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Abstract. We consider optimal control problems for discrete-time systems with delays. The
main goal is to derive necessary optimality conditions of the discrete maximum principle type
in the case of nonsmooth minimizing functions. We obtain two independent forms of the dis-
crete maximum principle with transversality conditions described in terms of subdifferentials
and superdifferentials, respectively. The superdifferential form is new even for non-delaved
systems and may be essentially stronger than a more conventional subdifferential form in

some situations.
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principle, nonsmooth variational analysis, subdifferentials and superdifferentials.

1 Introduction

This paper is devoted to the study of nonsmooth optimal control problems governed by
discrete-time systems with time delays in state variables. As the basic model. we consider

the following problem (P) of the Mayer type:
minimize J(r,u) := ¢(z(t))) | (1.1)
over discrete control processes {z(-), u(-)} satisfying

z(t+ h) = z(t) + hf(t.z(t). z{t = 7),u(t)), z(ty) = zo € R", (1.2)

1Research was partly subported by the National Science Foundation under grant DMS-0072179 and by

the Distinguished Faculty Fellowship at Wayne State University.



u(t)€U7 teTl:= {t07t0+h""7tl—h}’ (13)

) x(t)=c(t), teTy:= {to—T,to—T+h,...,t0—h}, (1.4)

where h > 0 is a discrete stepsize, 7 = Nh is a time delay with some N € ﬂV ={1,2,..},U
is a compact set describing constraints on control values in (1.3), and ¢(:) is a given function
describing the initial “tail” condition (1.4) for the delayed system (1.2). Problems of this
type arise in variational analysis of delay-differential systems via discrete approximations; cf.
[8, 9] and their predecessors for non-delayed systems in {14] and [6, 7). They are important
for many applications, especially to economic modelling, to qualitative and numerical aspects
of optimization and control of various hereditary processes, to numerical solutions of control
systems with distributed parameters, etc.; see, e.g., [1, 2, 8, 12, 16] and the references
therein. Note that delayed discrete systems may be reduced to non-delayed ones of a bigger
dimension by a multi-step procedure and that they both can be reduced to finite-dimensional
mathematical programming. Nevertheless, optimal control problems of type (P) deserve a
special attention in order to obtain results that take into account their particular dyvnamic
structure and the influence of delays on the process of dynamic optimization. '

It is well known that. while for continuous-time systems optimal controls satisfv the Pon-
tryvagin maximum principle without restrictive assumptions [11], its discrete analogue {the
discrete maximum principle) does not generally hold unless a certain convexity is imposed a
priori on the control system: see. e.g., [1. 4. 5. 12] and their references. A clear explanation
of this phenomenon is given in Section 5.9 of Pshenichnyi's book [13] (the first edition).
where it is shown why discrete systems, require a convexity assumption for the vahdity of
the maximum principle while continuous-time systems enjoy it autonmti(ally due to the
so-called “hidden convexityv”. Relationships between convexity and the maximum principle
are transparent from the viewpoint of nonsmooth analysis due to the special nature of the
normal cone to convex sets: cf. [14] and [6].

The goal of this paper is to derive necessary optimality conditions in the form of the
discrete maximum principle for problem (P) and some of its generalizations. Qur standiny
assumption is that f = f(t.r.y.u) is continuous with respect to all variables but t and
continuously differentiable with respect to the state variables (r,y) for all t € T and u € U
near the optimal solution under consideration. We do not assume any smoothness of the

cost function ¢ and derive new versions of the discrete maximum principle with transver-



sality conditions taking into account the nonsmoothness of ¢. A striking result obtained in
this paper, new for both delayed and non-delayed systems, is the superdifferential form of
the discrete maximum principle, where the transversality condition is expressed in terms of
the so-called Fréchet superdifferential. This is a rather surprising result, since it applies to
minimization problems for which subdifferential forms of necessary optimality conditions are
more conventional. We also obtain the discrete maximum principle for nonsmooth problems
with transversality conditions of subdifferential type that extend known results to the case
of delayed systems. We’ll discuss relationships between the superdifferential and subdiffer-
ential forms of the discrete maximum principle: they are generally independent while the
superdifferential one may be essentially stronger in some situations when it applies.

