

due to the coderivative inclusion 

D* S(x, y)(y*) C { x* E 1Rnl3p* E JRP with (x*, -y*) E 8(p*, q)(x, y) + D*Q(x, y,p)(p*)} 

established in [8, Theorem 4.1] assuming that (3.6) has only the trivial solution. D 

In EPECs and MPECs most interesting for the theory and applications, equilibrium/variational 
constraints are usually defined via first-order subdifferentials of extended-real-valued functions; see, 
e.g., the above cases of variational inequalities and complementarity problems. Let us consider 
a broad class of multiobjective optimization problems with equilibrium constraints, where the 
multivalued part of the generalized equation (3.5) is given by the basic subdifferential (2.3) of the 
composition 8(1/J o g) involving an extended-real-valued function 1jJ and a mapping g. Following 
mechanical terminology, we call the function ¢ := 1jJ o g under the subdifferential operator in the 
generalized equation by potential. 

To study such problems, second-order generalized differential constructions happen to be useful. 
Given c.p: mn ---* JR and (x, y) E gph 8c.p, define the second-order subdifferential of c.p at x relative to 
y as the coderivative of the first-order subdifferential mapping: 

82c.p(x,y)(u) := D*(oc.p)(x,y)(u), u E IRn. (3.7) 
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Observe that for C2 functions <p the second-order construction (3.7) reduces to the Hessian matrix 

We refer the reader to [7, 10] for more results and discussions on second-order subdifferentials and 
their calculus. Let us now present two results on necessary optimality conditions for multiobjective 

problems governed by generalized equations with composite potentials '!/Jog. The first result concerns 
the case of parameter-independent potentials (1/J o g)(y) involving arbitrary functions 1/J: JRn -+ JR. 
Such systems relate to (generalized) hemivariational inequalities labelled by HVI. 

Theorem 3.4 (optimality conditions for EPECs governed by HVI). Let (x,y) be locally 
(f, G)-optimal subject to 

0 E q(x, y) + 8(1/J o g)(y), 

where f: JRn X JRffi -+ JRd is Lipschitz continuous around (x, y), e is closed around 0 E e, 
q: JRn x JRm -+ JRm is strictly differentiable at (x, y) with the partial Jacobian \l xq(x, Y) of full 
rank, g: JRm -+ JR5 is C2 around y with the Jacobian \lg(Y) of full rank, and 1/J: JR5 -+JR. Suppose 
that gph 81/J is closed around ( w, ii), where w := g(Y) and ii E JR5 is a unique vector satisfying 

-q(x,Y) = \lg(Y)*v, v E 81/J(w); 

the latter assumption is automatic if 1/J is either convex or continuous around w. Then there are 
z* E N(O; 8) \ {0} and u E JRm such that 

0 E 8(z*, f) (x, y) + \l q(x, y)*u + ( 0, '\12 (ii, g)(y)*u + \l g(y)* 821/J( w, v)(\l g(Y)u)). 

Proof. This follows from Theorem 3.3 with Q(y) = 8(1/J o g)(y) by computing 

D*Q(y,p)(u) = 82 (1/J o g)(y,p)(u) with j5 := -q(x, jj) 

using the second-order subdifferential chain rule from [10, Theorem 3.4{i)]. 0 

The next result concerns EPECs of the above type, but with parameter-dependent potentials 
that belong to a class of functions especially important in composite optimization. Recall [12] 
that <p: JRn -+ JR is strongly amenable at x if there is a neighborhood U of x on which <p can 
be represented in the composition form <p = 1/J o g with a C2 mapping g: U -+ JRm and a proper 
lower semicontinuous convex function 1/J: JRm -+ JR satisfying the first-order qualification condition 
81/J (g ( x)) n ker \l g ( x) * = { 0}. 

Theorem 3.5 (optimality conditions for EPECs with amenable potentials). Let (x,y) be 
locally (f' e) -optimal subject to 

0 E q(x, y) + 8(1/J o g)(x, y), (3.8) 

where f: JRn x JRm -+ JRd and 8 c JRd are the same as in the previous theorem, where q: JRn x JRm -+ 
JRn x JRm is Lipschitz continuous around (x, y), and where the potential in (3.8) is strongly amenable 
at (x,y). Denotep:= -q(x,jj) E 8(1/Jog), w := g(x,y), 

M(x,y) := {v E W*l v E 81/J(w), \lg(x,Y)*v = .P} 
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and impose the second-order qualification conditions: 

82~( w, v)(O) n ker \7 g(x, Y)* = {0} for all v E M(x, fi) and 

[o E 8(u,q)(x,fi)+ U [\7 2 (v,g)(x,fi)(u) + \7g(x,fi)*82~(w,v)(\7g(x,fi)u)] ==> u = o. 
vEM(x,y) 

Then there are z* E N(O; 8) \ {0} and u E !Rn x lRm satisfying 

o E 8(z*,f)(x,fi) + 8(u,q)(x,fi) + U [\72 (v,g)(x,fi)(u) + \7g(x,fi)*82~(w,v)(\7g(x,fi)u)]. 
vEM(x,y) 

Proof. It can be obtained from Theorem 3.3 with Q(x,y) = 8(~og)(x,y) by using the second
order subdifferential chain rule for amenable functions that follows from [7, Corollary 4.3]. D 

Let us mention another class ofEPECs important for applications, where equilibrium constraints 
are given in the form 

0 E q(x, y) + (8~ o g)(x, y). 

The latter includes, in particular, implicit complementarity problems. Necessary optimality condi
tions for such EPECs can be derived from Theorem 3.3 and generalized differential calculus similarly 
to the case of MPECs in [9]. Note that the results obtained above for multiobjective optimization 
problems with equilibrium constraints directly imply optimality conditions for MPECs that involve 
minimization of real-valued functions. In the latter case, however, some special results are obtained 
in [9], which don't have multiobjective counterparts. 

