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Reliability-Based Design Optimization of Concrete Flexural Members Reinforced with 

Ductile FRP Bars 

 
Bashar Behnam1 and Christopher Eamon2 

 

ABSTRACT 

 
In recent years, ductile hybrid FRP (DHFRP) bars have been developed for use as tensile 

reinforcement.  However, initial material costs regain high, and it is difficult to simultaneously 

meet strength, stiffness, ductility, and reliability demands.  In this study, a reliability-based 

design optimization (RBDO) is conducted to determine minimum cost DHFRP bar 

configurations while enforcing essential constraints.  Applications for bridge decks and building 

beams are considered, with 2, 3, and 4-material bars.  It was found that optimal bar configuration 

has little variation for the different applications, and that overall optimized bar cost decreased as 

the number of bar materials increased.   
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1. Introduction 

 The maintenance costs associated with steel reinforcement corrosion are significant, with 

an estimated repair cost to bridges in the United States (US) alone estimated to be over $8 billion 

[1].  Not only do the corroding steel bars lose tensile capacity, potentially requiring strengthening 

or replacement, but the surrounding concrete is damaged as well, as it cracks as spalls due to 

expansion of the steel [2].   Various methods have been considered in an attempt to solve this 

problem, including adjusting the concrete mix design or increasing concrete cover to limit the 

penetration of corrosive chlorides; cathodic protection; and the use of galvanized, stainless steel, 

or epoxy-coated reinforcement [1, 2].  Another avenue of investigation is the use of fiber 

reinforced polymer (FRP) materials, which have been used in a small number of bridges around 

the world, as well as in the US, in the last two decades [3].  

 The federally-mandated specification for highway bridge design in the US, the American 

Association of State and Highway Transportation Officials (AASHTO) Bridge Design 

Specifications [4], does not directly address the use of FRP reinforcement.  Nor does the 

American Concrete Institute Building Code Requirements for Structural Concrete, ACI-318  [5].  

However, special publications by AASHTO as well as ACI are available that directly address the 

use of FRP: the ACI Guide for the Design and Construction of Structural Concrete Reinforced 

with FRP Bars, ACI-440.1R [6], as well as the AASHTO LRFD Bridge Design Guide 

Specification for GFRP-Reinforced Concrete Bridge Decks and Traffic Railings [7], although the 

latter is specifically limited to glass FRP.   Various other international codes and standards 

address FRP reinforcement as well, including the Canadian Highway Bridge Design Code, CAS-

S6-06 [8]; the International Federation for Structural Concrete Bulletin 40 [9]; 
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Recommendations provided by the Japan Society of Civil Engineers [10], the British Standards 

Institution [11], as well as others [12, 13]. 

 Despite the availability of these design guides as well as the use of FRP reinforcement 

materials in bridge structures for over two decades, the use of FRP for reinforcement, as a 

replacement to traditional steel, is extremely limited in the US.  This is due to several reasons, 

including a lack of familiarity among bridge designers; higher initial cost than steel; and lack of 

reinforcement ductility.  Other potential drawbacks with FRP have discouraged use as well, such 

as a low tensile stiffness, inadequate bond, and degradation in alkaline environments, although 

these problems have been addressed with appropriate material choices and manufacturing 

processes [14]. 

 Two remaining major challenges with FRP are lack of ductility and high cost.  Low 

ductility is a difficult problem to overcome, as FRP bars are generally linear-elastic under load 

until tension rupture.  This behavior may not only render an impending overload failure more 

difficult to detect, but may also limit the possibility of moment redistribution in indeterminate 

structures.   In the last two decades, however, various researchers have developed FRP bar 

designs with significant ductility [15-22].  The majority of these designs are based on a hybrid  

concept, where the bar is made of several different FRP materials, each with a different ultimate 

strain.  As the level of strain increases in the bar, the different fibers incrementally fail at their 

corresponding ultimate strains, reducing stiffness as the load on the bar is increased.  With 

proper selection of materials and volume fractions,  a highly ductile response can be obtained 

while maintaining sufficient tensile capacity, thus producing a ductile hybrid FRP (DHFRP) bar. 

Moreover, concrete flexural members reinforced with DHFRP bars have developed moment-

curvature responses similar to that of corresponding steel-reinforced members [16, 14].   
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 With regard to cost, although FRP bars are generally 6-8 times more expensive than steel 

reinforcement initially (with an entire bridge structure cost from about 25-75% higher if all steel 

reinforcement is replaced with FRP), life-cycle cost analysis of FRP-reinforced bridges 

demonstrated significant cost savings over similar steel-reinforced bridges throughout a 50 to 75 

year bridge lifetime, due to expected decreases in maintenance costs [3].  The same study found 

that the FRP-reinforced bridge typically had roughly one-half or less of the total life-cycle cost 

of the corresponding steel-reinforced bridge, with cost savings usually beginning close to year 20 

of the bridge service life.   However, with an expected 20-year pay-back period, initial cost is 

still a major concern, and any initial cost savings are clearly highly desirable.  

