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Natural Superconvergent Points of Triangular Finite Elements

Zhimin Zhang* and Runchang Lin
Department of Mathematics, Wayne State University

Abstract. In this work, we analytically identify natural superconvergent points of function
values and gradients for triangular elements. Both the Poisson equation and the Laplace equation
are discussed for polynomial finite element spaces (with degrees up to 8) under four different mesh
patterns. Our results verify computer findings of [2], especially, we confirm that the computed data
have 9 digits of accuracy with an exception of one pair (which has 8-7 digits of accuracy). In addition,
we demonstrate that the function value superconvergent points predicted by the symmetry theory
[14] are the only superconvergent points for the Poisson equation. Finally, we provide function value
superconvergent points for the Laplace equation, which are not reported elsewhere in the literature.
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AMS Subject Classification. 65N30, 66N15

1. INTRODUCTION

Natural superconvergent points are special points where the convergence of numerical
approximations exceeds the possible global rate without any post-processing. The investi-
gation regarding the finite element superconvergence has a long history since 70’ [6]. For
the literature, the reader is referred to books [3, 4, 5, 9, 12, 17, 20] and references therein.

In mid-90’, Babuska et al. developed a “computer-based proof” [2] that systematically
predicted derivative superconvergent points for the Laplace equation, the Poisson equation,
and linear elasticity equations. They considered four mesh patterns of triangular elements
and three families of rectangular elements of degree n, 1 < n < 7. Their investigation
reduced the problem of finding superconvergent points to the problem of finding intersec-
tions of certain polynomial contours. The actual superconvergent points were located by
computer programs without explicitly constructing those polynomials, and 10 digits were
provided in their reported data [2, 3]. Later, Zhang proposed an analytic approach which
constructs explicitly the needed polynomials through an orthogonal decomposition under
local rectangular and brick meshes [18, 19]. His result confirmed that ten digits reported by
computer findings are correct up to rounding with only one exception (8-accurate digits).

A parallel analytic approach for triangular meshes are much more involved and tedious,
which will be the main object of the current investigation. We consider the Laplace and
Poisson equations on the four triangular mesh patterns used in the computer-based proof.
By a special orthogonal decomposition, we explicitly construct those polynomials from
which the superconvergent points are located. Our results verify that the computed data

“This research was partially supported by the National Science Foundation grants DMS-0074301, DMS-
0079743, and INT-0196139.



for triangular elements in [2] have 9 digits of accuracy except one pair (with 8-7 accurate
digits). In addition, we report for the first time, superconvergent points for function values
of the Laplace equation.

Another systematic way to find superconvergent points in mid-90° is the symmetry
theory developed by Schatz et al. [14]. This theory predicts that superconvergence occurs at
local mesh symmetry points for a large class of 2nd-order elliptic problems of any dimension.
For odd order elements (linear, cubic, etc.), superconvergence happens to derivatives: and
for even order elements (quadratic and so on), it is for function values. A by-product of
our current work is to confirm that for the Poisson equation under triangular meshes, the
mesh symmetry points are “almost” all superconvergent points.

An outline of this paper is as follows: Section 2 contains the main theorems which
will reduce the problem of finding superconvergent points to that of finding intersections
of certain polynomial contours. In Section 3, superconvergent points of function values
and gradients of both the Poisson equation and the Laplace equation are provided for four
patterns of triangular meshes. The main idea is illustrated in the beginning of Section
3.1 for the regular pattern. The detailed superconvergent points are provided in Sections
3.1-3.4, for four mesh patterns, respectively.

2. THEORETICAL SETTING

We shall outline the process by Babuska et al. {2] in finding derivative superconvergent
points. Here we follow the description provided by Wahlbin [17].

The main hypotheses in [2] are: (a) there is no roundoff error; (b) the mesh is locally
translation invariant; (c) the solution is sufficiently smooth locally and the pollution error
is under control. Throughout this paper, we assume hypotheses (b) and (c). However, the
hypothesis (a) is no longer needed, since the explicit expressions of involved polynomials
are provided. Another advantage of this method is that it is easily repeated.

Let © € R? be a bounded domain. Denote in general a square centered at x = (1, 7o) of
side 2h as ¢(x,h) = {y = (y1,¥2) € Q | |ys — z;| < h, 1 =1,2}. Consider the local natural-
superconvergent points near x° € Q. Let ¢(x?, h) be the 2k x 2h master cell. Let ; =
c(x®, H) and Qg = ¢(x°,2H) be two squares in Q with H = h%, 0 < § < 1, such that the
2h-periodic extensions of the master cell fit them exactly. Assume that a finite element
approximation un € Sp(§2) of u, the solution of a Poisson equation, satisfies

D(u—up,v) =0, Vve S5 P (Qo), (2.1)

where D(w,v) = [Vw - Vv, S5 "P(Qp) is the finite element subspace which has compact
support on Qg. We shall assume that

”u - uhHLoo(Qo) S Ch’n+1_La (22)

with L > 0 and L + é < 1. This assumption implies that pollution effects from outside of
the domain € have been properly controlled and the error loss is of order h’. Moreover,

we may assume that
1w~ unllyziqq < CAMF27A, (2.3)

withA>0and A+ < 1.



Under various conditions given in [15], we have

Lemma 2.1. Let u and uy, satisfy (2.1). Then for each s > 0 and 1 < g < oc there exists
a constant C independent of u, up, h, H, and x° such that

lu = unllwg,e) = C min (e = vlwg o) + H ™ 1 = vl egi0)
+ CH—1—5_2/q”u - uh'IIW';s(QO)'

The corresponding result for the error in function values for u — uy, is also found in [15].

Lemma 2.2. Let u and uy, satisfy (2.1). Then for each s > 0 and 1 < g < oo there ezists
a constant C such that

lu —upll oy < C <ln —Ii%)n lfrelgr: lu = vl oo (020) T CH™/4)|y — uhHWq_S(QO).
Hereai=114fn=1, i =0 otherwise.
Let Q be the (n + 1)* order Taylor expansion of u at x°. Then
v = Qllwe (o) S CH™ ™%, for 0<s<n+2. (2.4)

Interpolate it into Sp(€o) to form [, @Q. Then set p = Q — IQ. The key observation in [2]
is that p is 2h-periodic. Let ST (c(x%, h)) denote the 2h-periodic functions in Sy (¢(x%, h)),
and define PP(p) € ST (¢(x®, h)) by

/ (P FPEN =0 Dol = PP =0, Yo 5] (O R).  (25)
X",

Denote H ™ () the 2h-periodic functions in H!()9). Then from [2, 17], p € H™(Qp).
The following lemma is also found in [2, 17].

Lemma 2.3. For all p € HY™(Qyp), we have
D(o~ PP(o),v) =0, Yve S ().

Now put ¥ = p — PP(p), by Lemma 2.1, we have (2, 17]

Theorem 2.1.

0 0
(= un) ) = o

where
I RillLoo () < C (R0 4 pn+1=L-0)
provided L+ 46 < 1. -

Remark 2.1. Theorem 2.1 states that the major part of the finite element approximation
error in the derivatives can be measured by %%(x), since the remainder is of an order
min(§,1 — L — §) higher than the global convergence rate. O

In this work, we establish an analogue of Theorem 2.1 for the error in function values.
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Theorem 2.2.
(u-— ukh)(x) =9Y(x) + Ry(x), x€Q,
where
”Ru”Lw(Ql) <C (ln _’17)7-1 prtltd 4 opnt2-A=8
provided A + 6 < 1.
Proof. Let N,Q be the Neumann projection of Q) into S,(€2), i.e.
| (@- 8@ =0 D(@-NyQ.v) =0, Yo Sy(5) (2.6)
0
Then we can write

u—up = (Q — NpQ) + [(u — Q) — (un — NpQ)). (2.7)

We denote Rg = [(u~ Q) — (up, — Np@)].
From (2.1) and (2.6) we get

D(Rg,v) =0, Yuve S ().

By Lemma 2.2,

IRolitay <€ (101 ) min 0= @) = vliiag + CH IRelgiay: (28
Letting v be the interpolation of u — @ into S;(). From assumption (2.4),
(= Q) = vllium() < CH™ = Qllymss gy < CH™H. (2.9)
By assumption (2.3)
“RQHW;I(QO) Slu- UhHW;l(QO) +Q - NhQ“w;l(Qo) < CRmHh, (2.10)

Hence (2.8) - (2.10) give
1RQllLoe(0) £ C <ln %) A" H + CH™IRMA, (2.11)

Recall that p = Q@ — IQ and ¢ = p — PP(p). Rewrite

Q= NwQ=v+[Q — NpQ — ).

Notice that '
Q— NpQ — v = I4Q + PP(p) — NpQ € Sp(). (2.12)

From Lemma 2.3 and (2.6), we get
D(Q - NhQ - 'lﬁ,’l)) = 0’ Vv € S}iomp(QO)'

4



From Lemma 2.2 and (2.12),

1Q = Nn@ = Bllzeoin) < CHHIQ = NaQ = Bl oy (2.13)
By assumption (2.3)
”Q - Nth“W;ol(Qo) < Chn+2_A- (2.14)
By a duality argument,
“1./)”“'0;1(90) < HPHWO;I(QO) < Chn_i_Q”Q“ngl(Qo) S Chm A, (2.15)

Therefore, from (2.13) - (2.15),
1Q = No@ = ¥l Loy < CHTIRMT2A, (2.16)
Finally, we set Ry = (u — ug) — 9. From (2.7), (2.11), and (2.16), we get

|RullLeo() <C (ln —}1{)7:’ R H 4 QH-1pn2-A o017
<C (ll’l %)n hn+1+‘5 + Chn+2_A_6’ . )

and the theorem follows. O

Remark 2.2. Theorem 2.2 indicates that 9 gives the main part of the error in function
values. The convergence rate of the remainder is of an order min(d,1 — A — &) higher than
the global rate. D

Remark 2.3. By Remarks 2.1, 2.2, the task of finding superconvergent points can be nar-
rowed down to a master cell, or equivalently to the reference cell K = [-1,1]2. And
the superconvergent points of derivatives and function values are those points x where
%(x) = 0 and ¥(x) = 0, respectively. Thus, the task of identifying superconvergent points
is equivalent to finding the critical points of some periodic polynomials ¢ of degree n + 1
on the reference cell K such that v ¢ V;,(K), and

/w:o; /v«p.vv:o, Yo € VT(K),
K K

where V,(K) and V;"(K) are the images of S, (c(x%, ) and ST (c(x?, h)), respectively. In

another word, V;,(K) and V7 (K) are the finite element local space and the periodic finite
element local space on the reference cell K, respectively. O

3. SUPERCONVERGENT POINTS FOR PERIODIC MESHES OF TRIANGLES

For periodic uniform triangular local mesh, we consider four patterns: Regular pattern,
Chevron pattern, Union Jack pattern, and Criss-Cross pattern (see FIGURE 1). These
patterns were discussed by Babuska, et al. in [2].

Clearly, a mesh in any one of these four patterns is a local translation invariant. Hence,
the assumption (b) in Section 2 is satisfied. In addition, we require the assumption (c) from
now on.



/

Regular Pattern Chevron Pattern Union Jack Pattern Criss-Cross Pattern

Figure 1: Periodic Meshes of Triangles

In the following, we study the superconvergent points of function values and derivatives
for the Poisson and Laplace equations. Their solutions are approximated by finite element
spaces with polynomials and harmonic polynomials, respectively.

