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Abstract 

 

In this paper, we present the application of probabilistic design modeling and reliability-based design 

optimization (RBDO) methodology to the sizing optimization of a composite advanced submarine sail 

structure under parametric uncertainty.  With the help of probabilistic sensitivity analysis, the influence of 

individual random variables on each structural failure mode is examined, and the critical modes are 

treated as probabilistic design constraints under consistent lower bounds on the corresponding reliability 

indices. Whereas the failure modes are applied to structural components in the solution of the RBDO 

problem, the overall system reliability is also evaluated as a post-optimization step.  The results indicate 

that in comparison to a deterministic optimum design, the structural mass of the probabilistic optimum 

design is slightly higher when consistent probabilistic constraints are imposed, and the overall structural 

stiffness is found to be more critical than individual component laminate ply thicknesses in meeting the 

specified design constraints. Moreover, the post-optimality analysis shows that the overall system failure 

probability of the probabilistic optimum design is more than 50% lower than that of the deterministic 

optimal design with less than 5% penalty in structural mass.  
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Introduction 

 Probabilistic modeling and reliability-based design optimization (RBDO) have gained broad 

recognition in recent years as an appropriate approach for structural optimization under uncertainty.  In 

RBDO, a traditional deterministic structural optimization problem is replaced by a non-deterministic one 

subject to a combined set of deterministic and reliability-based (probabilistic) design constraints, with a 

parameter set that includes design as well as random variables.  The resulting nonlinear, probabilistic 

mathematical programming problem is solved for the optimal values of design variables that improve a 

structural response of interest while considering the uncertainty in material, loading, sizing, and other 

contributing factors. 

 The evaluation of failure probability or associated reliability index for each reliability-based 

constraint poses a computational challenge in RBDO as the calculation of component reliability generally 

requires the solution of a separate optimization problem (in random-variable space) within, often larger, 

main design optimization problem (in design-variable space).  When the evaluation of each limit state 

function is based on the finite element analysis (FEA) of a complex structural system, the RBDO problem 

becomes considerably more complicated and computationally intensive. 

  A significant body of RBDO related research exists and continues to grow, though a review of the 

many proposed RBDO formulations is beyond the scope of this paper.  Despite the advancements in this 

area, few RBDO approaches applied specifically to ship structures appear in the technical literature.  

Some of these include Pu et al. (1997), Leheta et al. (1997), and Brown et al. (1996).  Others have 

considered the reliability analysis of submarine structures without optimization (Morandi et al. 1994), or 

considered structural optimization without probabilistic analysis (Jang et al. 2003). 

In this paper, an RBDO algorithm is presented and applied to a complex structural system 

representing an advanced submarine sail design made of glass-reinforced polymer composite materials. 

The results of RBDO problem for different combinations of component reliability constraints are 

examined, followed by a sensitivity analysis and the post-optimization assessment of the system 

reliability. 
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Structural Reliability 

Given a limit state function, g in structural reliability analysis, it is desired to find the probability P 

that g is less than zero, for which a failure is indicated by 

Pf = P g X( )< 0[ ]         (1) 

Probability of failure Pf is theoretically found by integrating the joint probability density function (PDF) 

over the failure region in the probabilistic space of random variables as 

Pf = f x (X)

g(X)≤0

∫ dX           (2) 

where fx is the joint PDF of the limit state and X  is the vector of random variables in g.  The failure 

region is the probability space where g ≤ 0.  For most practical problems, it is well known that the 

formulation of fx and its integration over the failure region are typically too difficult to compute directly.  

Therefore, numerous alternative methods have been developed to estimate Pf without the direct use of Eq. 

(2).  In general, these methods might be classified as simulation or sampling-based methods (e.g., Monte 

Carlo simulation and its variants) and analytical (but numerically implemented) algorithms.  The former, 

although potentially highly accurate, are generally plagued by a requirement for a large number of 

samples (i.e., evaluations of the limit-state function) to accurately estimate failure probability.  Although 

there are some exceptions with variance reduction techniques, this problem can be expected to worsen as 

failure probability becomes smaller.  Of the analytical approaches, the most common ones make use of 

the reliability index, β, as a surrogate measure of failure probability, and bypass the direct calculation of 

Pf entirely.  Assuming β is computed accurately, it can be shown that a transformation to Pf can be made 

by use of the standard normal cumulative distribution function, Φ such that Pf = Φ(−β) .  Although 

computationally efficient, these analytical methods must be used with caution as the accuracy varies with 

the non-linearity of the limit state, the non-normality of the random variables, as well as other 

characteristics of the limit state function (Eamon et al. 2005).  The necessary requirement of these 
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methods is to locate the most probable point of failure (MPP), which typically requires an optimization 

algorithm.  At the MPP, the limit state is approximated with a linear or higher order formulation from 

which reliability index can be calculated.  