The rest of the paper is organized as follows. Section 2 presents basic definitions and
preliminaries from nonsmooth analysis used in the sequel. In Section 2 we prove the su-
perdifferential form of the discrete maximum principle and formulate some of its corollaries.
Section 4 contains versions of the subdifferential discrete maximum principle for delaved
systems and their comparison with the superdifferential version of Section 3.

Our notation is basically standard; see, e.g., [15]. Let us mention that A* stands for the

adjoint (transposed) matrix to A and that
Limsup F(z) := {y € R™ ‘ Jsequences zp — Z and yx — ¥y
I
with yx € F(zx) forall k€ EV}

denotes the Painlevé- Kuratowski upper (outer) limit for a set-valued mapping F: R" = R™

as z — Z. The expressions
clQ. cof2, and cone{l:= {a:z| a>0, 1€ Q}

stand for the closure. convex hull. and conic hull of a set §. respectively. The notation r = r

means that z — I with 2(r) = 2(F).

2 Tools of Nonsmooth Analysis

In this section we review several constructions of nonsmooth analysis and their properties
needed in what follows. For more information we refer the reader to [3, 6, 15].

Let €2 be a nonempty set in IR", and let

M(z; Q) = {w e dQ with |z — w| = dist(z; )}
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be the Euclidean projector of z to the closure of 2. The basic normal cone [6] to Q at

Z € cl? is defined by

N(z; Q) := Limsup [cone (z = TI(z; Q))] (2.1)

T
This cone if often nonconvex, and its convex closure agrees with the Clarke normal cone [3].
Given an extended-real-valued function ¢: R" — IR := [—00, 0o] finite at Z, we define its

basic subdifferential (6] by

Op(z) = {z* € R"| (2, ~1) € N((&,0(2));epi p) }, (2:2)

where epip = {(z,u) € R"!| u > ()} stands for the epigraph of ¢. If ¢ is locally

Lipschitzian around Z, then 0¢(Z) is a nonempty compact satisfying
(2%, =) € N((z,0(2));epip) <= A 20, z* € A0p(Z). (2.3)

One always has O¢(Z) = co dy(Z) for the Clarke generalized gradient of locally Lipschitzian
functions [3]. Note the the latter construction, in contrast to (2.2), possesses the classical
plus-minus symmetry 9(—y)(Z) = —0p(%). If ¢ is lower semicontinuous around Z, then the
basic subdifferential (2.2) admits the representation
0p(Z) = Limvsup dy(z)
oI

in terms of the so-called Frécfget subdifferential of ¢ at = defined by

delz) = {:r' € R"| liminf p(w) — plz) = (2% u — 7) > O}. (2.4)
u=z lu — x|
The symmetric constructions
O*p(1) == ~0(-9)(2), 0%p(2) = -0(-¢)(2) (2.3)

to (3.2) and (2.4) are called. respectively, the basic superdifferential and the Fréchet superdif-
ferential of ¢ at Z. Note that

meup £12) = 9(8) = (2" = 2
T2 |z — Z|

8 (%) := {:r' € R"

< 0} (2.6)

and that both 5(,0(i) and 5*99(3%) are nonempty simultaneously if and only if ¢ is Fréchet
differentiable at Z, in which case they both reduce to the classical (Fréchet) derivative of >

at this point:
Dp() = 8* () = {Ve(2)}. (2.7)
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In contrast, the basic subdifferential and superdifferential are simultaneously nonempty for
every locally Lipschitzian function; they may be essentially different, e.g., for ¢(z) = |z| on
IR when 8¢(0) = [—1, 1] while 8t p(0) = {—1,1}. Note also that if ¢ is Lipschitz continuous

around Z, then

Op(2) = 0" p(7) = { V()] (2:8)
if and only if ¢ is strictly differentiable at Z, i.e.,

oo #(2) = pla) = (V(@),z - o)

T3 Iq; —'g;’l
'z

=0,

which happens, in particular, when ¢ is continuously differentiable around Z. The singleton
relations (2.8) may be violated if ¢ is just differentiable but not strictly differentiable at z.
For example, if p(z) = z?sin(1/z) for z # 0 with ¢(0) = 0, then

8p(0) = 8*(0) = [~1,1] while dp(0) = §*p(0) = {0}.

