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Nat ural Superconvergent Points of Triangular Finite Elements 

Zhimin Zhang* and Runchang Lin 
Department of Mathematics, Wayne State University 

Abstract. In this work, we analytically identify natural superconvergent points of function 
values and gradients for triangular elements. Both the Poisson equation and the Laplace equation 
are discussed for polynomial finite element spaces (with degrees up to 8) under four different mesh 
patterns. Our results verify computer findings of [2], especially, we confirm that the computed data 
have 9 digits of accuracy with an exception of one pair (which has 8-7 digits of accuracy). In addition, 
we demonstrate that the function value superconvergent points predicted by the symmetry theory 
[14] are the only superconvergent points for the Poisson equation. Finally, we provide function value 
superconvergent points for the Laplace equation, which are not reported elsewhere in the literature. 
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1. INTRODUCTIOI\ 

Natural superconvergent points are special points where the convergence of numerical 
approximations exceeds the possible global rate without any post-processing. The investi
gation regarding the finite element superconvergence has a long history since 70' [6]. For 
the literature, the reader is referred to books [3, 4, 5, 9, 12, 17, 20] and references therein. 

In mid-90', Babuska et al. developed a "computer-based proof" [2] that systematically 
predicted derivative superconvergent points for the Laplace equation, the Poisson equation, 
and linear elasticity equations. They considered four mesh patterns of triangular elements 
and three families of rectangular elements of degree n, 1 ~ n ~ 7. Their investigation 
reduced the problem of finding superconvergent points to the problem of finding intersec
tions of certain polynomial contours. The actual superconvergent points were located by 
computer programs without explicitly constructing those polynomials, and 10 digits were 
provided in their reported data [2, 3]. Later, Zhang proposed an analytic approach which 
constructs explicitly the needed polynomials through an orthogonal decomposition under 
local rectangular and brick meshes [18, 19]. His result confirmed that ten digits reported by 
computer findings are correct up to rounding with only one exception (8-accurate digits). 

A parallel analytic approach for triangular meshes are much more involved and tedious, 
which will be the main object of the current investigation. We consider the Laplace and 
Poisson equations on the four triangular mesh patterns used in the computer-based proof. 
By a special orthogonal decomposition, we explicitly construct those polynomials from 
which the superconvergent points are located. Our results verify that the computed data 

*This research was partially supported by the National Science Foundation grants DMS-0074301, DMS-
0079743. and INT-0196139. 
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for triangular elements in [2] have 9 digits of accuracy except one pair (with 8-7 accurate 
digits). In addition, we report for the first time, superconvergent points for function values 
of the Laplace equation. 

Another systematic way to find superconvergent points in mid-90' is the symmetry 
theory developed by Schatz et al. [14]. This theory predicts that superconvergence occurs at 
local mesh symmetry points for a large class of 2nd-order elliptic problems of any dimension. 
For odd order elements (linear, cubic. etc.), superconvergence happens to derivatives: and 
for even order elements (quadratic and so on), it is for function values. A by-product of 
our current work is to confirm that for the Poisson equation under triangular meshes, the 
mesh symmetry points are "almost" all superconvergent points. 

An outline of this paper is as follows: Section 2 contains the main theorems which 
will reduce the problem of finding superconvergent points to that of finding intersections 
of certain polynomial contours. In Section 3, superconvergent points of function values 
and gradients of both the Poisson equation and the Laplace equation are provided for four 
patterns of triangular meshes. The main idea is illustrated in the beginning of Section 
3.1 for the regular pattern. The detailed superconvergent points are provided in Sections 
3.1-3.4, for four mesh patterns, respectively. 

2. THEORETICAL SETTING 

We shall outline the process by Babuska et al. [2] in finding derivative superconvergent 
points. Here we follow the description provided by Wahlbin [17]. 

The main hypotheses in [2] are: (a) there is no roundoff error; (b) the mesh is locally 
translation invariant; (c) the solution is sufficiently smooth locally and the pollution error 
is under control. Throughout this paper, we assume hypotheses (b) and (c). However, the 
hypothesis (a) is no longer needed, since the explicit expressions of involved polynomials 
are provided. Another advantage of this method is that it is easily repeated. 

Let n E JR2 be a bounded domain. Denote in general a square centered at x = (x1, x2) of 
side 2h as c(x, h) = {y = (Yl' Y2) E n I IYi - Xi I :S h, i = 1, 2} . Consider the local natuml
superconvergent points near x0 E n. Let c(x0 , h) be the 2h X 2h master cell. Let Dl = 
c(x0 , H) and Do = c(x0 , 2H) be two squares in D with H = h8, 0 < 6 < 1, such that the 
2h-periodic extensions of the master cell fit them exactly. Assume that a finite element 
approximation uh E Sh(Do) of u, the solution of a Poisson equation, satisfies 

(2.1) 

where D(w,v) = f'Vw · 'Vv, s:mp(Do) is the finite element subspace which has compact 
support on Do. We shall assume that 

(2.2) 

with L > 0 and L + 6 < 1. This assumption implies that pollution effects from outside of 
the domain Do have been properly controlled and the error loss is of order h L. Moreover, 
we may assume that 

(2.3) 

with A ;::: 0 and A + 6 < 1. 
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Under various conditions given in [15], we have 

Lemma 2.1. Let u and uh satisfy (2.1). Then for each s 2 0 and 1 S q S oc there exists 
a constant C independent of u, uh, h, H, and x0 such that 

\\u- uh\\"Fc5o(rll) S C m1
5
'n (\u- v\l+'c5o(rlo) + H-

1\\u- v\\L00 (flo)) 
vE h 

+ CH-l-s-2/qj\u- uh\\t,vq-s(rlo). 

The corresponding result for the error in function values for u- uh is also found in [15]. 

Lemma 2.2. Let u and 'Uh satisfy (2.1 ). Then for each s 2 0 and 1 S q S oo there exists 
a constant C such that 

\\u- uh\ILoo(rlJ) s c (ln ~) ii ~k~ \\u- v\ILoo(rlo) + cH-s-2/q\\u- Uh\\R·q-s(no)' 

Here fi = 1 if n = 1, fi = 0 otherwise. 

Let Q be the (n + 1)th order Taylor expansion of u at x 0 . Then 

\\u- Q\\wg,(no) S CHn+2-s, for 0 S s S n + 2. (2.4) 

Interpolate it into Sh(Oo) to form hQ. Then set p = Q- hQ. The key observation in [2] 
is that pis 2h-periodic. Let SJ; ( c(x0 , h)) denote the 2h-periodic functions in Sh ( c(x0 , h)), 
and define P P(p) E Sh ( c(x0 , h)) by 

1 (p-PP(p))=O; Dc(xo,h)(p-PP(p),v)=O, \fvES'h(c(x0 ,h)). (2.5) 
c(x0 ,h) 

Denote H 1·7r(f2o) the 2h-periodic functions in H 1(00). Then from [2, 17], p E H 1·7r(f20 ). 

The following lemma is also found in [2, 17]. 

Lemma 2.3. For all Q E H 1·7r(00), we have 

D(Q- PP(Q),v) = 0, \fv E S~omp(Oo). 

Now put '1/J = p- PP(p), by Lemma 2.1, we have [2, 17] 

Theorem 2 .1. 

a o'l/J 
OXi(u-uh)(x)= 0Xi(x)+J4(x), i=1,2, xE01 , 

where 

provided L+6 < 1. 

Remark 2.1. Theorem 2.1 states that the major part of the finite element approximation 
error in the derivatives can be measured by ~(x), since the remainder is of an order 
min( 8, 1 - L - 6) higher than the global convergence rate. D 

In this work, we establish an analogue of Theorem 2.1 for the e1.:ror in function values. 
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Theorem 2.2. 

(u- uh)(x) = '1/J(x) + Ru(x), X E f21, 

where 

II R II < C (ln l)fi hn+1+.5 + Chn+2-ll.-.5 
U Loo(fh)- h ' 

providedA+o < 1. 

Proof. Let NhQ be the Neumann projection of Q into Sh(00 ), i.e. 

{ (Q- NhQ) = 0: D(Q- NhQ, v) = 0, Vv E Sh(Oo). 
Jno 

Then we can write 

u- uh = (Q- NhQ) + [(u- Q)- (uh- NhQ)J. 

We denote RQ = [(u- Q)- (uh- NhQ)]. 
From (2.1) and (2.6) we get 

D(RQ,v) = 0, Vv E S~omp(Oo). 

By Lemma 2.2, 

(2.6) 

(2.7) 

IIRQIILoo(r!l) ::; c (ln _hi )fi min ll(u- Q)- viiLoo(r!o) + cH-1 IIRQih.F-l(n )' (2.8) 
vESh oo o 

Letting v be the interpolation of u- Q into Sh(Oo). From assumption (2.4), 

By assumption (2.3) 

IIRQIIw~I(no) :S llu- uhllw~I(no) + IIQ- NhQIIw~I(no) ::; Chn+
2

-11.. (2.10) 

Hence (2.8)- (2.10) give 

IIR II <C(ln~)iihn+lH+CH-lhn+2-11.. Q Loo(r!l) - h (2.11) 

Recall that p = Q- hQ and 'ljJ = p- PP(p). Rewrite 

Notice that 
Q- NhQ- 'ljJ = hQ + PP(p)- NhQ E Sh(Oo). (2.12) 

From Lemma 2.3 and (2.6), we get 

D(Q- NhQ- 'lj;, v) = 0, Vv E s;:mp(Oo). 
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Frbm Lemma 2.2 and (2.12), 

By assumption (2.3) 

By a duality argument. 

ll'l/JIIw.;;;1(S1o) ~ 11PIIw~1 (S1o) ~ Chn+2 11QIIw~+l(S1o) ~ Chn+
2
-A. 

Therefore, from (2.13) - (2.15), 

Finally, we set R 11 = (u- uh)- '1/J. From (2.7), (2.11), and (2.16), we get 

IIRuiiLoo(S11) ~ c (ln if hn+l H + cH-lhn+2-A 

~ C (ln if hn+l+8 + Chn+2-A-8, 

and the theorem follows. D 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Remark 2.2. Theorem 2.2 indicates that 'ljJ gives the main part of the error in function 
values. The convergence rate of the remainder is of an order' min(8, 1- A- 8) higher than 
the global rate. D 

Remark 2.3. By Remarks 2.1, 2.2, the task of finding superconvergent points can be nar
rowed down to a master cell, or equivalently to the reference cell k = [-1, 1]2. And 
the superconvergent points of derivatives and function values are those points x where 
~(x) = 0 and '1/J(x) = 0, respectively. Thus, the task of identifying superconvergent points 
is equivalent to finding the critical points of some periodic polynomials 'ljJ of degree n + 1 
on the reference cell k such that '1/J ~ Vn ( K), and 

i 'ljJ = 0; i \1'1/J · \lv = 0, Vv E v;(k), 

where Vn(K) and F;(J{) are the images of Sh (c(x0 , h)) and S'h (c(x0 , h)), respectively. In 
another word, Vn(K) and vnn(k) are the finite element local space and the periodic finite 
element local space on the reference cell k, respectively. D 

3. SUPERCONVERGENT POINTS FOR PERIODIC MESHES OF TRIANGLES 

For periodic uniform triangular local mesh, we consider four patterns: Regular pattern, 
Chevron pattern, Union Jack pattern, and Criss-Cross pattern (see FIGURE 1). These 
patterns were discussed by Babuska, et al. in [2]. 

Clearly, a mesh in any one of these four patterns is a local translation invariant. Hence, 
the assumption (b) in Section 2 is satisfied. In addition, we require the assumption (c) from 
now on. 
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Regular Pattern Chevron Pattern Union Jack Pattern Criss-Cross Pattern 

Figure 1: Periodic Meshes of Triangles 

In the following, we study the superconvergent points of function values and derivatives 
for the Poisson and Laplace equations. Their solutions are approximated by finite element 
spaces with polynomials and harmonic polynomials, respectively. 

For each pattern, the finite element local space Vn(K) is the space of continuous piecewise 
polynomials on k; the periodic finite element local space vn1l'(k) is the space of periodi.c 
continuous piecewise polynomials on k. Vn(K) and v;(k) are both subspaces of C0(k). 
Structures of Vn(K) and v;(k) associated with different mesh patterns are different. 