For this study, the iterative Advanced Mean Value Plus (AMV+) method is used to calculate 

reliability index (Wu et al. 1990).   This method is a variant of the first-order reliability method (FORM), 

or Rackwitz-Fiessler procedure (Rackwitz and Fiessler 1978).  In this method, the limit state function g is 

repeatedly re-approximated about the MPP ( x
*) until convergence, but with AMV+, an additional sub-

iteration is added on the linearized function that requires no calls to the true response.  This usually allows 

the MPP to converge more quickly than the Rackwitz-Fiessler algorithm, provided that the limit state 

response is complex and computationally costly, as with those in this study.  The specific process is as 

follows: 

1. The limit state is linearized using a first-order Taylor series expansion at the MPP.  For the first 

iteration, the mean values of random variables are used in place of the MPP.  This step requires n+1 calls 

to the exact limit state function, where n is the number of random variables in the problem. 

g = z ≈ z(x
*) +

∂z

∂Xi

 

 
 

 

 
 

i=1

n

∑
x

*

Xi − xi
*( )       (3) 

where z(x
*)  is the limit state function evaluated at the MPP and represents one call to the true response 

(i.e., FEA code), 
∂z

∂Xi

=
∂g

∂Xi

 are the derivatives of the limit state function with respect to each random 

variable Xi.  As the limit state is an implicit function of the random variables, these derivatives are 

calculated numerically using a finite difference procedure.  The evaluation of each derivative requires one 

call to the true response. 

2. A gradient-based optimization algorithm is used to locate the MPP of the linearized function.  This sub-

iteration requires no calls to the true response. 
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3. Steps 1 and 2 are repeated until MPP convergence.   Typically, only several iterations are required for 

convergence.  At the converged MPP, reliability index can be calculated as  

β =
z

˜ σ z
           (4) 

where 

˜ σ g =
∂z

∂Xi

 

 
 

 

 
 

2

˜ σ i
2

i=1

n

∑  is the linearized standard deviation, which is a function of the random variable 

standard deviations ˜ σ i : 

Mathematical Formulation of the RBDO Problem  

 In RBDO, inherent uncertainties associated with material properties, loads, sizing, strength, and other 

parameters, are captured in the mathematical formulation and solution of the optimization problem. There 

are multiple ways of formulating an RBDO problem (Enevoldsen and Sorensen 1994, Frangopol 1995, 

and Tu et al. 1999). In its generic form, we seek the optimal vector of design variables 

Y = Y1,Y2 ,...,YNDV{ }T
that would 

min  f (X,Y)             

s. t. Pf i
= P gi

p
(X,Y) < 0[ ]≤ Pmax; i =1,N p ;     (5) 

  Yk
l ≤Yk ≤Yk

u; k =1,2,...,  NDV  

where f (X,Y)  is the objective function of interest with dependence on design and possibly the random 

variables, X = X1, X2,...,Xn{ }T . Each of the Np design constraints is expressed as a probability of 

failure Pf i
 or, specifically, as the probability of limit state gi

p
 becoming negative is no greater than the 

specified limit, Pmax . The design variables in Eq. (5) could be independent or represent the mean values 

of a subset of random variables, with the kth design variable,Yk  limited by its lower and upper bounds, 

Yk
l
 and Yk

u
, respectively. For a tradeoff between design efficiency and robustness, the performance 
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function in Eq. (5) can be written as f (X,Y) = a1µ f (X,Y) + a2 ˜ σ f (X,Y), where µ f  and ˜ σ f  represent the 

mean and standard deviation values, respectively, of the objective function, and coefficients a1  and a2  

denote scalar weighting factors that signify the desired emphasis on efficiency and robustness, 

respectively (Rao 1992).  

By using the relationship between failure probability Pf and reliability index β , it is possible to 

express the constraint limit in terms of the corresponding target or minimum reliability index as 

( )max

1

min P
−Φ−≈β .  This relationship between Pf  and β  is exact when β  is computed for linear limit 

states containing normally distributed random variables.  As noted above, for nonlinear limit states, some 

accuracy is lost if a translation back to Pf  is desired, although for typical problems, β  usually provides 

acceptable accuracy. 

As is often the case, some responses such as structural weight may be marginally impacted or totally 

unaffected by the variability in the random variables (i.e., design uncertainties), and consequently they 

can be treated as deterministic. With weight as the objective function and a subset of design constraints as 

deterministic, Eq. (5) can be rewritten as  

min  f (Y) =W (Y)              

s.t.   ˆ g i
p

(X,Y) =
P gi

p
(X,Y) ≤ 0[ ]

Φ −βmin( )
−1≤ 0; i =1,N p            (6) 

ˆ g j
d

(µX ,Y) =
Rj (µX ,Y)