Recall [6] that ¢ is lower regular at Z if 0p(Z) = 8yp(Z). It happens, in particular. when
@ is either strictly differentiable at Z or convex. Moreover, lower regularity holds for the
class of weakly convez functions [10], which includes both smooth and convex functions and
is closed with respect to taking the maximum over compact sets. Note that the latter class
is a subclass of quasidifferentiable functions in the sense of Pshenichnyi {13].

A large class of lower regular functions (in somewhat stronger sense) has been studied in
[15] under the name of amenability. It was shown there that the class of amenable functions
enjoys a fairly rich calculus and includes a large core of functions frequently encountered in
finite-dimensional minimization.

Symmetrically. ¢ is upper regular at ¥ if 8*p(3) = §*(F). It follows from (2.5) that
this property is equivalent to the lower regularity of —p at £. Thus all the facts about sub-
differentials and lower regularity relative to minimization can be symmetrically transferred
to superdifferentials and upper regularity relative to maximization. The point is that in the
next section we are going to apply superdifferentials and upper regularity to minimization

problems. The following proposition is useful in this respect.

Proposition 2.1 Let ¢: IR® — TR be Lipschitz continuous around T and upper reqular at
this point. Then § # 8% ¢(z) = By (F). '



Proof. The nonemptiness of 5*’(,0(%) follows directly from 8¢(Z) # 0 for locally Lipschitzian
functions and the definition of upper regularity. Due to 0¢(Z) = codp(Z), any local Lip-
schitzian function is lower regular at Z if and only if 8p(Z) = O¢(Z). Hence the upper

regularity of ¢ at Z and the plus-minus symmetry of the generalized gradient imply that

~ —_ —

0% ¢(z) = —0(—¢)(2) = -3(-9) (&) = Bp(2),

which ends the proof of the proposition. 0

Note that all the assumptions of Proposition 2.1 hold for concave functions continuous

around Z.

3 Superdifferential Form of the Discrete Maximum Prin- |
ciple

In this section we first study the discrete optimal control problem (P) defined in (1.1)-(1.4)
and then consider its multiple delay generalization. Let {z(-),u(-)} be a feasible process to
(P), and let {Z(-), @(-)} be an optimal process to this problem. For convenience we introduce

the following notation:

E(t) = (z(t), z(t = 7)), &) == (2(2), &(t - 7)),

f@+71.&8u):=f(t+7,2(t+7),z(t), u(t +7)).

Az(t) = z(t) - Z(t), Af(t) = f(t,&u) ~ f(t,€,a), Auf(t):= f(t.€u) - f(t.Eu).

Using this notation, we define the adjoint system

p(t)=p(t+h)+hg—£.(t.f.ﬂ)p(t+h)+h—g—i~.(t+r,§-,ﬁ)p(t+r+h), teT. (3.1)

to (2.2) along the optimal process {z(-),@(-)}. Consider the Hamilton-Pontryagin function
H(t,p(t + h), E(t) u(t) := (p(t + h), f(£.€(t), u(1))), (3.2)
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which allows us to rewrite the adjoint system (3.1) in the simplified form

p(t) = p(t+h) + h[%g-(t) + %—I;(t +7)]

with H(t) := H(t,p(t + h),£(t),@(t)). Form the set

Aa() = {u € U| f(t.&u) € o(F(t,§,0); F(1,EV))}, (3.3)
where o(g; @) denotes the star-neighborhood of ¢ € @ relative to Q) defined by
0(g;Q)=={ae Q| Jex 10 suchthat g+exla—q)€Q forall ke Nj.  (3.4)

It easily follows from (3.3) and (3.4) that A(@(t)) = U if the set f(t,& U) is convex. The
following theorem establishes a new superdifferential form of the discrete maximum principle

for both delayed and non-delayed systems.