For each pattern, the finite element local space V,, (K) is the space of continuous piecewise
polynomials on K; the periodic finite element local space V”(K ) is the space of periodic
continuous piecewise polynomials on K. Vy(K) and V;,’_’(K ) are both subspaces of CO(K).
Structures of V;,(K) and V;"(K) associated with different mesh patterns are different.

We shall show the study of the regular pattern in details, and present only the main
results for the other three patterns.

For finite elements with various mesh patterns and degrees, we locate the supercon-
vergent points for solutions of () the Poisson equation; and (i7) the Laplace equation.
Based on results in Section 2, we set u to be @ for (i) the class of general polynomials
™1 2™y, ..., y™*1 (for the Poisson equation); and (i7) the class of harmonic polynomials
Re(2™*1) and Im(z"*1) (for the Laplace equation). v

In the context, 089, OC" OUYJ and 0O will be used to denote the object O defined
in the regular, Chevron, Union Jack, and the Criss-Cross patterns, respectively.

3.1. REGULAR PATTERN

3.1.1. Preliminaries and Theorems

Set the reference cell K = [-1,1]2. Partition K into two triangular elements and denote
them as T} = {(z, y) € Kl:z vy}, To = {(z,y) € K|z < y} (see FIGURE 2). In the
following, we denote T the it h element, n; the i*" node, and l;; the side connecting n; and
’I'Lj :

Define PY(K) the space of continuous piecewise polynomials of degree not greater than
n on K. That is, for any f € P¥(K), f is continuous on K; f I,» flg, are polynomials of

degree (< n). Let PPY(K) be the space of periodic continuous piecewise polynomials of
degree not greater than n on K. In other words, if fe PP“’(K ), then f € Pw(K ), and
f(z,1) = f(z,-1), f(1,y) = f(~1,y). Denote P, (K) the space of polynomials of degree
not greater than n on K. '

From the definitions, we conclude that, in general, P,(K) C PY(K) and PPY(K) C
P¥(K). Moreover, the finite element local space V,,(K) is P¥(K), and the periodic finite el-
ement local space V;"(K) is PPY(K). We shall use these two sets of notations alternatively.
However, V,, and V;T are preferred when we consider finite element approximation.

Define <I>n+1(K ) the subspace of PPY +1(f( ) that consists of functions 1, which can be
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Figure 2: Partition of & for the Regular Pattern

decomposed into P,.1(K) and P¥(K), such that

p=0 /vw-vv=o, Vo € PPY(K). (3.1)
K K

~ ~

In other words, for any ¥ € ®,,1(K), we have ¢ = x+7 satisfying (3.1), where x € Pr41(K)

and r € PY(K).
Lemma 3.1. dim<I>n+1(K') =n+2

~ ~

Proof. Suppose 9; € ®,41(K) with ¢; = x + 5, where x € Ppy1(K) and r; € PY(K),

A

i=1,2. Set 0 = 91 — 2. Clearly, ¢ is periodic. Also § = 1 —ry, which implies § € PY(K).

A

Thus, § € PP¥(K). From (3.1), we conclude that
/ﬂ 5=0; / V6.V =0, Vv € PPY(R).
R R

But this happens only when § = 0. Therefore, the dimension of @n+1(f< ) is the same as
the dimension of the space of monomials of degree n + 1, which is n + 2. O

From Theorems 2.1, 2.2, and Remark 2.3, we get

Theorem 3.1. (i) Function value superconvergent points of Vn(K ) for the Poisson equation
are the intersections of the contours

{v =09 € ®ni(K)}.

~

(i2) Derivative superconvergent points of Vo (K) along the z-direction for the Poisson equa-
tion are the intersections of the contours

P .
T=0|y € Bn(R)}

Similar result holds on the y-direction.
Applying Theorems 2.1 and 2.2 to the case of harmonic functions (solutions of the

Laplace equation) yields the following theorem.
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Theorem 3.2. (i) Function value superconvergent points of Vo (K) for the Laplace equation
are the intersections of the contours

f_ﬁl =0 and zb,{,’_fl =0,
with
PR, = Re(z"1) =, gl = Im(2"+h) — sp,
where
gBe ), plm € Bpp1(K); taysn € Va(K); z=z+iy.

(i1) Derivative superconvergent points of Vo (K) along the z-direction for the Laplace equa-
tion are the intersections of the contours

a'(pn-i-l - 0 and 11[)1’1'*'1 — 0'
Oz "9z

Similar result holds on the y-direction.

Proof. Let u be any harmonic function. The (n + 1)*" order Taylor expansion of u at the
center of K is of the form aRe(2"*!) + BIm(2"*1) + t,, where o, 8 € R and t, € Pp(K).
Therefore, the results follow from Theorems 2.1 and 2.2. O

Remark 3.1. Theorems 3.1 and 3.2 indicate that to locate superconvergent points of function
values and derivatives for the Poisson and Laplace equations, we need to specify spaces
®,,+1(K). We next determine a basis for each ®,41(K) via an orthogonal decomposition of

Py (K). O

3.1.2. Orthogonal Decomposition of PP¥(K) and Construction of &,,;(K)

In current work, a set of hierarchic basis functions are used for Vn(f{ ). The basis
functions can be organized into three categories: nodal shape functions, side modes and
internal modes (see [16, Chapter 6]). There are 4 nodal shape functions, which are denoted
asvi,t=1,...,4.

11— i Lip ; [
v = %(1 z) %n '1:1, vy = 5(T—y) fn ’-Zjla
5(1—y) in Ty 0 in Tp; (3.2)
e { %(1 +y) in T4, . { in 71, )
3 (1+2) in Ty ‘ s(y-=z) in T
Clearly, we have
I/1(—(L‘, _y) = Vg((lf,y), and 1/2("'.’13, _y) = 1/4(1,‘,:(}). (33)

Side modes and internal modes are constructed from the nodal shape functions in the
following means. Let py be the Legendre polynomial of degree k on [—1,1]. Define

<l5o($ac =1, ¢i(z)=u=,
Pr(z) = / P (t)dt, k=2,3,... (3.4)

-1



For k > 2, since ¢i(x) are polynomials which vanish at z = =£1, the term 1 — x° can be
factored out. We define o (z) so that

1

4(1 —2%)pr_a(z), k=2,3,... (3.5)

Pi(z) =
The subscripts of ¢, and ;. indicate the orders (degrees) of the polynomials.
Denote ¢ the )t order side mode along the side lij. Define the side modes associated
with side [y as
(,%2 = ViV (pk_z(l/g - Vl), k= 2, ey T (3.6)
The other side modes are defined analogously. There are n — 1 side modes on each side.
Denote Li.,j the 7% internal mode on 7; of order k. In the first element 7}, the internal
modes are defined as

L}lc,j =vgus I k=3, i=1,... k=2 (3.7

The definition of the internal modes in T is similar. There are (n — 1)(n — 2)/2 internal
modes in each element.

~ ~ ~

Notice that Vy(K) = PY(K), the dimension of PY(K) can be decided from that of

Vo(K). Sum up the numbers of nodal shape functions, side modes and internal modes, we

have
(n-1)(n-2)

dim PY(K) =4+ 5(n—1)+2 5

= (n+1)% (3.8)

~ ~

A basis for PPY(K) may be constructed from the hierarchic basis functions of P¥(K).
In fact, the sum of the four nodal shape functions v; + vo + v3 + v4 is a periodic basis
function. The sums of the same order side modes along the opposite boundary sides are
periodic basis functions. The side modes along the interior sides and all of the internal
modes are automatically periodic. To simplify notations, in the context, we denote ¢ = ¢}3,
S =62 +¢B3, o = 2 +}4, which represent the k™ order diagonal, horizontal, and vertical
periodic side modes. Also denote Lt i = L,lc,j + L%’j, which are referred as k** order internal
modes of plus/minus type.

An example of the construction of PPY(K) is given for case n = 3 (see FIGURE 3).

v=u -+ttt =1,
_ 12 _ —

CQZ =5 + c§3, F=cB 1+t =3,
Gd=32+3, I=F+qt ¢=d°,
1 2
L3131

(3.9)

The dimension of PP¥(K) can be determined by deleting 3 nodal freedoms and 2(n—-1)

side mode freedoms from dimP’(K). Hence,

dim PP¥(K) = dim P¥(K) — 3 —2(n — 1) = n?. (3.10)

Lemma 3.2. (i) ¢pt1(—2) = (-1)*pyi(z) fork=1,2,...;
(11) @r(~2) = (=1)*pp(z) for k=0,1,...;



Y y
vy i3] o3 Vs
2
31 k3.1
it G I 3 =3
14 23 .
k 13 T 31 !
2 1 4 1
b3,1 2 t3.1
121 (212 C:%? Vo v §él gél
(a) Hierarchic basis for P¥(K) (b) Periodic basis for PP (K)

Figure 3: Basis functions for P¥(K) and PP¥(K).

(7it) ck(—:n —y)=(— 1)'c z,y) fort=h,v.d, andk=2,...,n;
(z)Lw( z,—y) = (—=1) 1L%,](£E y) fork=3,...,n,andj=1,....k—2.
Moreover, kaj( z,—y) = (—1)F 1ij($ y), and i (~z,—y) = (—1)’“L,:’j(m,y).

Proof. (i) Since ¢y41(1) = 0 and pp(—z) = (=1)*pi(z) for any k, the assertion follows from
definition (3.4).

(1) By (3.5) and result of part (), the desired result follows.

(112) This is a consequence of definition (3.6), properties (3.3), and result of part (i7).

(tv) Definition (3.7) and properties (3.3) give (iv). O

Lemma 3.2 states that the periodic basis functions are either even or odd.

Further, we consider the orthogonal decomposition of PP¥(K) under the Laplace op-
erator. Towards this end, we define

Upi1(K) = {u € PP (K) | Vu- Vo =0, Yv € PPY(K)}. (3.11)
T1UT2

Compare (3.11) with (3.1). Clearly, ®p41(K) C Upny1(K), in general.
By the Gram-Schmidt process, we can decompose PPY(K) into

PPY(K) = PPY(R)®Uy(K)® -+ @ Un_1(K) ® Up(K). (3.12)

Note that PP¥(K) = Span{1} and ¥;(K) = {0}. The dimension of ¥n,;(K) can be
determined as

dim ¥,11(K) = dim PP¥,;(K) — dim PP¥*(K)=2n+1, n=1,2,3,...  (3.13)

The first two spaces of ¥y,11(K) (n = 1,2) can be expressed as
Uo(K) = Span {$a(z), <f, d2(v)};
W3(K) = Span {#3(z), £c¢ + 181,:1:,,1 + 2L§,1 +ck+ o+ 4,
165, + 43 + b + 6§ +<F, d3(y)}-

10



The space ®,.1(K) can be constructed from W,41(K). For instance, for n = 1.2. we
get

¢2(K)=Span{¢2( +37 <2+6a (02 3}
®3(K) = Span {¢3(z), d2(z)y +3° — <§‘3, zda(y) — 5 + 'y ¢3(y)}-

By the Gram-Schmidt process, we can obtain more spaces of \I/n“(.f;’ ). and thus more
spaces of ®,.1(K). Here, we give two more ®p4.1(K) (for n = 3,4) without the associated
\I’n+1 (K)

@4(K) = Span {da(z) + 73, @a(x)y+7 — <>+, a(z)da(y) + 73,
zo3(y) — 3° + 37+, daly) +73),

where
Tg = T.:ii = 1_14 + 1_34(§2 +¢3) -+ 14C2 + 15L§-17
ry=r§=gp +3(s + ) — % - 7ed,
=&+ &S+ + g - 2

®5(K) = Span {¢s(z) + 79, da(m)y+i2—<B+rl, ¢3(z)da(y) + 73,
bo(z)pa(y) + 73, whaly) — <P + i+, ¢s(v) +ri},

where
] = 3 + —29? — & - Rt B+ Bita
i = e + 504<3 + lggg'*' e — Bl + B,
= <k + _2<3 — 8§ — Bz — Tovda + 544
i =+ 126§3 Red + o+ 5ul — Bl
r§ = 52_ + 504<3 3‘?:‘&1 Zgbs 1t 1722%:1F1 27325LZ2’
8= 5+ 51y — 3555 + a1 T tin + Tl

For information of cases n =5, ..., 8, the reader is referred to [13].