Rjmax

−1≤ 0; j =1 to Nd        

  Yk
l ≤Yk ≤Yk

u; k =1 to NDV  

where ˆ g i
p
 and ˆ g j

d
 represent normalized reliability-based and deterministic constraints, respectively, with 

the latter preventing the critical value of a deterministic response, R j  from exceeding its maximum 

allowable value, R jmax
.  In Eqs. (6), Np and Nd represent the number of probabilistic and deterministic 

constraints, respectively.   
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The presence of probabilistic design constraints makes the solution of Eq. (6) challenging and 

expensive.  Different approaches for the evaluation of ˆ g 
i
p (X,Y)  have been developed. In the reliability 

index approach (Enevoldsen and Sorensen 1994), ˆ g 
i
p (X,Y)  is described in terms of a lower bound on the 

reliability index (i.e., ˆ g i
p (X,Y) =1− βi X,Y( ) βmin i

≤ 0, where βi X,Y( )= −Φ−1
P gi

p
(X,Y) ≤ 0[ ] 

 
  

 
 ) 

whereas in the performance measure approach (Tu et al. 1999), it is modeled using inverse transformation 

(i.e., ˆ g i
p (X,Y) = −F

G i

−1 Φ(−βmin i
)( )≤ 0, where FGi

(0) = P gi
p

(X,Y) ≤ 0[ ]). More recently, Du and Chen 

(2004) proposed the replacement of ˆ g 
i
p (X,Y)  with an equivalent deterministic constraint and the 

decoupling of reliability analysis and design optimization in each design cycle whereas Qu and Haftka 

(2004) suggested the use of probability safety factor in modeling of each probabilistic constraint. 

The specific details regarding the application of RBDO to a complex marine structure are presented 

next. 

Composite Submarine Sail Structure 

 A new design concept envisioned for the next-generation Navy submarines replaces the current airfoil 

shaped sail with a canopy style configuration known as the Composite Advanced Sail (CAS) and shown 

in Fig. 1. The CAS concept is aimed at enhancing the performance of the submarine while increasing its 

payload capacity.  Considering the length, width, and height dimensions of approximately 100 x 20 x 20 

ft, together with large-size stiffeners and a thick outer shell, structural weight is a major concern.  To 

reduce weight and maintenance costs, the new sail design will be primarily made of glass-reinforced 

polymer (GRP) composite materials.    

Earlier efforts in structural design were based on a parametric study (Sprecace 2000) to examine the 

effects of alternative stiffener layouts and the subsequent nonlinear FEA studies (Cowan 2001) for 

various load cases.  The baseline CAS model with one longitudinal and ten transverse stiffeners was 

optimized for minimum weight using a deterministic formulation and solution of the sizing optimization 

problem (Rais-Rohani et al. 2005).  Subsequent reinforcement layout (topology) and sizing optimization 
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(Rais-Rohani and Lokits 2006) resulted in a new optimal design with approximately 19% weight savings 

over the original baseline CAS.  The revised stiffener layout with 2 longitudinal and eight transverse 

stiffeners is shown in Fig. 2. 

The deterministically optimized CAS (Rais-Rohani and Lokits 2006) represents a significant design 

improvement, in terms of material usage and the internal stiffener geometry.  However, revisions of this 

magnitude are typically accompanied by performance uncertainties.  To quantify these uncertainties, a 

reliability analysis was conducted (Eamon and Rais-Rohani 2008), which indicated considerable 

differences in reliability among the various structural components of the deterministic-optimum design 

model.  Due to these differences, as well as the low reliability indices of some components, the CAS 

optimization problem represents an excellent candidate for sizing optimization under RBDO 

methodology.  

 

CAS Model Description 

 Because of variation in material composition, the CAS outer shell is divided into four separate 

components: the crown, transition, main, and base joint (see Fig. 1). Whereas the crown is made of a thick 

layer of steel, the transition and main skin regions are made of laminated composite materials with bi-

directional fabric GRP (FGRP) layers of either ±45°  or 0 /90° orientation. The same FGRP plies that are 

in the main skin extend into the base joint and are sandwiched between two steel plates of different 

thickness to accommodate a rigid attachment to the pressure hull. The transition region serves as an 

interface between the crown and main skin regions.  Given the large size of the structure and severity of 

external loads, the outer shell of CAS could reach several inches in thickness. 

To support the applied load, the laminated skin is stiffened by ten additional components: two 

longitudinal and eight transverse stiffeners in the shape of a closed hat section. As shown in Fig. 2, five 

transverse stiffeners (TS1, TS2, TS6, TS7, and TS8) extend from the base joint boundary on one side to 

the other whereas the remaining three (TS3, TS4, and TS5) are terminated at the boundary line between 
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the transition and main skin regions.  The stiffeners consist of a base laminate of ±45°  FGRP layers with 

additional unidirectional GRP (UGRP) layers in the cap portions. 

The laminate composition and material system are summarized in Table 1.  For simplicity, the GRP 

laminate composition is modeled with few thick and thin layers of consistent orientation angles.  The 

thick layers, denoted by symbol d, are allowed to change thickness during design optimization whereas 

the thin layers, denoted by t, are kept at constant thickness.  The thin layers offer negligible strength and 

stiffness to the laminate and are used only as means of strain recovery at a more critical inter-laminar 

surface as opposed to mid-ply location of underlying thick layer of the same material properties and 

orientation angle. The choice of subscripts for the d layers in Table 1 is meant to show that while the 

thickness of ±45°  and 0 /90° FGRP layers in the same laminate are kept equal, thickness dimension can 

vary from one member to another.  This is to maintain quasi-isotropic properties in each laminate while 

offering the optimizer greater flexibility to reduce the overall weight of the structure by tailoring the wall 

thickness in different regions per the specified structural requirements.  Although thickness of steel crown 

is allowed to change, the steel plates in the base joint are kept at constant thickness as denoted by hst1
and 

hst2
in Table 1. 