Theorem 3.1 Let {Z(-),4(-)} be an optimal process to (P). Assume that :IR" —» R 1s
finite at Z(t,) and that 8*o(z(t,)) # 0. Then for any z* € 8% (&(t))) one has the discrete

mazimum principle
H(t,p(t+ h),Z(t), z(t — 7),2(t)) = uer/r\l(aﬁ)(ct)) H(t,p(t+ h),z(t),Z(t — 7),u), teT. (3.5
where p(-) is an adjoint trajectory satisfying (3.1) and the transversality conditions
p(ty) = -z, p(t) =0 for t>t,. (3.6)

The mazimum condition (3.5) is global over all u € U if the set f(t.£.U') 1s conver

Proof. Take an arbitrary r* € 3+¢(f(t15). It follows from (2.6) that

elr) - £(2(h)) < (2" x = 2(ty)) +o(lr — 2(t1)1) (37
for all z sufficiently close to #(¢;). Put p(t,) := —r* and derive from (3.7) and (1.1) that
J(x.u) - J(F.8) = —(p(ts). Ar(t))) + o(lAz(t,)]) > 0 (3 8)

for all feasible processes {x(-).u(-)} to (P) such that z(¢;) is sufficiently close to r(t;). One
always has the identity

ti—h ti—-h

(p(tr), Dz(tr)) = Y (p(t + h) = p(t), Az(t)) + 3 (p(t + h), Az(t + h) - Ax(t)). (3.9)

t=tg t=to



Due to (1.2) we get the representation

Ax{t +h) — Aa(t) = hAS(1) = h[Auf(H) + 3 af

where the remainder 7n(t) is computed by

1) = (06w - 206 D)Act) + (F (06w - 516 0)Astt -7

+ o(|az(t)]) + o(|Az(t — 7))

This allows us to represent the second sum in (3.9) as

tlih<p(t+h),Aa:(t+h)—A:z:(t)> = tlz—jh( (t+h), Auf(t) + 8£(t,£,a)Ax(t)

t=to t=to

+ af oy 67 @)Ax(t — 1) +(1)).

Using the equalities
Az(t) =0 for t < tg, p(t+h)=0 for t > 1,

and shifting the summation above, one has

ti—h af _ ti—h 6f .
Z( plt+h), 5o (€ @) Az(t - 7)) = > <p(t+r+h),5§(t+T,£,u)A:r(t)>_ (3.10)

Finally, substituting (3.1), (3.9), and (3.10) into (3.8), we obtain

ty~h t,~h
J(z,u) = J(z.0) = —h 3 A H(t) =k Y (p(t +h).n(t)) + o] Az(t)]) >0 (3.11)

t=1Lg t=to

with A H(t) := H(t.p(t + h).€(t), u(t)) — H(t,p(t + h).E(t). @(t)) whenever Ar(t,) is suffi-
ciently small.
Let us prove that (3.11) implies that A H(¢) < 0 for any t € T and u € A(a(t)). which

is equivalent to the discrete maximum principle (3.5). Assuming the contrary, we find
6e€T and u€ A(a(f)) with A H(0) :=a>0. (3.12)
By definitions (3.3) and (3.4) there are sequences €, | 0 and u; € U such that

1(6,€,a) +e(f£(60,€u) - £(8,€,8)) := £(8,€,ui) € £(8,€,1),



which is equivalent to
A F(6) = F(8,6,ui) — F(8,€,3) = e (£(8,6,u) — F(6,E D)) := exAuS (6).

Now let us consider needle variations of the optimal control defined by

(t)— Uk ift=0,
BT aw itteT\{0),

which are feasible to (P) for all £k € IN, and let Ayz(t) be the corresponding perturbations

of the optimal trajectory generated by vg(t). One can see that
Agz(t) =0 for t=tp,...,0 and [Dgz(t)|=O0(ek) for t=0+h,... 1.

