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SUBDIFFERENTIAL AND SUPERDIFFERENTIAL OPTIMALITY 
CONDITIONS IN NONSMOOTH MINIMIZATION 

BORIS S. MORDUKHOVICH 1 

Department of Mathematics, Wayne State University 

Detroit, MI 48202, U.S.A. 

Abstract. The paper concerns first-order necessary optimality conditions for problems of minimizing non
smooth functions under \·arious constraints in infinite-dimensional spaces. Based on advanced tools of variil
tional analysis and generalized differential calculus, we derive general results of two independent types called 
subdifferential and superdifferential optimality conditions. The former ones involve basic/limiting subgra
dients of cost functions , while the latter conditions are expressed via Frechet superdifferentials provided 
that they are not empty. All the superdifferential and major subdifferential optimality conditions obtained 
in the paper are new even in finite dimensions. We give applications of general optimality conditions to 
mathematical programs with equilibrium constraints. 

Mathematics Subject Classifications (2000): 49J52, 49K27, 90C48. 

Key words: variational analysis , nonsmooth optimization , generalized differentiation , infinite-d imension al 
spaces , necessary optimality conditions, mathematical programs with equilibrium constraints. 

1 Introduction 

This paper is devoted to the study of necessary optimality conditions for constmincd minirmza

tion problems in ~!J_it e:dime nsional spaces. A general problem of this type with (non-specified ) 

geometric constraints can be written as: 

minimize (/)o(x) subject to XED c X , ( 1.1 ) 

where (/)o: X -t IR := [ - oc, oc] is an extended-real-valued function on a Banach space X finite at 

a reference point, and where D is an arbitrary nonempty subset of X. The constrained prolJ! cnt 

( 1.1) is obviously equivalent to the unconstrained problem 

minimize (/)o(x) + b(x; D) , x EX, 

where the indicator function b(-: D) of D. defined by b(x: D) := 0 if X E n and O(J.·: D) X 

otherwise, imposes an "infinite penalty" on the constraint violation. Denoting by 

a~( -·)·={ *EXr*jl· . f{/)(x)-{/)(i)-(x* , x - i) >0} 
(/) X . X liD 1!1 II -II -x-;x X- X 

( 1.2) 

the Frechet subdifferential of (/):X -t IR at i with 1(/)(i)l < oo, one can observe directly from 

the definition that the following generalized Fermat rule holds: if i a local minimizer of (/), then 

1 Research was partly supported by the Nat ional Science Foundation under grant DMS-0072179. 
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0 E §cp(x). Applying this to the unconstrained form of (1.1) , we get 

0 E §(cpa+ o(-; D))(x) ( 1.3) 

provided that i; gives a local minimum to cpa (x) subject to x E D. If cpa happens to be Frechet 

differentiable at x with the derivative/gradient \7cp0 (x), then (1.3) is equivalent to the inclusion 

~ { I . (x*, x - x) } 
- \7cp0 (x) E N(x; D) := x* E X* hm0s~p llx _ xll ::; 0 , 

x~x 

( 1.4) 

where N(x; D)= ao(x; D) is the Frechet normal cone to D at XED, and where X~ X means that 

x --+ x with x E D. Indeed , the equivalence between (1.3) and (1.4) follows from the simple sum 

rule for Frechet subgradients: 

held in Banach spaces for any function cp0 Frechet differentiable at i and an arbitrary function 

cp1 : X --+ IR finite at i . 

If cpa is not Frechet differentiable at x, the above way does not lead to valuable optimality condi

tions , since Frechet-like subgradients generally possess a poor calculus even for simple nonsmooth 

functions in finite dimensions. To be able to proceed further , one needs to employ more robust 

subdifferentials satisfying required calculus rules. In what follows we are going to develop such an 

approach based on our basic/sequential limiting subgradients of extended-real-valued functions and 

the corresponding normal cone and coderivative constructions for sets and set-valued mappings 

enjoying a number of useful calculus rules in arbitrary Banach spaces and fairl y comprehensiv(' 

calculi in the Asplund space setting: see below . In this way we derive general first-ord er optimalit\· 

conditions of the subdijjerential type for minimizat ion problems with various const raints typical!\· 

arising in applications. In particular. for problem (1.1) , which is actually the simplest a lbeit .e;erl(' ral 

constrained optimization problem. the corresponding subdifferential optimality condition reads as 

0 E 3cpo(i) + N(x ; D) ( 15 ) 

provided that cpa is Lipschitz continuous around x, as well as under more general qualificat iu11 

and normal compactness assumptio ::?. / We also derive subdifferential optimality conditions for 

minimization problems with many geometric constraints given by set intersections. with op('rator 

constraints defined by inverse images of set-valued mappings , with function al constra ints givc!l by 

equalities and inequalities , and with equilibrium constraints governed by parametric generalized 

equations and variational inequalities. For the latter class of minimization problems related tu 

hierarchical optimization . second-order subdijjcrential constructions are useful in applications to 

first-order optimality conditions. Note that the realization of this approach in the case of infinite

dimensional spaces is based not only on calculus rules for subdifferentials and coderivat.ives. but 

also on calculus results ensuring the preservation of the so-called sequential normal compactness 

properties for functions , sets, and set-valued mappings that are automatic in finite dimensions w bile 

playing a crucial role in infinite-dimensional optimization and variational analysis. 

Along with subdifferential optimality conditions held for problems of minimizing general cost. 

functions, we derive necessary optimality conditions of a new type that apply to special classes 
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of functions under minimization and those describing inequality constraints, being often more 

powerful for these special classes than the former ones. Such superdifferential conditions , which seem 

to be rather surprising for minimization problems, involve the following Frechet superdifferential 

construction for a given function <p: X -7 lR finite at x defined by 

~ ~ { <p(x)- <p(x)- (x*,x- x) } 
a+<p(x) := -8(-<p)(x) = x* E X*llims~p II II :; 0 . 

X-tX X- X 
( 1.6) 

It happens that Frechet supergradients of extended-real-valued functions admit certain smooth vari

ational descriptions allowing us to reduce, in particular, necessary optimality conditions for problem 

(1.1) , given each x* E §+~.p0 (x), to those for a counterpart of (1.1) with a Frechet differentiable cost 

function whose derivative equals x*. This leads to superdifferential conditions for (1.1) of the type 

_§+'Po(x) c N(x;D). 

Such conditions apply, of course, to minimization problems with B<po(x) -:1 0, e.g., to problems of 

minimizing concave functions. However, being applicable, superdifferential conditions of type ( 1. 7) 

may give essentially stronger results than the subdifferential ones (1.5). In this paper we derive 

superdifferential conditions for minimization problems with the same types of general constraints 

as the subdifferential conditions discussed above. More specific results of the superdifferential type 

are obtained for minimization problems with inequality constraints. 

The rest of the paper is organized as follows. Section 2 presents basic definitions and pre

liminaries from generalized differentiation and variational analysis widely used in what follows. 

In Section 3 we derive necessary optimality conditions of both subdifferential and superdifferen

tial types for constrained minimization problems in form (1.1) and also for problems with many 

geometric constraints given by set intersections . Section 4 deals with minimization problems that 

contain , together with geometric constraints , also constraints of operator and functional types given 

generally by inverse images of set-valued mappings and particularly by equalities and inequalities 

with real-valued functions. The final Section 5 is devoted to subdifferential and superdifferential 

optimality conditions for general classes of mathematical programs with equilibrium constraints in 

infinite-dimensional spaces . 

Our notation is basically standard, with special symbols introduced where they arc defined. 

Unless otherwise stated , all spaces considered are Banach whose norms are always denoted by II· 11. 
For any space X we consider its dual space X* equipped with the weak* topology w·, where (-. ·) 

means the canonical pairing. For multifunctions F: X =t X* the expression 

LimsupF(x) := {x* Ex· I :3 sequences Xk -7 x and xic ~ x· 
x-tx 

with xic E F(xk) for all k E IN} 

signifies the sequential Painleve-K uratowski upper /outer limit with respect to the norm topology 

in X and the weak* topology in X* , where IN := { 1, 2, ... } . 

2 Preliminaries 

As mentioned in Section 1, for applications to necessary optimality conditions in this paper we 

need, along with the Frechet-like constructions (1.2), (1.4), and (1.6), their robust counterparts 
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defined as follows. The reader can find more details on these constructions and their history in the 

books [11, 23] and papers [3 , 12, 17] in, respectively, finite and infinite dimensions. 

Given a nonempty subset fl of a Banach space X and a number E 2: 0, we first define the 

E-enlargement of the cone N(-; fl) in (1.4) by 

N~ ( n) { * X* 11' (x*' u - x) } c n 
E x; H := x E 1m

0
sup llu _ xll ~ c 10r x E H 

u-+ x 

and by Nf(x; fl) := (/) for X~ n. Then the basic normal cone to nat X En is given by 

N(x; fl) :=Lim sup NE(x; fl) 
x -+ x 
dO 

(2.1) 

(2 .2) 

as the sequential Painleve-Kuratowski upper limit of E-normals (2 .1) at nearby points . When X 

is Asplund (i .e., its every separable subspace has a separable dual; see [22] for more information) 

and n is closed around x, one can equivalently put E = 0 in (2.2) and hence replace NE(-; fl) with 

the Frechet normal cone; see [17, Theorem 2.9]. However, one cannot remove E from (2 .2) and the 

subsequent definitions without loss of crucial properties in general Banach spaces. 