We shall show the study of the regular pattern in details, and present only the main 
results for the other three patterns. 

For finite elements with various mesh patterns and degrees, we locate the supercon
vergent points for solutions of ( i) the Poisson equation; and ( ii) the Laplace equation. 
Based on results in Section 2, we set u to be Q for ( i) the class of general polynomials 
xn+l, xny, ... , yn+l (for the Poisson equation); and (ii) the class of harmonic polynomials 
Re(zn+l) and Im(zn+l) (for the Laplace equation). 

In the context, oRB, o 0 h, oUJ, and o 00 will be used to denote the object D defined 
in the regular, Chevron, Union Jack, and the Criss-Cross patterns, respectively. 

3.1. REGULAR PATTERN 

3.1.1. Preliminaries and Theorems 

Set the reference cell k = [-1, 1]2. Partition k into two triangular elements and denote 
them as T1 = {(x,y) E Kix ~ y}, T2 = {(x,y) E kix ~ y} (see FIGURE 2). In the 
following, we denote Ti the ith element, ni the ith node, and lij the side connecting ni and 
nj. 

Define P;:(k) the space of continuous piecewise polynomials of degree not greater than 
non k. That is, for any f E P;:(k), f is continuous on K; fit

1
, flt

2 
are polynomials of 

degree (~ n). Let PP;:(k) be the space of periodic continuous piecewise polynomials of 
degree not greater than n on k. In other words, if f E P P;: ( K), then f E P;: ( K), and 
f(x, 1) = f(x, -1), f(l, y) = f( -1, y). Denote Pn(K) the space of polynomials of degree 
not greater than n on k. 

From the definitions, we conclude that, in general, Pn(K) C P:(k) and P P:(k) c 
P:(k). Moreover, the finite element local space Vn(K) is P;:(k), and the periodic finite el
ement local space Vn11'(K) is PP:(k). We shall use these two sets of notations alternatively. 
However, Vn and v; are preferred when we consider finite element approximation. 

Define <I>n+l (K) the subspace of P P:+l (K) that consists of functions '1/J, which can be 
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X 

Figure 2: Partition off< for the Regular Pattern 

decomposed into Pn+l(K) and P:(f<), such that 

1{ '1/J = 0; i 'V'I/J · 'Vv = 0, Vv E PP;:(f<). (3.1) 

In other words, for any '1/J E <I>n+l(k), we have '1/J = x+r satisfying (3.1), where x E Pn+l(K) 
andrE P:(f<). 

Lemma 3.1. dim<I>n+l(K) = n + 2. 

Proof. Suppose '1/Ji E <I>n+l(K) with 1/Ji = X+ ri, where X E Pn+l(K) and ri E P:(f<), 
i = 1, 2. Set 8 = 1/J1- 'I/J2. Clearly, 8 is periodic. Also 8 = r1- r2, which implies 8 E P: (K). 
Thus, 8 E PP:(f<). From (3.1), we conclude that 

i 8 = 0; i 'V8 · 'Vv = 0, Vv E PP;:(f<). 

But this happens only when 8 = 0. Therefore, the dimension of <I>n+l (K) is the same as 
the dimension of the space of monomials of degree n + 1, which is n + 2. D 

From Theorems 2.1, 2.2, and Remark 2.3, we get 

Theorem 3.1. (i) Function value superconvergent points ofVn(K) for the Poisson equation 
are the intersections of the contours 

{'1/J = 0 I '1/J E <I>n+l(K)}. 

( ii) Derivative superconvergent points of Vn(K) along the x-direction for the Poisson equa
tion are the intersections of the contours 

Similar result holds on the y-direction. 

Applying Theorems 2.1 and 2.2 to the case of harmonic functions (solutions of the 
Laplace equation) yields the following theorem. 
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Theorem 3.2. (i) Function value superconvergent points ofVn(f<) for the Laplace equation 
are the intersections of the contours 

with 

where 

.,,Re - 0 and .,,Im - 0 '1-'n+l - 'f-n+l - ' 

1f1Re _ Re(-n+l) _ r .1.Im _ Im(zn+l) _ s Yn+l - "' n, '1-'n+l - n, 

'1/)f:~l' 1/;~+1 E <Pn+l(f<); rn,sn E Vn(K); z = x+iy. 

(ii) Derivative superconvergent points of Vn(f<) along the x-direction for the Laplace equa
tion are the intersections of the contours 

8~:~1 = o and 
8~:+1 = o. 

Similar result holds on the y-direction. 

Proof. Let u be any harmonic function. The (n + 1)th order Taylor expansion of u at the 
center off< is of the form aRe(zn+l) + f3Im(zn+l) + tn, where a,/3 E JR and tn E Pn(f<). 
Therefore, the results follow from Theorems 2.1 and 2.2. D 

Remark 3.1. Theorems 3.1 and 3.2 indicate that to locate superconvergent points offunction 
values and derivatives for the Poisson and Laplace equations, we need to specify spaces 
<Pn+l(f<). We next determine a basis for each <Pn+l(f<) via an orthogonal decomposition of 
PP:+l(f<). D 

3.1.2. Orthogonal Decomposition of PP:(K) and Construction of <Pn+l(K) 

In current work, a set of hierarchic basis functions are used for Vn (I{). The basis 
functions can be organized into three categories: nodal shape functions, side modes and 
internal modes (see [16, Chapter 6]). There are 4 nodal shape functions, which are denoted 
as Vi, i = 1, ... , 4. 

Vl = { 
~(1- x) in tl, 
~(1- y) m T2; 

V3 = { 
~(1 + y) m tl, 
~(1 + x) m 'i2; 

V2 = { 
~(x- y) in tl, 
0 in 'i2; 

(3.2) 

V4 = { 
0 m tl, 
~(y- x) in T2. 

Clearly, we have 

v1 ( -x, -y) = v3(x, y), and v2( -x, -y) = v4(x, y). (3.3) 

Side modes and internal modes are constructed from the nodal shape functions in the 
following means. Let Pk be the Legendre polynomial of degree k on [-1, 1]. Define 

</Jo(x) = 1, (!>I(x) = x, 

¢k(x) = jx Pk-l(t)dt, k = 2,3, ... 
-1 
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For k 2: 2, since cpk(x) are polynomials which vanish at x = ±L the term 1 - x2 can be 
factored out. We define rpk(x) so that 

1 2 
(h(x) = 4(1- x )'Pk-2(x), k = 2, 3, ... (3.5) 

The subscripts of cjy~,. and 'Pk indicate the orders (degrees) of the polynomials. 
Denote <;~j the kth order side mode along the side lij. Define the side modes associated 

with side l12 as 
(3.6) 

The other side modes are defined analogously. There are n - 1 side modes on each side. 
Denote Li.J the l 11 internal mode on Ti of order k. In the first element 1'1, the internal 

modes are defined as 

k = 3, ... , n; j = 1, ... , k - 2. (3.7) 

The definition of the internal modes in 1'2 is similar. There are (n- 1)(n- 2)/2 internal 
modes in each element. 

Notice that Vn ( K) = P: ( K), the dimension of P: ( K) can be decided from that of 
Vn(K). Sum up the numbers of nodal shape functions, side modes and internal modes, we 
have 

A (n-1)(n-2) 
dim P;:(K) = 4 + 5(n -1) + 2 

2 
= (n + 1f (3.8) 

A basis for P P;: ( K) may be constructed from the hierarchic basis functions of P: ( K). 
In fact, the sum of the four nodal shape functions v1 + v2 + v3 + v4 is a periodic basis 
function. The sums of the same order side modes along the opposite boundary sides are 
periodic basis functions. The side modes along the interior sides and all of the internal 
modes are automatically periodic. To simplify notations, in the context, we denote <;g = <;p, 
<;£ = <;f2 +<;f3 , <;k = <;~3 +<;f4 , which represent the kth order diagonal, horizontal, and vertical 
periodic side modes. Also denote L~j = LL ± L~,j' which are referred as kth order internal 
modes of plus/minus type. 

An example of the construction of PP:(k) is given for case n = 3 (see FIGURE 3). 

(3.9) 

The dimension of PP:(k) can be determined by deleting 3 nodal freedoms and 2(n-1) 
side mode freedoms from dimP:(k). Hence, 

Lemma 3.2. (i) cPk+I(-x) = (-1)k+lcPk+l(x) fork= 1,2, ... ; 
(ii) 'Pk(-x) = (-l)krpk(x) fork= 0, 1, ... ; 
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y y 

IJ.j IJ3 

2 
L3.1 

(§4 (l3 (3 
(J4 (?3 X (2' J' 

LL L~.l 

IJl (i2
1 (:F IJ2 IJ (~' (~' 

(a) Hierarchic basis for P3w (1{) (b) Periodic basis for P P3' ( k) 

Figure 3: Basis functions for Pf(k) and PPf(k). 

(iii) c;k( -x, -y) = ( -1)kc;%(x, y) fort= h, v. d, and k = 2, ... , n; 
(iv) '-k) -x, -y) = ( -1)k- 1 t-~)x, y) fork= 3, ... , n, and j = 1, ... , k- 2. 

Moreover, '-(j( -x, -y) = ( -l)k-1'-(j(x, y), and '-k,j( -x, -y) = ( -1)k'-k")x, y). 

Proof. (i) Since ¢k+1(1) = 0 and Pk( -x) = ( -1)kPk(x) for any k, the assertion follows from 
definition (3.4). 
(ii) By (3.5) and result of part (i), the desired result follows. 
(iii) This is a consequence of definition (3.6), properties (3.3), and result of part (ii). 
(iv) Definition (3.7) and properties (3.3) give (iv). D 

Lemma 3.2 states that the periodic basis functions are either even or odd. 

Further, we consider the orthogonal decomposition of PP;:{(f<) under the Laplace op
erator. Towards this end, we define 

Wn+1(f<)={uEPP:+1(f<) I ( . 'Vu·'Vv=O, VvEPP:(f<)}. (3.11) 
hwT2 

Compare (3.11) with (3.1). Clearly, <I>n+1(f<) C Wn+l(f<), in general. 
By the Gram-Schmidt process, we can decompose PP;:{(f<) into 

PP::(f<) = PP?f(f<) EB lllz(f<) EB · · · EB Wn-1(f<) EB llln(f<). (3.12) 

Note that PP0(f<) = Span{1} and \ll1(f<) = {0}. The dimension of Wn+l(f<) can be 
determined as 

dim Wn+l (f<) = dim P P:+1 (f<) -dim P P:: (f<) = 2n + 1, n = 1, 2, 3,.. . (3.13) 

The first two spaces of Wn+1 (f<) (n = 1, 2) can be expressed as 

Wz(f<) =Span { </>z(x), c;~, </>z(y) }; 

ll13(f<) =Span { ¢3(x), ±c;g + 18t-~, 1 + 2t-~, 1 + c;~ + c;~ + c;~, 
16t-b + 4t-~,1 + c;~ + c;~ + c;~, </>3(Y) }. 
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The space <Pn+I(f<) can be constructed from '11n+1(f<). For instance, for n = 1. 2. we 
get 

<P2(f<) =Span { ¢2(x) + ~' c;g + i, cP2(Y) + ~ }; 
<P3(i<)=Span{<P3(x), ¢2(x)y+c;J2-c;i3, x¢2(y)-c;i3 +c;J4, ¢3(y)}. 