 The reliability of structures reinforced with DHFRP bars is also a concern.  To develop 

appropriate load and resistance factors for structural design, a reliability analysis, in the context 

of a code calibration, is generally needed.  Such structural reliability analyses have been 

conducted for a wide range of FRP materials, including non-ductile FRP bars used in reinforced 

concrete flexural members [23, 24], as well as externally-bonded, non-ductile FRP used to 

strengthen concrete beams [25-32].  Just recently, however, has  the structural reliability of 

concrete sections reinforced with DHFRP bars been analyzed, with only one study presented in 

the literature [33].  For the DHFRP-reinforced members considered in that study, it appeared that 

if DHFRP bars were designed using the ACI 440.1R resistance factors that were developed for 

(single material) non-ductile FRP bars, DHFRP-reinforced beam reliability was adequate, with 

reliability indices slightly higher than code target levels.  However, the safety margin was not 

large, and if a different DHFRP bar configuration is considered, reliability may be inadequate.   

 Therefore, developing FRP-reinforced sections that can meet strength, ductility, stiffness, 

as well as reliability requirements, while minimizing cost, is difficult with a typical trail and 
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error design process, as  the interaction of these various design requirements with DHFRP bar 

construction parameters is complex.  In this paper, a reliability-based design optimization 

(RBDO) process is presented and applied to the development of DHFRP-reinforced concrete 

flexural members.  The goal is to minimize (initial) material cost while meeting all required 

design constraints, primarily by selection of  optimal bar construction parameters. 

2. DHFRP-Reinforced Flexural Member Analysis  

 A general DHFRP bar cross-section is given in Figure 1.  Here, the different fibers are 

placed in concentric layers, but various other configurations are possible, including winding, 

braiding, and symmetrically-distributed bundled arrangements [16, 14].   Typical analytical 

stress-strain curves for several DHFRP bar configurations are given in Figure 2, where the 

behavior of 2, 3, and 4-material bars (B1-B3, respectively) are shown.  The resulting 

discontinuous stress-strain response closely resembles the experimental results found [16-18].  

 When DHFRP bars are used as tensile reinforcement in concrete flexural members, an 

expression for  moment capacity can be developed as: 
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In eq (1), Mc is calculated based on the first FRP material failure in the DHFRP bar, and this 

moment is taken as the nominal capacity Mn of the section. The first square bracketed term is the 

distance between the concrete compressive block and reinforcement centroids, while the second 

square bracketed term is the force in the reinforcement bar at first material failure.   In both 

bracketed terms, 
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and 
if

v  and 
if

E  are the volume fraction and Young’s modulus of fiber in layer i, respectively.  

Similarly, mE  and mv  are the Young’s modulus and volume fraction of the resin, respectively, 

while 
1f

ε  is the failure strain of the first fiber type to fail, and AT is the total area of the DHFRP 

tensile reinforcement.  In the upper square bracketed term, cf ′  is concrete compressive strength 

and K1  and K2 are parameters used to define the parabolic shape of the concrete compression 

block in Hognestad’s nonlinear stress-strain model, where K1 is the ratio of average concrete 

stress to maximum stress in the block and K2 defines the location of the compressive block 

centroid [34]; d is the distance from the tension reinforcement centroid to the extreme 

compression fiber in the beam, and b is the width of the concrete compression block.  Here it is 

assumed that the exterior fibers of the bar are ribbed or otherwise adequately roughened for 

adequate bond [35].  A simpler version of eq. (1) can be developed by using the Whitney model 

for the shape of the concrete stress block, with no significant difference in ultimate capacity 

results.  However, the Hognestad model is required to evaluate cracked section response at load 

levels below ultimate, in order to generate the moment-curvature diagrams needed to evaluate 

section ductility, and was thus considered throughout this study.  

 For DHFRP-reinforced flexural members, ductility is a primary concern. When FRP is 

used as tension reinforcement, ductility index can be calculated from the corresponding load 

deflection or moment-curvature relationship using [36]: 
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where uφ  is ultimate curvature and yφ is yield curvature (i.e. curvature at first DHFRP  

bar material failure), while Etotal is computed as the area under the load displacement or moment-

curvature diagram and Eelastic  is the area corresponding to elastic deformation.  
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For this study, the minimum acceptable ductility index is taken as 3.0 [37, 38], which is 

similar to that for corresponding members reinforced with steel.  As noted earlier, DHRFP bar 

ductility results from a sequence of non-simultaneous material failures with the condition that 

after a material fails, the remaining materials have the capacity to carry the tension force until the 

final material fails, to produce the desired ductility level in the concrete flexural member.  

Moreover, before the desired level of ductility is reached, each bar material must fail before the 

concrete crushes in compression (at an ultimate strain taken as cuε = 0.003).   