Given <p: X --+ IR finite a t x. the basic subdifferential of <p at x can be defined geometricaily by 

o<p (x) := { x* EX* I (x * , -1) E N((x,<p(x));epi<p)} . (2 .3) 

If <p is lower semicontinuous (l.s.c.) around x and if X is Asplund, construction (2.3) is equivalent 

to the analytic represe ntation 

o<p( x ) = Limsup§<p(x) , 
'P -X-+X 

where x 4 x means that x --+ x and <p (x ) --+ <p(x ). The basic superdifferen tial of <pat x is defin ed 

by a+<p(x) := -8( - <p)(x ) and can be represented via basic normals to the hypograph of <pas well 

as via sequential limits of Frechet supergradients similarly to the basic subdifferential. Recall that 

<p is lower regular (resp . upper regular) at x if 

( 2 .-l) 

Upper regular fun ct ions are of special interes t for this paper in con nect ion with superdiffcr

ential optimality condi t ions. Note that this class contains , in particular . a ll proper concave fun c

t ions and all functions strictly differentiable at x, as well as other funct ions <p for which - cp is 

lower/subdifferentially regular at x: cf. [11, 23] . Note that §+<p(x) =f.(/) if <p is upper regular at i· 

and Lipschitz continuous around this point while X is Asplund . This foll ows from the fact that 

a+<p(x) =f.(/) for any locally Lipschitzian function on an Asplund space; see [17 , Corollary 3.9] . If <p 

is ~ca':'~ and ~ontinuous around x , then §+<p(x) i (/) in any Banach space, which is well known 

in convex analysis. Observe also that 

(2.5) 

for every function <p on an Asplund space that is upper regular at x and Lipschitz continuous 

around this point , where B<p(x) stands for the Clarke generalized gradient [4], and where cl* 
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denotes the topological closure of a set in the weak* topology of X* . Moreover, the weak* closure 

is redundant in (2 .5) if X is weakly compactly generated (WCG), in particular , it is either reflexive 

or separable. Indeed , by the symmetry property of the Clarke generalized gradient for locally 

Lipschitzian functions [4, Proposition 2.3.1], its representation through the basic subdifferential in 

Asplund spaces [17, Theorem 8.11], and the convexity of §+cp(x) one has 

8cp(x) = -8(-cp)(x) = -cl*co8(-cp)(x) = cl*coa+cp(x) = cl*B+cp(x) , 

where 8cp(x) and hence §+cp(x) are weak* closed in WCG spaces due to [17 , Theorem 9.2]. 

Given a set-valued mapping F: X -=1 Y between Banach spaces, we define its normal coderivative 

DjyF(x,y):Y* -=1 X* at (x , y) E gphF by 

D jy F(x , y)(y*) := {x* E X*l (x*,-y*) E N((x , Y) ; gphF)} (2.6) 

and the corresponding mixed coderivative by 

D • F( ) ( • ) { • x·J :J I 0 ( ) (- -) • w· • • 11·1 1 • M x , fj y := x E :JEk + , xk, Yk -+ x, y , xk -+ x , yk.. :.:..-t y , 

with (xz,-yz) E Nek((Xk:Yk);gphF) , k-+ oo}, 
(2.7) 

where Ek can be equivalently omitted if the graph ofF is closed around (x, y) and if both X and 

Yare Asplund. We also omit fj in (2.6) and (2 .7) when F = f: X-+ Y is single-valued and use the 

common coderivative symbol D* F if both coderivatives agree. This happens, in particular , when Y 

is finite-dimensional , while the mixed coderivative may be strictly smaller (never bigger) than the 

normal coderivative even for single-valued Lipschitzian mappings into the Hilbert space Y = f2 . 

One has the scalarization formulas 

D';Ji(x)(y*) = B(y* , f)(x), Djyf(x)(y*) = 8(y*,f)(x) (2. 1:;) 

with (y* , f)(x) := (y* , j(x)) , where the first formula in (2.8) holds for every locally Lipschit.zian 

mapping between Banach spaces , while the second scalarization formula is established in [17. Theo

rem 5.2] for the case of Asplund spaces X and strictly Lipschitzian mappings f. The latter suiJClass 

of Lipschitzian mappings is proved to reduce to compactly Lipschitzian mappings in the sellsc of 

Thibault ; see [24] for more details . If, in particular, f is strictly differentiable at x, then formulas 

(2.8) reduce both coderivatives to the adjoint derivative operator 

D';,tf(x)(y*) = Djyj(x)(y*) = {'Vf(x)*y*}, y• E Y* , 

in any Banach spaces X andY. Using the coderivative D* Er.p(x) of the epigraphical multifunction 

Er.p (x) := {f..l E .IRI f..l :2: cp(x)} associated with <.p: X -t .IR, we get back to the basic subdiffercntial 

8<.p(x) and define the singular subdifferential 800 <.p(x) of <pat i; by 

(2.9 ) 

It is easy to see that 800 <.p(x) = {0} for locally Lipschitzian function <.p on arbitrary Banach spaces. 

In this paper we also use the construction of the (normal) second-order subdifferential of <p: X 7 
lR at x relative to fj E 8<.p( i;) defined by 

8~<.p(x, y)(u) := Djy(B<.p)(x, y)(u), u EX**. · (2.10) 
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The mixed second-order subdifferential is defined similarly, but we do not need it in what follows. 

Note that for cp E C2 one has 

8~cp(x)(u) = {\72cp(x)*u}, u EX**, 

where \7 2cp(x) stands for the classical second-order derivative operator. 

Next we recall certain normal compactness properties of sets from products of Banach spaces: 

see [18] and its references for the genesis of these and related properties and more discussions. 

A set n C X x Y is sequentially normally compact (SNC) at (x , y) E n if for any sequences 

(Ek , Xk , xk, Yk) E [0, oo) X n X X* X Y* satisfying 

(2.11) 

one has the implication 

(xk,yjJ ~ (0 , 0) ===> ll(xk,Yk)ll-+ 0 as k-+ oo. 

This set is partially sequentially normally compact (PSNC) at (x , y) with respect to X if for a ny 

above sequences satisfying (2.11) one has 

[xk ~ 0 and IIYZII -+ o] ===> llxkll-+ 0 as k-+ 00. 

Finally, n is strongly PSNC at (x, y) with respect to X if 

[( xk, yj.) ~ (0 , o)] ===> llxkll-+ 0 as k-+ 00. 

for every sequences satisfying ( 2.11). 

It follows from the definitions that 

SNC ===>strong PSNC ===> PSNC 

for any (x, y) E r2 and that the above properties automatically hold in finite dimensions. Note that 

Ek may be equivalently omitted in (2.1) if both spaces X , Y are Asplund and if n is locally closed 

around (x, y). Note also that the SNC property, in contrast to the other two . docs uot depcud 

on the product structure on the Banach space in question . It is closely related to the compu ctly 

epi-Lipschitzian property of sets in the sense of [2], but the latter may be strouger iu uonseparabk 

Banach and Asplund spaces: see [7 , 10] for recent comprehensive studies . 

The corresponding SNC/PSNC properties of a set-valued mapping F: X ~ Y are defined via 

those for its graph at (i . y) E gph F. We omit "with respect to X" referring to the PSNC proprrties 

of mappings. Recall [12] that. F: X ~ Y is PSNC at (i, y), for any Banach spaces X aud L if it 

satisfies the Aubin Lipschitz-Like property (known also as the "pseudo-Lipschitzian" property ; see 

[1. 23]) around this point. 

An extended-real-valued function cp: X -+ JR. is sequentially normally epi-compact (SNEC) at i 

if its epigraph is SNC at (x, cp(x)). Note that if cp: X -+ JR. is locally Lipschitzian around i, it is 

SNC and hence SNEC at this point. 
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3 Optimality Conditions under Geometric Constraints 

First let us derive superdifferential and sub differential conditions for the initial problem ( 1.1) with 

the only geometric constraint given by an arbitrary set n C X. 