We shall study the structures of functions in ®,41(K) for general n (> 2). By the
definition of ®,.,1(K) in (3.1), every function in ®,,1(K) can be decomposed into a part in
P,41(K) and a part in P¥(K). As shown in Lemma 3.1, the dominating part in Pp4;(K)
has a basis {¢n+1_j(:c)¢j(y)}§’:g. The remaining term in P¥(K) insures that the function

lies in ®,,41(K). We need to determine the patterns of these remaining terms.

From the above description, ®,1(K) can be constructed from periodic basis functions.
We know that ¢ni1-5(x)d;(y) are in P n+1(f(), except for 7 = 1 and n. We shall modify
¢n(z)y and zéy,(y). Since the restriction of ¢}2 on ly5 is ¢n(x); and 51mi1ar situation happens
on the other boundary sides of K, we conclude that ¢n(m)y+ % and z¢n(y) — 22+l
vanish on the boundary of K, and hence are in PPY +1(K ).

After getting these modified (n + 1)t" order periodic polynomlals, we denote all the

remaining terms as 7. Since ®p41(K) C P n+1(K) it is clear that rf, € PP¥(K). Then
we have the following lemma.

11



Lemma 3.3. For each ¥ € <I>n+1(I;’), P(—z,~y) = (=1)" ez, y). Moreover, we have

Vap(—z,~y) = (=1)"Vi(z, y).

Proof. 1t is straightforward to check that the lemma holds for n = 1,2. We assume n > 2

in the following. It is sufficient to show the symmetric properties hold for basis functions.
For j =0,...,n+1, j # 1,n, the j** basis function in ®,41(K) is written as

B£+1 = Pn+1-5(2)5(y) + .
By definition (3.1). for all v € PP¥(K),

[ VB Vo= [ Vonnros(@sw) - Vo [ 9 vo=0
K K K

From Lemma 3.2, we have

V(¢n+1-j(=2)8;(—y)) = (=1)"V(¢nt1-;(z)8;(¥))-
If n is even, pick v even. Then Vv is odd, and V(¢n4+1-5(2)¢;(y)) - Vv is odd. We have

/ V(¢n+1-j(z)¢;(y)) - Vo =10, andhence [ Vri Vv=0.
K K
Note that 7 is in PPY(K ), which has basis functions either even or odd. Let v run through
all even basis functions, we conclude that 79, is odd, just as Pn+1-j(—z)¢;(—y). Therefore.
B!\ is odd, as desired. Similarly, if n is odd, we shall conclude that B?_, is even.

For j = 1 and n, the desired results shall follow if ¢!2 — ¢43 and —¢23 + ¢}4 have proper

symmetry properties. Namely, if n is even, both of them are odd; if n is odd, both of them
are even. These follow from (3.3), (3.6), and Lemma 3.2. O

Remark 3.2. Lemma 3.3 reveals that, to locate superconvergent points in K, we need to
consider only the situations in Ti. The superconvergent points in Ty are symmetric to those
in Ty about the origin. O

Lemma 3.2 also induces general expressions of basis functions in &, (K).

Theorem 3.3. For all n > 2, we have

(I)n+l(f{) = Span {¢n+1(x) + 7'91{ on(T)y + 65° — gn + T71n
Pnt1-j(@)¢i (W) +mm (1=2,...,n—1),
:Ed)n(y) - §1%3 + C,,114 + TZa ¢n+1(y) + T;H-l} s

where T4 s satisfy the following property:

(1) For even order v4,s, only odd order side modes, odd order internal modes of minus type,
~ and even order internal modes of plus type are involved in the expressions;

(i¢) For odd order 135, only even order side modes, odd order internal modes of plus type,
and even order internal modes of minus type are tnvolved in the expressions.

" Proof. Note that any function in @n.,_l(K' ) is expressed in terms of periodic side modes and
internal modes. This is a direct result from Lemmas 3.2 and 3.3. O

Remark 3.3. As we have seen above, the expressions of basis functions in ®,.1(K) obtained
from the orthogonal decomposition reveal the structure of them (in terms of periodic basis
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functions). This may provide us an analytical way to find superconvergent points. However.
this approach is quite complicated, especially when n is large.
In fact, if we are interested only in the expressions (not the structures) of the basis

~

functions in ®,4+1(K), then we can simplify the process by solving

/ V(u—Tyu—z)-Vo=0, YveVT(K); (3.14)
K
/(u—];,u—z) =0, (3.15)
K

where u are monomials of degree n + 1, Iyu is an interpolation of v in V,(K), and z is a
periodic finite element approximation of u — Ipu. Then u — [pu — z will serve as a periodic
basis function in ¢)n+1(K ) corresponding to u.

The approach works as the following. An interpolation Iyu in Vi (K) are determined

from the conditions:

(i) Inu(£l,£1) = u(%l, £1); (3.16)
(ii) /I(u-Ihu)sjds=o_, j=0,1,-,n—2, (3.17)

along each side [ in K; and
(iii) /T(u — Iw)aly*dedy =0, j,k>0, j+k=0,1,---,n-3, (3.18)

on each element T in K.

After Inu is determined, the periodic finite element approximation z of u — Ipu can
be achieved by solving (3.14) and (3.15). Here, the periodic basis functions of V,7(K) are
described above.

For instance, consider the periodic basis function corresponding to 3y in @4(K ). This
is a case for n = 3 (see FIGURE 3). First interpolate 23y in V3(K). The restriction of the

interpolation I (z%y) on T} is a polynomial of degree (< 3); i.e.
L@yl = > dpaly, 5,k20, i=12 (3.19)
0<j+k<3
Substituting Ih(:r?’y)lfi in conditions (3.16)—(3.18), we have a system of equations for c;'.‘ks

2 fl(xay) ) : : : { fl(x7y) mn Tl) .
on each T;. Use to denote the piecewise polynomial : .7 'With
: ( fa(z,y) P POy fQ(III,y) in Ty,

help of a symbolic computation software (MAPLE), we can solve the systems and obtain

3 2 2,1 1 1 1
- +rtt iyt zr— Y — %

I (239) = z° +x%y _
n(z%y) (m3—x2y+m2+§xy—§$+§y—§

Next, we use the periodic basis functions constructed in (3.9) to solve the periodic finite
element approximation problem (3.14) (see FIGURE 3), and have

—TY Y T G Ry Yt g gyt
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Here, ¥* = 2%y — I,(z%y) — z* is not in ®4(K) yet, since its integral over K is niot 0. Note
that a constant function is periodic. We can let z = z* + ¢ and solve (3.15) for c. It turns

out that ¢ = —2% Put z = z* — . Then, we obtain ¢ = %y — I;(z%y) — =z € ®4(K)
corresponding to x3y. which is
o a:3y+x — Ly 2y+1_4my nud 2+ a:y— 2P+ kT — Sy + 1%
Y= o . B ?? T I ST S - R
wdy — 2 + 32ty — oy’ - et 4 gey - 9yt - T + oY T 16

This systematic process is more suitable for computer implementation than the orthog-
onal decomposition process. Once the code is set, we can feed the program with different
(n + 1)*" order polynomials to get the corresponding functions in @n_H(K ). In particular,
this process offers us an approach for 7% t1 and ¢n T Lettmg u be the harmonic polynomial
Re(z™*1) or Im(z"*1), the process will yield w,, ‘e, or YI™, respectively. O

3.1.3. Superconvergent Points

After specification of basis functions of 41 (K ), we are ready to locate superconvergent
points for the Poisson equation.

Theorem 3.4. Consider superconvergence for the Poisson equation on lia.

(1) For odd n, the midpoint of 112 is x-derivative superconvergent point;

(it) If n = 2, the two Gaussian points on lio are x-derivative superconvergent points;

(#it) For even n, the endpoints and midpoint of l12 are function value superconvergent points.
Similar results hold on the other sides. In particular, we refer to tangential derivative

superconvergence on each side, including the diagonal side.

Proof. Clearly, s!?|;,, = ¢r(z), which will cancel @x(z)yli,, since y = —1 on li2. The
other side modes and all internal modes are identically 0 on /2. Note that ¢;(y) = 0 on
l12. Therefore, restricted on 19, the basis functions of <I>n+1(K' ) are classified in two types:
bnar(x)+rd and ) for j=1,...,n+1.

(1) Suppose n = 2m + 1. From Theorem 3.3,

m m
T%m+1|112 = 6(7) + chg%?hu = C(Y) + Zcz?q&%(x): !
i=1 i=1

where c]s are constants, j = 0,...,2m + 2. Also, ¢p41(z) = ¢2(m+1)(x). Thus, the basis
functions of <I>n+1(R' ) restricted on lj2 are all linear combinations of even order ¢i(x)s,
whose derivatives are odd order Legendre polynomials, which have a common zero at the
midpoint of I1.

(7¢) The superconvergence is verified directly.

(443) Suppose n = 2m. From Theorem 3.3,

. m m
. 1 .
T%m'hz = Z 011(21'—1|l12 = ZCZ(ﬁZi—l(fE),
i=2 i=2
where cZ s are constants, j = 0,...,2m+1. Also, ¢n+1(z) = Pom+1(z). Therefore, the basis
functions of ®,1;(K) are all linear combinations of odd order ¢(z)s, which have common
zeros at two endpoints and midpoint of 115, O

'If m = 0, then 7{s are constants.
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"Theorem 3.4 predicts superconvergence at some specific points on the element edges.
Whether these are all superconvergent points should be justified by Theorems 3.1 and 3.2.
Namely, we need to determine the intersections of the contours induced from the basis
functions of @p41 (K ), which are solutions of a system of polynomial equations. When n is
small (eg. n =1 or 2), the system can be solved analytically. When n is large, this can
be done accurately with help of computation softwares (MATLAB, MAPLE) and numerical
methods (eg. Newton'’s method), which are available in many reference books (eg. [8]). We
have the following results for n up to 8.

Proposition 3.1. For the reqular mesh, superconvergent points of function values for the
Poisson equation in Ty are:

(1) If n is odd, there is no superconvergent point;

(13) If n is even, the vertices and midpoints of edges are the only superconvergent points.

Proposition 3.2. For the reqular mesh, superconvergent points of (or gu ) for the

Poisson egquation in Ty are:

(1) If n is odd, the midpoint of lyo (or ly3) is the only superconvergent point;

(11) If n = 2, the two Gaussian points on l1a (or laz) are the only superconvergent points;
(141) If n is even and greater than 2, there is no superconvergent point.