In conclusion of the paper we briefly consider multiobjective problems with equilibrium con
straints, where "minimization" of vector functions f: !Rn x x!Rm -+ JRd is conducted with respect 
to nonreflexive preference relations -< satisfying the local satiation and almost transitivity require
ments formulated in [11]. Such preferences are called closed. Given a closed preference -< on JRd, 
define its (moving) level set at z E JRd by 

.C(z) :={wE JRdl w-< z}, 

which is a set-valued mapping .C: JRd .=f !Rd. To formulate optimality conditions for EPECs with 
respect to closed preferences, we need the construction of the extended normal cone N(z; n(x)) to 
a moving set n: IRn .=f JRd at (x, z) E gphQ given in [11, Definition 4.3]. 

Theorem 3.6 (optimality conditions for EPECs with closed preferences). Let (x,fj) be a 
local optimal solution to the multiobjective problem: 

minimize f(x,y) with respect to -< subject to y E S(x), 

where f: !Rnx!Rm-+ JRd is Lipschitz continuous around (x, fi) with z := f(x, fi), where S: !Rn .=f !Rm 

is closed-graph around ( x, fi), and where the preference -< is closed. Then one has 

0 E 8(z*, f)(x, fi) + N((x, y); gph S) for some z* E N(z; cl·.C(z)) \ {0}. 
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Sketch of the Proof. First we check that (x, y, z) is a locally extremal point of the system 

{81, 82} in the sense of [11, Definition 3.3], where 

81(z) := gph8 x cl.C(z) and 82 := gphf. 

Then applying the limiting extremal principle from [11, Theorem 4.7] and the scalarization formula 

(2.4), we arrive at the desired necessary conditions. 0 

Similarly to Theorems 3.3-3.5, one can derive from Theorem 3.6 necessary optimality conditions 

for multiobjective optimization problems, particularly for EPECs, with respect to closed preferences 

and the equilibrium constraints considered therein. 

References 

[1] Kocvara, M. and Outrata, J. (2003), Optimization Problems with Equilibrium Constraints and Their 
Numerical Solution, to appear in Mathematical Programming. 

[2] Luo, Z.-Q., Pang, J.-S. and Ralph, D. (1996), Mathematical Programs with Equilibrium Constraints, 
Cambridge University Press. 

[3] Mordukhovich, B.S. (1976), Maximum Principle in Problems of Time Optimal Control with Nonsmooth 
Constraints, Journal of Applied Mathematics and Mechanics, 40, 960-969. 

[4] Mordukhovich, B.S. (1988), Approximation Methods in Problems of Optimization and Control, Nauka, 
1988; 2nd edition to appear in Wiley-Interscience. 

[5] Mordukhovich, B.S. (1994), Generalized differential calculus for nonsmooth and set-valued mappings, 
Journal of Mathematical Analysis and Applications, 183, 250-288. 

[6] Mordukhovich, B.S. (2001), The Extremal Principle and Its Applications to Optimization and Eco
nomics, In: A. Rubinov and B. Glover (eds.), Optimization and Related Topics, Applied Optimization 
Series, 47, 343-369, Kluwer. 

[7] Mordukhovich, B.S. (2002), Calculus of Second-Order Subdifferentials in Infinite Dimensions, Control 
and Cybernetics, 31, 557-574. 

[8] Mordukhovich, B.S. (2002), Coderivative Analysis of Variational Systems, to appear in Journal of 
Global Optimization. 

[9] Mordukhovich, B.S. (2003), Necessary Conditions for Nonsmooth Minimization via Lower and Upper 
Subgradients, to appear in Set- Valued Analysis. 

[10] Mordukhovich, B.S. and Outrata, J.V. (2001), On Second-Order Subdifferentials and Their Applica
tions, SIAM Journal on Optimization, 12, 139-169. 

[11] Mordukhovich, B.S., Treiman, J.S. and Zhu, Q.J. (2003), An Extended Extremal Principle with Appli
cations to Multiobjective Optimization, to appear in SIAM Journal on Optimization. 

[12] Rockafellar, R.T. and Wets, R.J.-B. (1998), Variational Analysis, Springer. 

[13] Scheel, H. and Scholtes (2000), Mathematical Programs with Equilibrium Constraints: Stationarity, 
Optimality and Sensitivity, Mathematics of Operations Research, 25, 1-22. 

8 


	Wayne State University
	9-1-2003
	Optimization and Equilibrium Problems with Equilibrium Constraints
	Boris S. Mordukhovich
	Recommended Citation