Here, the thickness of thick layers in each laminate together with the thickness of crown region form 

the vector of design variables.  Considering the number of stiffeners, separation of flange, web, and cap 

portions into independent laminates, and the three regions of the outer skin, the total number of design 

variables in the CAS RBDO model comes to 43. While ply thickness is allowed to change during the 

optimization process, the corresponding laminate ply pattern is kept fixed as indicated in Table 1. The 

listing of design variables Y1 to Y43 is given in Table 2. The normalized initial values in Table 2 

represent the normalized optimal values obtained through deterministic optimization of the CAS model 

(Rais-Rohani et al. 2006). For the CAS RBDO problem, the lower and upper bounds for Y1 to Y42 are 

taken as 0.5Yk
I
 and 2.0Yk

I
, respectively, where Yk

I
 is the initial value of the kth design variable. For 
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Y43,the bounds are taken as Y43
I

 and 2.0Y43
I

. The lower bounds represent the minimum thickness 

necessary to satisfy other design constraints besides those considered in the RBDO problem.   

The FE model of CAS as shown in Fig. 2 consists of approximately 18,600 four-node quadrilateral 

and 350 three-node triangular shell elements paired with a material model that allows the discrete 

modeling of individual layer properties. In addition to the outer surface, the webs, flanges, and caps of the 

stiffeners are also discretely modeled as shell elements. The entire model has 96,700 degrees of freedom. 

The base boundary of the CAS is constrained with a fixed boundary condition, representing its rigid 

attachment to the submarine hull. The transient wave-slap, caused by an ocean wave striking the sail on 

one side, is taken as the most critical load, and is modeled by an equivalent static load (uniform pressure) 

on the port side of the sail (Cowan 2001). Both steel and GRP composite materials are modeled as linear 

elastic. While the strength limit for the steel material is measured using von Mises criterion, that of GRP 

is measured using the maximum strain based on the first-ply failure criterion of laminated composite 

materials. Consequently, linear static FEA is used to determine the static strength of the structure while a 

buckling eigenvalue solution is used to find its elastic stability. 

 Design Constraints in CAS RBDO 

In order to identify the reliability-based and deterministic set of design constraints, a reliability 

analysis of the deterministic-optimum CAS design was conducted with details presented in (Rais-Rohani 

et al. 2006).  However, for completeness sake, an overview of the selection process is described in this 

section. 

Reliability is measured in terms of component failure. There are 14 primary sail structural 

components in the reliability model: the crown, main, transition, and base-joint skin along with ten 

stiffeners. As noted above, most components are made of multiple GRP layers. Currently, no data are 

available regarding material layer correlations. However, as described in Rais-Rohani et al. (2006), a 

negligible difference in reliability was found between the fully correlated and uncorrelated material layer 

models. Thus, full correlation among layer properties for a particular material type (FGRP, UGRP) within 

a component is assumed, which greatly reduces computational effort from the uncorrelated case. For the 
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thin GRP plies making up the strain recovery layers (see Table 1), a separate limit state is formulated for 

each strain component in the principal material directions.  These limit states are expressed generically as 

 g1 = εtxmax
−εtx           (7) 

 g2 = εcxmax
−εcx           (8) 

 g3 = εtymax
−εty           (9) 

 g4 = εcymax
−εcy           (10) 

 g5 = γmax − γ           (11) 

where εtx  and εcx  are the axial tensile and compressive strains, respectively, in the fiber direction 

whereas εty  and εcy  are the axial tensile and compressive strains, respectively, in the transverse direction, 

with γ  representing the in-plane shear strain.  These strains are calculated from FEA of the CAS with 

upper bounds equal to material allowable values. Limit states in Eqs. (7)-(11) apply to FGRP and UGRP 

strain-recovery layers of the stiffeners as well as the FGRP strain-recovery layers in transition, main and 

base joint regions of the skin. In addition, a limit on von Mises strain in the crown region and another on 

buckling load factor of the whole structure brings the total number of potential limit states to 117. 

The initial set of resistance random variables included four material stiffness parameters and five 

material strength parameters with statistical properties described in Table 4. The GRP random variables 

are the elastic moduli in the principal material directions (E
xx
, E

yy
), shear modulus (G

xy
), Poisson’s ratio 

(ν
xy
), the allowable tensile strains in each direction (εtxmax

,εtymax
), the allowable compressive strains 

(εcxmax
,εcymax

), and the allowable in-plane shear strain (γmax ).  For the steel crown, the random 

variable is taken as the allowable von Mises strain, εst max. In addition, there is a load random variable, live 

load pressure (LL). Based on the results of reliability analysis of GRP structures in a previous study 

(Thompson et al. 2005), material thickness variability is deemed insignificant and not included here.  