Theorem 3.1 Let x be a local optimal solution to the minimization problem (1.1) in a Banach 

space X with I'Po(x)l < oo. Then the following hold: 
(i) For every x* E §+'Po(x) one has -x* E N(x; D), i.e., 

_§+'Po(x) c N(x; n) and - §+'Po(x) c N(x; n). (3.1) 

(ii) Suppose that X is Asplund, that 'Po is l.s.c. around x, and that n is locally closed around 

this point. Assume also that 

000'flo(x) n (- N(x; D)) = {0} (3.2) 

and that either n is SNC at x or 'Po is SNEC at x; all these assumptions are satisfied if "Po is locally 

Lipschitzian around x. Then one has 

O'flo(i:) n (- N(x: D)) 'I= 0, 2.e., 0 E O'flo(i:) + N(x; D). ( 3.3) 

Proof. Let us establish the subdifferential conditions in (i). Since N(x; n) c N(x; n), we just 

need to prove the first inclusion in (3.1). Take any x* E §+'Po(i:) and observe that, in an arbitrary 

Banach space X, there is a functions: X -1 IR with 

s(x) = <po(x) and s(x) ~ 'Po(x) whenever x EX 

such that s(-) is Fnkhet differentiable at i with \7 s(i) = x*. ·Indeed. it follows direct!:.· froJll 

definition (1.6) that the function 

s(x) :=max { 'Po(x), <po(x) + (x*, x- x)} 

enjoys all the above properties. One therefore has 

s ( i: ) = "Po ( i) ~ <Po ( x ) ~ .s ( x ) . 

and thus i: is a local optimal solution to the constrained minimization problem: 

minimize s(x) subject to X E 0 

with a Fnkhet differentiable objective. Applying now the necessary optimality condition ( 1.·1) 111 

the latter problem, we get 

-x* = -\7 s(i) E N(i; 0), 

which justifies the superdifferential optimality conditions (3.1) in general Banach spaces. 

Next let us prove the subdifferential optimality condition (3.3) under the assumptions made 

in (ii). As mentioned in Section 1, one has inclusion (1.3) by the generalized Fermat rule. This 

in1mediately yields 

0 E 8( 'PO + 0 ( ·; 0) )( i:) 
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in terms of the basic subdifferential of the sum cpo + 8(· ; D) . Applying the subdifferential sum rule 

proved in [17, Theorem 4.1] to the latter sum and taking into account that 

88(x; D) = 800 8(x; D) = N(x; D), 

we arrive at (3.3) under the assumptions made. As mentioned above, cpo is SNEC at x and 

8 00 cpo(x) = {0} (i .e., the qualification condition (3.2) automatically holds) if cpo is Lipschitz con

tinuous around x. This ends the proof of the theorem. D 

Note that the subdifferential optimality conditions in Theorem 3.1 apply to a very general 

class of extended-real-valued cost functions , while the superdifferential conditions in (i) bring some 

useful information only if §+cpo(x) -1- 0. Nevertheless, the superdifferential conditions may give an 

essentially stronger res ult for spec ial important classes of nonsmooth problems . In particular , for 

concave continuous functions cpo one has 
--~ 

Then comparing the second inclusion in (3.1) (which is even weaker than the first inclusion therein) 

with the one in (3. 3) , we see that the superdifferential necessary condition requires that every 
element x* of the set §+cp0 (x ) must belong to -N(x; D), instead of that some element x* from the 

smaller set 8cpo(x) belongs to -N(x; D) by the subdifferential condition. This shows , of course , 

that the superdifferential necessary conditions for local minima may have sizeable advantages over 

the subdifferential conditions above when the former apply. For example , consider the foll owing 

simple one-dimensiona l problem: 

minimize cpo(x ) := -lxl subject to XED:= [-1 , 0] C JR . 

Obviously x = 0 is not an optimal solution to this problem. However. it cannot be taken away L.\· 

the subdifferential condition (3.3) , which is satisfied: 

8cp(O) = {- L I}. N(O ; D)= [0 , oo ), and - 1 E -N(O, D). 

On the other hand , the superdifferential conditions in (3.1), which are the same in this case. do not 

hold for x = 0 giving 

§+cp(O) = [-1, 1] and [-1, 1] ct N(O ;D) . 

Recall also that B"'"cpo(x ) =1- 0 if cpo is locally Lipschitzian and upper regular at x while X 1s 

Asplund . Moreover . Jcpo(i ) = §+cpo( x ) for the Clarke generalized grad ient if in addition X 1s 

WCG; see (2 .5) . Thus in this case we have 

-8cp0 (x ) c N(x ; D) c N(x; D) 

by (3 .1) instead of Bcp0 (x) n (- cl*co N( x; D)) -1- 0 by Clarke's counterpart ; cf. [4]. 

Now Jet us consider minimization problems with finitely many geometric constrain ts that typ i

cally arise in applicat ions. Having in mind particular applications in Sections 4 and 5 of this paper , 

we pay the main attention to problems with geometric constraints given by two set intersections: 

minimize cpo(z) subject to z E D1 n D2 . (3.4) 
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Most results for problems with finitely many geometric constraints can be reduced to the case of 

two constraint problems (3.4) by induction. 
To derive more general and powerful results needed for subsequent applications, we consider 

problems (3.4) given in spaces with a product structure X x Y that particularly occurs in the 

framework of mathematical programs with equilibrium constraints; see Section 5. The next theorem 

gives both superdifferential and subdifferential optimality conditions for such problems. 

Theorem 3.2 Let z be a local optimal solution to problem (3.4)' where the sets nl, n2 c X X y 
are locally closed around z, and where both spaces X andY are Asplund. The following hold: 

(i) Assume that the set system {D1, D2} satisfies the limiting qualification condition at z: for 
r1 w· ~ 

any sequences Zik ~ z and zik --+ zi ask--+ oo with zik E N(ziki Di), i = 1, 2, one has 

(3.5) 

Suppose also that either one of the sets Di is SNC at z, or D1 is PSNC at z with respect to X while 

D2 is strongly PSNC at this point with respect toY. Then 

(3.6) 

(ii) In addition to the assumptions in (i), suppose that <po is l.s.c. around z and SNEC at this 

point and that 

(3.7) 

(all the additional assumptions are satisfied if <po is Lipschitz continuous around z). Then one has 

(3.8) 

(iii) Assume that tpo is l.s.c. around z, that both D1 and D2 are SNC at this point, and that 

the qualification condition 

[zoE oocrpo(z), zj E N(z;DI), z:2 E N(z;D2). 

Zo + zj + z:2 = 0] ===> Zo = zj = z:2 = 0 ( 3.9) 

holds. Then one has ( 3.8). 

Proof. To prove (i), we base on the second superdifferential inclusion in Theorem 3.1 (i) invol\'ing 

the basic normal cone to D := D1 n D2. This gives 

Now we can use the intersection rule for the basic normal cone to D 1 n 112 that is not available for 

Fnkhet normals in (3.1). Employing the general result of [18, Theorem 4.2], one has 

(3.10) 

under the limiting qualification condition and the SNC/PSNC assumptions made in (i). Thus we 

arrive at the superdifferential inclusion (3.6). 
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Assertion (ii) of the theorem follows from Theorem 3.l(ii) under the SNEC assumption on <po 
and from the above intersection rule of [18, Theorem 4.2] by substituting (3.10) into (3.2) and (3.3). 

It remains to prove (iii). Using Theorem 3.1(ii) in the case of SNC sets 0, we need to express 

the SNC assumption on 0 and the other conditions of that theorem in terms of 01. 02. and rp0 . To 

proceed, one needs to employ the SNC preservation/calculus rules developed in [19]. In particular, 

corollary 3.6 of that paper ensures the SNC property of the intersection D1 n 02 at z provided that 

both Oi are SNC at this point and that the qualification condition 

N(z; OI) n (- N(z; 0 2 )) = {O} (3.11) 

is satisfied. These assumptions automatically guarantee the fulfillment of the intersection rule 

(3.10). It is easy to check that (3.9) implies both qualification conditions (3.2) at z and (3.11). 

Indeed, (3.11) follows right from (3.9) with z0 = 0. To get (3.2) at z, we take z0 E N(z; D 1 n 0 2) 

with -Zo E 800 <po(z) and find z; E N(z; Oi), i = 1, 2, such that zi + z2 = Zo by (3.10). Thus 

z0 + zi + z2 = 0, which gives z0 = 0 by (3.9) and ends the proof of the theorem. o 

As observed, the normal qualification condition (3.11) implies the limiting one in Theorem 3.2. 

Indeed, the former corresponds to the replacement of the implication in (3.5) by 

We will see in Section 5 that. being applied to graphs of set-valued mappings, the limiting qualifica

tion condition of Theorem 3.2 has essential advantages in comparison with the normal qualification 

condition (3.11). 

4 Optimality Conditions under Functional Constraints 

In this section we derive necessary optimality conditions of both subdifferential and superdifferential 

types for minimization problems that contain, along with geometric constraints. also constraints 

given by set-valued mappings and real-valued functions. The general problem under considcrat iun 

is as follows: 

mllllmlze 'Po(x) subject to X E F- 1(8) n 0. 

where <po: X --t IR, F: X =t Y, 0 c X, 8 c Y, and where 

p- 1(8) := {x E XI F(x) n 8 -1- 0} 

in the inverse image of the set 8 under the set-valued mapping F between Banach spaces. Model 

(4.1) covers many special classes of optimization problems, in particular, classical problems of 

nonlinear programming with equality and inequality constraints. 

