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Ultraconvergence of ZZ Patch Recovery 
at Mesh Symmetry Points 

Zhimin Zhang*and Runchang Lin 
Department of Mathematics, Wayne State University 

Abstract. Ultraconvergence property of the Zienkiewicz-Zhu gradient patch recovery technique 
based on local discrete least squares fitting is established for a large class of even-order finite elements. 
The result is valid at all rectangular mesh symmetry points. Different smoothing strategies are 
discussed. Superconvergence recovery for the Q8 element is proved and ultraconvergence numerical 
examples are demonstrated. 
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1. Introduction. 

Since the first appearance of the Zienkiewicz-Zhu patch recovery technique [15], a decade 
has been passed. Regardless of its great success in practice, the theoretical foundation 
behind this remarkable recovery technique has not yet been fully developed. There have 
been some limited theoretical results since the mid 90's. The reader is referred to two recent 
books by Ain~worth-Oden [1, Chapter 4] and by Babuska-Strouboulis. [4, Chapters 4,5] for 
discussion and references. 

One of the fascinating features of ZZ patch recovery is its ultraconvergence property 
for quadratic elements which includes T6 (six-node triangular element), Q8 (eight-node 
serendipity element), and Q9 (nine-node tensor-product element). The term "ultraconver
gence" indicates that the convergence rate is two orders higher than the optimal global rate. 
In an earlier work, the first author proved ultraconvergence for even-order elements at the 
vertices under locally uniform rectangular mesh [13]. 

The current work intends to view ZZ patch recovery from a different angle and to 
provide more insights on the mathematical reasoning behind the method. Our results can 
be divided into three parts. First, we investigate all possible smoothing strategies under the 
least squares fitting. This is done by concentrating on elements Q8 and Q9. In particular, we 
shall discuss the smoothing by quadratic polynomials (six terms), bi-quadratic polynomials 
(nine terms), as well as eight-term serendipity polynomials. We would like to remind the 
reader that only eight-term polynomial smoothing was numerically tested in the original 
work of Zienkiewicz-Zhu [15]. 

Secondly, we prove ultraconvergence of the recovered gradient for a large class of even
order rectangular elements at all mesh symmetry points, which include vertices, edge cen-

*This research was partially supported by the National Science Foundation grants DMS-0074301, DMS-
0079743, and INT-0196139. 
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ters, and element centers. We would like to indicate that the ultraconvergence result at the 
element center was not in the original work of Zienkiewicz-Zhu [15], and hence it is a new 
result even numerically. 

Thirdly, we establish superconvergence of the recovered gradient for the Q8 element at 
all mesh symmetry points and for all possible smoothing strategies. Furthermore, we provide 
some justification of ultraconvergence for Q8 that is supported by numerical evidence. Note 
that Q8 is the lowest even-order serendipity element. 

2. The ZZ Patch Recovery 

Consider an element patch which contains four rectangles that share a common vertex 
(assembly point). Assume that the four rectangles are uniform. We may further simplify 
to a square mesh. Then we can map the patch to the reference square K = [-1, 1]2 by an 
affine mapping. 

We discuss main features of the ZZ patch recovery by Q8 and Q9 elements. The ZZ 
patch recovery uses the sixteen Gaussian points (four from each element) 

( 
1 1 1 1 ) 

±2 ± 2v'3'±2 ± 2v'3 ' 
/_yl\1. 

denote as Gj = (ej, r!j), j = _1f2, ... , 16, as sampling points, where gradient values \luh(gj) 
of the finite element solutiort\are calculated. Here gj is the Gaussian point in the original 
patch associated with Gj. A polynomial of degree p = 2 is going to be constructed by a 
least-squares procedure. Along this line, there are three different strategies: 

P2(e, .,.,) 
ih(e, .,.,) 
q2(e, .,.,) 

= (1,e,.,,e,e.,,.,2)(a1,a2,··· ,a6)r; 

= (1, e, 'f}, e, e'f}, 'f/2, e'f}, e"72)(a1, a2, ... , as)T; 

(1, e, "'' e' e'f}, "1
2
' e'f}, e"7

2
' e'fJ

2
)(a1, a2, ... 'agf. 