Remark 3.4. Theorem 3.4 coincides with the results from the symmetry principles (14, 17,
which are sufficient. Propositions 3.1 and 3.2 are conclusive; i.e. they indicate that there
are no other superconvergent points. Proposition 3.2 also agrees with the corresponding
results in [2]. Note that the case n = 2 was reported much earlier [1, 20]. O

Now, we consider the Laplace equation. We first determine % +1 and PI™,. These func-

tions can be obtained from basis functions of <I>n+1(K ) by adding the periodic polynomials
corresponding to terms in Re(z"*!) and Im(z"*!), respectively; they can also be derived

from the process described in Remark 3.1. For n =1,...,4, we have
é%e_‘,EQ_yQ, .
Im _ Y+zr—y—3%
2 xy_x_'_y___ 3
phe = © 3 —3zy® —3zy+3y° —z + 3y
8 T\ 2 -3zy® +3zy -3yt -z + 3y
pim = 3 —3yz® +3yz — 322 —y+ 3z '
3 T\ P -3yx? —3yr+3x2—y+3z )’ '
e = x4 — 6x2y? -+-y — 622 y + 6zy? — 2x2 + 8y — 2? +2:E-—-2y—]85
4 4 — 6zy? +y +6xy Gmy — 272 +8:ry 242 — 2z 4 2y — ’
Im :'«'Sy—xy + 2% — 2? y—xy +9° -z +y?
¥y = 3_.2.,.2
By —zyd — 2+ ly+ayt -yt -2ty
@° = 102%° + Sy’ — Spedy + aly? +712wy - 5yt — 820 + Bay
wie = —Ray® - Fu° + B2’ — Fay + 57 733‘*'213/
b % — 10z%y? + 5zy? +12:l:y 225z2y2 xy +5y 135 3+Z15$2y '
~Rey’ - ?3’93 Bo? 4 Boy - Byt - Lo+ By
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Figure 4: Contours ¢, = 0 (solid) and ¥I™; = 0 (dashed), n=1,...,4.

72— 135 75,2

y585_ lgy 65+35yx25+211523y3m ?ssy “} 2ve’ +5x £
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85y 8348 4 By2 ym+§2x2—7y+21x |

P, and ¢, for n=5,...,8 are provided in [13].

By Theorem 3.2 (i), the function value superconvergent points are the intersections of
the contours 1/)“ %1 = 0and v,b T, = 0. For instance, when n = 1, the superconvergent points

in T} can be obtained by solving

4 —y° =0,

zy+z—-y—35=0,
in Ty. From the first equation, we have & = y or £ = —y. Substituting these into the
second equation, we obtain ( @,:&:%ﬁ) and (1 — —‘ég, -1+ @) in 77, which are desired

superconvergent points.
When n = 2, we need to solve

23 —3zy? —3zy+3y* —x+ 3y =0,
v —3yz? +3yr — 322 —y+3x =0,

or equivalently, to solve

{ (z - 1)(z? - 3y* + - 3y) = 0,
(y+1D)(¥? -3z -y +3z)=0

It is straightforward to verify that the solutions (superconvergent points) in 77 are the

vertices, the midpoints of edges, and ( —‘/—_ —— + ‘/_)
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’

S

Figure 5: Contours ¢, = 0 (solid) and {7 = 0 (dashed), n=5,...,8.

For each n, we need to solve a pair of polynomial equations. When n is large, numerical
methods are required. Although how to efficiently solve a polynomial equation system is
an interesting problem, it is not our focus. Here, we simply use the Newton method. With

TABLE 1(a). Function Value Superconvergent Points for the Regular Pattern

(inTy,n=1,...,4)

n=1

n =2

n=3

n =4

-0.8164965809277260
—0.8164965809277260

0.4226497308103742

—1.0000000000000000
—1.0000000000000000

0.0000000000000000

—0.5193296223592281
—1.0000000000000000

0.5193296223592281

—1.0000000000000000
—1.0000000000000000

-0.9511897312113419

2 —0.4226497308103742 —1.0000000000000000 —1.0000000000000000 —1.0000000000000000
3 0.8164965809277260 1.0000000000000000 —0.9173685331054181 0.0000000000000000
0.8164965809277260 -1.0000000000000000 -—0.9173685331054181 ~1.0000000000000000

4 —0.4114378277661476 1.0000000000000000 0.9511897312113419
—0.9114378277661476 —0.5193296223592281 —1.0000000000000000

5 0.0000000000000000 —0.3980389107461900 1.0000000000000600
0.0000000000000000 —0.3980389107461900 —1.0000000000000000

6 1.0000000000000000 0.3980389107461900 —0.0703819804091844
0.0000000000000000 0.3980389107461900 —0.9828670086417396

7 0.9114378277661476 1.0000000000000000 1.0000000000000000
0.4114378277661476 0.5193296223592281 —-0.9511897312113419

8 1.0000000000000000 0.9173685331054181 —0.6074928962939559
1.0000060000000000 0.9173685331054181 —0.6074928962939559

9 0.0000000000000000
0.0000000000000000

10 1.06000000000000000
0.0000000000000000

11 0.9828670086417396
0.0703819804091844

12 0.6074928962939559
0.6074928962939559

13 1.0000000000000000
0.9511897312113419

14 1.0600000000000000

1.0000000000000000
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TABLE 1(b). Function Value Superconvergent Points for the Regular Pattern
(in T]. n= 5.8)

n =35

n =6

n=7

7n =8

—

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

~—1.0000000000000000
~—1.0000000000000000
-0.3779644730092272
-1.0000000000000000
0.3779644730092272
—1.0000000000000000
1.0000000000000000
—1.0000000000000000
—0.5138908967122077
—0.9855536016972144
—0.7520955703220618
—~0.7520955703220618
1.0000000000000000
~0.3779644730092272
—~0.2738197456392299
—0.2738197456392299
0.2738197456392299
0.2738197456392299
1.0000000000000000
0.3779644730092272
0.9855536016972144
0.5138908967122077
0.7520955703220618
0.7520955703220618
1.0000000000000000
1.0000000000000000

—1.0000000000000000
—1.0000000000000000
—0.5860928017843374
—1.0000000000000000
0.0000000000000000
—1.0000000000000000
0.5860928017843374
—1.0000000000000000
1.0000000000000000
—1.0000000000000000
—0.8001753718755459
—0.9926259609529336
—0.8258100260262924
--0.8258100260262924
1.0000000000000000
—0.5860928017843374
—0.4616469028358420
—0.4616469028358420
1.0000000000000000
0.0000000000000600
0.0000000000000000
0.0000000000000000
0.4616469028358420
0.4616469028358420
1.00000000000000600
0.5860928017843374
0.9926259609529336
0.8001753718755459
0.8258100260262924
0.8258100260262924
1.0000000000000000
1.0000000000000000

--0.7283987607253135
—1.0000000000000000
—0.2616196034057031
—1.0000000000000000
0.2616196034057031
-1.0000000000000000
0.7283987607253135
~~1.,0000000000000000
—0.9981396004694932
—0.9981396004694932
—0.8677139861534285
—0.8677139861534285
—0.7946854333174225
—0.8546890237923378
1.0000000000000000
-0.7283987607253135
—0.5861275452213199
—0.5861275452213199
1.0000000000000000
—0.2616196034057031
—0.2065452580134060
—0.2065452580134060
0.2065452580134060
0.2065452580134060
1.0000000000000000
0.2616196034057031
0.5861275452213199
0.5861275452213199
1.0000000000000000
0.7283987607253135
0.8546890237923378
0.7946854333174225
0.8677139861534285
0.8677139861534285
0.9981396004694932
0.9981396004694932

—1.0000000000000000
-—1.0000000000000000
-0.9985182765124761
—1.0000000000000000
—0.8415029196420455
—1.0000000000000000
—0.4499077973241774
—1.0000000000000000
0.0000000000000000
—1.0000000000000000
0.4499077973241774
—1.0000000000000000
0.8415029196420455
—1.0000000000000000
0.9985182765124761
-~ 1.0000000000000000
1.0000000000000000
—1.00000000000600000
1.0000000000000000
—0.9985182765124761
-0.5111908039811860
—0.9975720711785237
0.9834451655126653
—0.9834451655126653
0.8208569446704606
—0.8479254719651945
—0.8949872464334571
—0.8949872464334571
—0.8006759120160012
~0.8857531080977044
1.0000000000000000
—0.8415029196420455
0.9479254719651945
-0.8208569446704606
—0.6718072968265310
--0.6718072968265310
1.0000060000000000
—0.4499077973241774
—0.3593519628863694
—0.3593519628863694
0.0000000000000000
0.0000000000000000
1.0000000000000000
0.0000000000000000
1.0000000000000000
0.4499077973241774
0.9975720711785237
0.5111908039811860
0.6718072968265310
0.6718072968265310
0.3593519628863694
0.3593519628863694
0.8857531090977044
0.8006759120160012
1.0000000000000000
0.8415020196420455
0.8949872464334571
0.8949872464334571
1.0000000000000000
0.9985182765124761
1.0000000000000000
1.0000000000000000

help of MAPLE and MATLAB, we obtain function value superconvergent points for n =
1,...,8, which are listed in TABLE 1 with 16 digits of accuracy. In FIGURE 4 and FIGURE

5, we plot the contours for casesn = 1,...,8 by MATLAB.
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Figure 6: Contours

2tL _ ) (solid) and 2

I
"“ = 0 (dashed), n

=3,...,8.

By Theorem 3.2 (ii), the z-derivative superconvergent points are the intersections of the

contours

dyRe
;1 =0 and

n+l

= 0. As an example, we consider the case for n =

z-derivative superconvergent points in T} are the solutions of the system

Solve this system, we obtain four superconvergent points: (:i:—‘/-g,

——l=3x2

-3y2-3y—1=0,
=-3(y+1)(2z-1) =0.

3

-1) and (3, —

+

[N

TABLE 2(a). Derivative Superconvergent Points for the Regular Pattern

(inTy,n=1,...,

2. The

I

n=1

n =2

n=3

n =4

-

0.0000000000000000
-1.0000000000000000

—~0.5773502691896258
—1.0000000000000000

0.5773502691896258
—1.0000000000000000

0.5000000000000000
-0.9082482904638630

0.5000000000000000
-0.0917517095361370

—1.00000000006000000
-1.0000000000000000

0.6000000000600000
—1.0000000000000000

1.0000000000000000
+~1.0000000000000000

—0.2495636041803519
--0.8282349823299942

—0.0569628865629212
—0.3516533583837684

0.7276352521634410
0.3648132073349060

—0.9762047562738165
~—1.0000000000000000

—0.4357538487328842
~1.0000000000000000

0.4357538487328842
~1.0000000000000000

0.9762047562738165
—1.0000000000000000

0.4106905181904221
—0.9856261245779083

-0.7609910954777545
—0.9550014625469050

—0.38098408103995712
—0.55697762653529965

0.2804554307532021
0.0392284719195946

0.8126724617779161
0.5742483905274366
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(in Ty, n=5.....8)

TABLE 2(b). Derivative Superconvergent Points for the Regular Pattern

n=5

n==6

7

n =

n==a

-—1.0000000000000000
-1.0000000000000000

—0.6546536707079771
~1.0000000000000000

0.0000000000000000
—1.0000000000000000

0.6546536707079771

—-0.7802941074859182
—1.0000000000000000

—0.2902920033562139
—1.0000000000000000

0.2902920033562139
~—1.0000000000000000

0.7802941074859182

~1.0000000000000000
—1.0000000000000000

-0.8724199011562877
—1.0000000000000000

—0.4887571135712024
—1.0000000000000000

0.0000000000000000

—0.9992622651115187
~1.0000000000000000

-0.9054011724682842
-1.0000000000000000

—0.6276397150039605
--1.0000000000000000

-0.2219131070745645

4 --1.0000000000000000 —1.0000000000000000 ~—1.0000000000000000 —1.0000000000000000
5 1.0000000000000000 —-0.4296804190843017 0.4887571135712024 0.2219131070745645
—1.0000000060000000 —0.9794457423195006 -1.0000000000000000 —1.00000000000060000