Observe that (4.1) reduces to the problem of constrained minimization admitting only geometric 

constraints given by the intersection of two sets: 0 1 = F- 1 (8) and 0 2 = 0. Thus one can apply 

the results of the preceding subsection and then calculus rules for basic normals to inverse images 

and intersections as well as those preserving SNC properties. In this way we arrive at necessary 
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optimality conditions of the subdifferential and superdifferential types in both normal (Kuhn

Thcker) form under some constraint qualifications ensuring a nonzero multiplier associated with 
the cost function, as well as a non-qualified (Fritz John) form that does not impose constraint 

qualifications and does not ensure the nontriviality of the above multiplier. For brevity we present 

here only some results in the latter form. 
Let us start with superdifferential conditions. Recall that a set-valued mapping M: X .::::¥ Y 

is inner semicompact at x with M(x) =I 0 if for every sequence Xk -+ x with M(xk) =I 0 there 

is a sequence Yk E M(xk) that contains a convergent subsequence. We say that M(-) is inner 
semicompact around x if this property holds for every x in some neighborhood of x. The latter 

property obviously holds for set-valued mappings that are locally compact (locally bounded when 

dim Y < oo) around the reference point. 

Theorem 4.1 Given a local optimal solution x to problem ( 4.1), we have the following assertions: 

(i) Assume that X and Y are Banach, that D = X and 8 = {0}, and that F = f: X -+ Y 
is Fdchet differentiable at x. Then there exists >-o ;::: 0 such that for every x0 E §+<po(x) there is 
y* E Y* for which 

o = >-ox0 + \1 f(x)*y*, (>-o, y*) =I o, (4.2) 

provided that either f is strictly differentiable at x or dim Y < oo. 

(ii) Assume that X is Asplund while Y is Banach, that f: X -+ Y is strictly differentiable at 
x with the surjective derivative \1 f(x), and that n is locally closed around x. Then there exists 

>-o;::: 0 such that for every x0 E §+<p0 (x) there is y* E N(J(x); 8) for which 

-Aox0 - \1 f(x)*y* E N(x; D), (Ao, y*) =I 0. (4.3) 

provided that either D zs SN C at x or 8 is SN C at f ( x). 

(iii) Assume that both X andY are Asplund. that D and 8 are closed, and that !If(·):= F(-)nC-) 

is inner semicompact amund i. Then there exists Ao ~ 0 such that for every x0 E 0 7 <p0 (i') there 

are y E M(x) and dual elements y* E N(y:8), xi E DivF(i,y)(y*), and x2 E N(i:n) satisfymy 

provided that one of the following propeTties holds for every y E M ( i): 

(a) n is SNC at i and p-l is PSNC at (Y.i); 

(b) n is SNC at i and 8 is SNC at y: 

(c) F is PSNC at (i, y) and 8 is SNC at y: 

(d) F is SNC at (x, y). 

(4.4) 

Proof. To prove (i) in the general Banach space setting, we first assume that f is Frechet clifferentiabk 

at i with the surjective derivative \1 f(i). Then for any set 8 C Y with f(i) E 8 one has 

(4.5) 

which follows from [20, Theorem 3.1] and the Lyusternik-Graves theorem on metric regularity. 

Since the proof in [20] requires the metric regularity just at (but not around) the reference point. 
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it ensures the fulfillment of ( 4.5) also in the case when f is merely Frechet differentiable at x with 

the surjective derivative proved that Y is finite-dimensional. It can be done by using the Brouwer 

fixed point theorem instead of the Lyusternik-Graves result; cf. the arguments in [9. Proposition 71 

establishing somewhat different but related controllability property. Then substituting (4.5) into 

the first inclusion in (3.1) with 0 = j- 1(8), we get 

- §+ <po (X) c \1 f (X)* N (f (X); 8). 

For 8 = {0} the latter gives (4.2) with >-o = 1 under the surjectivity assumption on \1 f(x). If 

\1 f(x) is not surjective, then ker \1 f(x)* -=I {0}, i.e., there is 0 -=1 y* E Y* such that \1 f(i)*y* = 0. 

Thus we get (4.2) with >-o = 0 andy* -=1 0. 

To prove (ii) when X is Asplund (while Y may be arbitrarily Banach) and f is strictly differen

tiable at x with the surjective derivative, we apply assertion (i) of Theorem 3.2 with 01 = f- 1 ( 8) 

and 0 2 = 0 assuming that either 0 or f- 1 (8) is SNC at i and f(i), respectively, and that 

N(x; f- 1 (8)) n (- N(x; O)) = {o}. 

When 0 is SNC at x. this yields 

- i)+ <po ( x) C \1 j ( i )* N (f ( i); 8) + N ( x; D) (4.6) 

under the qualification condition 

\1 f(x)* N(f(x); 8) n (- N(x; O)) = {0}. (4.7) 

Indeed, it follows from the the basic normal cone counterpart of equality ( 4.5) established in [20. 

Corollary 3.9] for any mapping f between Banach spaces that is strictly differentiable at i· with th<' 

surjective derivative. The latter assumptions ensure by [20, Corollary 5.3] that the SNC propcrtv 

of f- 1(8) at i is equivalent to the one for 8 at f(i). Thus (4.6) implies (4.3) with .Ao = 1 under 

the qualification condition (4.7) and the assumptions made in (ii). The negation of (·1.7) Inc;uJo; 

that (4.3) holds with .Ao = 0 andy* -=I 0, which completes the proof of (ii). 

It remains to prove (iii). Again applying the superdifferential assertion (i) of Theorem 3.2 \~·ith 

!11 = p- 1 (8) and 02 = n. We nOW are able tO proceed with a general case of set-valued I!lapplllg~ 

F in the functional/ operator constraints of ( 4.1) having in hands powerful tools of comprchcnsiv(' 

calculus rules (including those for the preservation of SN C properties) in the Asp! unci span' settings 

First observe that the set p-I (e) is locally closed around i; due to the closed ness and i lllll'l' 

semicompactness assumptions made in (iii). Hence, by Theorem 3.2(i). om' has 

_§-r <po(i) C N(i; p-I (8)) + N(i; D) 

provided the qualification condition 

N(x; p-l (8)) n (- N(x; D))= {0} (4.9) 

and that either 0 or p- 1 (8) is SNC at x. The SNC calculus result of [19, Theorem 3.8] ensures 

the latter property of the inverse image p-l ( 8) under the qualification condition 

N(y;8) nkerD!vF(i,f)) = {0} for all f) E M(i) (4.10) 

12 



assuming also that either F is PSNC at (x, y) and 8 is SNC at y, or F is SNC at (x, Y) for every 

y E M(x). Now we apply the calculus rule of [18, Theorem 4.4] providing the inclusion 

N(x;F- 1(8)) c U [D_NF(x,y)(y*)l y E M(x), y* E N(Y;G)] ( 4.11) 

under the qualification condition (4.10) and the assumptions that either p- 1 is PSNC at (y, x) 

or 8 is SNC at y for all y E M(x). Substituting (4.11) into (4.8) and (4.9) and combining 

the SNC/PSNC assumptions made on n, 8, F, and p-1 above, we arrive at the superdifferential 

optimality condition 

_§+cpo(x) C U [D_NF(x, y)(y*)l y E M(x), y* E N(Y; 8)] + N(x; 0.) ( 4.12) 

under one of the assumptions (a)-( d) in (iii) and the constraint qualifications (4.10) and 

U [Df,F(x,y)(y*)l y E M(x), y* E N(fi;E>)] n (- N(x;O.)) = {0}, (4.13) 

which therefore ensure the result of (iii) in the normal form (>.0 = 1). 

If the above constraint qualifications are not satisfied, we have the optimality conditions in 

(iii) of the Fritz John type. i.e., with >.o in (4.2) possibly equal to zero but then either y* or xi 
is not. Indeed, when (4.10) is not satisfied, there are y E M(x) and 0 i= y* E N(y; G) such that 

0 E Df,F(x, y)(y*). This gives (4.2) with >-o = 0, y* i= 0, xi = x2 = 0. If (4.13) is not satisfied, 

then there are y E M(x) and y* E N(Y; 8), 0 i= x* E D_NF(x, y)(y*) such that --x* E N(x; 0.). 

This gives ( 4.2) with >-o = 0, xj = -x2 = x* ,which completes the proof of the theorem. D 

Next let us derive subdifferential conditions for problems ( 4.1) with general constraints. To 

furnish this, we are based on the subdifferential conditions of Theorem 3.2(ii) and the calculus 

rules as in the proof of the previous theorem assuming for simplicity that cp0 is Lipschitz continuous 

around the reference point. In this way one may also derive subdifferential conditions in ( 4.1) for 

problems with non-Lipschitzian cost functions based on the corresponding results of Theorem :\.2. 

For brevity we only present below a subdifferential counterpart of assertion (iii) in Theorem .:1 .1. 

Theorem 4.2 Let i· be a local optimal solution to problem ( 4.1). In addition to the assumpl wns 

of Theorem 4.1 (iii), suppose that 'Po is Lipschitz continuous around x. Then there are >.0 2:: 0. 

x0 E 8cpo(x), y E M(i:), y* E N(Y; 8), xj E Df,F(x, y)(y*), and x2 E N(x; 0.) such that (4.2) holds 

provided that one of the properties (a)-(d) in (iii) of Theorem 4.1 is fulfilled for every i) E llf(i:). 