(2.1) 

(2.2) 

(2.3) 

We describe the procedure using p2(e, 'fJ) whose coefficients a= (a1 , a2 , ... , a6)T will be 
determined by fitting data iJh = ( O"f, O"q, ... , O"f6 ) T at those 16 Gaussian points in a least
squares manner. Here £Tj can be either one of the components of \luh(gj)· This procedure 
results in a linear system 

BTB ... -Br ... h a- O" ' (2.4) 

where 

B= (i 
6 'f/1 er 6"71 ry() 
6 'f/2 e~ 6"72 "'~ 
66 'f/16 er6 66"716 "1~6 . li" 

Solve for a, we obtain P2(e, "7)· Then p2(0, 0) will be assigned as'rrecovered derivative value 
at the patch center (assembly point), p2(0, ±1/2) and P2(±1/2, 0) will be used to obtain 
recovered derivative values at four interior edge centers, and p2(±1/2, ±1/2) will be used to 
obtain recovered derivative values at four element centers. In fact, the recovered derivative 
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value at an edge center is the average from two overlapping patches (Figures 2, 3) and 
the recovered derivative value at an element center is the average from four overlapping 
patches (Figure 4). In this way, we can reconstruct derivative values at nine nodes on 
each element. By interpolation using original Q9 or Q8 basis functions, we then recover a 
piecewise continuous gradient field, which denoted as Ghuh. Let z be either a vertex, an 
edge center, or an element center, we can write 

n n 

Ghuh(z) = L bj(z)\luh(gj), Lbj(Z) = 1, (2.5) 
j=l j=l 

where bj(z)'s are weights obtained from the above least-squares fitting procedure. Note 
that n = 16 if z is a vertex when only one element patch is involved (Figure 1), n = 24 if z 
is an edge center when two overlapping patches are involved (Figure 2), and n = 36 if z is 
an element center when four overlapping patches are involved (Figure 3). 

Since each \luh(gj) can be expressed by the nodal values of the finite element solution, 
we have another expression: 

Ghuh(z) = *f. Cj(z)uh(zj), 
j=l 

m 

Li!.i(z) = 0, 
j=l 

(2.6) 

with m = 25 for Q9 and m = 21 for Q8 if z is a vertex, m = 35 for Q9 and m = 29 for Q8 
if z is an edge center, and m = 49 for Q9 and m = 40 for Q8 if z is an element center. 

The recovery operator Gh is then completely based on the weights cj's. Therefore, we 
need to calculate those weights in order to obtain Gh. Since we have two different elements 
Q8 and Q9, and three smoothing (or recovery) strategies (2.1)-(2.3), there are totally six 
cases, namely, Q8-p2, Q8-£]2, Q8-q2, Q9-p2, Q9-q2, and Q9-q2. In each case, there are four 
sets of data for Cj's at: vertex, horizontal edge center, vertical edge center, and element 
center. 

Remark 2.1. Even for the Q8 element, the recovered gradient Ghuh can have a Q9 
interpolation, whose values at vertices, edge centers, and element centers are uniquely de
termined by either (2.5) or (2.6). 

Remark 2.2. In the original paper of Zienkiewicz-Zhu, only the case Q8-q2 was numeri
cally tested and the recovery at the element center was not discussed. 

With help of symbolic tools in Maple, we have calculated the first components (x
derivative) of all twenty-four sets of weights Cj(z)'s. They are all different. However, we 
only provide data for the most economical case Q8-p2 in Figures 1-4. 

Note that all weights are distributed anti-symmetrically with respect to z and the vertical 
lines passing through z for the recovered x-derivative. Therefore, the recovered gradient is 
actually a finite difference scheme: 

(2.7) 

where N:::; [m/2] and (aj,{3j)'s are the (e,ry) coordinates of nodes in the reference square 
associated with the weight Cj(z). 
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~Witt. -jct!Ur #) 
For example, data~Figure ~present a finite difference scheme which involves 16 

nodal values on four elements surrounding a vertex. 