By the Gram-Schmidt process, we can obtain more spaces of '11n+1(f<). and thus more 
spaces of <Pn+1(k). Here, we give two more <Pn+1(f<) (for n = 3,4) without the associated 

Wn+1(f<). 

where 

<l>4(f<) =Span { dJ4(x) + r~, ¢3(;c)y + c;JZ- c;l3 + r§, <P2(x)¢2(y) + r§, 

x¢3(y)- c;l3 + ~J~ + r~, ¢4(Y) + rn, 

<l>5(f<) =Span { ¢5(x) + r2, 
<P2(x)¢3(y) + rJ, 

¢4(x)y + c;J2 - ~13 + rl, ¢3(x)¢2(y) + d, 
x¢4(y)- ~]3 + c;J4 + rj, ¢5(y) + rn, 

where 
0 - 5 h 5 v 5 d 35 - + 245 + 35 + 

r4- 24(3 + 72~3 - 36~3- 36~3,1 72~4,1 + 72~4,2' 
1 - 55 h 25 v 13 d 59 - 235 + 125 + 

r4- 504~3 + 504(3 + 63~3 + 42~3,1- 72~4,1 + 72~4,2' 
2 - 5 h 1 v 20 d 52 - 43 + 5 + 

r4 - 126~3 + 42(3 - 36(3 - 63~3,1- 18~4.1 + 18~4,2' 
3 1 h 5 v 20 d 52 - 5 + 43 + 

r4 = 42~3 + 126(3 - 36c;3 + 63~3,1 + 18~4.1- 18~4,2' 
4 - 25 h + 55 v 13 d 59 - + 125 + 235 + 

r4- 504~3 504(3 + 63~3- 42~3,1 72~4,1- 721..4,2' 
5 5 h 5 v 5 d 35 - 35 + 245 + 

r4 = 72~3 + 24 ~3 - 36~3 + 361..3,1 + 721..4,1 + 721..4,2· 

For information of cases n = 5, ... , 8, the reader is referred to [13]. 

We shall study the structures of functions in <Pn+ 1 ( i<) for general n ( > 2). By the 
definition of <I>n+1 (i<) in (3.1), every function in <Pn+1 (i<) can be decomposed into a part in 
Pn+1(i<) and a part in P:(k). As shown in Lemma 3.1, the dominating part in Pn+1(k) 
has a basis {¢n+1-j(x)¢j(y)}j,!J. The remaining term in P:(k) insures that the function 

lies in <I>n+1(K). We need to determine the patterns of these remaining terms. 
From the above description, <I>n+l(i<) can be constructed from periodic basis functions. 

We know that ¢n+1-j(x)dJj(y) are in PP:+1(i<), except for j = 1 and n. We shall modify 
¢n(x)y and x¢n(y). Since the restriction of c;~ 2 on h2 is <Pn(x); and similar situation happens 
on the other boundary sides of k, we conclude that ¢n(x)y+c;~2 -c;~3 and x¢n(Y) -~;3 +c;~4 

vanish on the boundary off<, and hence are in P P:+1 (i<). 
After getting these modified (n + 1)th order periodic polynomials, we denote all the 

remaining terms as rt Since <Pn+l ( k) C P P:+l ( i<), it is clear that r~ E P P: ( i<). Then 
we have the following lemma. 
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Lemma 3.3. For each 'lj; E <I>n+l(K), 'lj;(-x,-y) = (-l)n+l'lj;(x,y). Moreover, we have 
\lfl/J(-x,-y) = (-l)n\lw(x,y). 

Proof. It is straightforward to check that the lemma holds for n = 1, 2. \Ve assume n > 2 
in the following. It is sufficient to show the symmetric properties hold for basis functions. 

For j = 0, ... , n + 1, j =/= 1, n, the jth basis function in <I>n+l (K) is written as 

B~+l = CfJn+l-j(x)C/>j(Y) + rh. 

By definition (3.1). for all v E PP;{'(K), 

( \1 B~+l · \lv = ( "V(¢n+I-j(x)¢j(Y)) · \lv + f_ \lr~ · \lv = 0. h h h 
From Lemma 3.2, we have 

"V(¢n+l-j( -x)¢.7( -y)) = ( -l)n\l(¢n+l-j(x)¢j(y)). 

If n is even, pick v even. Then \lv is odd, and "V(¢n+l-j(x)¢.J(Y)) · \lv is odd. We have 

r_ \l(¢n+l-j(x)¢j(y)). \lv = 0, lk and hence r. \lr~. \lv = 0. lk 
Note that r~ is in PP:(k), which has basis functions either even or odd. Let v run through 
all even basis functions, we conclude that r~ is odd, just as ¢n+l-j(-x)c/Jj(-y). Therefore, 

B~+l is odd, as desired. Similarly, if n is odd, we shall conclude that B~+l is even. 
For j = 1 and n, the desired results shall follow if <;;2 - <;;3 and -<;~3 + <;;4 have proper 

symmetry properties. Namely, if n is even, both of them are odd; if n is odd, both of them 
are even. These follow from (3.3), (3.6), and Lemma 3.2. 0 

Remark 3.2. Lemma 3.3 reveals that, to locate superconvergent points in K, we need to 
consider only the situations in T1. The superconvergent points in T2 are symmetric to those 
in T1 about the origin. 0 

Lemma 3.2 also induces general expressions of basis functions in <I>n+ 1(K). 

Theorem 3.3. For all n > 2, we have 

<I>n+l(K) = Span { ¢n+l(x) + r~,. ¢n(x)y + <;;2 - <;~3 + r~, 
¢n+l-j(x)¢j(y) + rh (j = 2, ... , n- 1), 
x¢n(Y)- ~~3 + ~;4 + r~, ¢nH(Y) + r~+l}, 

where r~s satisfy the following property: 
( i) For even order r~s, only odd order side modes, odd order internal modes of minus type, 
and even order internal modes of plus type are involved in the expressions; 
( ii) For odd order r~s, only even order side modes, odd order internal modes of plus type, 
and even order internal modes of minus type are involved in the expressions. 

Proof. Note that any function in <I>n+l (K) is expressed in terms of periodic side modes and 
internal modes. This is a direct result from Lemmas 3.2 and 3.3. 0 

Remark 3.3. As we have seen above, the expressions of basis functions in <I>n+l (K) obtained 
from the orthogonal decomposition reveal the structure of them (in terms of periodic basis 
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functions). This may provide us an analytical way to find superconvergent points. However. 
this approach is quite complicated, especially when n is large. 

In fact, if we are interested only in the expressions (not the structures) of the basis 
functions in <I>n+l (K), then we can simplify the process by solving 

f_ \l(u- hu- z) · \lv = 0, Vv E V71n(K); 
Jk 

l (u.- f,zu- z) = 0, 

(3.14) 

(3.15) 

where u are monomials of degree n + 1, hu is an interpolation of u in Vn(K), and z is a 
periodic finite element approximation of u- Ihu. Then u- Ihu- z will serve as a periodic 
basis function in <I>n+l (K) corresponding to u. 

The approach works as the following. An interpolation hu in Vn(I{) are determined 
from the conditions: 

(i) hu(±1, ±1) = u(±1, ±1); 

(ii) i(u-hu)sjds=O, j=0,1,··· ,n-2, 

along each side l in k; and 

(iii) fr(u-hu)xjykdxdy=O, j,k'20, j+k=0,1, ... ,n-3, 

on each element T in k. 

(3.16) 

(3.17) 

(3.18) 

After hu is determined, the periodic finite element approximation z of u - hu can 
be achieved by solving (3.14) and (3.15). Here, the periodic basis functions of V71n(k) are 
described above. 

For instance, consider the periodic basis function corresponding to x3y in <l>4(K). This 
is a case for n = 3 (see FIGURE 3). First interpolate x3y in V3(k). The restriction of the 
interpolation h(x3y) on Ti is a polynomial of degree (:S 3); i.e. 

h(x3y)it; = 2:: c;,k x1yk, j, k '2 0, i = 1, 2. 
o::;J+k9 

(3.19) 

Substituting h(x3y) lr· in conditions (3.16)-(3.18), we have a system of equations for ci. ks 
' J, 

oneachTi. Use ( ffl((x,y))) todenotethepiecewisepolynomial { fh((x,y)) ~n ~1 ' With 
2 x,y 2 x,y zn 12. 

help of a symbolic computation software (MAPLE), we can solve the systems and obtain 

3 -X + X y + X + -xy + -X - -y - -
( 

3 2 2 1 1 1 1) 
h(xy)= x3-x2y+x2+ixy-ix+iy-i . 

Next, we use the periodic basis functions constructed in (3.9) to solve the periodic finite 
element approximation problem (3.14) (see FIGURE 3), and have 

z* = ( \4 x~y- \4 xy~ + 11x~- fxy + ~y~- ~x + ~y + t ) . 
-14x y+ 14xy + 14x -7xy+ 14Y + 14x- 14Y+7 
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Here, '¢* = x3y- h(x3y)- z* is not in 4>4(K) yet, since its integral over k is not 0. Note 
that a constant function is periodic. We can let z = z* + c and solve (3.15) for c. It turns 
out that c = -i1. Put z = z*- i1. Then, we obtain 'lj1 = x3y- Ih(x3y)- z E 4>4(K) 
corresponding to x 3y, which is 

·' _ ( x
3
y + x 3

- ~~x2y + {4xy
2

- Ux2 + ~~xy- ?4Y
2 

+.fox- ioY + /t5 ) 
'1-1 

- 3 3 19 2 u 2 1t 2 13 3 2 1 1 16 . 
x y-x + 14x y- 14xy - 14x + 35xy- 14Y -7ox+ 7oY+ 105 

This systematic process is more suitable for computer implementation than the orthog
onal decomposition process. Once the code is set, we can feed the program with different 
( n + l)th order polynomials to get the corresponding functions in <I>n+1 (K). In particular, 
this process offers us an approach for ¢[;+1 and ¢;+.1. Letting u be the harmonic polynomial 
Re(z71 +1) or Im(z71 +1), the process will yield '¢:+1 or ¢;+.1, respectively. 0 

3.1.3. Superconvergent Points 

After specification of basis functions of 4>n+1 (K), we are ready to locate superconvergent 
points for the Poisson equation. 

Theorem 3.4. Consider superconvergence for the Poisson equation on h2· 
( i) For odd n, the midpoint of h2 is x-derivative superconvergent point; 
( ii) If n = 2, the two Gaussian points on h2 are x-derivative superconvergent points; 
(iii) For even n, the endpoints and midpoint of h2 are function value superconvergent points. 

Similar results hold on the other sides. In particular, we refer to tangential derivative 
superconiJergence on each side, including the diagonal side. 

Proof. Clearly, <;Piz12 = (!Jk(x), which will cancel (h(x)yih 2 since y = -1 on l12· The 
other side modes and all internal modes are identically 0 on h2· Note that ¢j(Y) = 0 on 
h2- Therefore, restricted on h2, the basis functions of 4>n+1(K) are classified in two types: 
¢n+1 (x) + r~ and r~ for j = 1, ... , n + 1. 

( i) Suppose n = 2m + 1. From Theorem 3.3, 
m m 

~m+1ih2 =do+ :l:cf<;"Jfi~I2 =do+ Lcf¢2i(x), 
1 

i=1 i=1 

where cfs are constants, j = 0, ... , 2m+ 2. Also, ¢n+1(x) = ¢2(m+l)(x). Thus, the basis 

functions of 4>n+l(K) restricted on h2 are all linear combinations of even order ¢k(x)s, 
whose derivatives are odd order Legendre polynomials, which have a common zero at the 
midpoint of h2· 

( ii) The superconvergence is verified directly. 
(iii) Suppose n =2m. From Theorem 3.3, 

where cf s are constants, j = 0, ... , 2m + 1. Also, ¢n+ 1 ( x) = ¢2m+ 1 ( x). Therefore, the basis 
functions of 4>n+I(K) are all linear combinations of odd order ¢k(x)s, which have common 
zeros at two endpoints and midpoint of h2. 0 

1If m = 0, then r{s are constants. 
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· Theorem 3.4 predicts superconvergence at some specific points on the element edges. 
Whether these are all superconvergent points should be justified by Theorems 3.1 and 3.2. 
Namely, we need to determine the intersections of the contours induced from the basis 
functions of <I>n+l (k), which are solutions of a system of polynomial equations. \Vhen n is 
small (eg. n = 1 or 2), the system can be solved analytically. When n is large, this can 
be done accurately with help of computation softwares (MATLAB, MAPLE) and numerical 
methods (eg. Newton's method), which are available in many reference books (eg. [8]). We 
have the following results for n up to 8. 

Proposition 3.1. For the regular mesh, superconvergent points of function values for the 
Poisson equation in T1 are: 
( i) If n is odd, there is no superconvergent point; 
( ii) If n is even, the vertices and midpoints of edges are the only superconvergent points. 