 To evaluate ductility, the moment-curvature diagram of the DHFRP-reinforced flexural 

member is needed, not just the nominal moment capacity given by eq. (1).  For moment-

curvature analysis, moment capacity up to concrete cracking is calculated based on the elastic 

section as tgrcr yIfM /= , where rf  is the concrete modulus of rupture, Ig is the uncracked 

section moment of inertia, and yt the distance from the section centroid to the extreme tension 

fiber.  For the cracked section, the relationship between internal strains and the resulting moment 

couple is developed based on the modified Hognestad model describing the nonlinear concrete 

stress-strain relationship. The resulting resisting moment is then determined by: 

( )cKdCM c 2−=  where Cc is the compressive force in the concrete and c is the distance from 

the top of the concrete compression block to the neutral axis, with parameters d and K2 defined 

above.  The corresponding curvature φc is then calculated as  ccc /εφ = , where εc is the concrete 

strain at the top of the concrete compression block.   For the development of the moment-

curvature relationship, it is conservatively assumed that once the failure strain of a particular 

DHFRP bar material is reached, the affected material throughout the length of the flexural 

member immediately loses all load-carrying capability.  This results in jagged moment-curvature 

diagrams, examples of which are shown in Figures 3-6.  Note that at the peaks in the diagram, 
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two different values of moment capacity are theoretically associated with the same value of 

curvature.  This occurs because once the most stiff existing material in the bar breaks, the 

cracked section stiffness decreases significantly and less moment is required to deform the beam 

the same amount.   Actual experimental results of DHFRP-reinforced beams have shown 

smoother curves, closer to that constructed by drawing a line between the peaks and excluding 

the capacity drops shown in the Figures [14, 16].  However, including these theoretical low 

capacity points results in the most conservative ductility indices computed for sections reinforced 

with DHFRP bars, and this method is thus used to enforce the ductility constraint imposed in this 

study. 

Due to the lower elastic modulus of many composite reinforcement materials as 

compared to steel, the possibility of excessive deflections must be considered.  This concern is 

recognized in ACI 440.1R, where recommended limits on span/depth ratios for FRP-reinforced 

concrete flexural members are given.  The estimation of flexural deflections in reinforced-

concrete members becomes challenging, since the degree of cracking, and corresponding loss of 

stiffness, generally varies along the length of the flexural member.   To account for this, various 

methods are available, one of which is presented by Branson [39, 40], which develops the 

effective moment of inertia Ie to be used for deflection calculation as:  
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where Mcr is the cracking moment, Ma is the applied moment, and βd is a reduction factor to 

account for the typical lower stiffness associated with FRP reinforcing and potential bonding 

problems.  To estimate deflections in this study, βd is calculated as 
g

cr
d

I

I
3.3=β  [41], where Ig 

and Icr are gross and cracked moment of inertias, respectively.   
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Although various factors affect DHFRP bar cost, the primary influence is that of the 

material itself.  Manufacturing costs may also be significant, but as DHFRP bars have yet to be 

mass produced for commercial use, there is no readily available product manufacturing cost data 

available.  Thus in this study, comparisons between DHFRP bar types are made based on 

material cost, which is computed as specific cost sc, as a proportion of DHFRP bar cost to that of 

traditional steel bars: 

ss

ff

C

C
sc

ρ

ρ
=         (4) 

where Cf is the cost of fiber material per unit weight, ρf is the density of the fiber, Cs is the cost 

of steel, and ρs is steel density.  The specific costs of the materials considered in this study are 

given in Table 1, as taken from the available literature [14, 42, 43].   

 

3. RBDO 

 In the RBDO process, inherent uncertainties associated with material properties and 

applied loads are captured in the mathematical formulation and solution of the optimization 

problem. There are multiple ways of formulating an RBDO problem [44-49].  In general, the 

procedure aims to establish the vector of design variables Y = Y1,Y2 ,...,YNDV{ }T
that would 

min  f (X,Y)                 (5) 

 s. t. pgi NiYX ,1;),( min =≥ ββ  

  dj NjDYXD ,1;),( min =≥  

  Yk
l ≤Yk ≤Yk

u; k =1 to NDV  

 where f (X,Y) is the objective function of interest with dependence on design variables Y 

(DVs) and random variables (RVs) X = X1, X2,...,Xn{ }T , subjected to Np probabilistic 
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constraints giβ  and Nd deterministic constraints jD , where the resulting set of variables (X,Y) 

must produce constraint evaluations that equal or exceed the minimum required probabilistic and 

deterministic limits,  minβ  and minD , respectively.  Here, the probabilistic constraints are written 

in terms of generalized reliability index β, commonly used in structural reliability analysis in lieu 

of failure probability pf directly.  Each reliability index calculated is particular to an individual 

limit state g considered for probabilistic evaluation, and is in general a function of both RVs and 

DVs.  Deterministic constraints may also be present in the RBDO problem.  In this case, 

deterministic constraints are a function of DVs and RVs, but not full RV information.  Here, 

variance (and higher moments) describing RV uncertainty do not affect deterministic 

calculations, and thus only RV magnitude is relevant, generally in the form of mean value )(X .  

Note that the sets of DVs and RVs may, and often do, overlap.  In such cases the RV mean value 

changes during the optimization, as it is taken as the DV value.  DVs are also often subjected to 

limits to prevent physically impractical solutions, with the kth design variable,Yk  limited by its 

lower and upper bounds, Yk
l  and Yk

u , respectively.  