Ghu(z) = 4~h {16[u(z + hc~2))- u(z- hc~2))l + 2~(z + h(~)) fu(z- hG))J 
+ 8[u(z + h Ci2

} - u(z- h Ci2
} + u(z + h (~~)) - u(z - h (~~) )] 

+4[u(z + hc~2))- u(z- hc~2} + u(z + h( _:/2))- u(z- h( _:/2) )] 
+5[u(z + h( ~1))- u(z- h(~1))- u(z + hG)) + u(z- hG)m. 

Data in Figures 2 represent a finite difference scheme which involves 26 nodal values 
on six elements surrounding an horizontal edge center. Each entry of three columns in 
the middle has two numbers: the left one comes from evaluating Pkeft(1/2, 0) from .the left 
four elements and the right one comes from evaluating p~ight ( -1/2, 0) from the right four 
elements. 

Similarly, data in Figures 3 represent a finite difference scheme which involves 22 nodal 
values on six elements surrounding a vertical edge center. Again we show contribution from 
two overlapping patches. Finally, data in Figures 4 represent a finite difference scheme 
which involves 36 nodal values on nine elements surrounding an element center. This time, 
contribution from four overlapping patches are demonstrated. 

Note that entries on the central vertical lines are all zero due to cancellation.. The 
scheme for y-derivative can be obtained by rotating Figures 1-4 90 degrees. 

We denote Wz, a set of elements surrounding z such that Wz contains: a) four elements 
if z is a vertex, b) six elements if z is an edge center, and c) nine elements if z is an element 
center. See Figures 1-4. 

Theorem 2.1. Let u E W~(wz), where z is either a vertex, an edge center, or an element 
center. Then the recovery operator Gh from either Q8 or Q9 element with any one of the 
smoothing (2.1)-(2.3) satisfies 

IGhu(z)- 'Vu(z)l ~ Ch4lulwg,(w.)· (2.8) 

Proof: By the Taylor expansion, we have 

u(z + h(;))- u(z- h(;)) 
= 2h(a:x+/3:y)u(z)+~

3 

(a:x+/3:y)
3

u(z)+Rh(u), (2.9) 

where 
IRh(u)l ~ Ch5lulwg,(wz)· 

It is straightforward to verify that for all twenty-four cases, 

N N 

2 L Cj(z)aj = 1, L Cj(z)/3j = 0, 
j=l j=l 

4 
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N N 

L Cj(z)o} = 0, L Cj(z)aJ/3j = 0, (2.11) 
j=l j=l 

N N 

L Cj(z)aj/3] = 0, L Cj(z)/3] = 0. (2.12) 
j=l j=l 

Apply the Taylor expansion (2.9) to the right hand side of (2.7), simplify the result by 
(2.10)-(2.12), and we obtain 

the conclusion follows. D 

In other words, the recovery operator G h preserves polynomials of degree up to 4 at 
vertices, edge centers, and element centers when uniform rectangular elements are used 
locally. Indeed, this property is essential for a successful ultraconvergence recovery of the 
operator. 

Remark 2.3. Both expression (2.5) and (2.6) are valid for v E Vh, the finite element 
space of either Q8 or Q9. However, only expression (2.6) is valid for u ~ Vh, since '\lu 
cannot be expressed by its nodal values the same way as '\luh does in general. 

Remark 2.4. Comparing with a simple fourth-order finite difference scheme (along one 
line) 

1 
Dhu(O) = 

6
h [u( -h) - 8v( -h/2) + S(h/2) - v(h)], ux(O) - Dhu(O) = O(h4

), 

the advantage of those 24 schemes obtained by the ZZ patch recovery is their numerical 
stability under mesh distortion. 

The verification of (2.10)-(2.12) can be done symbolically or numerically by computer. 
The following Matlab code verifies the first component of (2.10)-(2.12) for the Q8-p2 case 
when z is the patch center (Figure 1). By symmetry, only 8 cj's and the associated (e, ry)
coordinates are needed. 