Proof. The proof is based on the subdifferential inclusion 

0 E acpo ( i) + N ( z: F- 1 
( 8)) + N ( x; 0.) 

from Theorem 3.2(ii) and the usage of calculus rules as in the proof of Theorem 4.1(iii). D 

Both superdifferential and subdifferential conditions obtained and Theorems 4.1 and 4.2 allow 

significant simplifications when the functional/operator constraints in (4.1) are given by single

valued and strictly Lipschitzian mappings. 
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Corollary 4.3 Let x be a local optimal solution to problem ( 4.1), where X and Y are Asplund, D 
and 8 are closed, and F = f: X -+ Y is single-valued and strictly Lipschitzian around x. Then 

there exists >-o ~ 0 such that for every x* E §+ <po ( x) there is y* E N (J ( x); 8) satisfying 

->-ox* E 8(y*,J)(x) +N(x;D), (>-o,y*) i- 0, 

provided that one of the following properties is fulfilled: 

(a) n is SNC at x and f- 1 is PSNC at (J(x),x); 

(b) 8 is SNC at f(x). 

If in addition c.p0 is Lipschitz continuous around x, then there are >-o > 0 and y* E N(f(x); 8) 

satisfying 

0 E >-o8c.po(x) + 8(y*, J)(x) + N(x; D), (>. 0 , y*) i- 0, 

provided that either (a) or (b) holds. 

Proof. These results follow from Theorems 4.1(iii) and 4.2, respectively, due to the normal scalar

ization formula (2 .8) , which ensures that xj = 0 if y* = 0 in the conditions above. In this case the 

requirements in (b) and (c) of Theorem 4.1 reduce to the SNC property of 8 at f(x) , since f is au

tomatically PSNC x due to its locally Lipschitz continuity. Let us mention that the SNC property 

off in (d) of Theorem 4.1 is redundant for the case of strictly Lipschitzian mappings. Indeed , one 

can show by using the classical Josefson-Nissenzweig theorem on the weak* convergence to zero of 

some sequence of unit dual vectors in every infinite-dimensional Banach space (see, e.g., the proof 

of [20 , Theorem 5.1]) that a strictly Lipschitzian mapping f: X-+ Y is SNC at x if and only if Y is 

finite-dimensional. Thus properties (a)-(d) in Theorem 4.1 reduce to (a) and (b) in the corollary. 0 

The subdifferential optimality conditions of Theorem 4.2 and Corollary 4.3 improve and extend 

previous results obtained for minimization problems in terms of basic normals and subgradients 

under consideration in finite-dimensional and Asplund space settings; see , in particular. the results 

and comments in [3 , 11, 13, 23] and the references therein. The superdifferential results obtained 

above seem to be new in the optimization theory. 

Let us consider a special class of problems (4.1) concerning nondifferentiable progmmrm.ng 11·it lt 

finitely many functional constraints if equality and inequality types given by 

{ 
minimize c.po(x) subject to X E D. 
'Pi(x) S 0, i = 1, ... , m , 

'Pi(x)=O , i=m+1, ... ,m+r, 

( .:J.l .1 ) 

where c.p( X-+ IR fori= 0 ... .. m +rand n C X . The latter problem corresponds to (4.1) with 

the single-valued mapping F = (c.pt , ... , 'Pm+r ): X -+ JRm+r and the closed convex cone 

ai S 0 for i = 1, ... , m and 

ai = 0 for i = m + 1, ... , m + r}. 
( 4.15) 

Taking into account relationships (2.8) and (2.9) between the coderivatives and subdifferentials , 

one can easily deduce from Theorem 4.1, 4.2 and Corollary 4.3 necessary optimality conditions for 

(4.14) involving basic and singular subgradients of the constraint functions; cf. [13, Theorem 5.1]. 
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Now we present new necessary optimality conditions of the superdifferential type specific for 

problems (4.14), which involve Frechet supergradients not only of cost functions but also of those 

describing inequality constraints. To proceed, we use variational descriptions of Frechet subgra

dientsjsupergradients in a subclass of Asplund spaces admitting Lipschitzian C1 bump functions, 

which is automatic in Banach spaces with Frechet differentiable renorms, in particular, in any 

reflexive space; see [6] and its references. 

Theorem 4.4 Let i be a local optimal solution to problem ( 4.14), where the set fl is locally closed 

around i and the functions 'Pi are continuous around this point fori = m+ 1, ... , m+r. Suppose also 

that X admits a Lipschitzian C1 bump function and that either D or f := ( 'Pm+l, ... , 'Pm+r) is SNC 

at i. Then for any Frechet supergradients xi E §+cpi(i), i = 0, ... , m, there are (.Ao, ... , Am+r) E 

JRm+r+l, x* ED*f(i)(Am+J, ... ,Am+r), andx* EN(i;fl) satisfying the relations 

Ai :2 0 for i = 0, ... , m, Ai'Pi(i) = 0 for i = 1, ... , m, ( 4.16) 

m 

0 ~ \ * * -· = ~ AiX1 +X +X , (.Ao, ... , Am+r, x*) -1- 0. ( 4.17) 
z=O 

If 'Pi are Lipschitz continuous around i for i = m + 1, ... , m + r, then in addition to ( 4.16) one has 

m m+r 
- L AjXi E a( L Ai'Pi) (i) + N(i; D), (.Ao, ... , Am+r) -1- 0, ( 4.18) 

i=O i=m+l 

with no other assumptions on ('Pi' n) besides the local closedness of n. 

Proof. Take arbitrary x; E §+cpi(i) fori = 0, ... , m and apply the variational description front 

[6, Theorem 4.6(ii)] with S = £C 1 therein to the Frechet subgradients -xi E 8(-cp1 )(i). In this 

way we find functions si: X -t lR fori= 0, ... ,m satisfying si(i) = 'Pi(i), s 1 (x) :2 'Pi(x) for all :r 

from some neighborhood of i, and such that each si(x) is continuously differentiable around i' with 

\7 Si(i) = xj'. It is easy to check that i is a local solution to the following optimization prolJl('lll 

of type (4.14), where the cost and inequality constraint functions are continuously differentiabh

around this point: 

{ 

minimize so(x) subject to x E fl. 

si(x) ::; 0, i = 1, ... , m, 

cp1 (x)=O, i=m+1, ... ,m+r. 

( 4.19) 

Apply now the necessary conditions of Theorem 4.1(iii) to problem (4.19), which corresponds tu 

(4.1) with the single-valued mapping F := (s 1, ... ,sm,'Pm+l,···,'fJm+r) and the set 8 defined in 

( 4.15). Observe that 

N((cpl(i), ... , 'Pm+r(i)); 8) = { (AJ, ... , Am+r) E JRm+rl Ai :2 0, 

Ai'Pi(i) = 0 fori= 1, ... ,m} 
with si(i) = 'Pi(i), i = 1, ... ,m, and that 

F(x) = (s(x), 0) + (0, 'Pm+dx), ... , 'Pm+r(x)) 
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for the above F, where s := (sl, . .. 'Sm): X -t mm is continuously differentiable around x. Thus 

the condition y* E N(fj; 8) in Theorem 4.1(iii) withy* = (-\1 , .. . , Am+r) reduces to the sign and 
complementary slackness conditions in (4.16) as i = 1, . .. , m . Since Y = mm+r in Theorem 4.1(iii) , 

one can directly check that the SNC and PSNC properties ofF in (4.20) are equivalent to the SNC 

property off= (4?m+ 1, ... ,cpm+r)· It is easy also to see that one of the requirements (a) - (d) in 

Theorem 4.1 (iii) holds if and only if either D or f is SNC at x. Using the smoothness of the function 

sin sum (4.20) , we can show that relation (4.4) with xi E D*F(x,y)(y*) and x2 E N(x;D) therein 

is equivalent to 

m 

0 = L Ai \7 s i (X) + X* + x*' ( AQ' ... ' Am+r' x*) :/: 0' 
i=O 

with x* E D* f(x)(>-m+l , .. . , >-m+r), x* E N(x; D), and >.o ~ 0. Recalling that \i'si(x) =xi for 

i = 0, ... ,m, we arrive at (4 .17). To derive (4 .18) from (4.17) when tpi are locally Lipschitzian for 

i = m + 1, ... , m + r , it is sufficient to observe that f is automatically SNC at x in this case and 

then to apply the (common) scalarization formula in (2.8) to the coderivative D* f(x) , which gives 

m+r 
D*f(x)(>-m+l , ... ,Arri+r)=B( L Ai<pi)(x) 

i=m+l 

and completes the proof of the theorem. 0 

5 Mathematical Programs with Equilibrium Constraints 

In this section we consider a special class of optimization problems known as mathematical pmgmms 

with equilibrium constmints (MPEC). A characteristic feature of these problems is the presence. 

among other constraints ... equilibrium constraints" of the type y E S( x ), where 5(x) usually 

represents the solution map to a "lower-level" problem of parametric optimization. MPEC naturall .Y 

appear in various aspects of hierarchical optimization and equilibrium theory as well as in Iilany 

practical applications . especially those related to mechanical and economic modeling. We refer the 

reader to the recent two-volume book [8] for systematic expositions , examples. and applications of 

such problems in finite-dimensional spaces . 