 DHFRP-reinforced section cost minimization is the RBDO problem of interest to this 

study, resulting in: 

 min f (X,Y) = ∑
=

n

i

iiFRP scA
1

ν      (6) 

 s.t.  Tg ββ ≥  

  un MM ≥φ  

  Lµµφ ≥    

  L∆≤∆  
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  ii MM ≥+1 ; i = 1 to n-1 

  0.1
1

=∑
=

n

i

iν  

  nultn kεε ≥  

 where AFRP is the total cross-sectional area of the DHFRP reinforcement in the section, 

sci is the specific cost of material i, and νi is the volume fraction of material i of n total materials 

used in the reinforcing bar construction (here it is assumed that multiple DHFRP tension 

reinforcing bars used in a given beam are identical).  Note that the cost of the concrete in the 

sections considered is negligible compared to the DHFRP reinforcement cost and is thus not 

included in f for simplicity.  In this problem, a single probabilistic constraint βg is of interest, 

which corresponds to the limit set by the minimum target reliability index βT for structures 

designed to the relevant code standard, which is βT =3.5 for both ACI-318 and AASHTO LRFD as 

considered in this study [45, 51].  The critical deterministic constraints include requirements for 

the code-specified design capacity nMφ  to meet the design load effect Mu, as well as an 

appropriate ductility limit µL , taken as 3.0, as discussed above, and a beam deflection limit ∆L, 

taken as L/240 for FRP-reinforced sections, per ACI 440.1R.  It is also desirable that the moment 

capacity of the section does not fall below the code-required capacity throughout the curvature 

range in which ductility is measured; hence a constraint is provided requiring successive moment 

capacity peaks Mi+1 resulting from n material failures to not fall below that generated from a 

previous material failure.  Also needed is a constraint ensuring that the resulting DHFRP bar 

geometry is physically possible; i.e. that the total of the material volume fractions in the bar 

equals unity.  Finally, a constraint is imposed that is not theoretically necessary but included 

because it was found that it frequently results in ductility indices greater than the minimum 
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required.  This involves limiting the strain in the last material to fail in the DHFRP bar to be no 

less than a fraction (k) of its failure strain at ultimate section failure (i.e. when concrete crushes 

in the compression zone), where k is taken to be 0.85.  Imposing this constraint tends to increase 

ductility by providing greater reinforcement strains at ultimate capacity.  Depending on the 

specific problem, imposing a higher k value than 0.85 is sometimes possible, but often results in 

an infeasible solution.  An alternative to imposing this last constraint would be to formulate a 

multi-objective RBDO, minimizing cost while simultaneously maximizing ductility, but this is a 

substantially more numerically complicated and computationally costly problem to solve.  

Design variables are given in Table 2.  Lower and upper DV bounds for concrete strength and 

member dimensions were selected to provide a range of design possibilities deemed reasonable 

for the applications considered (see Flexural Members Considered).   As it is very difficult to 

chose an initial set of DV values that satisfies the imposed constraints (i.e. eq. 6), material 

volume fractions ν and reinforcement area AFRP were initially set to arbitrarily low values (the 

lower DV bounds) to begin the RBDO.  Note that these initial DV values do not constitute a 

feasible design.  

 To evaluate the probabilistic constraint βg, critical RVs affecting moment capacity must 

be identified.  Flexural member resistance RVs relevant to all cases include manufacturing 

variations in volume fractions (ν) of the different fibers types and resin used in the bar 

construction; modulus of elasticity (E) for the materials and resin; failure strain of the first 

material to fail (
1f

ε ) (the only failure strain value which affects calculation of moment capacity); 

compressive strength of the concrete (fc’); depth of reinforcement (d); and professional factor 

(P), which represents the ratio of the actual capacity to the theoretically-predicted capacity of the 

flexural member.  For the building beam cases, width of the beam (b) is also taken as a RV.  The 
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coefficient of variation, V, bias factor λ (ratio of mean to nominal value), and distribution type 

for each resistance RV are given in Table 3.  Although a variety of RV data are presented in the 

literature, RV statistical parameters used in this study are selected for consistency with previous 

reliability-based code calibrations.  Here, load and resistance RVs for the building beam are 

taken as those used to calibrate the ACI 318 Code [51]; while bridge deck load and resistance 

data are taken as those used for the AASHTO LRFD Code calibration [50]; and FRP RV 

statistical parameters are taken from those used for the ACI 440.1R calibration [23], as well as 

from [53].  For the bridge slab, the load RVs considered are dead load of the slab (DS), wearing 

surface (DW), and parapets (DP), and truck wheel live load (LL); while for the building beam, 

load RVs are dead load (DL) and transient live load (50-year maximum).  These values are 

shown in Table 4.  

 For reliability analysis, the relevant limit state g is: g = Mc – Ma, where Mc is the moment 

capacity of the section, as given by eq. 1, as a function of the resistance RVs given in Table 3, 

and Ma is the applied moment effect, as a function of the dead and live load RVs  given in Table 

4.   In the RBDO, Monte Carlo simulation (MCS) was used to calculate probability of failure pf 

associated with the limit state for each of the sections considered (see above), which was then 

transformed to reliability index β using β= -Φ
-1

(pf).   The number of simulations was increased 

until β convergence was achieved.  In general, this occurred close to 1x106 simulations.   

 

4. Flexural Members Considered 

In this study, three DHFRP bar concepts are considered in the RBDO process: 2, 3, and 

4-material bars composed of continuous fibers, designated B1, B2, and B3, respectively.  Table 1 
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provides the material choices considered, where Young’s modulus (E) and ultimate strain (εu) are 

given.   