X= [ 1/2 1 1 1/2 1 1 1/2 1 ]; y = [ -1 -1 -1/2 0 0 1/2 1 1] j 
c = [ 8 -54 16 -2 4 8 -5 ]; 
d1x = C*X'/12, d1y = C*y', 
d3x = C*f.. ~3', dx~ = c*(x.*y. ~2)', 
d~y = C*(y.*x.~2)', d3y = C*y.~3', 

3. Relationship of Some Popular Interpolations 

In this section, we consider three different quadratic interpolations on a rectangular ele
ment K with vertices zf, zf", zf, zf, and edge centers zf, zf, zf/, zf (Figure 5). Without 
confusion, we suppress the index K in order to simplify the notation. 
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On the reference element k, we can express them as 

8 4 8 

u1
- "'u·N· - LJ J J• v/ = L ujNj + L ujNj, i/ = u1 + u9N 9 , 

j=l j=l j=S 

where Uj = u(zj), j = 1, 2, ... , 8, and Nj, j = 1, 2, ... , 9, are conventional shape functions 
for quadrilaterals [10, p.101]: 

1 
N2 = 4e11(1 + e)(11- 1), 

1 
N4 = 4e11(e- 1)(1 + 11), 

1 
N6 = 2e(l + 0(1 -7]

2
), 

1 2 
N8 = 2e(e- 1)(1 -77 ), 

We see that all three interpolate u at the four vertices, and u1 is the standard 8-node 
Lagrange interpolation. Coefficient us is defined by 

(3.1) 

where h is the edge linking z1 and z2, and 88 is the tangential direction along h. The other 
three parameters, u5, u7, and us are defined in the same way. 

Finally u9 is defined by 

[ V'(u- u1 )\i'v = 0, (3.2) 

where v is the interior shape function (Ng on the reference element). 

Remark 3.1. Projection type interpolations such as u1 and u1 are more "closer" to the 
finite element solution than the traditional Lagrange interpolation u1 . Projections (3.1) 
and (3.2) are also used in practical finite element codes such as StressCheck. \ ( .\ Q 1 
Lemma 3.1. The coefficients us can be equivalently defined by 

l (u- u1 )ds = 0. 
h 

Proof: Performing integration by parts, we have 

(3.3) 

since u1 equals u at the two ends of h. Note that oiv is a constant along h for v E Vh, Q8 
or Q9 finite element, therefore (3.1) is equivalent to (3.3). D 

6 



Theorem 3.2. Let u E W~(K), then 

where 

Uj Uj- l~;O B!u(zj) + Rh(u), j = 5, 7; 

uj = uj- 1~;0 a~u(zj)+RK(u), j=6,8; 

IRh ( u) I ::::; Chsl8~u1Loo(K)' IRK ( u) I ::::; Chsl8~u1Loo(K) · 
Proof: A direct calculation shows that 

This is the Simpson integration with the error estimate 

which can be obtained by modifying the proof in [3, p.257]. Similarly 

r u1ds = ~(ul + 4us + u2)· Jh 
By (3.3), we have 

h hS 4 2h X h 
6(u1 + 4us + u2)-

2880 
Bxu(zs) + 3Rh(u) = '6(u1 + 4us + u2). 

Therefore, 

us= us- 1~;0 a!u(zs) + Rh(u). 

The same argument is valid for u6, u7, and us. 0 

(3.4) 

(3.5) 

Remark 3.2. Theorem 2 discloses the difference between the 8-node projection type in
terpolation and the 8-node Lagrange interpolation. The result implies that when the target 
function u is a fourth degree polynomial without x4 and y4 terms, the two interpolations 
will be the same. 

4. Ultraconvergence Property of the Recovery 

In this section, we will prove a theorem for the recovery operator G h in a more general 
setting and thereby establish ultraconvergence at the mesh symmetry points for even-order 
finite element methods. Our general theory covers the Q9 element. However, further 
analysis is required for the Q8 element. 