Proposition 3.2. For the regular mesh, superconvergent points of ~ (or ~) for the 

Poisson equation in T1 are: 
( i) If n is odd, the midpoint of l12 (or l23) is the only superconvergent point; 
( ii) If n = 2, the two Gaussian points on h2 {or l23) are the only superconvergent points; 
(iii) If n is even and greater than 2, there is no superconvergent point. 

Remark 3.4. Theorem 3.4 coincides with the results from the symmetry principles [14. 17], 
which are sufficient. Propositions 3.1 and 3.2 are conclusive; i.e. they indicate that there 
are no other superconvergent points. Proposition 3.2 also agrees with the corresponding 
results in [2]. Note that the case n = 2 was reported much earlier [1, 20]. 0 

Now, we consider the Laplace equation. We first determine 'lj;~ 1 and 1f;~+. 1 . These func
tions can be obtained from basis functions of <'Pn+l (K) by adding the periodic polynomials 
corresponding to terms in Re(zn+l) and I m(zn+l ), respectively; they can also be derived 
from the process described in Remark 3.1. For n = 1, ... , 4, we have 

"''Re _ 
'1-'5 -
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n = 1 n=2 

n=3 

Figure 4: Contours 'l/J:+1 = 0 (solid) and 'l/J~+1 = 0 (dashed), n = 1, ... , 4 . 

• J.Im
'f/5 -

'l/J:+1 and 'l/J~+ 1 for n = 5, ... , 8 are provided in [13). 

By Theorem 3.2 (i), the function value superconvergent points are the intersections of 
the contours 'lfJ/{+1 = 0 and 'l/J~+.1 = 0. For instance, when n = 1, the superconvergent points 
in T1 can be obtained by solving 

{ 
x2- y2 = 0, 

xy + x - y - i = 0, 

in T1 . From the first equation, we have x = y or x = -y. Substituting these into the 
second equation, we obtain ( ± 1, ± 1) and ( 1 - 1, -1 + 1) in T1, ·which are desired 
superconvergent points. 

When n = 2, we need to solve 

or equivalently, to solve 

{ 
x3 - 3xy2 - 3xy + 3y2 - x + 3y = 0, 
y3 - 3yx2 + 3yx - 3x2 - y + 3x = 0, 

{ 
(x- 1)(x2 - 3y2 + x- 3y) = 0, 
(y + 1)(y2

- 3x2 - y + 3x) = 0. 

It is straightforward to verify that the solutions (superconvergent points) in T1 are the 

vertices, the midpoints of edges, and (i ± 'J, -i ± 'J). 
16 



n=6 

n=8 

Figure 5: Contours V-;?;.r.-1 = 0 (solid) and ¢~+.1 = 0 (dashed), n = 5, ... , 8. 

For each n, we need to solve a pair of polynomial equations. When n is large, numerical 
methods are required. Although how to efficiently solve a polynomial equation system is 
an interesting problem, it is not our focus. Here, we simply use the Newton method. With 

TABLE 1(a). Function Value Superconvergent Points for the Regular Pattern 
(in T1, n= 1, ... ,4) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

n-1 

-0.8164965809277260 
-0.8164965809277260 

0.4226497308103742 
-0.4226497308103742 

0.8164965809277260 
0.8164965809277260 

n-2 

-1.0000000000000000 
-1.0000000000000000 

o. 0000000000000000 
-1.0000000000000000 

1.0000000000000000 
-1.0000000000000000 

-0.4114378277661476 
-0.9114378277661476 

0. 0000000000000000 
0.0000000000000000 

1.0000000000000000 
0.0000000000000000 

0.9114378277661476 
0.4114378277661476 

1.0000000000000000 
1.0000000000000000 
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n-3 

-0.5193296223592281 
-1.0000000000000000 

0.5193296223592281 
-1.0000000000000000 

-0.9173685331054181 
-0.9173685331054181 

1.0000000000000000 
-0.5193296223592281 

-0.3980389107461900 
-0.3980389107461900 

0.3980389107461900 
0.3980389107461900 

1.0000000000000000 
0. 5193296223592281 

0.9173685331054181 
0.9173685331054181 

n-4 

-1.0000000000000000 
-1.0000000000000000 

-0.9511897312113419 
-1.0000000000000000 

0.0000000000000000 
-1.0000000000000000 

0.9511897312113419 
-1.0000000000000000 

1.0000000000000000 
-1.0000000000000000 

-0.0703819804091844 
-0.9828670086417396 

1.0000000000000000 
-0.9511897312113419 

-0.6074928962939559 
-0.6074928962939559 

0.0000000000000000 
0.0000000000000000 

1.0000000000000000 
0. 0000000000000000 

0.9828670086417396 
0.0703819804091844 

0.6074928962939559 
0.6074928962939559 

1.0000000000000000 
0.9511897312113419 

1.0000000000000000 
1. 0000000000000000 



TABLE 1(b). Function Value Superconvergent Points for the Regular Pattern 
(in T1. n = 5, ... ~ 8) 

71-5 n-6 

-1.0000000000000000 -1.0000000000000000 
-1.0000000000000000 -1.0000000000000000 

2 -0.3779644730092272 -0.5860928017843374 
-1.0000000000000000 -1.0000000000000000 

0.3779644730092272 0.0000000000000000 
-1.0000000000000000 -1.0000000000000000 

1.0000000000000000 0.5860928017843374 
-1.0000000000000000 -1.0000000000000000 4 

-0.5138908967122077 1.0000000000000000 
-0.9855536016972144 -1.0000000000000000 5 

-0.7520955703220618 -0.8001753718755459 
-0.7520955703220618 -0.9926259609529336 6 

1.0000000000000000 -0.8258100260262924 
-0.3779644 730092272 -0.8258100260262924 7 

-0.2738197456392299 1.0000000000000000 
-0.2738197456392299 -0.5860928017843374 

8 

0.2738197456392299 -0.4616469028358420 
0.2738197456392299 -0.4616469028358420 9 

1.0000000000000000 1.0000000000000000 
0.3779644730092272 0.0000000000000000 

10 

0. 9855536016972144 0.0000000000000000 
0.5138908967122077 0.0000000000000000 

11 

o. 7520955703220618 0.4616469028358420 
0. 7520955703220618 0.4616469028358420 

12 

1.0000000000000000 1.0000000000000000 
1.0000000000000000 0.5860928017843374 

13 

0.9926259609529336 
0.8001753718755459 

14 

0.8258100260262924 
0.8258100260262924 

15 

1.0000000000000000 
1.0000000000000000 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

f1- 7 

-o. 7283987607253135 
-1.0000000000000000 

-0.2616196034057031 
- 1. 0000000000000000 

0.2616196034057031 
-1.0000000000000000 

o. 7283987607253135 
-1.0000000000000000 

-0.9981396004694932 
-0.9981396004694932 

-0.8677139861534285 
-0.86 77139861534285 

-0.794685433317 4225 
-0.8546890237923378 

1.0000000000000000 
-0.7283987607253135 

-0.5861275452213199 
-0.5861275452213199 

1.0000000000000000 
-0.2616196034057031 

-0.2065452580134060 
-0.2065452580134060 

0.2065452580134060 
0.2065452580134060 

1.0000000000000000 
0.2616196034057031 

0.5861275452213199 
0.5861275452213199 

1.0000000000000000 
0. 7283987607253135 

0.8546890237923378 
o. 7946854333174225 

0.8677139861534285 
0.8677139861534285 

0.9981396004694932 
0. 9981396004694932 

71- ti 

-1.0000000000000000 
-1.0000000000000000 

-0.9985182765124 761 
-1.0000000000000000 

-0.8415029196420455 
-1.000000000000000[1 

-0.4499077973241774 
-1.0000000000000000 

0.0000000000000000 
-1.0000000000000000 

0.4499077973241774 
-1.0000000000000000 

0.8415029196420455 
-1.0000000000000000 

0.9985182765124761 
-1.0000000000000000 

1.0000000000000000 
-1.0000000000000000 

1.0000000000000000 
-0.9985182765124761 

-0.5111908039811860 
-0.9975720711785237 

0. 9834451655126653 
-0.9834451655126653 

0.8208569446704606 
-0.9479254 719651945 

-0.8949872464334571 
-0.8949872464334571 

-0.8006759120160012 
-0.8857531090977044 

1.0000000000000000 
-0.8415029196420455 

0.9479254719651945 
-0.8208569446704606 

-0.6718072968265310 
-0.6718072968265310 

1.0000000000000000 
-0.4499077973241774 

-0.3593519628863694 
-0.3593519628863694 

0.0000000000000000 
0.0000000000000000 

1.0000000000000000 
0.0000000000000000 

1.0000000000000000 
0.4499077973241774 

0.9975720711785237 
0. 5111908039811860 

0.6718072968265310 
0.6718072968265310 

0.3593519628863694 
0.3593519628863694 

0. 885 7531090977044 
0.8006759120160012 

1.0000000000000000 
0.8415029196420455 

0.8949872464334571 
0.8949872464334571 

1. 0000000000000000 
0.9985182765124761 

1.0000000000000000 
1.0000000000000000 

help of MAPLE and MATLAB, we obtain function value superconvergent points for n = 
1, ... , 8, which are listed in TABLE 1 with 16 digits of accuracy. In FIGURE 4 and FIGURE 
5, we plot the contours for cases n = 1, ... , 8 by MATLAB. 
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n=3 n=4 n=S 

n=7 n=8 

F . 6 C t 8
1/J8f:x.\'. 1 = 0 (sol1'd) and 81/J8;,x~ 1 = 0 (d h d) 3 8 1gure : on ours as e , n = , ... , . 

By Theorem 3.2 (ii), the x-derivative superconvergent points are the intersections of the 
81/JRe 81/llm 

contours 8"x_+ 1 = 0 and 8"x_+ 1 = 0. As an example, we consider the case for n = 2. The 

x-derivative superconvergent points in T1 are the solutions of the system 

~X Tl = 3x2 - 3y2 - 3y- 1 = 0, 
{ 

81/JRel· 

8
1/J87tl = -3(y + 1)(2x- 1) = o. 

Solve this system, we obtain four superconvergent points: (±f, -1) and(~,-~± v;;). 

2 

3 

4 

5 

6 

7 

8 

9 

TABLE 2(a). Derivative Superconvergent Points for the Regular Pattern 
(in T1, n = 1, ... , 4) 

n -I 

0.0000000000000000 
-1.0000000000000000 

n-2 

-0.5773502691896258 
-1.0000000000000000 

0.5773502691896258 
-1.0000000000000000 

o. 5000000000000000 
-0.9082482904638630 

0.5000000000000000 
-0.0917517095361370 

19 

n-3 

-1.0000000000000000 
- !.0000000000000000 

0.0000000000000000 
-1.0000000000000000 

1. 0000000000000000 
~ 1.0000000000000000 

-0.2495636041803519 
-0.8282349823299942 

-0.0569628865629212 
-0.3516533583837684 

o. 7276352521634410 
0.3648132073349060 

n- 4 

-0.976204 7562738165 
-1.0000000000000000 

-0.4357538487328842 
-1.0000000000000000 

0.4357538487328842 
-1.0000000000000000 

0.9762047562738165 
- !.0000000000000000 

0.4106905181904221 
-0.9856261245779083 

-0.7609910954777545 
-0.9550014625469050 

-0.3809408103995712 
-0.5597762653529965 

0.2804554307532021 
0.0392284719195946 

0.8126724617779161 
0.5742483905274366 



4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

TABLE 2(b). Derivative Superconvergent Points for the Regular Pattern 
(in T1, n = 5 ..... 8) 