  For the RBDO problem, two typical tension-controlled reinforced concrete flexural 

member applications are considered; a bridge deck and a building floor beam.  The bridge deck  

(Figure 7) is optimized over girder spacings of 1.8 and 2.7 m (6 and 9 ft), with 25 mm (1 in) 

cover for the DHFRP bars, placed in the top and bottom of the slab, as used in two FRP-

reinforced bridge decks built in Wisconsin [54, 35].   Note that AASHTO GFRP [7] allows a 

minimum of 19 mm (¾ in) cover for a slab reinforced with composite bars.  The bar diameter 

considered was 22 mm (7/8 in). The deck is designed to meet the flexural strength requirements 

of the AASHTO LRFD Specifications [4], using the equivalent strip method to determine required 

capacity for positive and negative slab moments.  The relevant flexural design equation is: 

IMLLDWDWDCDCn MMMM +++= 75.1γγφ , where resistance factor φ  is taken as 0.55 (per 

AASHTO GFRP as well as ACI 440.1R); MDC and MDW refer to the moments caused by the deck 

self weight and wearing surface (taken as 75 mm (3 in) for a 13 mm (0.5 in) existing integrated 

surface and 62 mm (2.5 in) for future allowance), respectively; γDC are γDW are load factors that 

vary from 1.25 to 0.9, and 1.5 to 0.65, respectively, to generate maximum load effect; and 

MLL+IM is the live load moment caused by the worst-case positioning of 72 kN (16 kip) truck 

wheel loads on the slab, in addition to a specified impact factor of 1.33.  For the DHFRP bars, it 

is preferable that the carbon layer is placed on the exterior of the bar to protect the inner glass 

layers from alkaline attack in a cementitious environment.  This results in use of an 

environmental factor CE, which reduces bar design strength to account for potential material 

degradation, as 0.9, as recommended in ACI 440.1R.  
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 For the building beam, two span lengths, 6 and 9.1 m (20 and 30 ft), were considered for 

optimization.  Simple-span members were used, although a continuous member does not 

significantly alter results.  The relevant flexural design equation is LLDLn MMM 6.12.1 +=φ , 

where φ  is 0.55 (per ACI 440.1R); MDL and MLL are the dead and live load moments, 

respectively.  The beam was loaded with a dead load to total load (D/(D+L)) ratio of 

approximately 0.5.  Decreasing this ratio did not change results, while increasing this ratio 

beyond 0.5 generally resulted in slight decreases in reliability, as similar to the results found for 

steel-reinforced beams [51].   

 

5. Results 

 The RBDO was conducted with an iterative procedure that systematically increments 

through feasible sets of DV values to find the minimum cost solution.  The process is 

implemented in two stages, where first a set of feasible bar configurations is developed 

considering DVs ν1-4, as appropriate for bar type, acting on constraints 0.1
1

=∑
=

n

i

iν  and a 

constraint similar to ii MM ≥+1  per eq. 6, but based on bar force rather than section moment.  

Here the volume fractions νi are incremented at 1% increments.  Once a set of feasible bar 

designs is developed, a set of feasible reinforced concrete flexural members is developed by 

incrementing through combinations of the remaining DVs (AFRP, b, h, d, and fc’)  in conjunction 

with the set of feasible bar designs, and including evaluation of the constraints given in eq (6) 

found to be critical.  In the procedure,  AFRP increments at 1.0 mm2 for beams and 0.1 mm2 for 

decks; b and h increment at 12.7 mm (0.5 in); d increments at 6 mm (0.25 in); and fc’ increments 

at 3.5 MPa (500 psi).   Of the set of feasible sections developed, the minimum cost design is then 
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selected.   Although computationally expensive, this method was found to be more stable than a 

gradient-based solver such as sequential quadratic programming (SQP), which encounters 

difficulties computing numerical derivatives with the discrete values allowed for the DVs.  The 

accuracy of the optimized solutions using the incremental approach was verified with a series of 

nonlinear test problems with exact solutions known, with no significant differences in results 

found [55].  An alternative approach is to use traditional continuous rather than discrete DVs, 

which would allow numerical compatibility with traditional gradient based methods, then 

rounding the DV values to the closest increments allowed for the DVs to report a final solution.  

This computational effort-saving approach was ultimately not used to avoid discrepancies in the 

calculated RBDO solution and that chosen for the final optimized designs.  

 Characteristics of optimized flexural members are  given in Tables 5a and 5b; Figure 2 

presents the stress-strain diagram for the 6 m (20 ft) building beam case bars (other cases are 

similar), while Figures 3-6 are the moment-curvature responses of all cases considered.   For a 

given bar type (B1, B2, or B3), little difference was found in optimal bar construction among the 

different applications considered, where the optimal two material bar (B1) was found to be 

composed of approximately equal quantities of IMCF and AKF-II in each case (ν=0.27 each), 

with about 45% resin.  The optimal three material bar (B2) was found to be composed primarily 

of AKF-II (ν=0.27), IMCF (ν=0.21), and SMCF (ν=0.06), with 46% resin. The four material bar 