Definition 4.1. The projection type i~terpolation u1 of a function u onto a C0 finite 
element space vh satisfies: 

(a) u1 (zi) = u(zi) at all vertices Zi. 
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(b) For all edge mode (on an edge l) v E Vh, 

ias(ui- u)88 vds = 0, 

where 88 is the tangential derivative along l. 
(c) For all interior modes (on an element K) v E Vh, 

L 'V(ui- u)'Vv = 0. 

The reader is referred to [10] for details about edge modes and interior modes. 
Definition 4.2. The intermediate family of type I with degree r is a C0 finite element 

with local space Pr+ 1 ( K) \Span { e+l' r/+1}. Here k is the reference element and Pr is the 
space of complete polynomials of degree ::::; r. . 

The intermediate family of type II with degree r is a 0° finite element with local space 
Pr+2(K) \ Span{e+I,,t+1 ,e+2 ,r/+2 ,e+17J,~r(+1 }. 

Theorem 4.1. Assume that u E w~+3 (wz), where Wz is the set of rectangular elements 
involved by Gh at a mesh symmetry point z and Gh is the gradient recovery operator 
obtained from the ZZ least squares patch recovery procedure with at least P2k smoothing. 
Let ui be the projection type interpolation of u in a C0 finite element space that contains the 
intermediate family of type I with degree 2k, Then there exists a constant C independent 
of u, h, and z, such that 

Proof: let u E P2k+2 ( Wz) and z = ( xo, Yo). Then u can be decomposed into u = p + q 
with q E P2k+l (wz) and 

2k+2 
p(x,y) = L aj(x- xo)i(y- Yo)2(k+l)-i. 

j=O 

Clearly 'Vp(z) = 0, and conseR_uently 'Vu(z) = 'Vq(z). 
Consider ui = pi + qi and we express 

Ghqi (z) = L bj(z)'Vl (gj), 
j 

Ghpi(z) = ~ L:s(z)pi(zj), 
j 

where 9j and Zj are the Gaussian points and element nodal degrees of freedom on Wz, 
respectively. Note that Cj(z) are anti-symmetrically distributed and pi is an even function 
(as the interpolation of an even polynomial p) with respect to the mesh symmetry point z, 
therefore, 

Ghpi (z) = 
2
1
h L Cj(z)[pi (zj)- pi (z- (zj- z))] = 0. 

j 

8 
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On the other hand, q1 E P2k+l (wz) \ Span{ek+l, 172k+1} is the projection type interpo
lation of q E P2k+l(w), then \lq1(gj) = \lq(gj) at all Gaussian points 9j on Wz. Hence, 

(4.2) 
j j 

The last equality based on the fact that a least squares fitting, by a P2k polynomial, of 
exact values must reproduce the original polynomial. Note that \lq E P2k(wz)2. 

Observe that Gh is a linear operator, then from (4.1) and (4.2), 

(4.3) 

Since ( 4.3) holds for all polynomials of degree 2k + 2, the conclusion follows from the 
Bramble-Hilbert Lemma [7, Theorem 4.1.3] and a scaling argument. Since bj(z)'s and 
Cj(z)'s depend only on mesh patterns around z, not the particular location of z, hence, the 
norm of G h is independent of z. 0 

Remark 4.1. Theorem 4.1 is valid for all three interpolations in Section 3 because of 
Theorem 3.2. Note that Q8 belongs to both serendipity family and intermediate family of 
type I with degree 2. 

Theorem 4.2. Let uh be the finite element approximation of the Poisson equation in a 
C0 finite element space that contains the intermediate family of type II with degree 2k, let 
Gh be the gradient recovery operator obtained from the ZZ least-squares fitting procedure 
with at least P2k smoothing, and let z be a symmetry point in a locally uniform rectangular 
mesh (on D) such that wz cc DCC 0. Assume that u E W~+3(D) n H 2(0). Then there 
exists a constant C independent of u, h, and z, such that 

l\lu(z)- Ghuh(z)l ~ Ch2(k+l)llnhllulw.;;c+a(D) + Cllu- uhiiH-l(!l)' 

for a positive integer l ~ ® Zk-1. 1h -t 
Proof: We start from the expression 

( 4.4) 

where u1 is the projection type interpolation as in Theorem 4.1. Using the following error 
estimate obtained from the interior analysis [13, Theorem 3.3], 

we obtain 

IGh(u1
- uh)(z)l ~ C m?-x l\l(u1

- uh)(gj)l 
J 

~ Ch2(k+l)llnhllulw.;;c+a(D) + Cllu- uhiiH-l(n)· (4.6) 