n 5 

-1.0000000000000000 
-1.0000000000000000 

-0.6546536707079771 
-1.0000000000000000 

0.0000000000000000 
-1.0000000000000000 

0.6546536707079771 
-1.0000000000000000 

1.0000000000000000 
-1.0000000000000000 

-0.0718949366554462 
-0.9793960316434498 

-0.5342467051008834 
-0.6850142752143384 

-0.0530467624549399 
-0.2251798300015251 

0.4 712605850961711 
0.2851933532419337 

0.8687318398155543 
0.4160368104008867 

"- 6 

-0.7802941074859182 
-1.0000000000000000 

-0.2902920033562139 
-1.0000000000000000 

0.2902920033562139 
-1.0000000000000000 

0. 780294107 4859182 
-1.0000000000000000 

-0.4296804190843017 
-0.9794457423195006 

0.9743835257461033 
-0.8404683252781456 

-0.4385937672691014 
-0.7471180163419970 

-0.2682485061163367 
-0.4043522076362224 

0.174 7948038384324 
0.0312903099656319 

0.5930068961438869 
0. 4069367800853346 

0. 9113920897175050 
0.55421014 72898292 

-1.0000000000000000 
-1.0000000000000000 

-0.8724199011562877 
-1.0000000000000000 

-0.4887571135712024 
-1.0000000000000000 

0.0000000000000000 
-1.0000000000000000 

0.4887571135712024 
- 1. 0000000000000000 

0.8724199011562877 
-1.0000000000000000 

1. 0000000000000000 
-1.0000000000000000 

-0.6759991164966385 
-0.9887878384682518 

0.9675399749272883 
- o. 9442318436480794 

-0.5526058285230658 
-0.8204988182282370 

-0.4101259591003691 
-0.5269703699170518 

-0.0458573784465860 
-0.1593499763070021 

0.3378030147268201 
0.2035258346590941 

0.6826097321374 772 
0.4053072896642744 

0.9343855681592637 
0.6390587782077723 

n-O 

-0.9992622651115187 
-1.0000000000000000 

-0.9054011724682842 
-1.0000000000000000 

-0.6276397150039605 
-1.0000000000000000 

-0.2219131070745645 
-1.0000000000000000 

0.2219131070745645 
-1.0000000000000000 

0.6276397150039605 
-1.0000000000000000 

0. 9054011724682842 
-1.0000000000000000 

0.9992622651115187 
-1.0000000000000000 

-0.2284265164539444 
-0.9993186201946292 

-0.8604358636216127 
-0.9979626530937577 

0.8819561225984842 
-0.9429515274310050 

0. 9779759193542496 
- o. 8982852264369150 

-0.6244716257411005 
-0.8619397552651930 

0.9731368926379180 
-0.7072548415558784 

-0.4628273322658001 
-0.5991284868687132 

-0.2109347493642553 
-0.3065003891547965 

0.1284564982199144 
0. 0272532561080603 

0.4429632529165919 
0. 263 7028329059902 

o. 7540612856604619 
0.4936457864836795 

0.9467527974578255 
0.6378027221999435 

When n = 3, The superconvergent points are the solutions of the system 

I = 4x3 
- 12xy2 

- 12xy + 6y2 
- 4x + 8y + 2 = 0, 

81/l I· { 

81/JRel. 

~x T1 = (y+ 1)(3x2 - y2 - 2x) = 0. 

From the second equation, we have y + 1 = 0 or 3x2 - y2 - 2x = 0. If we substitute 
y = -1 into the first equation, the system can be easily solved. However, when substituting 
y = ±v'3x2 - 2x into the first equation, we have 

(x- 1)(256x5 - 416x4 + 173x3 + 21x2 - 17x- 1) = 0, 

provided 3x2 - 2x 2: 0. To solve a polynomial equation of degree 5, numerical methods are 
required. 

Following a similar process for function value superconvergent points, the x-derivative 
superconvergent points can be located inK. In TABLE 2, the superconvergent points in 'i'1 
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are summarized for n = 1. ... , 8 with 16 digits of accuracy. Since the cases for n = 1. 2 are 
triviaL we plot only the contours for cases n = 3, ... , 8 by MATLAB in FIGURE 6. 

Remark 3.5. In order to compare our results with data in [2]2, where the master cell is 

"· = [0, 1]2, we map K to"' by affine mapping x" = (xk + 1)/2 andy"= (yk + 1)/2. Note 
that the nodal shape functions defined in K are mapped to those defined in K under the 
same affine mapping. We then conclude that <I?n+l(f{) is transferred to <I?n+l(li) because 
of its construction. Since affine mappings preserve zeros for derivatives, the derivative 
superconvergence points in K are mapped to those in "'· We found that the first 9 digits of 
the superconvergent points listed in [2] are the same as those obtained here3 . D 

By Theorem 3.2 (ii), we can also determine the y-derivative superconvergent points. 

It b h th t 81/Jfii,e(-y,-x) _ (-l)k+l 8w!}{(x,y) 81/.14;;'(-y,-x) _ (-l'k81/J~k'(x,y). d 
can e s own a ay - ax , oy - 1 o:r . an 

81};!}k+l(-y,-x) - 81/.14k'+J(x,y) 81/.lfl:'+l(-y,-x) - 81};!}k+l(x,y) c k- 1 ') The f tl 
oy - ax , By - ax !Of - , -,... re ore, 1e y-

derivative superconvergent points for the Laplace equation turn out to be the symmetry 
points of the x-derivative superconvergent points about y = -x. 

3.2. CHEVRON PATTERN 

We observe that a period occupies only half of the square in the Chevron pattern. 
Therefore, we set K = [-1, 1] x [0, 1] here. Partition K into four triangular elements (see 
FIGURE 7). 

y 

Figure 7: Partition of K for the Chevron Pattern 

We still use P;:(k) and PP:(k) to denote the counterpart spaces defined in Section 3.1. 
The definitions of the spaces are adjusted accordingly due to the changing of the reference 
cell. 

The hierarchic basis functions are used for Vn ( K). Let /Ji be the linear nodal shape 
function corresponding to vertex ni, which are defined in (3.20). The side modes and 
internal modes are defined as in (3.6) and (3.7), respectively. 

The periodic basis functions are constructed from Vi, <;~! and ~k,j similar to those in 
Section 3.1. Notice that v1 + v3 + JJ4 + JJ5 and v2 + vs are two periodic basis functions in 
this case. 

2In [2], TABLE I, superconvergent points are given for n up to 7. 
3 Some of the lOth decimal places in [2] are not accurate in the "round-off" sense. 
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v, ~ { 
-x m tl, { -x + y -1 in T2, 

t2, 
l/4 = 

in tl. t3, 1'4: 1-y in 0 

0 in t3, T4; 
in tl, 

v, ~ { 
1+x-y tl. 

v;= p+l in 
in t2. 1-x-y in t3, 
in 7'3, 

(3.20) 

0 in t2, T4; 
-x+ 1 in T4; 

V3 ~ { 

X in t3, 
1-y m t4, 

!16 = { 
x+y-1 in t4, 

0 in 1'1, f2; 0 in tl, t2, f3. 
It is straightforward to verify that 

dim P;:(k) = (2n + 1)(n + 1), dim P P;:(k) = 2n2. (3.21) 

Theorems 3.1 and 3.2 still hold for the Chevron mesh. To determine the space <I>n+1 (K), 
we can either make an orthogonal decomposition of P P;:'+1 (K), or solve a periodic finite 
element approximation problem, as described in Remark 3.1. 

If the first approach is adopted, we need to define Wn(K) as in (3.11). The difference 
here is that the integral domain consists of 4 elements instead of 2. By the Gram-Schmidt 
process, we obtain a list of Wn(K), where PP;:'(K) can be decomposed as in (3.12). Based 
on Wn(K), we are able to construct <I>n(K). 

Remark 3.6. From the geometrical point of view, the left side of the y-axis is one patch 
of the regular mesh. In fact, under the corresponding affine mapping (xRg = 2xCh + 1 
and yRg = 2yCh- 1), the shape functions on Ti and 'i'2 defined in (3.20) are mapped to 
the ones of the regular pattern. Similar situation happens to the right side of the y-axis. 
We thus conclude that similar symmetry results as in Lemma 3.3 hold for the Chevron 
pattern. Hence, we need to work only on superconvergent points in the first element. 
Superconvergent points in the other elements can be obtained by symmetry. D 

In the following, basis functions of <I>n+ 1 ( K) in T1 are provided for n = 1, ... , 4. For cases 
of n = 5, ... , 8, the reader is referred to [13]. To simplify notations, let B;+1 be the lh basis 

function of <I>n+ 1 ( K). Denote Bn the column vector consists of all nodal shape functions, 
side modes and internal modes of order:::; n in T1 . The length of Bn is (n + 1)(n + 2)/2. In 
particular, we assign v1, v2 and v5 the first 3 entries of Bn; assign the side modes c;f2, c;f5 

and c;Z1 as the (k(k + 1)/2 + 1)th to the (k(k + 1)/2 + 3)th entries, k = 2, ... , n; and assign 
the internal modes t,L to t,l.k-2 as the (k(k + 1)/2 + 4)th to the ((k + 1)(k + 2)/2)th entries, 
k = 3, ... , n. For instance, 

81 = [v1, v2, v5jT, 

()2 = [01' c;J2' c;:f5' c;~l jT' 

() - [0 12 25 51 1 JT 3 - 2, c;3 'c;3 'c;3 '{,3,1 ' 

() - [0 12 25 51 1 1 JT 4- 3, c;4 ,c;4 ,c;4 ,~,4,1•{,4,2 . 

Then, in element T1 , the basis functions of <I>n+l(K) can be expressed as 
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B l - A. (x) + [ I I 235 O 2135 185 7 O 7 24955 35 J e4 5 - '1'5 0, 0. 0. -TTI· o. -Tii· -768· • -6912· -571i· 32• • 32• -"61i'i2, 6912 ' 

B 2 - "' (x)y + [ 25 25 3251 25 1 245 25 8263 867 0 85 3 8405 18335 J e4 5 - ¥'4 - 26208 I 20208 I - 26208 I a, '8"'f3'6 I - 8 I 44928 I 11IT2'8 I 'J"'3"§"f76 I - '2912 I I 44928 I 32' - 'I"4"'976 I - m ' 

B 3 - A, (x)A. (y) + [ 3 II 257 181 277 O O I 77 13 J e4 5 - '1'3 '1'2 o,o,o.-Tii,o. -80· 4ll32· 0 • 1344• -2016' • • so• 571i• -571i ' 

B 4 - A. (x) A. (y) + [ 25 25 25 O 6577 II 29 257 7115 2515 O II I 83 6007 J e4 5 - 'f'2 \f-'3 - 104832 I 104832 I 104832 I ' 34944 I 80 I 22464 1 4t)3'2t 52416 I "f"7'472 I ' 11232'- 80 •- 14976 I 44928 ~ 

B 5 - X A, (y) + [I O O O O I 25 O 2657 1327 O O 3 1355 4385 J a4 5 - 'f'4 8' ' ' ' 'Bt 16128 1 I 48'3'8'4 1 if5'3'2t ' I -32,-"6912 1 - 6912 u ' 

B 6 - A. (y) + [ 25 25 25 337 I 35 235 18025 275 0 329 7 665 106435 J {) 
5 - 'lfJ5 - 14976 1 149ifi' 'I"'49'7'G! O, 4'9'92 1 T6 I 499'2 I -768' - 59904 I 832 I I - T6"i34 t- 32 I 74"8'8 I - 29952 4' 

By Theorem 3.1, to locate the superconvergent points of the Poisson equation, we may 
choose B~+l as 'lj;s. Then we can verify the following results for n up to 8. 

Proposition 3.3. Consider element T1 of the Chevron mesh. For the Poisson equation, 
the function value superconvergent points are: 
( i) If n is odd, there is no superconvergent point; 
( ii) If n is even, the midpoints of sides l 12 and l15 are the only superconvergent points. 

Proposition 3.4. Consider element T1 of the Chevron mesh. For the Poisson equation, 
the x-derivative superconvergent points are: 
( i) If n is odd, the midpoint of side h2 is the only superconvergent point; 
( ii) If n is even, there is no superconvergent point. 

The y-derivative superconvergent points are: 
(i) If n = 1, the midpoint of side l25 is the only superconvergent point; 
(ii) If n > 1, there is no superconvergent point. 

Remark 3. 7. Similar as in the regular pattern, superconvergence for the Chevron pattern 
at symmetry points can be shown by symmetric properties of periodic basis functions and 
Legendre polynomials. However, Propositions 3.3 and 3.4 are conclusive. Moreover, the 
result of y-derivative superconvergence for n = 1 is not at a symmetry point. 0 

Remark 3.8. The basis functions of <I>n+l(K) obtained from the orthogonal decomposition 
reveal the structures. However, there are more elements involved in the Chevron pattern 
than in the regular pattern, and the expressions of the basis functions here are even more 
complicated. Thus, we may use the second approach: solving a periodic finite element 
approximation problem. 0 
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Figure 8: Contours 'lj;~e = 0 (solid) and 'lf;§m = 0 (dashed). 