Separating all ±45°FGRP layers, all 0 /90° FGRP layers, all UGRP layers, and the steel parts regardless 

of component into separate groups, and assuming each group has an independent set of material 



Eamon and Rais-Rohani 

 12 

properties, we find a total of 205 random variables in this system. 

Although it is possible that some degree of correlation exists among the material property random 

variables, no relevant data are yet available.  Thus, they are currently assumed to be uncorrelated.   Mean 

maximum wave-slap load over the CAS design lifetime (30 years) is based on the available load data 

while the corresponding coefficient of variation (COV) is based on an analysis of wave energy (Ozger et 

al. 2004) found from ocean buoy data (NDBC 2005).   All random variables are assumed to have a 

normal probability distribution (Rais-Rohani et al. 2006). 

The reliability analysis of the deterministic-optimum CAS model showed that the limit state on shear 

strain of FGRP layers in transverse stiffeners (TS)  generally had the lowest reliability index values, with 

βTS5 = 1.84, βTS1 = 2.32, βTS7 = 3.29, βTS4 = 3.84, βTS2 = 3.98, and βTS6 = 4.05 representing the lowest six 

beta values.  Other low strength reliability indices were associated with von Mises strain in the crown 

(CR) (βCR = 2.09), and axial tension strain of UGRP in TS7 (βTS7u = 3.97).  As reference, a reliability 

index of 2.33 translates into an approximate failure probability of 0.01 for the corresponding limit state. 

The remaining material strength limit states, of the 116 total considered for the entire structure, had 

substantially higher reliability indices ranging from 5.08 to greater than 10.   Basing the reliability of the 

CAS structural system on a first-component failure (series system) model, the few lowest component 

reliability indices govern system performance. 

The reliability index for the first buckling mode of the deterministic-optimum CAS design was found 

to be 2.51.  Using this value as the lowest acceptable component reliability index, the minimum reliability 

indices of the lowest, most critical constraints are set equal to 2.51 while the remaining strength 

constraints are treated as deterministic with bounds given in Table 3. Although buckling is an important 

failure mode, it is not directly included in the RBDO due to its associated computational expense. 

However, buckling performance is considered as part of the post-RBDO evaluation discussed later. 

Hence, the critical set of limit states to be treated as reliability-based design constraints is reduced to 

the following three 
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 gγ = γmax − γFP           (12) 

 gεt = εmax −εUP           (13) 

 gcr = εstmax
−εCR           (14) 

where gγ , gεt , and gcr  represent the limit states for shear strain in FGRP plies of skin as well as cap, web, 

and flange laminates of stiffeners, tensile strain in UGRP plies of stiffener caps, and von Mises strain in 

the steel crown region, respectively, with strain bounds as those specified in Table 3.  In Eqs. (12) - (14), 

γmax,εmax, and εstmax
 represent the allowable maximum values for shear strain in FGRP plies, axial 

strain in UGRP plies, and von Mises strain in steel, respectively.  By examining the shear and axial strains 

in all strain recovery layers that are made of FGRP or UGRP materials, we find the corresponding 

maximum values denoted by γFP  and εUP . For the steel crown, εCR  represents the maximum von Mises 

strain. The measured strain values are obtained from FE simulations as functions of material and loading 

random variables. 

The use of a single limit state for all layers throughout the structure that are made of the same 

material is not meant to imply that full correlation exists among the component strengths.  Rather, this is 

the worst-case search approach in which reliability is calculated only for a component of a particular 

material type (FGRP, UGRP, or steel) with the highest strain.  These highest strain values become γFP , 

εUP , and εCR  in the limit states gγ , gεt , and gcr , respectively.   Since materials of the same type in all 

components share the same statistical parameters for strength (regardless of correlation assumption), the 

component with the highest load effect must necessarily have the lowest reliability index and is captured 

in this process.  Thus, for the CAS RBBO problem, a distinct evaluation of reliability for each individual 

component is not needed, but rather only the minimum reliability index of any component is required.  

The benefit of this approach is that it greatly reduces the number of probabilistic limit states (from 117 to 

the three above), which is essential in managing the computationally intensive RBDO process. 
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In the CAS RBDO problem, both strength and stability requirements must be satisfied.  For the 

composite components, the strength requirements are formulated using the maximum-strain failure 

criterion based on the first-ply failure theory of laminated composite materials.  For each ply in the 

laminate stack of a finite element, a separate upper bound is imposed on its tensile, compressive, and in-

plane shear strain values in principal material directions. With 19,880 elements having multiple GRP 

layers, the number of strain constraints in the optimization problem could potentially reach as high as 

several million.  However, in the formulation and solution of the optimization problem only those 

constraints that are active (i.e., g ≈ 0) or violated (i.e., g < 0) are used.  Hence, the number of retained 

constraints can be significantly less than the potential maximum and can vary from one optimization 

cycle to another. As for structural stability, the load factor associated with the lowest buckling mode is 

important in the CAS design.  