6 —0.0718949366554462 0.9743835257461033 0.8724199011562877 0.6276397150039605
—0.9793960316434498 —0.8404683252781456 -1.0000000000000000 ~1.0000000000000000

7 ~0.5342467051008834 —0.4385937672691014 1.0000000000000000 0.9054011724682842
—0.6850142752143384 —0.7471180163419970 —1.0000000000000000 --1.0000000000000000

8 —0.0530467624549399 —0.2682485061163367 -~0.6759991164966385 0.9992622651115187
-0.2251798300015251 —0.4043522076362224 —0.9887878384682518 -~1.0000000000000000

9 0.4712605850961711 0.1747948038384324 0.9675399749272883 —0.2284265164539444
0.2851933532419337 0.0312903099656319 —0.9442318436480794 —0.9993186201946292

10 0.8687318398155543 0.5930068961438869 —0.5526058285230658 ~0.8604358636216127
0.4160368104008867 0.4069367800853346 —0.8204988182282370 —0.9979626530937577

11 0.9113920897175050 —0.4101259591003691 0.8819561225984842
0.5542101472898292 ~-0.5269703699170518 —0.9429515274310050

12 ~0.0458573784465860 0.9779759193542496
—0.1593499763070021 —0.8982852264369150

13 0.3378030147268201 —0.6244716257411005
0.2035258346590941 ~0.8619397552651930

14 0.6826097321374772 0.9731368926379180
0.4053072896642744 —0.7072548415558784

15 0.9343855681592637 —0.4628273322658001
0.6390587782077723 —0.5991284868687132

16 —0.2109347493642553
—0.3065003891547965

17 0.1284564982199144
0.0272532561080603

18 0.4429632529165919
0.2637028329059902

19 0.7540612856604619
0.4936457864836795

20 0.9467527974578255

0.6378027221999435

When n = 3, The superconvergent points are the solutions of the system

oyl

ml—4:1:3—12xy2—-12my+6y2—-4w+8y+2=0,
— = (y+1)(3z% — y? — 22) = 0.

From the second equation, we have y + 1 = 0 or 3z — y2 — 2z = 0. If we substitute
y = —1 into the first equation, the system can be easily solved. However, when substituting
y = £v3x2 — 2z into the first equation, we have

(z — 1)(2562° — 4162 + 17323 4 2122 — 172~ 1) = 0,

provided 3z — 2z > 0. To solve a polynomial equation of degree 5, numerical methods are
required.

Following a similar process for function value superconvergent points, the xz-derivative
superconvergent points can be located in K. In TABLE 2, the superconvergent points in 71
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are summarized for n = .,8 with 16 digits of accuracy. Since the cases for n = 1.2 are
trivial, we plot only the contours for cases n = 3,...,8 by MATLAB in FIGURE 6.

Remark 8.5. In order to compare our results with data in [2]°. where the master cell is
% = [0,1]%, we map K to s by affine mapping z* = (z¥ + 1)/2 and y* = (y™ +1)/2. Note
that the nodal shape functions defined in K are mapped to those defined in s under the
same affine mapping. We then conclude that @n+1(f{ ) is transferred to ®,41(x) because
of its construction. Since affine mappings preserve zeros for derivatives, the derivative
superconvergence points in K are mapped to those in x. We found that the first 9 digits of
the superconvergent points listed in [2] are the same as those obtained here®. O

By Theorem 3.2 () we can also determine the y-derivative superconvergent points.

Ime ., _
It can be shown that —“T—— “18w2gf’y), 20 (dyy' 2 = (- 1\k_.151(_;21 nd
llm - o
6w2k+1d(y yo2) Z‘gi(x’y), aw?k“( Y z) = wZRg;(z.v) for k = 1,2,... Therefore, the y-
derivative superconvergent points for the Laplace equation turn out to be the symmetry
points of the z-derivative superconvergent points about y = —z.

3.2. CHEVRON PATTERN

We observe that a period occupies only half of the square in the Chevron pattern.
Therefore, we set K = [—1,1] x [0, 1) here. Partition K into four triangular elements (see
FIGURE 7).

)
N4 ns ng
Tz T4
T T3
ni na n3 ¢

Figure 7: Partition of K for the Chevron Pattern

We still use P¥(K) and PP¥(K) to denote the counterpart spaces defined in Section 3.1.
The definitions of the spaces are adjusted accordingly due to the changing of the reference
cell.

The hierarchic basis functions are used for V;(K). Let v; be the linear nodal shape
function corresponding to vertex n;, which are defined in (3.20). The side modes and
internal modes are defined as in (3.6) and (3.7), respectively.

The periodic basis functions are constructed from i, cZ,J and Lfc,j similar to those in
Section 3.1. Notice that v + v3 4+ v4.+ v and v2 + v are two periodic basis functions in
this case.

*In [2], TABLE I, superconvergent points are given for n up to 7.
3Some of the 10" decimal places in [2] are not accurate in the “round-off” sense.
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- in 71, _{ -r+y—1 in T‘g,

rp=4¢ l—-y in 7o, 0 in T3. Ts. Ty
0 in Tg, T4; R o
l4+z—y in T, y ?n ’In‘l’
vp=¢ l—z—y in Ts, vy = z+1 ¥n TQ’ (3.20)
0 in TQ. Tu; y n T3’
. . ’ —z+1 in T4;
z in Tj,
v3=<( 1—y in Ty, _{z+y—-1 in Ty,
0 in T1, TQ; Yo = 0 in T, Tg, Tg

It is straightforward to verify that
dim P¥(K) = (2n+1)(n+1), dim PP¥(K) = 2n?. (3.21)

Theorems 3.1 and 3.2 still hold for the Chevron mesh. To determine the space ®p41(K )
we can either make an orthogonal decomposition of PF; +1(f( ), or solve a periodic finite
element approximation problem, as described in Remark 3.1.

If the first approach is adopted, we need to define ¥,(K) as in (3.11). The difference
here is that the integral domain consists of 4 elements instead of 2. By the Gram-Schmidt
process, we obtain a list of ,,(K), where PP,’{’(K ) can be decomposed as in (3.12). Based
on U,,(K), we are able to construct &, (K).

Remark 3.6. From the geometrical point of view, the left side of the y-axis is one patch
of the regular mesh. In fact, under the corresponding affine mapping (zf9 = 22Ch 4 1
and yf9 = 2y°" — 1), the shape functions on T} and T defined in (3.20) are mapped to
the ones of the regular pattern. Similar situation happens to the right side of the y-axis.
We thus conclude that similar symmetry results as in Lemma 3.3 hold for the Chevron
pattern. Hence, we need to work only on superconvergent points in the first element.
Superconvergent points in the other elements can be obtained by symmetry. O

In the following, basis functions of ®,,1(K) in T} are provided for n = 1,...,4. For cases
ofn =25,...,8, the reader is referred to {13]. To simplify notations, let B’ 1 be the j* basis

function of ®y41(K). Denote 8, the column vector consists of all nodal shape functions,
side modes and internal modes of order < n in T1. The length of 8, is (n+ 1)(n + 2) / 2. In
partlcular we assign vy, vg and vs the first 3 entries of 6,; assign the side modes ck , CL
and ¢3! as the (k(k +1)/2 + 1)** to the (k(k + 1)/2 + 3)** entries, k = 2,...,n; and assign
the internal modes ¢} ; to ¢} ,_, as the (k(k+1)/2+4)® to the ((k+1)(k +2)/2)*" entries,
k =3,...,n. For instance,

61 = [Vlv vy, V5]T

02 = [913 §212ag225ac§)1] )

]T (3.22)

= [0, C§2,<325,<3 ’L31 )

— 12 .25 51 T
4 = [93, S479S4 5% ab4 1704,2] .

Then, in element Tl, the basis functions of ®n+1(K ) can be expressed as
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17 7
Bl = ¢o(z) + [13: 190 13 01
Bf.:") = Ty,
3 !
By = ¢2(y) + [13: 19> 13) 013
B‘% = @3($) + [0 0’10, % ]O7 %8] 92 s 1
2 1
B = ¢o(z)y + F'{sﬁ-ﬁ@ﬁ Olam,'g] 02
4 _ i 3 3 51 _3
Bi = ¢3(y) + [~ 155> 1500 1660 0> T80 —§) 02
1 g 21 _27 _3 3 _ 1791 5 15 5 _ 5735
Bg = ¢4(z) + [533. — 5% 2732y i Tad> T 11304 160 5152 167 51 3] 03,
B% ~ @3(x)y+ 0,0 01 556’102’53310 0f10’1§1’ :1—_2] 93’3 187
Bﬁ = ¢go(2)¢2(y) + [mal—w‘a%g@’ R ﬁ=1?7282’30’ 355 0> T288) 03
B4 = IQ3 y) + [0,0,0,3:'35,0,3‘%—%,0, O’_-S-’—,}é_%] 93»
B2 = ¢y )_|_[__'~’l 20 1 3 39 1761  _ 1445 _ 5 _5585]9
4 4\l 904: 924 924! 224> 224 10304° 51520 ~ 16 51524 U3
B = ¢5(x) + [0.0.0.~ 5. 0. 5. ~ 8.0, - 2483 - 388, . 0. 5 — 3, o5 Os,
BE = ¢4(x)y + [-sfon: s — s 0 b~ 3, 380e s 1R~ BT 0l -~ - 35388 Oa,
B = ¢3(x)p2(y) + [0.0.0.~%.0.~ 3, 250, 48k - 55.0.0, 3. o~ ) 04,
Bg = ¢2(x)¢3(y) + [‘ﬁgﬁ' 1oi§32v‘m§gT'°' 645974T ’?ll_fli’ 2224964‘ Zg(%' 572141156'%52!%’0‘ 1112132‘_&_)‘__”_59‘3%,%] 047
B55> =T 4(y + [’213‘0‘0'0'0'%‘1‘621523'0* iziﬁssez’%'o‘o'_%'_%’—ﬂ] 04,

235

6 _ ( ) [ 25 25 25 337 1 85 329 _ 7 665 1()6435]
B5 = @5 Y) + |- i i O Fas 5 7997 — Jo8 - — 5593 - O4.

£L0 Y -2 - A Y
! 'O, 1664'~ 32 ¥488" 20052

=)
oo
1=
o

By Theorem 3.1, to locate the superconvergent points of the Poisson equation, we may
choose B, +1 s ¥s. Then we can verify the following results for n up to 8.

Proposition 3.3. Consider element T of the Chevron mesh. For the Poisson equation,
the function value superconvergent points are:

(1) If n is odd, there is no superconvergent point;

(i1) If n is even, the midpoints of sides l1o and li5 are the only superconvergent points.

Proposition 3.4. Consider element Tl of the Chevron mesh. For the Poisson equation,
the z-derivative superconvergent points are:
(7) If n is odd, the midpoint of side l1o is the only superconvergent point;
(#1) If n is even, there is no superconvergent point.
The y-derivative superconvergent points are.
(i) If n = 1, the midpoint of side los is the only superconvergent point;
(#) If n > 1, there is no superconvergent point.

Remark 3.7. Similar as in the regular pattern, superconvergence for the Chevron pattern
at symmetry points can be shown by symmetric properties of periodic basis functions and
Legendre polynomials. However, Propositions 3.3 and 3.4 are conclusive. Moreover, the
result of y-derivative superconvergence for n = 1 is not at a symmetry point. O

Remark 3.8. The basis functions of ®,,1(K) obtained from the orthogonal decomposition
reveal the structures. However, there are more elements involved in the Chevron pattern
than in the regular pattern, and the expressions of the basis functions here are even more
complicated. Thus, we may use the second approach: solving a periodic finite element
approximation problem. O
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Figure 8: Contours 9§ = 0 (solid) and ¥{™ = 0 (dashed).