Next, we turn to harmonic polynomials (for the Laplace equation). With the help of 
basis functions of {I>n+l (K), we can determine 'lf;{;f.1 and 'l/J~r:;:1 . In particular, in the element 
Ti, we have, for instance 

'lf;(;e = B§- 3B~ = x 3 - 3xy2 + ~x2 + ~xy + lx, 
'lj;~m = Bj - 3B~ = y3 - 3x2y - !y2 

- ~xy + h; 
'lf;!/e = Bl- 6BJ + Bg = x4 - 6x2y2 + y4 + 2x3 + 3x2y- 3xy2 - 2y3 + x 2 + 2xy + y2 -l0 , 

'l/J!m = Bl- B1 = x3y- xy3 + x2y + xy2; 

'lf;{;e = Bg - 10Bg + 5BE 
_ x5 -lOx3y2+ 5xy4 +2x4+ 85x3y- 35x2y2 _ 175xy3+ 85 x3+1.§.x2y+ 10 xy2+1.Qx2+ 15 xy+.l..x 
- 2 24 4 24 42 4 7 28 28 84 , 

'lj;~m = BE - lOBt + 5Bg 
= y5-lOy3x2+5yx4-~y4- ~~xy3+ 345x2y2+ 1JJx3y+ :~y3+ 145xy2+ l~x2y- ~~y2- ~~xy+ 814 y. 

For information of n = 5, ... ; 8, the reader is -referred to [13]. 
Now, we are ready to apply Theorem 3.2. The superconvergent points can be located by 

solving the corresponding systems. These can be done as for the regular pattern. However, 
the affine mapping from i'.fh to T~9 (xRg = 2xCh + 1, yRg = 2yCh - 1) simplifies our 
life. When n > 1, under this mapping, ('lf;{;f.11t)Ch and ('l/J~.+1 1t)Ch are the same as 
('lf;{;!f.. 1 it)Rg and ('l/J~r:t:1 it)Rg up to a constant multiplier. When n = 1, they are the same 
up to a constant multiplier and a constant addendum as well. 

Therefore, when n > 1, the function value and derivative superconvergent points in i'fh 
can be obtained from those in T~9 (see Remark 3.5), which are listed in TABLE 1 and 
TABLE 2. When n = 1, the derivative superconvergent points are also obtained from the 
regular pattern (TABLE 2). We need to determine only the function value superconvergent 
points, which are solutions of 
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' ___ /:' .- .... ,/ 
'\ . .' •i 

.. " /r-_ _,. .· , ·. ~r~J ; 

, ,--::.. ·. \ I 

:b~:_';-->~\\V: /~~:J-! 
0~Re 0~Im 

Figure 9: Contours ~ = 0 (solid) and T- = 0 (dashed). 

{ 
x 2 

- y2 + x + y = 0, 
xy = 0. 

Solving this system, we have three superconvergent points: (0, 0), (0, 1) and ( -1, 0). The 
0~Re 

contours 'l/J::-+1 = 0 and 'l/J~+ 1 = 0 for n = 8 are given in FIGURE 8. The contours a~+! = 0 
a~lm 

and :Jx+I = 0 for n = 8 are given in FIGURE 9. 

3.3. UNION JACK PATTERN 

In the Union Jack pattern, the reference cell is again f< = [ -1, 1 ]2, which is partitioned 
into eight triangular elements (see FIGURE 10). 

y 

i'1 
n4 i'4 n6 x 

i'l i'3 
n1 nz n3 

Figure 10: Partition off< for the Union Jack Pattern 

Let Vi be the linear nodal shape function corresponding to vertex ni, which are defined 
in (3.23). The nodal shape functions are symmetric corresponding to the geometry of the 
vertices. The side modes and internal modes are defined as in (3.6) and (3.7), respectively. 

The constructions of the periodic basis functions are similar as described in Section 3.1. 
Here, v1 + v3 + v7 + vg, v2 + vg, l/4 + V6 and v5 are four periodic basis functions. 
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VJ ~ { 

-:r in 'i'1, v, ~ { 
x-y in tl, 

-y in t2, -x-y in t3, 
0 in other Ti; 0 111 other Ti; 

v, ~ { 
-x+y in t2, 

~,~ { X in tJ, -x-y in Ts, 
-y in T4, 0 in other Ti: 
0 111 other 'ti; 

v, ~ { 
x+y in t4, 

v, ~ ~ 
1+y in 'i'1, t3, x-y in t7, 
1+x in T2, Ts, 0 111 other Ti; 
1-x in T4, T1, 

Vg ~ { 

x+y in t6, 
1-y in t6, Ts; -x+y 111 Ts, 

0 in other Ti; 

(3.23) 

~~ {~X 
in Ts, 

Vg ~ { 

y in i'1, 
in t6, 

X in Ts, 
in other T·· 0 other Ti. t, 111 

It is straightforward to verify that 

dim P:(k) = (2n + 1)2, dim PP:(k) = (2nf (3.24) 

Theorems 3.1 and 3.2 are valid for the Union Jack mesh. To determine spaces <I>n+1(K), 
we may either process an orthogonal decomposition of P P:(k) under the Laplace operator, 
or carry on a periodic finite element approximation. The first approach is similar as in 
previous cases. We define Wn(K) as in (3.11). Then by the Gram-Schmidt process, PP;:(k) 
can be decomposed into a sum of Wn(K), as in (3.12). Based on Wn(K), we can construct 
<I>n(K). 4 

Remark 3.9. For the Union Jack pattern, a portion of kin each quadrant can be mapped 
to the reference cell of the regular pattern by an affine mapping. The corresponding shape 
functions defined in (3.23) are mapped to the ones of the regular pattern. Similar symmetry 
results as in Lemma 3.3 hold for the Union Jack pattern. Therefore, we need to work only on 
superconvergent points in the first element. Superconvergent points in the other elements 
can be obtained by symmetry. 0 

Basis functions of <I>n+I(K) in T1 are provided for n = 1, ... , 4. For information of 
n = 5, ... , 8, the reader is referred to [13]. To simplify notations, let B~+l and Bn be as 

defined in Section 3.2. Thus, the basis functions of <I>n+1 (K) in T1 are 

B~ = <P2(x) + U6, U, ~~] 81, 
B~ = xy+ [-1,0,0] ()b 

Bq = ¢2(Y) + [~~' ~~' ~~] 81; 
4 As described in Remarks 3.3, 3.8, the second approach is more efficient in case that we are interested 

only in the expression itself (not the structure of the expression). 
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B l - ~ (x) + [ IIC• O O 221'i O 28!1 23245 O 9275 15665 ~ O 7 8155 35 l e4 5- ¥-'5 -51lf.i· · .-27648' ·-m·-s2944' ·-41472'-41472' toaos' · 32·-'23{)'4·-rm ~· 

B 2 - ~ (x)y + [ 305 0 260 1991 1 37 295 55 173 12331 I I 5 995 440 l e 5 - o/4 '4i)"3"2' '- 4{)32 I 21504 I 28 I 15"3'6'- '3'0"t2 I '5"3"7'6 I 32256 I- 32256 I I6 I T"i52 I 32 1 -m'- "231i4 4 ~ 

B 3 - ~ (x)r!.. (y) + [ 137 12o1F 8623 30089 0 237ss 53411 19 1 2n 383] () 5- 'f'3 '1'2 -226B'o,o.- 838 o· 0 ·-m•'2"9li'3'54• • 145152'-145152'-2592o· 0 ·w·-TI52·-Elf2 4, 

B 4 - ~ (x)~ (y) + [ 137 863 1307 2917 41 1o7 .l21lL 41899 5585 19 1 427 so ] e 5 - \f/2 lf'3 2268 'o. 18144, 3'22'5'6. T3'4"4'' I '2"'56 I- 4'1'472' 36288 I T'4"5''52 I- 145152 I 0, 25920 I TG 1 2592.- 11&2 4 ~ 

B 5 _ x~ (y) + [ 19!1 61 3837 95 30413 51391 I o 5 995 7!5] e 5 - 'f'4 '4'0'32' o. O,- 'ffii8' o, '3'5ii4'- '2'I'51J.l'' O, 32256, 32256'- TI52, ' 32' 2'304, 5'lli 4' 

B 6 _ A. (y) + [ 11,, o 34055 5 2017 7859 875 43075 81445 268645 o 2471 7 35 9485] e 5- '+'5 5184'. 5184''9'2T6'""'3'8'4'153'6'-82944'20736 1 '4"i472 1 4"''4'f2 1 1 l0368'32'-5T'8"4''2"30'4 4· 

Choose B~+l as 'lj;s, apply Theorem 3.1 1 and we can verify the following results for finite 
elements of degree n up to 8. 

Proposition 3.5. Consider element T\ of the Union Jack mesh. For the Poisson equation, 
the function value superconvergent points are: 
( i) If n is odd, there is no superconvergent point; 
( ii) If n is even, the vertices and the midpoint of side h5 are the only superconvergent points. 

Proposition 3.6. Consider element T1 of the Union Jack mesh. For the Poisson equation, 
there is no superconvergent point for ~, nor for ~. 

Remark 3.10. Propositions 3.5 and 3.6 agree with the results from the computer-based 
proof and the conclusion from the symmetry principle. Moreover, our results theoretically 
confirmed that there are no other superconvergent points. 0 

Now, we consider harmonic polynomials. Again, we can determine 'l/;[;+1 and 'lj;~~1 from 
the basis functions of <I>n+1(K). In the element T1, we have, for instance 

'1/J~e = B~- B~ = x2
- y2 + x- y, 

'1/J~m = B~ = xy + x; 

'1/J~e = B§ - 3B~ = x 3 - 3xy2 + !!x2 - ~xy- x, 

'1/JJm = Bl - 3B§ = y3 - 3x2y + ~y2 - !xy - 3x2 + h - ~x; 
7);!(e = BJ - 6Bg + Bg =x4 

- 6x2 y2 + y4 + 2x3 - 9x2 y - 3xy2 + 2y3 - 2x2 - 4xy + y2 - x -
3
1
0

, 

'1/Jlm = B~ - Bj = x3y - xy3 + x 3 + x 2y - 2xy2 + x 2 - xy; 

'1/Jf'e = Bg - lOBg + 5BE = x5 - 10x3y2 + 5xy4 + 2x4 - 3i1 x3y - 345 x2y2 + 3201 xy3 
_ 745x3 _ 55x2y + 535xy2 _ 125x2 + 85xy _ lix 

168 4 56 28 56 168 ' 

'lj;gm = BE - lOBi + 5Bg = y5 - 10x2y3 + 5x4y + ~y4 - ~~ xy3 - ~5 x2y2 + 1275 x3y 
+Sx4 + 85y3 _ 55xy2 _ 155x2y + 175x3 + 15y2 _ 205xy + 2..x2 + ..l.y _ kx 

42 8 14 24 28 56 28 . 84 168 . 
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Figure 11: Contours 'lj;~e = 0 (solid) and 'lj;~m = 0 (dashed). 

8~Re 8~lm 
Figure 12: Contours Tx = 0 (solid) and T = 0 (dashed). 

For information of more cases, please check [13]. 
By Theorem 3.2, The superconvergent points can be located by solving the corresponding 

systems. These can be done as for the regular pattern. However, as we observed for the 
Chevron patter, the affine mapping from TfJ to T~9 maps (w~+. 1 lt1 )UJ and ('1j;~~1 lt1 )UJ 
to ( 'lj;~+. 1 it)Rg and ( 'lj;~~ 1 lt1 )Rg up to a constant multiplier when n > 1. When n = 1, they 
coincide with each other up to a constant multiplier and a constant addendum as well. 