The CAS RBDO problem is strictly one of structural optimization with sizing design variables. 

Although other design considerations, such as hydrodynamic performance and manufacturing, can be 

included in the optimization problem, they are not considered here. 

Probabilistic Sensitivity Analysis 

With the help of probabilistic sensitivity analysis, we can determine the influence of uncertainty 

(represented by standard deviation) in each candidate random variable on the reliability index of selected 

limit state functions.  Hence, when the effect of uncertainty is important, the parameter is treated as 

probabilistic; otherwise, it is treated as a deterministic parameter to reduce computational cost.  The non-

dimensional probabilistic sensitivity derivative of a reliability index, β with respect to standard deviation 

˜ σ X i
 of random variable, Xi can be calculated as (Madson, et al. 1986) 

αi =
∂β
∂ ˜ σ X i

˜ σ Xi

β

 

 
 

 

 
                                  (15) 

From probabilistic sensitivity analysis of CAS model, we found that all of the material stiffness 

random variables (i.e., E
xx
, E

yy
, G

xy
, and ν

xy
) together with most of the strength random variables have 
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negligible effect on the selected strength-based limit states. Removing the insignificant random variables, 

only four (i.e., LL, γmax,εmax, and εstmax
) are necessary for inclusion in the CAS RBDO problem. Thus, 

each of the three probabilistic limit states in Eqs. (13) – (15) is composed of only two random variables, 

LL and the pertinent material ultimate strain value. 

CAS RBDO Solution Procedure 

The solution of CAS RBDO problem involves FEA of the CAS model for the evaluation of linear-

static responses of interest (i.e., strains), evaluation of reliability index associated with each probabilistic 

design constraint, formulation and solution of an approximate optimization problem for updating the 

values of design variables, and the evaluation of convergence criteria for termination of this iterative 

process.  

The mathematical programming techniques that are typically used to solve a nonlinear, constrained 

optimization problem, such as the one defined by Eq. (6), require gradients of the objective function and 

those of the retained design constraints with respect to each design variable.  When the objective function 

and/or constraints are implicit functions of design variables, as is the case here, the sensitivity derivatives 

are commonly calculated using a finite difference scheme, which can significantly increase the 

computational cost. 

The constrained optimization problem is solved using the Modified Method of Feasible Directions 

(MMFD) in the VisualDOC (2002) program.  MSC/NASTRAN (2001) is used as the FEA solver, and the 

probabilistic code NESSUS (2001), which contains the AMV+ method, is used to calculate the reliability 

indices.  The communication among the individual codes is organized and managed using the 

VisualScript (2002) program. Additionally, several in-house FORTRAN codes are used to facilitate the 

recording of appropriate analysis input and output files and searching for and extracting critical responses.  

A flowchart of the general steps in a single CAS RBDO cycle is given in Figure 3.   A cycle starts 

with the optimizer determining trial values for the design variables (DVs). Note that in the very first 

cycle, the initial values of design variables are used.  An FEA is performed and the deterministic 
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constraints are evaluated.  With design variables held fixed, the random variables (RVs) are perturbed and 

the model is analyzed for reliability. The random-variable perturbations are continued until the reliability 

index calculation for each probabilistic constraint is completed. Based on the gradient information from 

the objective and constraint functions, the MMFD algorithm establishes a usable-feasible search direction 

to find an improved design point. The optimizer checks the optimality and convergence criteria at that 

point, and if necessary, additional optimization cycles are performed until an optimum solution is found.  

CAS RBDO Results 

For comparison purposes, we considered two different RBDO cases.  In the 3-β case, the RBDO 

problem, as described above, consists of 43 design variables, 8 deterministic constraints, and 3 reliability-

based constraints whereas in the 1-β case, a less computationally expensive problem with 42 design 

variables, 10 deterministic constraints, and only one reliability-based constraint  (see Table 3) is solved.  

In the 1-β case, crown thickness is held fixed and two of the probabilistic constraints (βεt and βcr) are 

taken as deterministic (i.e., converted to εtx  for UGRP and εst   in Table 3, respectively) while the FGRP 

shear strain constraint, βγ , which initially had the lowest component reliability index of 1.84, is taken as 

probabilistic.  

3- β β β β CASE 

The deterministic-optimum CAS model (Rais-Rohani et al. 2006) with a weight of 75,430 lb is 

chosen at the initial design for the RBDO problem. The RBDO problem required 170 CPU hours on a 

SUN Sparc workstation to converge in 7 cycles to an optimal design having a weight of 79,360 lb, 

representing a weight increase of 5%.  The weight increase is due to the selected value of βmin = 2.51, 

which is higher than the level of reliability in the initial design.  The only way the optimizer was able to 

satisfy the higher reliability level was by increasing the wall thickness, hence the higher weight.  The 

effect that the increase in reliability has on component and system safety is discussed below.  The 

convergence history of the objective function is shown in Figure 4.   
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Final design variable values, as a fraction of the original, are given in Table 2. Most plies were only 

mildly affected and had less than 5% change in thickness.  This is because the initial design variable 

values were based on deterministically optimized problem.  Thus, many of the design variables, which 

were primarily governed by the large number of deterministic constraints in the model, were close to their 

optimal values before the start of the RBDO process.  Significant thickness gains occurred in the main 

skin (7%); the transition region (12%); TS4 flange (10%); LS1 flange (12%); TS5 flange (20%), cap 

FGRP (68%) and cap UGRP (35%); TS8 web (51%); LS2 cap UGRP (57%); and TS3 cap UGRP (77%).  