Next, we turn to harmonic polynomials (for the Laplace equation). With the help of
basis functions of ®,.1(K), we can determine ¥Ee, and ¢I™. In particular, in the element
Tl, we have, for instance

wRe_.: B§=x2—y2+m+y,
BQ—my,
yfe = Bl - 3B = =° —3:z:y +%x +%a:y+%

wém=33—333—y —3z%y — 3y° — Say + 5Y;

P = B} — 6B} + B} = z* — 622y + y* + 22% + 322y — 3zy? — 23 + 2% + 22y + 12 - 3,
Y™ = B2 — B} = 23y — 2y® + 2%y + 2y,

Y& = Bl — 10B3 + 5B
— x5—10x3y2+5xy4+-52-x4+33x3y 35:1:2y2 12745:ry +33I%+15 2y+ mmy +égx2+é_gwy+%x,
= Bf — 10B¢ + 5B?
— y5—10y3z2+5ym4—%y4—%%xy3+§55-x2y2+ 127fm y+42y3+15:cy +1o zy égyz__ wy+8—14-y.

For information of n =5, ... ,"8, the reader is referred to [13].

Now, we are ready to apply Theorem 3.2. The superconvergent points can be located by
solving the corresponding systems. These can be done as for the regular pattern. However,
the affine mapping from TIC" to Tle (zf9 = 22" + 1, yB9 = 2y — 1) simplifies our
life. When n > 1, under this mapping, (¢; +1|T1)Ch and (Y Tl )6t are the same as
() +1|T1)R9 and (v, +1IT1)R9 up to a constant multiplier. When n =1, they are the same
up to a constant multiplier and a constant addendum as well.

Therefore, when n > 1, the function value and derivative superconvergent points in TICh
can be obtained from those in Tle (see Remark 3.5), which are listed in TABLE 1 and
TABLE 2. When n = 1, the derivative superconvergent points are also obtained from the
regular pattern (TABLE 2). We need to determine only the function value superconvergent
points, which are solutions of
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Figure 9: Contours ﬁg—éﬁ =0 (solid) and —'gmL = 0 (dashed).

22—yl +z+y=0,
zy = 0.

Solving this system, we have three superconvergent points: (0,0), (0,1) and (-1, 0) The
8
contours %, = 0 and ¢}, = 0 for n = 8 are given in FIGURE 8. The contours T"il =0

and —v"l—“ 0 for n = 8 are given in FIGURE 9.

3.3. UNION JACK PATTERN

In the Union Jack pattern, the reference cell is again K = [~1,1]2, which is partitioned
into eight triangular elements (see FIGURE 10).

ny ng ng

ng A S ne

L3} T2 ns

Figure 10: Partition of K for the Union Jack Pattern

Let v; be the linear nodal shape function corresponding to vertex n;, which are defined
n (3.23). The nodal shape functions are symmetric corresponding to the geometry of the
vertices. The side modes and internal modes are defined as in (3.6) and (3.7), respectively.

The constructions of the periodic basis functions are similar as described in Section 3.1.
Here, vy + v3 + v7 4+ vg, Vo + s, v4 + 15 and vy are four periodic basis functions.
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- in Tl, { -y %n 7:1,
n= { -y in T2, Vo = —z—y in 73,
0 in other 7}; 0 in other T;
) -4y in TQ.
i in 15, Ve = { —z—y in T,
BEY Y in T, . 0 in other T;
0 in other Tj; ety i T
1+y in T, T3, Ve = { T—y %n Ty, ) (3.23)
oo 1+e in 7:“2, TO 0 in o:cher T
° 1—2 in Ty, T7, t+y in 136,
l—y in Ts, Tg; Vg = { -z +y in Tg, R
. 0 in other Tj;
Y in ’1:5’ Yy in T7,
vp={ -z in T, A Vg = { - in Ty
0 in_other Ti; 0 in other T}.

It is straightforward to verify that

dim PY(K) = (2n+1)?, dim PPY(K) = (2n)% (3.24)

~

Theorems 3.1 and 3.2 are valid for the Union Jack mesh. To determine spaces ®p41(K),
we may either process an orthogonal decomposition of PP,’,”(f{ ) under the Laplace operator,
or carry on a periodic finite element approximation. The first approach is similar as in
previous cases. We define ¥,,(K) as in (3.11). Then by the Gram-Schmidt process, PP¥(K)
can be decomposed into a sum of \Iln(K' ), as in (3.12). Based on ¥, (K), we can construct

dn(K). 4

Remark 3.9. For the Union Jack pattern, a portion of K in each quadrant can be mapped
to the reference cell of the regular pattern by an affine mapping. The corresponding shape
functions defined in (3.23) are mapped to the ones of the regular pattern. Similar symmetry
results as in Lemma 3.3 hold for the Union Jack pattern. Therefore, we need to work only on
superconvergent points in the first element. Superconvergent points in the other elements
can be obtained by symmetry. O

Basis functions of ®,41(K) in T are provided for n = 1,...,4. For information of
=5,...,8, the reader is referred to [13]. To simplify notations, let B} ; and 6, be as

defined in Section 3.2. Thus, the basis functions of <I>n+1(f( ) in Ty are
B% = ¢2(1L') + [3_76’ %a %%] 917
B? = zy +[~1,0,0] 63,

B} = ¢2(y) + [, 15> 58] b5

4As described in Remarks 3.3, 3.8, the second approach is more efficient in case that we are interested
only in the expression itself (not the structure of the expression).
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B% = (7’3(:3) + [—%’0 0, %’Oa %] b2,
B = ¢o(z)y + [15. 0, 3. 7. 35 3] 62,
B} = 2¢9(y) + [~ 3,0,0. 55,0, 3] 65,
Bi = ¢3(y) + (350, 33, 0, 55, 3] 62
Bz% - ¢4(-T) + ['5_1_~ —"%a 3%3 —%7 ?1_%7 —1_?'__7 'Tl%a 1_121 "1%1 —%_5] 037
B42 = @3($)y+ [—T&:O:Oa_jvo,_%ga%ao)l _7] b3,
Bg - ¢2($)¢2(y) + [31‘1'34%7 _é—gzp 50497 %a Tﬁ%a 2_61—8’_%36’ 3_;1565 %7 "1_128] 03’
B} = 2¢3(y) + [~ 140, 0,0, —55, 0, 52, 0,0, 7, 53] s
BS = 04(y) + =55 — 15 B — 51> o 0 —TI3 113 10 ) 03
Bl = ¢5(x) + [- i 0.0~ f 0. 138 — 23845 0. - fars, _lsmer 200w o 1 g gn] 0,
2= ga(z)y + (850 - 35 Ak & 3 - 2% 0 e 3R & v & - 28 -] 04y
BE = ¢3(z)da(y) + [- 285 0.0, - 32337 0. - ez fuose o, s _saan _oae o 3 210 _am] 6y,
B = ¢o()d3(y) + (3550 1858 205 2800 s — 1% 20 A58 - 13085, 0, . B 20 - 13%) B4
6 = TPa(y) + [A85.0.0.— 785, 0. 3857, — ¥z, 0, 39408, S — A 0., 08, L] O,
A 1

o = 15 34055 5 2017 7859 _ 875 43075 81445 268645 2471 T _ .35 9485]
BO ¢5 y) + [5184‘0' 5184 * O216° 384 * 1536°' ~ 82944 20736 41472° "41d72 10, 368 32'~ 5184 2304 64

Choose BZ; +1 as ¥s, apply Theorem 3.1, and we can verify the following results for finite
elements of degree n up to 8. '

Proposition 3.5. Consider element T of the Union Jack mesh. For the Poisson equation,
the function value superconvergent points are:

(1) If n is odd, there is no superconvergent point;

(i1) If n is even, the vertices and the midpoint of side ly5 are the only superconvergent points.

Proposition 3.6. Consider element T of the Union Jack mesh. For the Poisson equation,
there is no superconvergent point for g—;ﬁ, nor for %.

Remark 8.10. Propositions 3.5 and 3.6 agree with the results from the computer-based
proof and the conclusion from the symmetry principle. Moreover, our results theoretically
confirmed that there are no other superconvergent points. O

Now, we consider harmonic polynomials. Again, we can determine zbfil and szILTl from
the basis functions of @,41(K). In the element 73, we have, for instance

ke
Im
2

ofe

ui
ufe
i

R
(i

Im
5

- B D= ey,
= B2 = zy + z;

=B§—3B§=x3—3my2+%x2—%xy—a:,
= B} - 3B} = y® — 322y + 3y% — 32y — 32% + y — 3,

= B} - 6B} + B} =z* — 62%y% + y* -+ 22% — 92%y — 3zy? + 2% — 227 —day +9? —z - &,
= B? - B} = 2%y — 2y + 2% + 2%y — 2zy% + 22 — zy; '

= B} —10B2 + 5B% = 25 — 1023y% + 5y + %x‘l — g8y — Bgly? 4 o3
7453 __ 55,2 535 .2 _ 125,2 , 85 5

—168% — FTTY T FgTY  — ST+ 55TV — 1585,

I A i L g et e Ll Y

+52° + [FY° — FIYT — TpTY + 37T + 53Y° — T2y + 5570 + 51Y — %2
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Figure 11: Contours 9 = 0 (solid) and ¢{™ = 0 (dashed).

Figure 12: Contours ?%L =0 (solid) and 2%~ = 0 (dashed).

For information of more cases, please check [13].

By Theorem 3.2, The superconvergent points can be located by solving the corresponding
systems. These can be done as for the regular pattern However, as we observed for the
Chevron patter, the affine mapping from TPY to 7% maps (9] Re gV and (9 14)Y7
to (YR t1lh YR9 and (17 +1|T1)Rg up to a constant multiplier when n > 1. When n = 1, they
coincide with each other up to a constant multiplier and a constant addendum as well.

Thus, when n > 1, the function value and derivative superconvergent points in ’f’lu J can
be obtained from those in Tle , which are listed in TABLE 1 and TABLE 2. When n = 1,
the derivative superconvergent points are also as same as the regular pattern (TABLE 2).
Therefore, we need to determine only the function value superconvergent points for n = 1.
Toward this end, we solve

2 —y?+z—y=0,
{ zy+z=0,

and find three superconvergent points: (0,0), (0,~1) and (—1,-1). The contours d)nﬂ
and ¢;™, = 0 for n = 8 are given in FIGURE 11. The contours %’Lﬂ =0 and —£H w"“ =0
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for n = 8 are given in FIGURE 12.

3.4. Criss-CrosS PATTERN

In the Criss-Cross Pattern, we partition the reference cell K = [—1,1]? into four trian-
gular elements (see FIGURE 13).

Y
Mg %)
Ts
Ty na
T x
T
ny n2

Figure 13: Partition of K for the Criss-Cross Pattern

Let v; be the linear nodal shape function corresponding to vertex n;.

~3z+y) i T, Ty _{ Hz—y) in Ty, Ty,
vy = . ~ A vy = , -~ N
0 m T2, T3; 0 m T3, T4;
) LN
1+y in B, y4={ g(y z) in 3;3’ g“j (3.25)
) I—z in Ty, moty, 42
Tl 1-y in B, [ e+y i By B,
14z in Ty 1o in Ty, Ty

The side modes and internal modes are defined as in (3.6) and (3.7), respectively.