Thus, when n > 1, the function value and derivative superconvergent points in Tf J can 
be obtained from those in T~9 , which are listed in TABLE 1 and TABLE 2. When n = 1, 
the derivative superconvergent points are also as same as the regular pattern (TABLE 2). 
Therefore, we need to determine only the function value superconvergent points for n = 1. 
Toward this end, we solve 

{ 
x2 - y2 + x - y = 0, 
xy+x = 0, 

and find three superconvergent points: (0,0), (0, -1) and (-1, -1). The contours 'lj;~-+. 1 = 0 
8~Re 8~Im 

and 'lj;~~1 = 0 for n = 8 are given in FIGURE 11. The contours 8~+ 1 = 0 and 8~+1 = 0 
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for n = 8 are given in FIGURE 12. 

3.4. CRISS-CROSS PATTERN 

In the Criss-Cross Pattern, we partition the reference cell k = [-1, 1]2 into four trian
gular elements (see FIGURE 13). 

y 

X 

Figure 13: Partition of k for the Criss-Cross Pattern 

Let 1/i be the linear nodal shape function corresponding to vertex ni. 

{ _l(x + y) in 'ii, T4, 
1/2 = { 

~(x- y) in T1, T2, 
1/1 = 2 

in T2, T3; 0 T3, T4; 0 m 

r+y 'i1, 1/4 = { 
~(y-x) in T3, 'i'4, 

(3.25) m 
1-x T2, 0 m 'i1, T2; 

lll 
1/3 = 

in T3, 
1/5 = { 

~(x + y) T2, T3, 1-y in 
1+x in T4; 0 in tl, T4. 

The side modes and internal modes are defined as in (3.6) and (3.7), respectively. 
The periodic basis functions can be constructed from the hierarchic basis functions. 

This time, v1 + v2 + 1/4 + 1/5 and v3 are periodic. 
It is straightforward to verify that 

(3.26) 

Again, Theorems 3.1 and 3.2 are valid for Criss-Cross mesh. To determine spaces 
<Pn+1(k), we may either process the orthogonal decomposition of PP:f(K), or carry on 
a periodic finite element approximation. As we mentioned before, the second approach is 
more efficient when we are interested only in the expressions (rather than the structures) 
of the basis functions. 

Remark 3.11. Unlike the Chevron and Union Jack patterns, no portion of the partitioned 
k for the Criss-Cross pattern "looks like" the regular pattern. In other words, T1 and T2 

can not be mapped to the reference cell of the regular pattern by !ln affine mapping, nor 
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n=4 

! 
' I 

---- l 
I 

~~ 

Figure 14: Contours ¢f{+1 = 0 (solid) and ¢~~1 = 0 (dashed), n = 1, ... , 4. 

can the other pairs. This leads to the fact that the superconvergence of the Criss-Cross 
pattern is very much different from that of the regular pattern. 

On the other hand, the geometry of the partition in f< is symmetric, as we can see in 
definition (3.25). So we need to study only superconvergence in T1 and T2. Superconvergent 
points in the other elements can be obtained by symmetry. D 

In the following, basis functions of <I>n+l(K) in T1 and T2 are provided for n = 1, ... , 4. 
For cases n = 5, ... , 8, the reader is referred to [13]. As in Section 3.2, we use B~+1 to 

denote the lh basis function of <I>n+l (K), and let column vectors BA and e~ consist all nodal 
shape functions, side modes, and internal modes of order ::; n in T1 and T2, respectively. 
For example, 

et = [vi. 1.12, v3JT, 

e~ = [Bi' c.-:F' c;§3' c;JS]r' 

e1 _ [e1 12 23 13 1 1r 3 - 2' c;3 ' c;3 ' c;3 ' /.,3, 1 ' 

e1 _ [e1 12 23 13 1 1 1r 4 - 3' c;4 'c;4 ' c;4 ' /.,4,1' /.,4,2 ' 

er = [v2, vs, v3JT; 

e2 [B2 r25 r35 r23JT. 
2 = 1 ' "2 ' "2 ' "2 ' 

e2 _ [B2 r25 r35 r23 ,2 JT· 
3 - 2' "3 '"3 ' "3 ' "3,1 ' 

e~ = [e§' c;£5' c;J5' c;£3' /.,l1' /.,~.2v 

Then, in element T1, the basis functions of <I>n+l(K) are 

B~ = <h(x) + [~, ~' ~] et, 
B§ = xy+ [-1,1,0] eL 
B~ = <h(y) + [~, ~, ~l et; 

B§ = ¢3(x) + [0, 0, 0, 0,- 1
3
0, 1

3
0] B~, 
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n=5 

~.,--:--r.- r..~: 
( . ' / , ')<,'-) 

·. \ , I, /.·'1 
i .. _, . ;;f..~ ' 
~-----..::,: JL.-----J, :----x-----: 
~-------- /: : ~ . . -· / 1"-.. i 
i. '/i \·,~-1 ,;...._ / , r.:.....• 
.. )< ) ' . ' 
~---··! . J . __ \ . ''-"---: 

n=7 

n=6 

n=8 

Figure 15: Contours 'l/J~.+- 1 = 0 (solid) and 'l/J;+1 = 0 (dashed), n = 5, ... , 8. 

B1 "' ( ) [o 0 0 0 121 121 85 145 145 0 0 211 211 13895 o] 01 
5 = 'f'5 X + ' ' ' ' 1728' - 1728' 864' 576' - 576' ' ' - 1296' 1296' - 2592 ' 4' 

B2 "' ( ) [o 0 0 0 2s1 2s1 0 1o19 1o19 21s9 1 61 61 0 2635] 01 
5 = 'f'4 X y + ' ' ' ' 4032' 4Pf2' ' - 403J' - ~032' - 3024' ' i~2' i~2' ' - 864 4' 

B~ = ¢3(x)¢2(y) + [0, 0, 0, 0, is~o, -is~7o' 756, 56, -l6, 0, 0,-810' 810'- ~g~' 0] el, 
B 4 "' ( )"' ( ) [o 0 0 0 947 947 0 3 3 67 0 47 47 0 373] 01 

5 = 'f'2 X 'f'3 y + ' ' ' '-75£0'- 7560' '-56'- 56' 1134' ' 810' 810' '- 324 4' 
B s "' ( ) [o 0 0 0 2s1 zs1 s 1019 1o19 0 0 61 61 445 o] 01 

5 = X'f'4 y + ' ' ' ' - 4032' 4032' 672' 4032' - 4032' ' ' - 432' 432' 864' 4' 
B 6 A. ( ) [O O O O 121 121 O 145 VIS 2245 O 217 217 O 13265] e1 

5 = 'f'5 y + ' ' ' , - 1728' - 1728' , - 576, -576' 1296' ' 1296 , 1296, ' 2592 4. 

In element T2, the basis functions of <I>n+1 (K) are 

Bi = c/J2(x) + [~, ~~ ~] ei, 
Bi = xy + [1, -1, OJ Oi, 
B~ = ¢2(Y) + [~, ~~ ~] Or; 

B§ = ¢3(x) + [0, 0, 0, 0, - 1
3
0 , -

1
3
0 ] e~, 

Bj = ¢2(x)y + [0, 0, 0, 0,- J0 , 20] e~, 

31 



Take B~+1 as 'ljJs, and we can verify the following results for n up to 8. 

Proposition 3. 7. Consider element T1 (or T2) of the Criss- Cross mesh. For the Poisson 
equation, the function value superconvergent points are: 
( i) If n is odd, there is no superconvergent point; 
( ii) If n is even, the vertices and the midpoint of side h2 (or l25, respectively) are the only 
superconvergent points. 

Proposition 3.8. Consider the superconvergent points for ~~ of the Poisson solutions in 

the Criss-Cross mesh. In T1, the superconvergent points are the same as in the regular 
pattern. In T2, there is no superconvergent point. 

For ~, superconvergence can be determined by symmetry. Namely, in T1, there is no 

superconvergent point. In T2, the cases are the same as in the regular pattern. 

Remark 3.12. As in the regular pattern, superconvergence for the Criss-Cross pattern at 
symmetry points was predicted by the symmetry theory and the computer-based proof. 
Propositions 3. 7 and 3.8 confirm theoretically that there are no other superconvergent 
points. D 

As for the Laplace equation, we determine '1/J[;!f.- 1 and 'I/J~+.1 from the basis functions of 
ci>n+l(K). In the element T1, we have 

'1/J~e = B~ - B~ = x2 - y2' 
'1/J~m = Bi = xy+x; 

1/Jfe = B§ - 3Bg = x3 - 3xy2 - 3xy- x, 
'1/J~m = B~ - 3B~ = y3 - 3x2y - 3x2 - y; 

1/;!{e = Bl - 6Bt + Bi = x4 - 6x2y2 + y4 - 9x2y + y3 - 4x2 + 125' 
1/Jam = B~- B1 = x3y- xy3 + x3- xy2; 
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'1/;f}e = Bg -10Bg + 5BE =x5 -l0x3y2 + 5xy4- 965x3y + 365xy3- 68045x3- ~~xy2- l~xy- 2\ x. 

w~m =BE -10Bt + 5Bg =y5 -l0y3x2 + 5yx4 + iY4- 6Jy2x2 + 5x4 + ~~y3- 2is5yx2- l~x2- dl y. 

In the element f2. we have 

,j,Re _ Bl _ B3 _ x2 _ y2 
¥'2 - 2 2- ' 
c1J§m = Bi = xy- y; 

V'fe = Bj- 3B~ = x3
- 3xy2 + 3y2

- x, 
'1/J~m = Bj- 3B5 = y3 - 3yx2 + 3yx- y; 

'1/Jf!-e = Bl - 6Bi + Bg = x4 - 6x2y2 + y4 - x3 + 9xy2 - 4y2 + 125, 
'!/Jim= Bl- B1 = x3y- xy3- x2y + y3: 

'1/;f}e = Bg - lOBg + 5Bg =x5 - l0x3y2 + 5xy4 - ~ x4 + 61 x2y2 - 5y4 + ~~ x3 - 223; xy2 + 175 y2 - 2\ x, 

'1/J~m = BE- 10Bi + 5Bg =y5- l0y3x2 + 5yx4 + 965y3x- 3;yx3- 6sOJy3- ~~yx2 + l~y:r- 2\ y. 

For cases n = 5, ... , 8, the reader is referred to [13]. 

By Theorem 3.2, the intersection points of the contours 'l/;:~ 1 = 0 and '1/;~+. 1 = 
function value superconvergent points. It can be shown that, for k = 1. 2, ... 

'1/;~eli\ ( -y, -x) = ( -1)k'lj;:flt2(x, y), 

'I/J~rlt1 ( -y, -x) = ( -1)k+l'I/J~rlt2 (x, y); 

'l/J:f+11t
1
(-y,-x) = -'l/J~k+11t2 (x,y), 

'l/J~k+11t1 (-y,-x) = -'l/;~e+11t2 (x,y). 