(B3) was composed of EGF (ν=0.21), IMCF (ν=0.20), AKF-II (ν=0.08) for decks but AKF-I for 

beams, SMCF (ν=0.07), and 44% resin.  Optimized reinforcement ratios ranged from 0.0026-

0.0036 for decks and from 0.0035-0.0052 for beams, with beams with bars B1 and B2 having the 

highest ratios.  Beam depth was found to increase as beam span increased, although no pattern to 

beam depth was associated with the bridge decks.  This is likely because a practical lower limit 
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of deck thickness was imposed in the problem, which was more than adequate for all cases.  No 

discernable patterns were found with respect to beam width nor area of reinforcement.  The 

relationship between beam depth and width, concrete strength, and area of reinforcement is 

complex and inter-related, however, as the effect of their combination affects both strength and 

ductility.  All beam optimizations maximized concrete strength, while concrete strength was 

found to increase as girder spacing increased for the bridge decks. 

 For every case, all design constraints were met.  Tables 6 and 7 provide constraint values 

for  the optimized sections, where the resulting reliability index (β), ratio of design moment 

capacity to design load ( un MM /φ ), ductility index ( φµ ), ratio of deflection to the deflection 

limit (∆/ ∆L), and ratio of reinforcement strain to ultimate strain at beam ultimate flexural 

capacity, (εn/εult n), are presented.  In all cases, the governing constraint was design moment 

capacity ( un MM /φ ), while reliability was somewhat higher than the minimum 3.5 required, 

varying from approximately 3.8-3.9.   For each application, ductility index varied from the 

minimum imposed (3.0) for case B1, to slightly over 3 for case B2, to 5.0 for case B3. Note that 

based on the material properties considered, the resulting ductility indices resulted in sections 

with tension reinforcement strain εt significantly higher (approximately 0.02 < εt < 0.04) at 

concrete crushing than that required by ACI 318 for tension controlled steel-reinforced sections 

(εt ≥ 0.005). 

 In no case was the deflection limit a critical concern, although deck deflections were 

much closer to the limit imposed (with ∆/ ∆L ratios approaching 0.80 for the larger girder spacing 

considered) than for beams.   This is expected, given that the decks have larger span/depth ratios.  

As seen in the tables, other than differences in deflection limit ratio, however, the specific 
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application evaluated had little impact on the results, while DHFRP bar type (B1, B2, or B3) was 

much more influential.   

 Table 8 provides a comparison of optimized bar costs, where the specific costs for each 

application are calculated per eq. 4, then normalized to the lowest cost result for comparison.  

Here relative costs are compared in two ways: in unit and total costs.  Unit costs (cost/bar unit 

volume) are normalized to the lowest cost found across all applications, which was the B3 case 

for the 6 m (20 ft) beam span. The highest unit cost was found in the unoptimized designs (B1) 

for every application, as discussed further below. The total cost comparison considers the 

amount of reinforcement used in the application as well; i.e. the specific cost multiplied by the 

bar cross-sectional area.  This accounts for fact that some bar designs have inherently less 

strength than others, and correspondingly require a larger bar area to carry the same tensile force.   

For reasonable comparisons, total costs are normalized within each of the four applications (i.e. 

for each of the two deck and beam spans), as some applications require more tensile force to 

develop the required moment capacity than others.  Thus, each application will have a different 

least total cost case, identified by a total relative cost of 1.0 in Table 8.  Also shown in Table 8 

are costs relative to traditional steel, given in parentheses.  Clearly, DHFRP is much more costly, 

with the cheapest optimized results (B3 case bars) from about 10-12 times that of steel.  This is 

primarily due to the need for an expensive IMCF material (Table 1) to enable the bar to meet all 

performance criteria.  The resulting DHFRP bars are approximately twice as expensive as 

traditional, single-material CFRP bars that use lower grade carbon fibers [3]. 

 In the table, results are presented for unoptimized and the final optimized designs.  The 

unoptimized design is presented for comparison.  It represents a reasonable starting design that 

meets most constraints (all except ductility and reinforcement strain limit).  Here, a reasonable 
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starting design was made for each bar type and used for all applications; hence relative unit costs 

are identical for a given bar type for each application.  It was found that the optimized designs 

were significantly less expensive than the base designs, generally resulting from a 10 - 30% 

reduction in relative total costs.  In every application, bar costs decreased as the number of 

materials increased from 2 to 4, where the least costly bars were B3.  The final optimized bar 

stress-strain and section moment curvature diagrams are shown in Figures 2 and 3, respectively. 

 

6. Conclusions 

 A RBDO was conducted on three types of DHFRP reinforcing bars, which were cost-

minimized for different bridge deck and building beam design scenarios considering strength, 

deflection, ductility, and reliability constraints.  It was found that, for a given bar type, there was 

little difference in optimal bar construction among the different applications considered.  It was 

also found that the optimized designs were approximately 10-30% less expensive than the base 

designs considered, a potentially important cost savings given the relatively expensive material 

costs involved with DHFRP bar construction.  For all cases, bar material costs decreased as the 

number of materials used in bar construction increased from 2 to 4.  It was also found that for all 

cases, the governing constraint was design moment capacity.   