This implies that

<3f 02 of

f of
5z b ~ 5, ~ 5y

(t,€, @) Axa(t) + (%(t,f, w) = 3 (t,& 1) Apa(t —7) =0, teT,

and that 7, (t) = o(ex), k € IN, for the corresponding remainders 7(-) defined above. Hence

t1—-h
J(ze,ve) = J(&,8) = —hA, H(B) — Y (p(t + h),me(t)) = —echa + o(ex) < 0

t=to

for all large k£ € IN due to (3.12). Since z«(t;) — Z(t1) as k — oo, this contradicts (3.11)

and completes the proof of the theorem. O

Let us present two important corollaries of Theorem 3.1. The first one assumes that - is
(Fréchet) differentiable at the point Z(¢,). Note that it may not be strictly differentiable (and
hence not upper regular) at this point as for the function ¢(z) = z%sin(1/x) for z # 0 with
»(0) = 0; see Section 2. If ¢ is continuously differentiable around #(¢;) and f = f(t.r.u) in.
(1.2). then this result and its proof go back to the discrete maximum principle for non-delaved

systems established in {4, Chapter IX].

Corollary 3.2 Let {Z(-), a(-)} be an optimal process to (P), where o is assumed to be dif-
ferentiable at Z(t)). Then one has the discrere mazimum principle (3.5) with p(-) satisfying
(3.1) and

p(ty) = =Vop(z(t)),  p(t) =0 for t>1,. (3.13)



Proof. Follows from Theorem 3.1 due to the second relation in (2:7), which ensures that
(3.6) reduces to (3.13). 0

The next corollary provides a striking result for upper regular and Lipschitz continuous
cost functions ¢. In this case the discrete maximum principle holds with the transversality
condition p(t;) = —z* given by any vector z* from the generalized gradient 9y (Z(t,)) while
conventional results ensure such conditions only for some subgradient; see Section 4 for more

discussions.

Corollary 3.3 Let {Z(-),a(-)} be an optimal process to (P), where ¢ is assumed to be
Lipschitz continuous around Z(t,) and upper regular at this point. Then for any vector

z* € 0p(Z(t1)) # O one has the mazimum principle (3.5) with p(-) satisfying (3.1) and (3.6).
Proof. This follows from Theorem 3.1 and Proposition 2.1. O

Now let us consider an extension (P;) of problem (P) to the case of multiple delays:

minimize (1.1) over discrete control processes {z(-), u(-)} satisfying the system
z(t+h)=z()+hft.z(t),z(t = 7). ., 2(t = Tm),u(t)), z(to) =z0 € R". (3.14)

with many delays 7, = Nh for N, € IN and 7 = 1,..., m subject to constraints (1.3) and
(1.4), where f = f(t.z.1)..... T, u) satisfies our standing assumption and where the initial
interval Ty is correspondingly modified. Denote £(t) := (Z(t).#(t — 7y)...., Z(t = 7)) and

define p(-) satisfving (3.6) and the adjoint system

p(t)=p(t+h)+hg§ (t.€. a)p(t + h) +hZ§xf (t+r.E.a)plt+7 +h) (315

for t € T, which can be rewritten in the Hamiltonian form

m aH

oH
plt) = pt +h) + h(?—f(t) + hz ar,(t +7)

in terms of (3.2) with H(t) := H(t,p(t + h),£(t),@(t)). The proof of the following theorem

is similar to the basic case of Theorem 3.1 and can be omitted.

Theorem 3.4 Let {7(-).a(-)} be an optimal process to {Py) with 5*;(f(t,)) # 0. Then for

any z* € 8+ (Z(t;)) one has the discrete mazimum principle

H(t,p(t+ h).E(t).a(t)) = uen\x(%(\t))H(t p(t+h),€E(t),u) forall teT, (3.16)

where p(-) is an adjoint trajectory satisfying (3.6) and (3.15).

10



Of course, we have the corollaries of Theorem 3.4 similar to the above ones for Theo-
rem 3.1. Let us obtain another corollary of Theorem 3.4 for a counterpart (P) of the optimal

control problem (P) involving discrete systems of neutral type
t— —z(t -
2(t+ k) = z(t) + hf(t, 2(t), z(t - T), 27+ h,)l 2t 7)
z(t—T7+h)—z(t—71)
h

under the time discretization and where f = f(t, z,y, 2, u) satisfies our standing assumption.

u(t), teT, (3.17)

where can be treated as an analogue of the delayed derivative £(t—7)

Given an optimal process {Z(-), @(:)} to (P2), we put
Z(t—T7+h)—Z(t-17)

£(t) = (2(t), 2(t — ), - ), teT, (3.18)
and define the adjoint discrete neutral type system
p(t) =p(t+h) + hg—:{- (t,&,4)p(t + h) + hg—'; (t+1,&a)p(t+ 7+ h) )
* " (3.19
+%§ (t+7~h&a)p(t+r7)— gg (t+1&a)pt+1+h), teT.