Typically the equilibrium constraints y E 5(x) in MPEC are solution maps to parametric 

variational inequalities and complementarity problems of different types. A general class of MPEC 

considered in this section is given in the form: 

minimize cp(x. y) subj ect to y E 5(x), X E n. ( 5.1 ) 

where 5: X ::::1 Y be a set-valued mapping between Banach spaces, cp : X -t IR , and n C X . Om 

main attention is paid to the case when the equilibrium map 5 is given in the form 

5(x) := {y E Yl 0 E f(x, y) + Q(x, y)} ( 5.2) 

with f : X x Y-+ Z and Q: X x Y ::::1 Z , i.e., 5 describes solution maps to the parametric variational 

systems/generalized equations defined by 

0 E f(x,y) + Q(x,y). 
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Such a model covers solution maps to the classical variational inequalities and complementarity 

problems as well as to their various extensions and modifications. We refer the reader to [8, 21, 

25, 26] and the bibliographies therein for first-order necessary optimality conditions obtained for 

important special cases of finite-dimensional MPEC problems of type (5.1), (5.2) that particularly 

involve basic normals, subgradients, and coderivatives of the initial data. In what follows we derive 

new optimality conditions in both subdifferential and superdifferential forms for general MPEC 

problems and some of their specifications. 

Let us first consider problem (5.1). It can be reduced to the standard form (3.4) with two 
geometric constraints given in spaces with product structures. Based on Theorem 3.2, we derive 

subdifferential and superdifferential optimality conditions of the normal type under mild constraint 

qualifications involving the mixed coderivative of S. For simplicity we assume the Lipschitz conti

nuity of the cost function c.p in the case of subdifferential conditions. 

Theorem 5.1 Let (i, y) be a local optimal solution to problem (5.1). Assume that the spaces X 

and Y are Asplund and that the sets gph S and D are locally closed around ( i, f)) and i, respectively. 

Assume also that either S is PSNC at (i, y) or D is SNC at i, and that the mixed qualification 
condition 

D~1 S(i, y)(O) n ( - N(i; D)) = {0} (5.3) 

is fulfilled. Then one has 

-x* E D/vS(i, y)(y*) + N(i; D) (5.4) 

for every (x*, y*) E [j-r c.p( i. y). In in addition c.p is supposed to be Lipschitz con tin 1wus around 

(i,y), then there is (:r*.y*) E 8~.p(i.y) such that (5.4) holds. 

Proof. Observe that z = (i. y) provides a local minimum to the function 1.p subject to the coii

straints z = (x, y) E nl := gph s and z E D2 := D X y in the Asplund space X X }"_ Applving 

the superdifferential conditions of Theorem 3.2(i) to the latter problem. one can easily see that tlw 

PSNC property of D1 at z with respect to X reduces to the PSNC propcrt:.· of the lllapping Sat 

this point, and that 02 is always strongly PSNC at z with respect to }" being also S\C at t lllc

point if and only if Dis SNC at i. l\1orcovcr. the mixed qualification condition (5.3) clearly impliPc; 

that the set system {D 1. D2} satisfies the limiting qualification condition (3.5) at z. Thus wP havl'. 

by Theorem 3.2(i), that 

_[j+~.p(i, f)) C N((i, f)); gph S) + N(i; D) x {0}. 

which surely implies the superdifferential condition (5.4) for every (x*, y*) E §+~.p(i, f)). 
If i.p is additionally assumed to be locally Lipschitzian around (i, f)), it is automatically S!\'EC 

at this point and the qualification condition (3.7) holds. This we have 

(0, 0) E 8~.p(i, f))+ N((i, f)); gph S) + N(i; D) x {0} 

by Theorem 3.2(ii), which implies (5.4) with some (x*, y*) E 8c.p(i, y). 0 
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Observe that, due to [12, Theorem 3.3], the equilibrium constraint map S is PSNC at (.T, f)) 

and the mixed qualification condition (5.3) automatically holds if S satisfies the Aubin Lipschitz

like (or "pseudo-Lipschitzian") property, which therefore is a constraint qualification ensuring the 

normal form of both subdifferential and superdifferential optimality conditions for general MPEC. 

The reader can find efficient conditions for the Lipschitz-like property of variational systems (5.2) 

and their specifications in [15, 21, 25, 26] and the references therein. 

Note also that the optimality conditions in the normal form of Theorem 5.1 easily imply the 

ones in the non-qualified (Fritz John) with no constraint qualification (5.3). In the case of su

perdifferential conditions we have,\ E {0, 1} such that for every (x*,y*) E §+rp(x,f}) there exist 

xi E DivS(x, y)(y*) and x2 E N(x; D) satisfying 

,\x* + xr + x; = 0, (>-,xi)-::/- 0, (5.5) 

provided that either S is PSNC at (x, f)) or D is SNC at .T. Indeed, (5.5) reduces to (5.4) with 

,\ = 1 when the constraint qualification (5.3) is imposed. The negation of (5.3) implies (5.5) with 

,\ = 0, since D'MS(x, f)) c DivS(x, f)). Similarly, (5.5) gives a non-qualified subdifferential condi

tion with some (x*,y*) E orp(x,f}) when rp is locally Lipschitzian. In what follows we present only 

normal/qualified conditions for MPEC problems. 

Next let us consider a general class of MPEC problems with equilibrium constraints governed 

by parameter-dependent variational systems of type (5.2), i.e., the MPEC given by: 

minimize <p(x, y) subject to 0 E f(x, y) + Q(x, y), x E D. (5.6) 

Based on Theorem 5.1. we derive both superdifferential and subdifferential conditions for problem 

(5.6) employing recent results of [15] on computing and estimating coderivatives of solution maps 

(5.2) together with SNC calculus rules in infinite dimensions. 

Theorem 5.2 Let (i. :1/) be a local optimal solution to (5.6), where f: X xY -t Z and Q: X x1' :::::1 Z 

are mappings between Asplund spaces. Assume that f is continuous around (i,f}). that n is locally 

closed around x, and that the graph of Q is locally closed around (x,f},z) with z := -f(i'.?)). 

Suppose also that one of the following assumptions (a)- (c) holds: 

(a) D and Q are SNC at i and (i,y,z), respectively, and the two qualification conditions 

[(x*,O) E D!vf(i.y)(z*) + D~·Q(i,y,z)(z*), -x* E N(i;DJ] ====> x* = 0. (5.7) 

[ ( x * , y * ) E D ~· J ( i. y )( z • ) n ( - D ~· Q ( i, y. z )( z * ) ) ] ====> x • = y • = z • = o ( 5 . I) J 

are satisfied; the latter is equn•alent to 

[o E o(z*,J)(i,y) + D!,Q(i,y,z)(z*)] ==> z* = 0 (5.9) 

when f is strictly Lipschitzian around (i, y). 

(b) D is SNC at i, dim Z < oo, f is Lipschitz continuous around (i, y), and the qualification 

conditions 

[(x*,O) E o(z*,J)(i,y) + DivQ(i,y,z)(z*), -x* E N(i;D)] ==> x* = 0 
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and (5.9) are satisfied. 

(c) Q is SNC at (x, y, z), f is PSNC at (x, y) (which is automatic when it is Lipschitz continuous 
around this point), and the qualification conditions (5.7) and (5.8) hold. 

Then for every (x*, y*) E fj+ rp(x, y) there are x* E N(x; n) and z* E Z* such that 

( -x* - x*, -y*) E Div j(x, y)(z*) + DivQ(x, y, z)(z*). (5.10) 

If in addition rp is Lipschitz continuous around (x,y), then (5.10) is satisfied for some z* E Z*, 

(x*.y*) E 3rp(x,y), and x* E N(x;r2). 

Proof. Let us apply the superdifferential optimality conditions from Theorem 5.1 to problem (5.6), 

i.e., in the case when the equilibrium constraints y E S(x) are given in the variational/generalized 

equation form (5.2). It is easy to see that the continuity and closedness assun-1ptions mad2 or.. f 
and Q ensure the local closedness of S. To proceed further, we first assume that n is SNC at x 
and use the coderivative upper estimate for such mappings S obtained in [15, Theorem 4.1]. This 

gives the inclusion 

DivS(x,y)(y*) C {x* E X*l3z* E Z* with 

(x*, -y*) E Divf(x, y)(z*) + DivQ(x, y, z)(z*)} 
(5.11) 

under the qualification condition (5.8) and the assumptions on either Q made in (a) or on f and 

Z made in (b). Then substituting (5.11) into (5.3) and (5.4), we arrive at at the superdifferential 

optimality conditions of the theorem under the assumptions made in either (a) or (b). 