The periodic basis functions can be constructed from the hierarchic basis functions.
This time, v; + vo + 14 + v5 and v5 are periodic.

It is straightforward to verify that

dim PY(K) =n? + (n+1)%, dim PPY(K) = 2n?. (3.26
n n

Again, Theorems 3.1 and 3.2 are valid for Criss-Cross mesh. To determine spaces
®n41(K), we may either process the orthogonal decomposition of PP?(K), or carry on
a periodic finite element approximation. As we mentioned before, the second approach is
more efficient when we are interested only in the expressions (rather than the structures)
of the basis functions.

Remark 8.11. Unlike the Chevron and Union Jack patterns, no portion of the partitioned
K for the Criss-Cross pattern “looks like” the regular pattern. In other words, 7} and 75
can not be mapped to the reference cell of the regular pattern by an affine mapping, nor
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Figure 14: Contours 12¢, = 0 (solid) and /™, = 0 (dashed), n=1,...,4.

can the other pairs. This leads to the fact that the superconvergence of the Criss-Cross
pattern is very much different from that of the regular pattern.

On the other hand, the geometry of the partition in K is symmetric, as we can see in
definition (3.25). So we need to study only superconvergence in T} and T5. Superconvergent
points in the other elements can be obtained by symmetry. O

In the following, basis functions of <I>n+1(f( ) in Ty and T, are provided forn =1,...,4.
For cases n = 5,...,8, the reader is referred to [13]. As in Section 3.2, we use B? ., to

denote the j** basis function of ®,,,1(K), and let column vectors 62 and 62 consist all nodal
shape functions, side modes, and internal modes of order < n in Ty and T, respectively.
For example,

01 = [v1,va,v3]T, 6} = [V, v5, v3]T;
05 =61, 3% <%, %), 63 =102, <3°,¢3°, )7,
03 = [61 §312aC§3’§3 ’L3,1]T’ 03 = [9%, Cgsvggs’g?, ) 43, I]T'

1_(pl .12 .23 1 T 2 _[p2 .25 .35 93
01 =03, si*,si ,€4 ,L41,L4,2] ) 94—[93, S4184 284 ’L41aL42} .

(3.27)

Then, in element T}, the basis functions of <I>n+1(f{ ) are

2 5 l
2,23 6]
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Figure 15: Contours $¢; = 0 (solid) and ¢}7, = 0 (dashed), n =5,...,8.

B? = ¢o(z)y +(0,0,0,1 -7510]
B3 = z¢a(y) +[0,0,0,0 -—79,
Bs = ¢3(y) + [0000%—61

N)»—u___, Q>

Bj = ¢4(z) + [31396’ 313?6’ 458’ 111927_1_14’ _’12’0’12— 5 _Lléé] 9%7
B = ¢3(z)y +[0,0,0,0, }, - 5,1,—585-@,0] 83,

BZZ' = ¢2($)¢2(y) + [ﬁ %Za _ﬁ%a 1_1'8'$ 12 4_15,03 1l9§a %9—8-’ __2_1] 9%1
B:11 = T¢3 y) + [03 0, 0,0, %7 '_")01 35 3‘5—,’0]

3
8 _ 19 10 % Do L 07 5 a5 195y 1
By = ds(y) + 556 336> — 30 110 — 100 — 10 0 1190 T30 g6 035

121 _ 121 85 145 _ 145 21 17 895 1
Bé = ¢5(37) + [0 0,0,0, 7735 1728 %ggs’ 864" % ﬁ,0,0, 1296 ]1296’ _123592 ’O] 931’
B2=¢()+[0000 1 _ 9_2191_6_10_2635]91

5 z)y ’ 4032> 4037 5,0 47A032° T 4032 730247 1 33> 432> 864 V4
By = ¢3($)¢ (y )+ [0 0,0, 0’ 7560’ 7560’m’?"%’o’o’_m’;‘f"_m’o 01,
BE = ¢o(z)d3(y) +[0,0,0,0, =785, — 255, 0, — 5, — 2, 1957, 0 30> 32, 0> — 503} 6}

5 2 3y b My Yy 75 H 56’ ) 6’ 56‘)1137 ’81)8 b) Y 324 4)
B = 0.0.0.0. —-251 26§1i1019_101900_6_1_&_é]12_50 1

g = odaly) +10,0,0,0, g, agg 72 g — 3, 0.0 g i w0 O 0ar
Bs = ¢5(y) + [0’ 0,0,0, 1728 7 1 28’0’_%’_5"6’ 12 6’0’ 206° 129 0, 2592] 03

In element Tg, the basis functions of <1>n+1(K' ) are

= ¢2($) + [%a %a ’g‘] 0%’
B?=zy+1, —1,0]70%,
B} = ¢a(y) + (3,3, 3] 6%;

B} = ¢3(z) + [0,0,0,0, — fo]eg,
B3—q52:cy+[0000 —6]93,
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Bg = CL‘(bQ(Z/) + [0~ 070'. _17 _'22;?) _021()] 0%»
B = ) + 0.0,0,0.~5, 3] .

9 1 5 1 11 5 25 1257 p2
B = 04(z) + [5360 335 —a5, iz ~g@» ~30 0 12 112 56 06
B42=¢3(a:)y+[0,0,01,0—1-5-,3.&55;—-31,—),0} % 19 10 _ 977 p2
3 —_—
B} = ¢o(z)d2(y) + (553 507: 360> Tgp» 42,13 0 168 o5+ —34) 03
By = ad3 y)+1($)),0.18,0 550 5 _13_’0]2?3’2' 1157 p2
Bi = da() + lzze- 338> ~ 28 1 ~10 ~ 100 O 113 1100~ 56 ) 05
121 121 45 145 _ 2245 217 _ 217 13265 2
By = ¢5(z) +1(0,0,0,0 1—722%@()%—79;%——2?2 0. = o551 759 01 0
B2 = ¢ [0.0,0,0, — 25 951 ° 8 “019 1019 (L 6L "1 (445 g2
5—<P4($)y+ : Vs U YUy — 70390 20300 72»4832 0391 V1 Vs 5 139 ’84%] 4
B3 = 0000547 %4:0__1}__%7 0__%_21_7_%__3_002
5—¢3($)¢2(y)+[, H s 7560 7560 * 56 56 1134 81 0 3924 ] 4
Bf = ooooﬁ_ﬂLg_ioo_ﬁ_ﬁo_?@]gz
5 = d2(x)¢3(y) +[0,0.0,0, 7255, — 750 722, 56, ~ 35,05 1038100 2 7 324) 24"
B = 24 _*_[0000_25;__5 0;8?9 ?01 189 __ _il___(i___6350]02
%—xm(y) L 191405275, 10380 40820 40320 50247 )+ 4Rg)  AB2nea 640 A
Bg = ¢5(y) +10,0.0,0, 7755, — 7725 564> 576> ~ 576> 0+ 0, — 1395 1395 0> — 35021 -

Take B/ +1 as ¥s, and we can verify the following results for n up to 8.

Proposition 3.7. Consider element T1 (or Ty) of the Criss-Cross mesh. For the Poisson
equation, the function value superconvergent points are:

(1) If n is odd, there is no superconvergent point;

(it) If n is even, the vertices and the midpoint of side l12 (or los, Tespectively) are the only
superconvergent points.

Proposition 3.8. Consider the superconvergent points for %% of the Poisson solutions in

the Criss-Cross mesh. In T, the superconvergent points are the same as in the regular
pattern. In Ty, there is no superconvergent point. X
For %Z, superconvergence can be determined by symmetry. Namely, in Ty, there is no

superconvergent point. In Ty , the cases are the same as in the regular pattern.

Remark 3.12. As in the regular pattern, superconvergence for the Criss-Cross pattern at
symmetry points was predicted by the symmetry theory and the computer-based proof.
Propositions 3.7 and 3.8 confirm theoretically that there are no other superconvergent
points. O

R

As for the Laplace equation, we determine 1,7, and 1/1,1174'}1 from the basis functions of

n
®n41(K). In the element T}, we have

Y3 = B} — B} = 2% — 1%,
Yim = B2 = zy +;

f¢ = B} — 3B = 23 — 32y% — 3y — =,
Pi™ = B} — 3B% = 4 — 322y — 322 — y;

yfe = B} ~ 6B} + B} = 2% — 622 + y* — 92%y + ¢ — da® + 2,
A" = B} — Bf = 2%y — zy® + 2° — 2y,
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W€ = B —10B2 + 5B% =1° - 1023y + 5zy? — Lady + Ly’ — Lood
‘/ém = Bg—lOB§+5B§ =y® - 10y32® + byz? + 3y — Ly a? + 5zt + 228 —
In the element T: 5, we have
szezBl B2_':L‘ —y27
Wim = B =zy—y;
yfe = Bi — 3B = 1% — 3zy® + 3y -,
Wim = B} - 3B2 = y® - 3yz? +3yz —y

Re = Bl — 6B} + B} = 2t — 62%y? +y* — 23+ 9zy? — 4% + &,

im =BZ—B4=x3y—my3—m2y+y3:
Wfe = B} —10B2 +5B] =2® —10z%y? +5zy Sad 4 Sr2y? — byt 4 2845 -
wgm = B — 10B% + 5B2 =y® — 10y3z” + 5yzt + £ y3:z By — 8083 —

For cases n = 5,...,8, the reader is referred to [13].

By Theorem 3.2, the intersection points of the contours wn <1
function value superconvergent points. It can be shown that, for &

(—y,—2) = (=) 93¢l s, (2, v),
7/)5}2"|T1( y,—x) = (- )k+1"p£}zan2 T,Y);
2k+1 IT( Y, —T) = ¢2k+1|T2(x v),
2k+1|T1( Y, —) 2k+1|T2(x y)-

RelT

Ray® - oy -
5
BByg2 1552
23al.y N Ly
By? + Lya —
0 and ¢}7, =
1,2,...