The constant C = '2::: lbj(z)l is independent of z since bj(z)'s depend only on mesh patterns 
j 

around z, not the particular location of z. The conclusion then follows by applying Theorem 
4.1 and (4.6) to (4.4). 0 
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Remark 4.2. According to [5, p.184], the term lnh can be removed for higher order finite 
elements. The reason it appears here is due to a technical reason since we quote a result 
from [13] which bears the logarithm term. 

Remark 4.3. In the proof of Theorem 4.2, only (4.5) needs the assumption for the 
Poisson equation. The theorem can be applied to other second-order elliptic equations as 
long as ( 4.5) is satisfied, i.e., the projection interpolation u1 is "ultra-close" to the the finite 
element solution. 

Remark 4.4. Theorem 4.2 implies ultraconvergence local recovery when the solution is 
globally smooth or pollution effect caused by solution singularity is properly controlled such 
that the negative norm 

llu- uhiiH-l(n) = O(h2(k+l)). 

See [8] for the discussion about the negative norm bounds under different regularity as-
sumption on the solutions. . 

Remark 4.5. Theorem 4.2 generalizes the result in [13] from vertices to all mesh sym
metry points including edge centers and element centers. By the symmetry theory [9, 11], 
gradient, or its average, of the finite element solution is superconvergent at a local mesh 
symmetry point for odd order elements (linear, cubic, ... ), and finite element solution itself 
is superconvergent at a local mesh symmetry point for even-order elements. Here we have 
proved that the recovered gradient from the ZZ-patch least squares fitting is two order 
superconvergent at all mesh symmetry points for even-order elements. 

Theorem 4.2 includes the Q9 element as a special case when k = 1. However, it does 
not include the Q8 element since Q8 does not contain the intermediate family of type II. 
The analysis for the Q8 element is more complicated. We only provide a proof in a special 
situation, uniform square partition, although it is possible to establish some local theory by 
interior analysis. For a fix constant p > 0, we define 

np = {X E n, dist(x, Corner set of n) 2:: p }. 

We use Sh to denote Q8 finite element space and use Bh to represent all bubble functions in 
the Q9 finite element space Vh. Clearly, Vh =ShU Bh. Further, notation Sg(D) indicates 
a finite element subspace with support on D. According to our notation, each u/ E V0h(n) 
can be decomposed into i/ = u/ + ul with u/ E Sg(n) and ul E Bh(n). 

We need the following Lemma from [6, Lemma 10.7.4]. 

Lemma 4.3. Assume u E W!(n) n HJ(n), Let Th be a uniform square partition of n. 
Then for any v E V0h(n), 

(V'(u- u/), V'v) =-~;In (o!o;u + a;a~u)v + Rh(u, v), (4.7) 

where 

Theorem 4.4. Assume u E C6+E(D) n HJ(n). Let Th be a uniform square partition of n 
and let uh E Sg(n) be the Q8 finite element solution of the Poisson equation on n. Then 
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there exists wE C2+E(Dp) n H 2 (0) n HJ(n) such that at a mesh symmetry center (vertex, 
edge center, or element center) z, 

where g~ E Sg(n) is the Q8 discrete Green's function and 

I(Y'ub, V'g~)l ~ Ch4 llnhllulw~(n)· 

Proof: Define w E HJ ( n) such that 

1 2 2 b.w = 
45 

D.axay u. 