Corollary 3.5 Let {Z(-),a(-)} be an optimal proceés to (Py) with 8t o(Z(t,)) # 0. Then for
any z* € 8+ p(Z(t,)) one has the discrete mazimum principle (3.16), where £(-) is defined in

(3.18) and where p(-) is an adjoint trajectory satisfying (3.6) and (3.19).

Proof. Observe that the neutral system (3.17) can be easily reduced to (3.14) with two

delays. Thus this corollary follows from Theorem 3.4 via simple calculations. O

A drawback of the the superdifferential form of the discrete maximum principle estab-
lished above is that the Fréchet superdifferential may be empty for nice functions important
in nonsmooth minimization. e.g.. for convex functions that are not differentiable at minimum
points. In the next section we derive results on the discrete maximum principle that cover
delayed problems of type () with general nonsmooth cost functions ,-. Results of the latter
subdifferential type are applicable to a broad class of nonsmooth problems. but they mav

not be that sharp as the superdifferential form of Theorem 3.1 when it applies.

4 The Discrete Maximum Principle via Basic Normals

and Subgradients

In this final section of the paper we present nonsmooth versions of the discrete maximum

principle for the delayed problem (P) in (1.1)-(1.4) with transversality conditions expressed

11



in terms of basic normals and subgradients defined in Section 2. The corresponding modifi-

cations for problems (P;) and (P,) can be made similarly to Section 3.

vTheorem 4.1 Let {Z(-),a(-)} be an optimal process to problem (P), and let T := z(t,).
Assume that the set f(t,z,y,U) is convex around (Z(t),Z(t — 7)) for allt € T. Then one
has the following assertions.

(i) Let ¢ be lower semicontinuous around T. Then there is a nonzero vector (z*,)\) €

IR™! such that A > 0, (z*,—A) € N((z,¢(Z)); epip), and the discrete mazimum principle
H{t,p(t + h),Z(t),Z(t — 7),a(t)) = maxH(t p(t+h),Z(t),Z(t — 7),u), teT. (4.1

holds with p(-) satisfying (3.1) and (3.6).
(ii) Let o be Lipschitz continuous around Z. Then there is z* € Op(Z) such that (4.1)
holds with p(-) satisfying (3.1) and (3.6).

Proof. We'll proceed similarly to the non-delayed case using the method of metric approz-
imation; cf. [6, Section 11]. This method allows us to approximate the original nonsmooth
problem by a family of smooth discrete problems with delays and then arrive at the desired
conclusions by a limiting procedure involving the corresponding results and constructions of
Sections 2 and 3.

Let us first prove assertion (i). Taking a parameter v € IR, we consider a parametric
family of the following optimal control problems (P,) for delayed discrete systems with the
distance-type cost functional:-

minimize J.(r.u) := dist((x(t;).~):epiy) Z |x(t)

t=tg

over control processes {r(-). u(-)} subject to constraints (1.2)-(1.4)."

Let 5 := o(Z(¢,)). and let {I.(-). 1. (-)} be optimal processes to () that obviously exist
by the classical Weierstrass lllé()rmn due to the standing assumptions made in Section 1 It
follows from the structure of (P,) and the optimality of {Z(:).a(:)} in the original problem

(P) that Z,(t) = #(t) as + — 5 for all t € T U {t,}. Moreover,
m.,, = dist((,(t;).7):;epiy) >0 whenever 5 < 3. (12)

The latter allows us to conclude that, for any v < 4. the process {Z,(:). ii,(-)} is optimal to

the smooth problem (P, ) of minimizing the functional

T(e ) = (Ie(t) = 2, + 1y —w,2) 7 + V‘Lj Iz(t) - 3

t=tg

12



subject to (1.2)-(1.4), where (z,,w,) is an arbitrary element of the Euclidean projector
II((Z4(t1),7);epiw) of (Z,(t1),7) to the closed set epiyp. Introducing an additional state
variable z,1(t) by