1
21T
1

271Y-

0 are

(3.28)

TABLE 3(a). Function Value Superconvergent Points for the Criss-Cross Pattern

(in Tl, n= 1,. ,4)

n=1

n=2

n=3

n =4

—1.0000000000000000
~1.0000000000000000

1.0000000000000000
—1.0000000000000000

0.0000000000000000
0.0000000000000000

10

11

12

13

14

-1.0000000000000000
—1.0000000000000000

0.0000000000000000
—1.0000000000000000

1.0000000000000000
—1.0000000000000000

—~0.6614378277661476
—0.7500000000000000

0.6614378277661476
—0.7500000000000000

—0.5000000000000000
—0.5000000000000000

0.5000000000000000
-0.5000000000000000

0.0000000000000000
0.0000000000000000

-0.9173685331054181
—1.0000000006000000

—0.3980389107461900
—1.0000000000000000

0.3980389107461900
—1.0000000000000000

0.9173685331054181
—1.0000000000000000

—0.7596648111796141
—0.7596648111796141

0.7596648111796141
—0.7596648111796141

—0.2403351888203859
—0.2403351888203859

0.2403351888203859
—0.2403351888203859

—1.0000000000000000
—1.0000000000000000

—0.6074928962939559
~1.0000000000000000

0.0000000000000000
—1.0000000000000G00

0.6074928962939559
—1.0000000000000000

1.0000000000000000
~1.0000000000000000

—0.9755948656056709
—0.9755948656056709

0.9755948656056709
—0.9755948656056709

—0.5266244945254620
—~0.5437574858837224

0.5266244945254620
~0.5437574858837224

—0.5000000000000000
—0.5000000000000000

0.5000000000000000
—0.5000000000000000

—0.0244051343943291
~0.0244051343943291

0.02440.51343943291
—0.0244051343943291

0.0000000000000000
0.0000000000000000
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TABLE 3(b). Function Value Superconvergent Points for the Criss-Cross Pattern
(inTy,n=25....,8)

n =5

n = 6

7

n =

n =8

—1.0000000000000000
—1.0000000000000000

—0.7520955703220618

—1.0000000000000000
—1.0000000000000000

—-(1.8258100260262924

—0.9981396004694932
--1.0000000000000000

—0.8677139861534285

—1.0000000000000000
—1.0000000000000000

—0.8949872464334571

2 —1.0000000000000000 —1.0000000000000000 —1.0000000000000000 —1.0000000600000000
3 ~0.2738197456392299 —0.4616469028358420 —0.5861275452213199 ~0.6718072968265310
--1.0000000000060000 —1.0000000000060000 ~1.0000000000000000 ~1.0000000000000000

4 0.2738197456392299 0.0000000000000000 —0.2065452580134060 —0.3593519628863694
—1.0000000000000000 -1.0000000000000000 ~1.0000000000000000 —1.0000000000000000

. 0.7520955703220618 0.4616469028358420 0.2065452580134060 0.0000000000000000
° —1.0000000000000000 —1.0000000000000000 —1.0000000000000000 —1.0000000000000000
6 1.0000000000000000 0.8258100260262924 0.5861275452213199 0.3593519628863694
—1.0000000000000000 —-1.0000000000000000 —1.0000000000000000 —1.0000000000000000

- —0.7497222492047110 1.0000000000000000 0.8677139861534285 0.6718072968265310
—-0.7641686475074967 ~1.0000000000000000 —1.0000000000000000 —1.0000000000000000

3 0.7497222492047110 —0.8964006664142398 0.9981396004694932 0.8949872464334571
—0.7641686475074967 —0.9037747054613061 —1.0000000000000000 -1.0000000000000000

9 —0.6889822365046136 0.8964006664142398 —0.8246872285548802 1.0000000000000000
—0.6889822365046136 —0.9037747054613061 ~0.9699982047625423 —1.0000000000000000

10 0.6889822365046136 -0.7930464008921687 0.8246872285548802 —0.9992591382562380
—0.6889822365046136 —0.7930464008921687 —0.9699982047625423 -0.9992591382562380

1 —0.3110177634953864 0.7930464008921687 —0.8641993803626567 0.9992591382562380
—0.3110177634953864 —0.7930464008921687 —0.8641993803626567 —0.9992591382562380

12 0.3110177634953864 --0.5000000000000000 0.8641993803626567 —0.8432145105568528
-0.3110177634953864 --0.5000000000000000 ~0.8641993803626567 —0.9574614014591484

13 0.0000000000000000 0.5000000000000000 —0.6308098017028516 0.8432145105568528
0.0000000000000000 -0.5000000000000000 —0.6308098017028516 —0.9574614014591484

14 --0.2069535991078313 0.6308098017028516 —0.9207514598210227
—0.2069535991078313 —0.6308098017028516 ~0.9207514598210227

15 0.2069535991078313 -0.3691901982971484 0.9207514598210227
—0.2069535991078313 —0.3691901982971484 —0.9207514598210227

16 0.0000000000000000 0.3691901982971484 ~0.7543814375798548
0.0000000000000000 —0.3691901982971484 —0.7568093664013312

17 —0.1358006196373433 0.7543814375798548
-0.1358006196373433 —0.7568093664013312

18 0.1358006196373433 ~0.7249538986620887
—0.1358006196373433 —0.7249538986620887

19 0.7249538986620887
-0.7249538986620887

20 —0.2750461013379113
—0.2750461013379113

21 0.2750461013379113
—~0.2750461013379113

22 —0.0635342636473669
~0.1156087916821725

23 0.0635342636473669
~0.1156087916821725

24 —0.0792485401789773
—0.0792485401789773

28 0.0792485401789773
—0.0792485401789773

26 0.0000000000000000
—0.0165548344873347

27 ~0.0007408617437620
—0.0007408617437620

28 0.0007408617437620
—0.0007408617437620

29 0.0000000000000000

0.0000000000000000

Therefore, we need to determine only superconvergent points in 7. Superconvergence in 75
are obtained by symmetry. TABLE 3 demonstrates function value superconvergent points
in T} for n=1,...,8 with 16 digits of accuracy. The contours d)ﬁjl =0 and zj)fg_‘l = ( for
n=1,...,8 are given in FIGURE 14 and FIGURE 15.

We now apply Theorem 3.2 in derivative superconvergence to the Laplace equation. For
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(in Ti.n= 1,...,8)

TABLE 4. z-Derivative Superconvergent Points for the Criss-Cross Pattern

no=1

n=2

n =3

n =4

0.0000000000000000
—1.0000000000000000

—0.5773502691896258
—1.0000000000000000

0.5773502691896258

—0.7071067811865475
—1.0000000000000000

0.0000000000000000

—0.8477823441259478
—1.0000000000000000

~.32045852838843981

2 —1.0000000000000000 —1.0000000000000000 —1.00060000000000000
3 0.7071067811865475 0.320458528388439x
—1.0000000000000000 —1.0000000000000000
1 0.0000000000000000 0.8477823441259478
0.0000000000000000 —1.0000000000000000
5 0.0000000000000000
—0.0224627212127888

n =35 n =06 n=7 n =8
1 ~0.9022588235195235 —0.9310770981941091 —0.9465714662683107 —0.9588192910578902
—1.0600000000000000 —1.00000000000006000 --1.0000000000000000 ~—1.0000000000000000
" ~0.5288468732829620 —0.6566413396532959 —0.7373956542010889 ~0.79240298133810774
“ —1.00000000006000000 —1.0000000000000000 —1.0000000000000000 -1.0000000000000000
3 0.0000000000000000 —0.2356824218715548 —0.4022593795202400 ~0.5215086649681956
—1.0000000000000000 ~1.0000000000000000 —1.0000000000000000 - 1.6000000000000000
4 0.5288468732829620 0.2356824218715548 0.0000000000000000 —0.1817673913302495
—1.0000000000000000 —1.0000000000000000 —1.0000000000000000 -1.0000060000000000
. 0.9022588235195235 0.6566413396532959 0.4022593795202400 0.1817673913302495
° —1.0000000000000000 —1.0000000000000000 —1.0000000000000000 -1.0000000000000000
6 0.0000000000000000 0.9310770981941091 0.7373956542010889 0.5215086649681956
0.0000000000000000 —1.0000000000000000 ~—1.0000000000000000 -1.0000000000000000
7 —0.0891940958115766 0.9465714662683107 0.7924029133810774
—0.1171153414673580 —1.0000000000000000 —1.0000000000000000
8 0.0891940958115766 -0.0382832107422798 0.9588192910578902
—0.1171153414673580 —0.0748454610760943 —1.0000000000000000
9 0.0382832107422798 —0.9264627610278532
—0.0748454610760943 —0.9700802098022849
10 0.0000000000000000 0.9264627610278532
0.0000000000000000 —0.9700802098022849
11 ~0.1589910559373525
—0.1863775498631390
12 0.1589910559373525
—0.1863775498631390
13 0.0000000000000000
-0.1134648999929049
14 —0.0418841026400703
-0.0612506331535669
15 0.0418841026400703
—0.0612506331535669
16 0.0000000000000000

~0.0007334155159263

Re
z-derivative superconvergence, we need to determine the common zeros of %;—‘ = 0 and
opIm . - 2 . . . .
% = 0 in both 77 and T3, since (3.28) does not imply any symmetric properties for

z-derivatives.

We list superconvergent points for n = 1,...,8 in TABLE 4 and TABLE 5 with 16 digits

0 oplm . .
of accuracy. Only the contours —%}.l = 0 and %ﬂ = 0 for n = 3,...,8 are given in

FIGURE 16.

Re

On the other hand, from (3.28), the y-derivatives of 1/),?_?_1 and ﬂbﬁl are symmetric to the
z-derivatives. Thus. the y-derivative superconvergent points can be obtained by symmetry.

Remark 3.13. To compare our results with those given in [2] 5, we use Z = (z 4+ 1)/2 and

®Derivative superconvergent points are given for n = 1,...,6 in [2] (TABLE II, III).
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(inTh,n=1,...,8)

TABLE 5. z-Derivative Superconvergent Points for the Criss-Cross Pattern

n=1

n=2

n=3

n =4

0.0000000000000000
0.0000000000000000

0.5773502691896258
0.0000000000000000

0.0000000000000000
0.0000000000000000

0.7500000000000000

0.5242840088938378
—0.3672919579081908

0.524284008893837&

2 -0.4330127018922193 0.3672919579081908
3 0.7500000000000000 0.794158535160612¢
0.0000000000000000 0.0000000000000000
4 0.7500000000000000 0.8291726306727321
0.4330127018922193 —0.20667310915565382
5 0.8291726306727321
° 0.2066731091555382
n =5 n =0 n=7"1 n =8
1 0.0000000000000000 0.4172857146226821 0.0000000000000000 0.0094266635593945
0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000
2 0.3766028903116235 0.5263929773620074 0.5355367828576363 0.0673857238109867
—0,2436531088238106 —0.4332798971957640 ~0.2200378052788761 —0.042113571€689382
3 0.3766028903116235 0.5263929773620074 0.5355367828576363 0.0673857238109867
0.2436531088238106 0.4332798971957640 0.2200378052788761 0.0421135710689382
4 0.5081763283085686 0.6569757558957244 0.6438730997258771 0.5853163679868406
—0.3204147860450027 —0.2092748096819668 —0.5724579277550955 0.0000000000000000
5 0.5081763283085686 0.6569757558957244 0.6438730997258771 0.6496603573416232
0.3204147860450027 0.2092748096819668 0.5724579277550955 —0.3920199824799846
6 0.5520845860159235 0.6665389441764509 0.7289644770413350 0.6496603573416232
0.0000000000000000 0.0000000000000000 0.0000000000000000 0.3920199824799846
7 0.5623467631434243 0.6766532889073166 0.9150910586863469 0.7164981840772373
—0.0834391002091283 —0.2597018851468181 0.0000000000000000 —0.6611375478929451
s 0.5623467631434243 0.6766532889073166 0.7164981840772373
0.0834391002091283 0.2597018851468181 0.6611375478929451
9 0.6737396038956180 0.7016063317069908 0.7687927787500516
—-0.5463668183039467 —0.5860557493229441 0.0000000000000000
10 0.6737396038956180 0.7016063317069908 0.9271673933371417
0.5463668183039467 0.5860557493229441 0.0000000000000000
11 0.8669379104781077 0.7356517149502489
0.0000000000000000 ~0.6300926285368980
12 0.7356517149502489
0.6300926285368980
13 0.8935538681815075

0.0000000000000000

§ = (y+1)/2 to map elements T and T» to elements 7, and 73 in [2], respectively. The
superconvergent points in T; are also mapped to the superconvergent points in 73, 1 = 1,2
(see Remark 3.5 for reasons). Almost all of the points in [2] are accurate in 10 digits.
However, in case n = 3, the y-coordinates of the second and the fourth points in 75 are
0.2834936534 and 0.7165063710, which are accurate in 8 and 7 digits, respectively. By our
process, these two points can be located analytically, which are (4 & /3)/8 (after mapped
into 72), or 0.2834936490538904 and 0.7165063509461097 in decimals. O
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Figure 16: Contours %ﬂ = 0 (solid) and 2‘%"% = (0 (dashed), n=3,...,8.
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