(4.9) 

(4.10) 

(4.11) 

By the regularity theory of the elliptic boundary value problem, w E H 2 (0) n C2+E(Dp)· 
Set v = g~ in ( 4. 7), use the decomposition u/ = ii.l + u[, and we have 

(uh- u/)(z)- (Y'ul, \7g~) = - ~: (b.a;a;u,g~) + Rh(u,g~) 
= h4wh(z) + Rh(u, g~), (4.12) 

where wh E V0h(O) is the Q8 finite element solution of w which satisfies 

(4.13) 

Note that llg~ll~z(n) ~ Cllnhl (see ~j)or [14]). We then obtain (4.9) from (4.12) with 
1 Le ,:,,r'l{'. r;, y, > 

rh( u) = h 4 
( wh - w) ( z) + Rh ( u, g~) 

satisfies (4.10) in light of (4.8) and (4.13). As for (4.11), we have 

I(Vul, Y'g~)l = l(ub,b.g~)l ~ llut11Loo(n)ll9~11~r(n) ~ Ch4 llnhllulw~(n)· 

Note that utiK is the coefficient of the fourth order derivative a;a;u on K, and it is of the 
4th order by the approximation theory. Since z is arbitrary, we then establish (4.11). D. 

Theorem 4.5. Under the same assumption as in Theorem 4.4, 

I(Ghuh- V'u)(z)l ~ Ch3 ilullw~(wz) +higher order terms, 

where Gh is the ZZ patch recovery operator from either one of the smoothing (2.1)-(2.3), 
and z is a mesh symmetry center. 

Proof: Based on Theorem 4.4, we express 

(Ghuh- V'u)(z) = Gh(uh- i/)(z) + (Ghii/- \7u)(z) 

= Gh(Y'ub, V'g~) + h4Ghw(z) + Ghr~ + (Ghi/- V'u)(z). (4.14) 
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We estimate each term on the right hand side. For the first term, we have 

(4.15) 

by (4.11). Here C = L Jej(z)J is independent of z since Cj(z)'s depend only on mesh 
j 

patterns around z, not the particular location of z. From Theorem 4.1, we know 

J(Ghi/- Vu)(z)J s; Ch4Julwg,(w.)· 

As a finite difference operator, Ghw(z) = Vw(z) + O(h2), therefore, 

h4JGhw(z)l s; Ch4 JJuJlwg,(wz) +higher order terms. 

(4.16) 

(4.17) 

Clearly, JGhr~J s; C(u)h5 by (4.10). Recall (4.15)-(4.17), we establish the assertion. D 

Remark 4. 6. The obstacle prevents us from proving ultraconvergence of the Q8 element 
is the term G h (Vul, \7 g~). We only provide a pessimistic estimate ( 4.15) without taking 
advantage of the possible cancellation from the symmetry. However, we do believe that this 
term should be of order O(h4 ) under certain regularity of u. This can be partially justified 
by the following argument. 

Clearly, (Vul, VgZ) is a function of z which involves some discrete values of a;a~u. 
Note that the discrete Green's function gz decays exponentially away from z, therefore, 
only those values of a;a;u near z have impact on the recovery. Recall the anti-symmetry 
distribution of Cj(z) of the recovery operator Gh, we see that Gh(Vu~, VgZ) will result in 
finite difference scheme of (Vul, \7 g~) plus a higher order term that comes from the decay 
of g~. By the scaling argument, we then have 

(4.18) 

We notice that (Vu~, Vg~) = u~'h(z) is the Q8 finite element approximation of the bubble 
function u~ (z). We further note that 

Ghu~(z) = ~ LCJ(z)u~(zj) = 0 = Vu~(z), 
j 

since the bubble function u~(zj) = 0 when Zj is an element vertex or edge center. Therefore, 

(4.19) 

This implies that if u is a fourth order polynomial, then the recovered gradient of the Q8 
finite element approximation to the bubble term u~ will converge at an order higher than 
four at a mesh symmetry point. Our numerical test confirmed this observation. See Section 
5 Example 3 for details. 