0 are 

(3.28) 

TABLE 3(a). Function Value Superconvergent Points for the Criss-Cross Pattern 
(in f1, n = 1, ... , 4) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
12 

13 

14 

n-1 

-1.0000000000000000 
-1.0000000000000000 

1.0000000000000000 
-1.0000000000000000 

0.0000000000000000 
0.0000000000000000 

n-2 

- 1. 0000000000000000 
-1.0000000000000000 

0.0000000000000000 
-1.0000000000000000 

1.0000000000000000 
-1.0000000000000000 

-0.6614378277661476 
-0.7500000000000000 

0.6614378277661476 
-0.7500000000000000 

-0.5000000000000000 
-0.5000000000000000 

0. 5000000000000000 
-0.5000000000000000 

0.0000000000000000 
0. 0000000000000000 
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n 3 

-0.9173685331054181 
-1.0000000000000000 

-0.3980389107461900 
-1.0000000000000000 

0.3980389107461900 
-1.0000000000000000 

0.9173685331054181 
-1.0000000000000000 

-0.7596648111796141 
-0.7596648111796141 

0.7596648111796141 
-0.7596648111796141 

-0.2403351888203859 
-0.2403351888203859 

0.2403351888203859 
-0.2403351888203859 

" 4 

-1.0000000000000000 
-1.0000000000000000 

-0.6074928962939559 
-1.0000000000000000 

0.0000000000000000 
-1.0000000000000000 

0.6074928962939559 
-1.0000000000000000 

1.0000000000000000 
-1.0000000000000000 

-0.9755948656056709 
-0.9755948656056709 

0.9755948656056709 
-0.9755948656056709 

- 0. 5266244945254620 
-0.5437574858837224 

0.5266244945254620 
-0.5437574858837224 

-0.5000000000000000 
-0.5000000000000000 

0. 5000000000000000 
-0.5000000000000000 

-0.0244051343943291 
-0.0244051343943291 

o. 0244051343943291 
-0.0244051343943291 

0.0000000000000000 
0.0000000000000000 



TABLE 3(b). Function Value Superconvergent Points for the Criss-Cross Pattern 
(in T1, n = 5 .... , 8) 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

n n 6 n n-8 

- 1. 0000000000000000 
- 1. 0000000000000000 

-0. 7520955703220611; 
-1.0000000000000000 

-0.273819745639229!1 
-1. oooooooooooooouu 

0.2738197456392299 
-1.0000000000000000 

0. 7520955703220618 
-1.0000000000000000 

1. 0000000000000000 
-1.0000000000000000 

-0.7497222492047110 
-0.7641686475074967 

0. 7497222492047110 
-0.7641686475074967 

-0.6889822365046136 
-0.6889822365046136 

0.6889822365046136 
-0.6889822365046136 

-0.3110177634953864 
-0.3110177634953864 

0.3110177634953864 
-0.3110177634953864 

0.0000000000000000 
0. 0000000000000000 

-1.0000000000000000 
-1.0000000000000000 

-0.8258100260262924 
-1.0000000000000000 

-0.4616469028358420 
-1.0000000000000000 

0.0000000000000000 
-1.0000000000000000 

0.4616469028358420 
-1.0000000000000000 

o. 8258100260262924 
-1.0000000000000000 

1.0000000000000000 
-1.0000000000000000 

-0.8964006664142398 
-0.9037747054613061 

0.8964006664142398 
-0.9037747054613061 

-0.7930464008921687 
-0.7930464008921687 

0. 7930464008921687 
-0.7930464008921687 

-0.5000000000000000 
-0.5000000000000000 

0.5000000000000000 
-0.5000000000000000 

-0.2069535991078313 
-0.2069535991078313 

0.2069535991078313 
-0.2069535991078313 

0.0000000000000000 
0.0000000000000000 

-0.9981396004694932 
-1.0000000000000000 

-0.8677139861534285 
-1.0000000000000000 

-0.5861275452213199 
-1.0000000000000000 

-0.2065452580134060 
-1.0000000000000000 

0.2065452580134060 
-1.0000000000000000 

0.5861275452213199 
-1.0000000000000000 

0.8677139861534285 
-1.0000000000000000 

0.9981396004694932 
-1.0000000000000000 

-0.8246872285548802 
-0.9699982047625423 

0.8246872285548802 
-0.9699982047625423 

-0.8641993803626567 
-0.8641993803626567 

0.8641993803626567 
-0.8641993803626567 

-0.6308098017028516 
-0.6308098017028516 

0.6308098017028516 
-0.6308098017028516 

-0.3691901982971484 
-0.3691901982971484 

0.3691901982971484 
-0.3691901982971484 

-0.1358006196373433 
-0.1358006196373433 

0.1358006196373433 
-0.1358006196373433 

-1.0000000000000000 
-1.0000000000000000 

-0.8949872464334571 
-1.0000000000000000 

-0.6718072968265310 
-1.0000000000000000 

-0.3593519628863694 
-1.0000000000000000 

0.0000000000000000 
-1.0000000000000000 

0. 3593519628863694 
-1.0000000000000000 

0.6718072968265310 
-1.0000000000000000 

0.8949872464334571 
-1.000000000000000U 

1.0000000000000000 
-1.0000000000000000 

-0.9992591382562380 
-0.9992591382562380 

0.9992591382562380 
-0.9992591382562380 

-0.8432145105568528 
-0.9574614014591484 

0.8432145105568528 
-0.9574614014591484 

-0.9207514598210227 
-0.9207514598210227 

0. 9207514598210227 
-0.9207514598210227 

-0.7543814375798548 
-0.7568093664013312 

0. 7543814375798548 
-0.7568093664013312 

-0.7249538986620887 
-0.7249538986620887 

0. 7249538986620887 
-0.7249538986620887 

-0.2750461013379113 
-0.2750461013379113 

0.2750461013379113 
-0.2750461013379113 

-0.06353426364 73669 
-0.1156087916821725 

0.0635342636473669 
-0.1156087916821725 

-0.0792485401789773 
-0.0792485401789773 

0.0792485401789773 
-0.0792485401789773 

0.0000000000000000 
-0.0165548344873347 

-0.0007408617437620 
-0.0007408617437620 

0.0007408617437620 
-0.0007408617437620 

0.0000000000000000 
0.0000000000000000 

Therefore, we need to determine only superconvergent points in T1. Superconvergence in 1'2 

are obtained by symmetry. TABLE 3 demonstrates function value superconvergent points 
in T1 for n = 1, ... , 8 with 16 digits of accuracy. The contours 'l/J;{+1 = 0 and 'l/J~+1 = 0 for 
n = 1, ... , 8 a~e given in FIGURE 14 and FIGURE 15. 

We now apply Theorem 3.2 in derivative superconvergence to the Laplace equation. For 
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2 

3 

5 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

TABLE 4. x-Derivative Superconvergent Points for the Criss-Cross Pattern 
(in T1, n = 1, ... , 8) 

11-1 Tl n 3 Tl 4 

0.0000000000000000 -0.577350269!896258 -0. 707106781!8654 75 -0.84778234412594 7t; 
-I. 0000000000000000 -1.0000000000000000 -1.0000000000000000 - 1. 0000000000000000 

0.5773502691896258 0.0000000000000000 -.32045852838843981 
-I. 0000000000000000 -1.0000000000000000 -!.0000000000000000 

0. 707!067811865475 0.3204585283884390 
-1.0000000000000000 -1.0000000000000000 

0.0000000000000000 0. 84 778234412594 78 
0.0000000000000000 -1.0000000000000000 

0.0000000000000000 
-0.0224627212127888 

n- 0 n-6 n- i " 8 

-0.9022588235195235 -0.9310770981941091 -0.9465714662683107 -0.958819291 057R902 
-1.0000000000000000 -I. 0000000000000000 -1.0000000000000000 -1.0000000000000000 

-0.5288468732829620 -0.6566413396532959 -0.7373956542010889 -0.7924029133810774 
-1.0000000000000000 -1.0000000000000000 -1.0000000000000000 -I. 0000000000000000 

0. 0000000000000000 -0.2356824218715548 -0.4022593795202400 -0.5215086649681956 
-I. 0000000000000000 - 1. 0000000000000000 -1.0000000000000000 -1.0000000000000000 

0.5288468732829620 0.2356824218715548 0.0000000000000000 -0.18176739!3302495 
-1.0000000000000000 -1.0000000000000000 -1.0000000000000000 -1.0000000000000000 

0.9022588235195235 0.6566413396532959 0.4022593795202400 0.!817673913302495 
-I. 0000000000000000 -1.0000000000000000 -1.0000000000000000 -1.0000000000000000 

0.0000000000000000 0.9310770981941091 o. 7373956542010889 0.5215086649681956 
0.0000000000000000 -1.0000000000000000 -1.0000000000000000 -1.0000000000000000 

-0.0891940958115766 0.9465714662683107 o. 7924029133810774 
-0.1! 71153414673580 -1.0000000000000000 -!.0000000000000000 

0.0891940958115766 -0.0382832107422798 o. 95881929105 78902 
-0.1171153414673580 -0.0748454610760943 -1.0000000000000000 

0.0382832107422798 -0.9264627610278532 
-0.0748454610760943 -0.9700802098022849 

0.0000000000000000 0.9264627610278532 
0.0000000000000000 -0.9700802098022849 

-0.1589910559373525 
-0.1863775498631390 

0.1589910559373525 
-0.1863775498631390 

0.0000000000000000 
-0.1134648999929049 

-0.0418841026400703 
-0.0612506331535669 

0.0418841026400703 
-0.0612506331535669 

0.0000000000000000 
-0.0007334!55!59263 

x-derivative superconvergence, we need to determine the common zeros of 
8~~~ 1 = 0 and 

8~~xr:;. 1 = 0 in both T1 and T2, since (3.28) does not imply any symmetric properties for 
x-derivatives. 

We list superconvergent points for n = 1, ... , 8 in TABLE 4 and TABLE 5 with 16 digits 
81/JRe 81)Jlm 

of accuracy. Only the contours anx+! = 0 and anx+! = 0 for n = 3, ... , 8 are given in 
FIGURE 16. 

On the other hand, from (3.28), they-derivatives of '!j;;{:f_1 and 'l/J~+. 1 are symmetric to the 
x-derivatives. Thus. they-derivative superconvergent points can be obtained by symmetry. 

Remark 3.13. To compare our results with those given in [2] 5 , we use x = (x + 1)/2 and 

5 Derivative superconvergent points are given for n = 1, ... , 6 in [2] (TABLE II, III). 
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2 

3 

4 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

TABLE 5. x-Derivative Superconvergent Points for the Criss-Cross Pattern 
(in T2, n = 1. ... , 8) 

n -1 n-2 n-3 " 
0.0000000000000000 0.5773502691896258 0.0000000000000000 0.5242840088938378 
0.0000000000000000 0.0000000000000000 0.0000000000000000 -0.3672919579081908 

0. 7500000000000000 0.524284008893837~ 

-0.4330127018922193 0.3672919579081908 

0. 7500000000000000 0. 794158535160612F 
0. 0000000000000000 0.0000000000000000 

0. 7500000000000000 0.8291726306727321 
0.4330127018922193 -0.2066731091555382 

0.8291726306727321 
0.2066731091555382 

n 5 n 6 n-7 n 8 

0.0000000000000000 0.4172857146226821 0.0000000000000000 0.0094266635593945 
0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 

0.3766028903116235 0.5263929773620074 0.5355367828576363 0.0673857238109867 
-0.2436531088238106 -0.4332798971957640 -0.2200378052788761 -0.0421135710689382 

0.3766028903116235 0.5263929773620074 0.5355367828576363 0.0673857238109867 
0.2436531088238106 0.4332798971957640 0.2200378052788761 0.0421135710689382 

0.5081763283085686 0.6569757558957244 0.6438730997258771 0. 5853163679868406 
-0.3204147860450027 -0.2092748096819668 -0.5724579277550955 0.0000000000000000 

0.5081763283085686 0.6569757558957244 0.6438730997258771 0.6496603573416232 
0.3204147860450027 0. 20927 48096819668 0.5724579277550955 -0.3920199824799846 

0.5520845860159235 0.6665389441764509 0. 7289644770413350 0.6496603573416232 
0.0000000000000000 0.0000000000000000 0.0000000000000000 0.3920199824799846 

0.5623467631434243 0.6766532889073166 0.9150910586863469 0. 7164981840772373 
-0.0834391002091283 -0.2597018851468181 0.0000000000000000 -0.6611375478929451 

0.5623467631434243 0.6766532889073166 0. 7164981840772373 
0.0834391002091283 0.2597018851468181 0.6611375478929451 

0.6737396038956180 o. 7016063317069908 0. 7687927787500516 
-0.5463668183039467 -0.5860557493229441 0.0000000000000000 

0.6737396038956180 0. 7016063317069908 0.9271673933371417 
0.5463668183039467 0.5860557493229441 0.0000000000000000 

0.8669379104781077 0.7356517149502489 
0.0000000000000000 -0.6300926285368980 

0. 7356517149502489 
0.6300926285368980 

0.8935538681815075 
0.0000000000000000 

y = (y + 1) /2 to map elements T1 and T2 to elements 71 and 72 in [2], respectively. The 
superconvergent points in Ti are also mapped to the superconvergent points in 7i, i = 1, 2 
(see Remark 3.5 for reasons). Almost all of the points in [2] are accurate in 10 digits. 
However, in case n = 3, the y-coordinates of the second and the fourth points in 72 are 
0.2834936534 and 0.7165063710, which are accurate in 8 and 7 digits, respectively. By our 
process, these two points can be located analytically, which are (4 ± J3)/8 (after mapped 
into 72), or 0.2834936490538904 and 0.7165063509461097 in decimals. D 
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