Now we consider the remaining case when S is PSNC in Theorem 5.1 and provide efficient 

conditions in terms off and Q ensuring the latter (even SNC) property for the equilibrium map S 

given in (5.2). Observe that the graph of S is represented as the inverse image 

gphS = g- 1(gphQ) with g(x,y) := (x,y,-f(x,y)). (5.12) 

Applying [19, Theorem 3.8] in this setting, we check that the graph of S is SNC at (i. f)) if th<' 

qualification condition (5.8) is satisfied and the mapping gin (5.12) is PSNC at (x.)j). Let us 

show that the latter is Pquivalent to the PSNC property off at this point in the Asplund span· 

setting. Indeed, taking sequences (x'k,YiJ E D*g(xk.yk)(u'k,v'k,zi.J with (xz_,yj.) ~ (0,0) and 

ii(uA:.v'k.zk)li--+ 0, we get 

(x'k, yk) = (uk. v'k) + (i'k, Yk) with (i'k, Yk) ED* f(xk. Yk)( -zk) 

due to the representation 

g(x, y) = (x, y, 0) + (0, 0,- f(x, y)) 

and the elementary equality rule for representing D*g(xk, yk) in the above sum. This implies that 

(i'k, i/'k) ~ (0, 0), and hence ll(i'k, Y'klll --+ 0 by the PSNC property of f. Thus ll(x'k, Y'klll --+ 0 as 
well, i.e., g is PSNC at (x, y). This ends the proof of the superdifferential part in the theorem. 

The last (subdifferential) statement of the theorem follows from the subdifferential result of 

Theorem 5.1 by the above arguments. 0 
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In MPEC problems most interesting for the theory and applications, equilibrium/variational 

constraints are usually defined via first-order subdifferentials of extended-real-valued functions. In 

particular, the classical equilibrium constraints given by parametric variational inequalities and 

complementarity conditions are naturally defined in terms of subgradients and normals for convex 

functions and sets. Let us consider a broader class of such MPEC with equilibrium constraints 

defined via the basic subdifferential (2.3) of composite functions with no convexity assumptions: 

minimize <p(x, y) subject to 0 E f(x, y) + 8(7.j; o g)(x, y), x ED, (5.13) 

where f: X x Y ---+ X* x Y* and g: X x Y ---+ W are single-valued mappings between Banach 

spaces, and where 7j;: W ---+ IR is an extended-real-valued function. The MPEC problem (5.13) is 

a special case of (5.6) with the subdifferential set-valued mapping Q(x, y) = 8(7.j; o g)(x, y). Since 

co derivatives of first-order sub differential mappings define second-order subdifferentials as in (2.10), 
one can therefore deduce necessary optimality conditions for (5.13) from the ones for (5.6) obtained 

in Theorem 5.2 using second-order subdifferential chain rules. Let us present some superdifferential 

and subdifferential optimality conditions obtained in this way for MPEC problems of type (5.13). 

First we consider the case of smooth and parameter-independent mappings g: Y ---+ W in (5.13) 

with surjective derivatives allowing the space generality in necessary optimality conditions. 

Theorem 5.3 Let (x, '[}) be a local optimal solution to problem (5.13) with f: X ---+ Y, g: Y ---+ W, 

and 7j;: W ---+ JR. Suppose that W is Banach, X is Asplund, Y is finite-dimensional and that the 

following assumptions hold: 

(a) f: X x Y ---+ Y* is strictly differentiable at (x, '[}) with the surjective partial derivative 
vxf(x,y):X---+ Y*. 

(b) g is continuously differentiable around '[} with the surjective derivative v g(fj): Y ---+ W. and 
the mapping \lg: Y---+ .C(Y. W) into the space of linear bounded operators from Y to W is stnctly 

differentiable at '[}. 

(c) D is locally closed around x and the graph of 87.f; is locally closed around (tv. v), wht'1't' 

w := g(y) and where v E W* is a unique functional satisfying the relations 

- f(x,fl) = \lg('[})*v, v E 87.f;(w). 

Then for every ( x*, y*) E 8+ <p( x, '[}) there is u E Y such that 

-x* E v xf(x, y)*u + N(x; D) and 

-y* E vyf(x, y)*u + v 2 (v. g)(fl)*u + \lg(y)*8~,7.j;(w, v)(\lg(y)u) 
( 5. J.J ) 

provided that u = 0 is the only vector satisfying the system of inclusions 

{ 
0 E v xf(x, y)*u + N(x; D), 

o E vyf(x, y)*u + v2 (v, g)(y)*u + \lg('[})*8~7.f;(w, v)(\7 g(y)u). 

In in addition <p is locally Lipschitzian around (x, y), then there are u E Y and (x*, y*) E 8<p( x, fj) 

satisfying (5.14). 

Proof. To establish the superdifferential conditions of the theorem, we employ the results of 

Theorem 5.2 under the assumptions in (c) for Q(y) := 8(7j; o g)(y). Taking into account the strict 
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differentiability off at (x, y) with the surjectivity of \7 xf (x, y) and the parameter-independence of 

Q, one has the qualification condition (5.8) automatically fulfilled, while (5.7) reduced to 

[o E \7 xf(x, y)*u + N(x; D), 0 E \7 yj(x, y)*u + cP('l/1 o g)(y, z)(u)] -==* u = 0 

with z := - f(x, y) provided that the mapping 8('ljl o g)(-) is locally closed-graph around (Y, z). Ob

serve the SNC property of Q and PSNC property off at the reference points follow immediately 

from the the finite dimensionality of Y and the strict differentiability of f. Then, by the superdif

ferential optimality condition of Theorem 5.2 applying to (5.13), for every (x*,y*) E §+<p(x,y) 

there is u E Y such that 

-x* E 'V xf(x, y)*u + N(x; 0.), -y* E \7 yj(x, y)*u + 82 ('ljl o g)(y, z)(u). 

Using now the first-order sub differential chain rule of [20, Corollary 3.11] in the case of inner 

mappings g with the surjective derivative at y (and hence at y near y), we have the equality 

8('ljl o g)(y) = 'Vg(y)*8'ljl(w) 

for ally close toy and w = g(y). which implies that the graph of 8('ljlog)(·) is locally closed around 

(y. z) if and only if the subdifferential mapping 8'l/l(·) is closed-graph around (w. v). Applying 

further the second-order subdifferential chain rule of [14, Theorem 4.1] to 8 2 ('ljlog)(y,z) and taking 

into account that 'Vg(y)** = 'Vg(y) under the assumptions made, one has 

a~('l/1 o g)(y. z)(u) = 'V 2 (v, g)(y)*u + 'Vg(y)*o~'ljl(w, v)('Vg(y)u). 

Substituting this into the above relationships, we arrive at the superdifferential conditions stated 

in the theorem. If <pis locally Lipschitzian around (x,y), the subdifferential result of the theorem 

is deduced by a similar way from the one in Theorem 5.2. D 

Note that the closed-graph assumption on o'ljl in the above theorem automatically holds for 

continuous functions '1/J. It also holds for the so-called amenable functions. which play a major role 

in finite-dimensional variational analysis and optimization: see [23]. 

Recall that a function q;: X -+ IRis amenable at i if there is a neighborhood C of .1· 011 whil'h ~;· 

can be represented in the composition form ¢ = 1/J o g with a C1 mapping g: U -+ JR."' aud a prop<'r 

l.s.c. convex function ~): IR"' -+ JR. satisfying the qualification condition 

o'ljJ(g(i)) n ker 'Vg(i)* = {0}. 

It is strongly amenable at x if such a representation exists with g not just C 1 but C2 . Our next 

theorem contains superdifferential and subdifferential optimality conditions for MPEC ( 5.13) with 

parameter-dependent potentials ¢(x, y) : = ( 1/J o g) (x, y) given by strongly amenable functions. 

Theorem 5.4 Let (x,y) be a local optimal solution to problem (5.13) in finite-dimensional spaces. 

Assume that n c mn is locally closed around X, that f: mn X IR"' -+ mn X JRTT! is continuous 

around (x, y), and that¢ = 'ljl o g is strongly amenable at this point with g: mn x IRm -+ IR'- Denote 

w := g(x, y), z :=- f(x, y) E 8(1/J o g)(x, y), 

M ( i' y) : = { v E JR1
1 v E 8'ljl ( w)' \7 g (X' y )* v = z} 
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and impose the following second-order qualification conditions: 

82~(w, v)(O) n ker 'Vg(x, y)* = {0} for all v E M(x, y), 

iiEM(x,f}) n [- D*f(x,y)(u)] ===> (p,q,u) = (0,0,0), 

[(x*,O) E D*f(x,y)(u) + U ['V 2(v,g)(x,y)(u) 
iiEM(i:,f}) 

+'Vg(x,y)*82 ~(w,v)('Vg(x,y)u)], -x* E N(x;D)] ===> x* = 0. 

Then for every (x*,y*) E [j+<p(x,y) there is u E IRn x IRm such that 

( -x*, -y*) ED* f(x. y)(u) + U ['V2 (ii, g)(x, y)(u) 
iiEM(x,f}) 

+ 'Vg(x, y)*82~(w, v)('Vg(x, y)u)] + N(x; n). 

(5.15) 

( 5.16) 

If in addition <p is Lipschitz continuous around (x, y), then there are subgradients (x*, y*) E &<p(x, y) 

satisfying ( 5.16) with some vector u E IRn x IRm. 