5. Numerical Test 

Ultraconvergence at vertices and edge centers were observed numerically in the original 
work of Zienkiewicz and Zhu [15]. However, the ultraconvergence at the element center by 
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averaging of four overlapping patches is a new result. In addition, we shall consider "true" 
edge centers, comparing with "pseudo" edge centers of the original work in (15, §3.2], where 
the convergence of the recovered derivatives at edge centers are examined by the errors at 
the nearest edge center to a fixed vertex. 

In order to preserve the element center and edge center in a coarser mesh to a fine mesh, 
we need to refine the mesh 3-by-3, instead of 2-by-2. We start from a 4-by-4 mesh and pick 
following points 

(5.1) 

on the unit square [0, 1]2 as our vertex, horizontal edge center, vertical edge center, and 
element center, respectively. With 3-by-3 refinement, the next two mesh levels will be 
12-by-12 and 36-by-36. 

Example 1. In order to exclude the boundary singularity, our first example is 

-b.u = 21!'2 sin 1l'X sin 1l'Y in f2 = (0, 1]2, u = 0 on 80. 

The exact solution is u( x, y) = sin 1l'X sin 1l'Y. 

Example 2. Our second example is a modification of a test case in [15], the Poisson 
equation with zero boundary condition on the unit square with the exact solution 

u(x, y) = x(1- x)y(1- y)(1 + 2x + 7y + 23xy). 

Note that in this case, the Q9 element is exact at all nodal points (vertices, edge centers, 
and element centers), although seven terms 

x3 y3 x3y xy3 x3y2 x2y3 x3y3 
' ' ' ' ' ' ' 

are not in the Q9 finite element space. The original problem in [15] is 

u(x, y) = x(1- x)y(1- y)(1 + 2x + 7y). 

Figures 6 and 7 plot the convergence rate for the above two test cases at those four 
points in (5.1). We observe a perfect fourth order convergence rate. 

Example 3. Our third example is to numerically verify the point we have made in 
Remark 4. 6. We use Q8 finite element to solve the Poisson equation 

-b.u = 2x(1 - x) + 2y(1- y) 

on the unit square with zero boundary condition. The exact solution is u = x(1-x)y(1-y). 
Now the exact solution u is in the Q9 finite element space and hence can be decomposed 
into u = ii/ + u~ where u/ is the projection type interpolation as defined in Section 3 and ub 
is the bubble function. Since u/ is in the Q8 finite element space, it can be exactly resolved. 
Therefore, u- uh = u~- ur'h. Note that in this case Ghu = '\lu on the whole domain. 
Therefore, 
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By (4.19), it should converge at an order higher than four. Indeed, our numerical test 
indicates a convergence rate close to six at an interior mesh symmetry point z. See Figure 
8. 

Conclusion. Ultraconvergence of the ZZ patch recovery technique (with any smoothing 
that includes P2k) for even-order (2k) rectangular finite elements that contains the inter
mediate family of type II has been proved at mesh symmetry points. We have proved not 
only what was observed by Zienkiewicz-Zhu, but also generalized their recovery to the ele
ment center and to higher order elements. In practice, the idea can be used for arbitrary 
quadrilaterals. 

Although the least-squares procedure can be applied to general quadrilaterals, the ul
traconvergence and superconvergence properties will disappear with mesh distortion. This 
is especially serious for the Q8 element. work by Arnold, Boffi, and Falk [2], the authors 
have shown that under certain quadrilateral mesh, the Q8 element cannot maintai_n a full 
quadratic (P2 ) approximation in the physical plane. In this respect, the reader is referred to 
a recent work [12] about a modified Q8 element. Nevertheless, in most practical situations, 
ZZ patch recovery is still able to produce much improved gradients numerically. A reason 
for this phenomenon is its numerical stability which is partially evidenced from Figures 1-4, 
i.e., a scheme based on more spread-out data is less sensitive to mesh distortion. 
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Figure 1: Recovery operator weights 2j at a vertex 
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Figure 2: Recovery operator weights Cj at a horizontal edge center 
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Figure 3: Recovery operator weights Cj at a vertical edge center 
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