Although individual members experienced a minor (between 1-7%) loss of weight except TS5 and TS6, 

the total weight saving was more significant.  The TS8 cap FGRP material loss was 21%.  Losses were 

fairly evenly distributed among stiffener webs, caps, and flanges, but only the FGRP material was 

affected.   Final constraint response values as well as the critical component locations are given in Table 

3.  As seen in the “Final-to-Bound Ratio” and “Critical Component” columns for the 3-β case, the most 

critical constraints in the post-RBDO CAS were εcx  for FGRP in the transition region and βcr (with final 

value = 2.51). 

An interesting result can be seen in the change in design variable values, which also illustrates the 

difficulty in choosing optimum solutions for complex structures without rigorous mathematical guidance.  

At the initial design, three components had a reliability index below the imposed limit of 2.51.  These 

included the FGRP material of TS1 and TS5 that was shear-limited (βTS5 = 1.84; βTS1 = 2.32) and the 

crown (βcr=2.09). Although the component with the lowest initial reliability index, TS5, made significant 

gains in ply thickness as expected, the crown, with the next lowest reliability index, had no significant 

difference in material thickness.  Finally, TS1, the final component with an initial reliability index less 

than that required, experienced a net loss of material.  Apparently, the best solution to meet the minimum 

β constraints and yet minimize weight was to globally stiffen the structure by increasing thickness of the 

outer shell as well as the most significant stiffeners in this regard (i.e., TS3-5, and LS1-2).  This makes 

sense particularly with regard to the crown, which is a large volume of material (controlled by a single 
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design variable) as well as relatively heavy (steel) material as compared to the lightweight composite 

material used elsewhere in the CAS structure.     

The importance of global stiffness can also be seen in the sensitivity analysis.  Normalized 

sensitivities of the objective function and constraints with respect to design variables are presented in 

Figures 5 to 8.  

Figure 5 presents the sensitivities of the objective function.  Clearly, the main skin thickness (Y1) is 

the most critical design variable, as this represents the component with the most volume of material.  In 

Figure 5, sensitivities are identical for the initial and optimal design models, as expected.  

In Figures 6 to 8, only the design variables that significantly impact the constraint are presented.  

Positive values indicate that an increase in layer thickness increases the response while negative values 

indicate increasing thickness decreases the response.  In general, the main skin (Y1) has a strong influence 

on almost every constraint.  Also important for most constraints is the transition region (Y2), and the 

FGRP and UGRP cap material in TS5 (Y23 and Y24, respectively).  Stiffener components that appear most 

frequently on the graphs are TS5, TS4, and TS8.  Also appearing, but less frequently, are TS3, TS7, and 

LS2.  The remaining stiffeners are insignificant with respect to constraint sensitivity.  Among the 

stiffeners, the cap material is most critical for most constraints, with the flange material least important.  

Figure 8 presents the probabilistic constraints. As the constraints βεt and βcr became inactive during the 

RBDO, only their initial sensitivity values are presented.  For the most part, initial and optimum 

sensitivity values are similar. 

Note that there is often no obvious link between the critical component in Table 3 and the most 

important design variable affecting the strain responses in that component as indicated by the sensitivity 

plots.  For example, in Table 3, consider the εty response in the UGRP layer for the 1-β case.  Here an 

element in TS7 was found to govern the constraint εty.  Referring to Figure 6, this constraint was found to 

be most sensitive to design variables numbered 1, 11, and 32.  Of these three, only one, Y32 appears in 

component TS7 (see Table 2), while the two most influential design variables, Y1 and Y11, appear in the 

main skin and in longitudinal stiffener LS2, respectively.  Similar results can be seen for the other 
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constraints as well.  The reason for this somewhat non-intuitive result, as discussed above, is that a design 

variable with significant influence on the overall structural stiffness is generally a better indicator of 

importance than one that corresponds to the critical component thickness itself.   For example, increasing 

the design variable value corresponding to critical component thickness increases strength but also local 

stiffness, and thus attracts more force to that component, resulting in strain remaining relatively constant 

(and thus the sensitivity of the strain limit constraint to that design variable remains low) as compared to 

adjusting shell thickness everywhere, which more rapidly minimizes strain in all of the stiffeners.   

1-ββββ CASE 

The 1-β case required approximately 50 CPU hours to converge in six cycles (Figure 4) to a new 

mass of 75,600 lb, representing an increase of approximately 0.4%.  The lower final mass value as 

compared to the 3-β case is because the probabilistic crown constraint βcr was not imposed in this case.   