  With careful selection of bar material properties and proportions, all DHFRP-reinforced 

flexural members considered could meet code-specified (i.e. AASHTO LRFD as well as ACI 318) 

strength and ductility requirements for steel-reinforced sections.  Note that selection of bar and 

section properties to meet all of the imposed constraints is in general difficult without use of a 

formal optimization procedure.  Although ACI 440.1R allows either over or under-reinforced 

designs with FRP bars, only tension-controlled sections were considered in this study.  This is 



 20 

appropriate, as it only makes sense to use DHFRP bars in tension-controlled members, where bar 

ductility could be taken advantage of in the case of an overload. 

 Since the reliability of DHFRP-reinforced flexural members (from approximately β=3.8 

to 3.9) was found to be higher than the targets set for steel-reinforced sections considered in this 

study (β=3.5) , it may be argued that an increase in the allowable resistance factor given by ACI 

440.1R of 0.55 may be warranted.  However, due to other performance differences between 

DHFRP and steel, such as the inability of the DHFRP-reinforced section to behave in a ductile 

manner for more than a single overload, which is clearly disadvantageous for cyclic forces, the 

existing higher level of reliability may be appropriate.   

 Although strength and ductility requirements can be addressed, an additional 

consideration with the use of DHFRP, as well as non-ductile FRP bars, is cracked section 

stiffness for cost-effective bar configurations.  It was found that otherwise identical steel-

reinforced sections generally have approximately half the deflection as those reinforced with 

DHFRP bars.  As the effective elastic modulus of DHFRP reinforcement is lower than that of 

steel, deeper sections as well as higher concrete strengths are generally required to 

simultaneously meet strength, ductility, as well as deflection constraints.    
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Table 1.  DHFRP Bar Material Properties 

Label Material E GPa (ksi) εu* Density, g/cc 
(lbs/ft3) 

Specific cost 

IMCF IM-Carbon Fiber 400 (58000) 0.0050 1.76 (110) 50 
SMCF SM-Carbon Fiber 238 (34500) 0.0150 1.76 (110) 6.0 
AKF-I Aramid Kevlar-49 Type I 125 (18000) 0.0250 1.45   (91) 8.0 
AKF-II Aramid Kevlar-49 Type II 102 (15000) 0.0250 1.45   (91) 8.0 
EGF E-Glass fiber 74 (11000) 0.0440 2.56 (160) 1.0 
Resin Epoxy 3.5 (540)* 0.0600 1.05   (66) 1.5 
*Shear modulus G is taken as 1.26 MPa (194 ksi) 

 
Table 2. Design Variables   

DV Description Lower Bound* Upper Bound 
νi (i=1-4) Material volume fraction 0.05 1.0 
AFRP

** Reinforcement area, mm2 (in2) 15; 650 (0.002; 1.0) -- 
fc’  Concrete strength, MPa (ksi) 31 (4.5) 38 (5.5) 
b Beam width, mm (in) 460 (18) 560 (22) 
d*** Reinforcement depth, mm (in) 180; 570; 880 

(7, 22.5, 34.5) 
230; 830; 1270 
(9, 32.5, 50) 

*Also the initial value for the DV.  **Values provided for deck and beam cases, respectively. 
***Values provided in order for: deck; 6 m (20 ft) span beam; 9.1 m (30 ft) span beam. 

 
Table 3. Resistance Random Variables 

RV* Description V λ 

Carbon-IMv  Volume fraction of IM-Carbon  0.05 1.00 

Carbon-SMv  Volume fraction of SM-Carbon 0.05 1.00 

49Kevlar−v  Volume fraction of Kevlar-49 0.05 1.00 

GlassEv −  
Volume fraction of E-Glass 0.05 1.00 

resinv
 

Volume fraction of resin 0.05 1.00 

Carbon-IME  Modulus of elasticity of IM-Carbon 0.08 1.04 

CarbonSM−E  Modulus of elasticity of SM-Carbon 0.08 1.04 

49Kevlar−E  Modulus of elasticity of Kevlar-49 0.08 1.04 

glassEE −  
Modulus of elasticity of E-glass 0.08 1.04 

resinE
 

Modulus of elasticity of resin 0.08 1.04 

1f
ε  Failure Strain of IM-Carbon 0.05 1.20 

cf ′
 

Compressive strength of concrete  
   Bridge slab 
   Building beam 

 
0.04 
0.05 

 
1.14 
1.14 

d Depth of reinforcement  
   Bridge slab  
   Building beam  

 
0.10 
0.04 

 
0.94 
0.99 

b Building beam width 0.04 1.01 
P Professional factor 0.16 0.89 
*All distributions are normal. 
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Table 4.  Load Random Variables 

RV* Description V λ 

Bridge Slab    
DS Dead load, slab 0.10 1.05 
DW Dead load, wearing surface 0.25 1.00 
DP Dead load, parapet  0.10 1.05 
LL Truck wheel load  0.18 1.20 
Building Beam    
DL Dead load 0.10 1.00 
LL Live load 0.18 1.00 
*All distributions are normal except live loads, which are extreme type I. 