Proof. It is sufficient to justify the superdifferential part of the theorem, because the proof of the 

subdifferential part is similar. We apply Theorem 5.2 for Q(x,y) = 8(~og) under the assumptions 

in (a) in the finite-dimensional setting. Since 

D* Q ( x, y, z) = 82 
( ~ o g)( x, y, z). (5.11) 

one may employ the second-order subdifferential chain rule for~ o g from [14. Theorem 4.2(ii)]. 

which is available under the assumptions made (and even in more general infinitP-dimensi()nal 

settings). Using the cited theorem (actually its Corollary 4.3), we have the inclusion 

82 (~ o g)(x, y, z)(u) c U [ \72(ii, g)(x, y)*u + 'Vg(x, y)* 82'/jJ(w. fi)(\7 g(i. '[})11)]. 
vEM(:t,jj) 

Substituting this into the corresponding relationships of Theorem 5.2 with the coderivative expres

sion (5.17), we arrive at the conclusions of the theorem. C 

Observe that the qualification condition (5.15) reduces to 

0 E 8(u,f)(x,y) + U [\72(ii.g)(i.)/)*1l + \7g(i.y)*82 ~(w.v)(\7g(:I:.'[})u)] ====> 11 = 0 
vEM(x,jj) 

when f is locally Lipschitzian around (x, '[}). It holds automatically if g = g(y) and f is strictly 

differentiable at (x, '[}) with the surjective partial derivative \7 xf(x, '[}). 
Finally in this paper we consider a class of MPEC problems with equilibrium constraints in

volving another type of subdifferential compositions, namely: 

minimize <p(x, y) subject to 0 E f(x, y) + (8~ o g)(x, y), X ED. ( 5.18) 

22 



where g: X x Y -t W, '1/J: W -t IR, and f: X x Y -t W*. Systems of this type frequently arise, e.g., in 

the modeling of mechanical and economic equilibria and cover, in particular, parameter-dependent 

implicit complementarity problems [21]: given x E JRn, find y E JRm satisfying 

f(x, y) 2 0, y- g(x, y), (f(x, y), y- g(x, y)) = 0. (5.19) 

The standard nonlinear complementarity problem corresponds to (5.19) with g = 0. Our next 

theorem contains general necessary optimality conditions in the subdifferent.ial and superdifferential 

forms for infinite-dimensional MPEC of type (5.18). 

Theorem 5.5 Let (i, y) be a local optimal solution to problem (5.18) with n closed around i, 

w := g(i, y), and z := - f(i, y). The following assertions hold: 

(i) Assume that X, Y are Asplund while W is Banach, that g = g(y) is strictly differentiable at 

y with the surjective derivative \1 g(y), that f is strictly differentiable at (i, y) with the surjective 

partial derivative \1 x f ( i, y), and that u = 0 E W** is the only element satisfying 

0 E \1 xf (i. y)* u + N (i; 0), 0 E \1 yj (i, y)*u + \1 g(y)* 8~'1/J( w, z)( u). 

Then for every (x*,y*) E lJ+cp(i.y) there is u E W** such that 

-x* E \1 xf(i, y)*u + N(x; 0), 
-y* E "Vyf(x,y)*u+ \lg(y)*8~'l/J(w,z)(u) 

(5.20) 

provided that either ~2 is 5.\'C ali' or 87/J is SNC at (w,z). 
(ii) Assume that X. 1'. W. W* are Asplund, that f and g are continuous around (i. y). that thr 

graph of 87/J is norm-closed around (111. z). that 

d~·'l/J(w. z)(O) n ker Df.,rg(i, y) = {0}, 

that x* = 0 is the only clement satzsfying 

( x * , 0) E D \ f (i'. )])( 11) + D ;. g ( i , y) o 8~· 7/J ( w, z) ( u) . - 1· * E N ( i' : n ) 

for some u E W**, a11d thai (x*. y· .11) = (0. 0. 0) is the only one satisfyiny 

( 1: * • y * ) E D .~.J ( i. y )( u) n ( - D /.; g ( i, y) o 8~ 'l/J ( 1v. z) ( 11)) . 

Then for every supergmdient (1'*. y*) E l)+cp(i, y) there are x* E N(i: fl) and u E \\'** such tlwl 

(- 1' * - .1· • . - y *) E D; f ( i. 17)( u) + D\· g ( i. y) o a:~·?/'(u·. z) ( u) (S.2li 

provided that either· f is Lipschitz continuous around (i, y) and dim W < oc, or g is PSNC al (i·. :17) 

and 8'1/J is SNC at (w.z), or g is SNC at (x,y) and 87/J- 1 is PSNC at (z,w). 

(iii) Assume that cp is Lipschitz continuous around (x, y) in addition to the assumptions in 

either (i) or (ii). Then there are, respectively, (x*, y*) E 8cp(i, y) and u E W** satisfying (5.20) 

and (x*,y*) E 8cp(i,y), x* E N(i;O), u E W** satisfying (5.21). 
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Proof. To justify (i), we employ the superdifferential result of Theorem 5.1 with the equilibrium 

constraints given by 

S(x) := {y E Yl 0 E f(x, y) + (8'1j! o g)(x, y)}. 

Since one obviously has 

gph S = { (x, y) EX x Yl h(x, y) E gph (87/J o g)} with h(x, y) := (y,- f(x, y)) 

and \lh(x,y) is surjective if and only if \lxf(x,y) is, it follows from [20, Corollary 3.9] that 

D'NS(x,y)(y*) = {x* E X*l :lu E W** with x* = 'lxf(x,y)*u, 

-y* E \l yf(x, y)*u + Div(8'1j! o g)(y, z)(u)} 
(5.22) 

for any Banach spaces X, Y, W. Moreover, Corollary 5.3 of [20] implies that the SNC property of 

S at (x, y) is equivalent to the one for 8'lj! o g at (fj), z). In turn, the latter is equivalent to the 

SNC property of 81/! at (w, z) by [20, Corollary 5.4], since \lg(y) is assumed to be surjective. To 

complete the proof of ( i). it is sufficient to employ the chain rule 

D~.(8'1j! o g)(y, z)(u) = \lg(y)*8'fv'lj!(w, z)(u) 

from [20, Theorem 3.10] and substitute it into (5.22). 
The proof of assertion (ii) in the Asplund space setting is based on the application of The

orem 5.2 with Q(x, y) = ( 8'lj! o g )(x, y). The sufficient conditions for the SNC property of the 

composition 87/J o g arc derived from [19, Theorem 3.8] similarly to the proof of Theorem 5.2. The 

subdifferential conditions in (iii) under the assumptions made follow from Theorems 5.2 and 5.3 by 

employing the above arguments. 0 

Our final result concerns optimality conditions for MPEC (5.18) in the case of strictly diffcr('n

tiable mappings f and g with possible non-surjective derivatives when the relations of Theorelll :J :J 

admit essential simplifications. 

Corollary 5.6 Let (i:. f)) be a local optimal solution to problem (5.18) with f: X x }' -+ !R'" und 

g: X x Y ---+ JRm strictly diffrrentiable at (i, y) and with DC X closed anm11(/ :1·. Asstmu' tlwt X 

and Y are Asplund. that gph U41
' is closed around ( w. z) (which is automatn· for con lin uous 1111 d 

amenable functions). that 

u21/J(<'i.•. z)(O) n ker\lg(x.y)* = {0}. 

and that the system of mcluswns 

{ 
x* E "Vxf~i~y}*u+ \lxg~x~y}*81/!~1v~z)(u), -x· E N(x:O). 
0 E '\' y f ( J;. y) 1l + \l y g ( x. y) 87/J ( w, z )( u) . 

has only the trivial solution x* = u = 0. Then for every supergradient ( x*, y*) E [j+ <p( x, y) there is 

a vector u E JRm such that 

-x* E \l xf(x, y)*u + \l xg(x, y)*82'1j!(w, z)(u) + N(x; D). 

-y* E \l yf(x, y)*u + \l yg(Y)*82'1j!(w, z)(u). 
(5.23) 

If in addition the cost function <pis Lipschitz continuous around (x, y), then there are a subgradtent 

(x*,y*) E 8<p(x,y) and a vector u E JRm satisfying (5.23). 
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Proof. This easily follows from assertions (ii) and (iii) of Theorem 5.5 due to the coderivative 

representation for strictly differentiable mappings; see Section 2. 0 

In the case of finite-dimensional spaces X and Y the subdifferential result of Corollary 5.6 

is strongly related to the necessary optimality conditions from [21, Theorem 3.1] obtained for a 

composite MPEC problem of type (5.18) with 8'¢ replaced by a set-valued mapping of closed graph 

and with geometric constraints on both x and y. 

To conclude this paper, we observe that MPEC problems are intrinsically nonsmooth. even 

in the simplest settings of equilibrium constraints governed by parameter-dependent variational 

inequalities and complementarity conditions. For models (5.13) and (5.18) this relates to the non

smoothness of the potential'¢, which is actually the indicator (extended-real-valued) function of a 

convex set for the case of complementarity and standard variational inequality constraints. Practical 

implementations of the optimality conditions obtained in Theorems 5.3-5.5 require therefore com

puting/estimating the second-order subdifferentials for attractive classes of nonsmooth functions 1jJ 

in (5.13) and (5.18). Efficient calculations of second-order subdifferentials and their applications to 

special MPEC and related problems are given in [5, 16, 21] and the references therein. Such calcu

lations and the results obtained above allow us to extend classes of MPEC that can be efficiently 

handled by generalized differential methods of variational analysis. 
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