Ts1(t + B) = Toga1 (t) + 2(8) = Z@O)?,  zasa(to) =0, (4.3)
we rewrite problem (P,) in the equivalent form of minimizing the Mayer-type functional
— 2 2 1/2 = 2
T, 3ns,u) = (J2(t1) = 2,2+ by = s ) 4+ 2o (8) + 2t - 2D (4.4)

over {z(-), Tn+1(+), u(+)} satisfying (1.2)-(1.4) and (4.3). Denote &,(t) := (Z,(t),Z,(t — 7))

and observe that the sets f(t,£,(t),U) are convex for all t € T while the cost function in
(4.4) is differentiable at (Z,(t1), ZTp41(t1)), where Zp41(:) is generated by Z,(-) in (4.3). Now
applying Corollary 3.2 to problem (P,) as@}#nd taking into account the structure of

the cost function (4.4), we arrive at the discrete maximum principle

H(t,py(t + h), g’y(t)’ i,(t)) = Tea[}({h(tapv(t + h), E’y(t’), u), teT,

where p,(:) satisfies the adjoint system (3.1) along {a‘:ﬂ,(-);ﬂv(-)} with the transversality

conditions

I,(th) — =,

py(t) = — - - 2(%,(t1) — (1)), py(t) =0 for t > ¢,

where m., > 0 is given in (4.2), and where

<|f‘7(tl) - $7|)2 _+_' (h - w7|>2 -1
m., m,

Passing to the limit as 4 1 4 in the above relations and using the construction of the basic
normal cone (2.1). we arrive at all the conclusions of (i).

To justify (ii) when = is Lipschitz continuous around #(t,), we observe that in this case
one has z* € A0p(Z(ty)) from (i) and (2.3). The latter implies that A # 0. which vields (i1)

bv normalization. -

Let us compare the superdifferential and subdifferential forms of the discrete maximum
principle from Theorems 3.1 and 4.1, respectively. As mentioned above, Theorem 4.1 is
applicable to a broad class of nonsmooth problems (P) while Theorem 3.1 requires that
8*o(z(t1)) # 0, which excludes many nonsmooth functions. On the other hand. the su-

perdifferential form has essential advantages for special classes of cost functions.
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First we observe that Theorem 3.1 implies the gradient form (3.13) of transversality when
" is just differentiable at Z(¢;) (it may even not be Lipschitz continuous around this point)
while Theorem 4.1 ensures (3.13) only when ¢ is strictly differentiable at.:T:(tl); see (2.8) and
the related discussion in Section 2. The most striking difference between subdifferential and
superdifferential transversality conditions appears in the case of upper regular and locally
Lipschitzian cost functions. In this case Theorem 4.1 provides the discrete maximum prin-
ciple generated by some subgradient z* € 9p(Z(t1)) C 8¢(Z(t,)) in (3.6) while Corollary 3.3
ensures it for every z* € dp(Z(t,)). This is a big difference!

To conclude, we present a simple illustrative ezample of a non-delayed problem, where
the superdifferential form of the discrete maximum allows us to eliminate a non-optimal
control but the subdifferential form fails to do it. Minimize the cost functional (1.1) with

¢(z) = ~|z|, = € IR, and t; = 1 subject to the constraints

z(t + h) = z(t) + hu(t), z(0) =0,

u(t) e U:=1[0,1), te€T:={0,h,...,1—h},

where h = 1/N for some natural number N > 2. The control %(t) = 0 is obviously not
optimal while Theorem 4.1 cannot eliminate it. Indeed, d(0) = {-1,1}, and one may
take p(1) = —1 € —-9p(0) due to this result. We see that the control @(t) = 0 satisfies
the maximum condition (4.1) with p(¢) = —1. On the other hand, the discrete maximum
principle does not hold for @ = 0 if we select p(1) = 1 € §*p(0) = 8,(0) = [=1.1). 1.e.. this

control can be eliminated by Corollary 3.3.
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