 
 
Table 5a.  Design Variable Results for Optimized Deck Sections 

 Girder Spacing: 1.8 m  2.7 m 

DV DV material B1  B2 B3 B1  B2 B3 

ν1 IMCF 0.27 0.21 0.20 0.27 0.21 0.21 
ν2 SMCF - 0.06 0.07 - 0.06 0.07 
ν3 AKF-I - - - - - - 
ν3 AKF-II 0.29 0.27 0.08 0.29 0.27 0.09 
ν4 EGF - - 0.21 - - 0.20 
νr Resin 0.44 0.46 0.44 0.44 0.46 0.43 

AFRP
*
 (mm2) 160 175 160 200 220 215 

d (mm) 200 180 200 200 200 210 
fc’ (MPa) 28 28 31 31 31 35 

*per 300 mm (12 in) deck width 

 
 
Table 5b.  Design Variable Results for Optimized Beam Sections 

  Span 6 m Span 9.1 m 

DV DV material B1  B2 B3 B1  B2 B3 

ν1 IMCF 0.26 0.21 0.20 0.26 0.21 0.21 
ν2 SMCF - 0.06 0.07 - 0.07 0.07 
ν3 AKF-I - - 0.07 - - 0.07 
ν3 AKF-II 0.29 0.26 - 0.29 0.27 - 
ν4 EGF - - 0.21 - - 0.21 
νr Resin 0.45 0.47 0.45 0.45 0.45 0.44 

AFRP (mm2) 1550 1610 1290 2520 2390  2190 
b (mm) 460 460 460 530 520 560 
d (mm) 650 685 850 900 980 1110 
f’c (mPa) 38 38 38 38 38 38 
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Table 6. Constraint Evaluation Results for Deck 

 B1  B2 B3      

Girder Spacing L=1.8 m (6 ft) 
β 3.92 3.92 3.92     

φ Mn/Mu 1.0 1.0 1.0     

φµ  3.0 3.04 5.0     

∆/ ∆L 0.33 0.51 0.47     
εn/εult n 0.97 0.98 0.85     

Girder Spacing L=2.7 m (9 ft) 
β 3.90 3.92 3.94     

φ Mn/Mu 1.0 1.0 1.0     

φµ  3.0 3.1 5.0     

∆/ ∆L 0.79 0.73 0.65     
εn/εult n 1.0 1.0 0.85     

 

 

 

Table 7. Constraint Evaluation Results for Beam 

 B1  B2 B3      

Beam Span L=6 m (20 ft) 
β 3.75 3.79 3.94     

φ Mn/Mu 1.0 1.0 1.0     

φµ  3.0 3.4 5.0     

∆/ ∆L 0.045 0.041 0.029     
εn/εult n 0.86 0.91 1.0     

Beam Span L=9.1 m (30 ft) 
β 3.76 3.71 3.92     

φ Mn/Mu 1.0 1.0 1.0     

φµ  3.0 3.3 5.0     

∆/ ∆L 0.048 0.044 0.035     
εn/εult n 0.86 0.94 1.0     
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Table 8. Optimized Normalized Bar Costs  

 Unoptimized Designs Optimized Designs 

Section Relative Unit 
Cost  

Relative Total 
Cost 

Relative Unit 
Cost 

Relative Total 
Cost 

Deck, 1.8 m (6 ft) Girder Spacing 

B1 1.60 (16.2) 1.91 (20.8) 1.38 (13.9) 1.70 (18.5) 
B2 1.38 (13.9) 1.65 (18.0) 1.16  (11.7) 1.24 (13.5) 
B3 1.17 (11.8) 1.40 (15.3) 1.01 (10.2) 1.00 (10.9) 

Deck, 2.7 m (9 ft) Girder Spacing 

B1 1.60 (16.2) 1.58 (19.3) 1.58 (15.5) 1.29 (15.7) 
B2 1.38 (13.9) 1.36 (16.6) 1.36 (13.7) 1.18 (14.4) 
B3 1.17 (14.2) 1.16 (14.2) 1.16 (11.7) 1.00 (12.2) 

Beam, 6 m (20 ft) Span 

B1 1.60 (16.2) 2.00 (23.8) 1.35 (13.6) 1.63 (19.4) 
B2 1.38 (13.9) 1.72 (20.5) 1.15 (11.6) 1.44 (17.1) 
B3 1.17 (11.8) 1.46 (17.4) 1.00 (10.1) 1.00 (11.9) 

Beam, 9.1 m (30 ft) Span 

B1 1.60 (16.2) 1.67 (20.7) 1.35 (13.6) 1.47 (18.2) 
B2 1.38 (13.9) 1.44 (17.9) 1.16 (11.7) 1.21 (15.0) 
B3 1.17 (11.8) 1.22 (15.1) 1.04 (10.5) 1.00 (12.4) 

Note: values in parentheses represent costs relative to steel. 
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Figure 1. DHFRP Bar Concept 
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Figure 2. Stress-Strain Curves for DHFRP Bars 
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Figure 3. Moment-Curvature Diagram for DHFRP-Reinforced Deck (1.8 m) 
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Figure 4. Moment-Curvature Diagram for DHFRP-Reinforced Deck (2.7 m) 
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Figure 5. Moment-Curvature Diagram for DHFRP-Reinforced Beam (6 m) 
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Figure 6. Moment-Curvature Diagram for DHFRP-Reinforced Beam (9 m)  

 
 

 
 
Figure 7. Bridge Deck 
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