Therefore, as the initial and final maximum crown strains are identical, as indicated in the “Final-to-Initial 

Ratio” column in Table 3, the crown reliability index would remain at the initial value of 2.09 (as opposed 

to 2.51 in the 3-β case). Final design variable values are given in Table 2. Most plies were only mildly 

affected and had less than 3% change in thickness.   

As indicated in Table 2, plies that lost thickness were the FGRP plies in the flanges of TS1 (2% loss) 

and TS5 (18%).  The cap material of TS8 (3%) and LS2 (1%), and the web of TS5 (7%) also experienced 

reductions in thickness. Plies with relatively large gains in thickness are the flange plies of TS3 and TS4 

(both 6% increase), the FGRP plies in the cap of TS5 (14%) and the web of TS8 (8%).  As shown in 

Table 3, the probabilistic FGRP shear constraint (βγ) and the deterministic crown strain constraint, εcr  

were most critical, with both responses equal to the bound values.   The 1-β case sensitivities are very 

similar to those of the 3-β case and are not presented here. 

System Reliability Analysis 

The CAS is a structural system composed of various components, and the reliability of this system 

may be altered during the optimization process. To estimate the system reliability of CAS-RBDO model, 
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the procedure in Rais-Rohani et al. (2006) is used.  A total of 116 limit states corresponding to 14 primary 

structural components are considered for the structure as described in Table 5. Separating FGRP and 

UGRP materials in each stiffener and treating them as independent sub-components, produces a reliability 

model with total of 24 components.  For members that are made of GRP materials, component failure is 

characterized by the violation (g<0) of any of the limit states as described in Eqs. (7) – (11). For the steel 

crown, a single limit state, yield (as determined by von Mises stress), is considered in place of limit states 

g1 to g5. 

The probability of failure of the series system of n uncorrelated components (ρ  = 0) for limit state j, 

Pfj, is given by 

Pfj =1− 1− Pfji( )
i=1

n

∏          (16) 

where Pfji is the failure probability of component i considering limit state j.  If the components are fully 

correlated (ρ  = 1), Pfj, is given by 

Pfj =max(Pfji )         (17) 

When the degree of correlation is uncertain, as is the case here, a failure probability bounds can be 

constructed by considering both Eqs. (16) and (17), which represent upper and lower bounds, 

respectively. If the resulting bounds are not too wide, the results may be acceptable and the exact 

correlation is not needed.  If the difference between the bounds is unacceptably large, a more 

computationally costly method may be required for a more accurate solution.  Using Eqs. (16) and (17), 

there is a need to compute Pf for each component.  This is governed by the finite element with the highest 

load effect within the component.  The AMV+ method, as described above, is used for reliability analysis. 

As noted, detailed component and limit-state specific results for the pre-RBDO CAS reliability 

analysis are given elsewhere (Eamon and Rais-Rohani 2008), and a complete re-computation of 
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individual component reliability considering each of the 116 limit states is beyond the scope of this study.  

However, some meaningful results can be obtained using some simplifying assumptions.   

Considering the Final-to-Initial Ratio column for the 1-β case in Table 3, we find that all 

deterministic critical responses except that for shear strain (γ) in the UGRP were slightly below their 

respective initial values.  Thus, reliability indices for all limit states except UGRP γ will be above initial 

values.  For UGRP γ, the initial reliability index was very high (13.2), and lowering this reliability index 

by a large amount (greater than 50%) will have no impact on CAS system reliability, which is governed 

by indices much lower.  Therefore, the decrease in reliability index associated with the small increase in 

response value for UGRP γ is of no consequence for system results.  A similar situation exists for the 3- β 

case, where two additional post-RBDO critical responses were slightly higher than the initial values ( txε  

and cxε for FGRP).  However, these initial reliability indices were also much higher than those governing 

CAS reliability, and thus even large decreases in reliability for these responses will not affect system 

results.   Given these observations, post-RBDO system reliability can be conservatively estimated using 

Eqs. (16) and (17) by assuming all previous component reliabilities (calculated using the limit states g1 to 

g5) remain unchanged from those of the pre-RBDO CAS, with the exception of those affected (i.e., 

increased) by the three imposed probabilistic constraints (βγ, βεt, and βcr) with post-RBDO values given in 

Table 3. 

A final important limit state to note is buckling.  Evaluated with an FEA Euler analysis, no direct link 

can be obtained for buckling resistance and a single CAS component, as eigenvalues are computed for the 

structural system as a whole.  However, as buckling anywhere in the structure is taken as failure and 

multiple buckling locations are possible, a series sub-system model can be developed such that each 

buckling mode constitutes a ‘component’. Both fully-correlated and uncorrelated bounds can be 

developed for the buckling sub-system using Eqs. (16) and (17).  The higher modes that do not 

significantly contribute to Pf may be truncated.  It was found that no more than five modes need be 
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considered.  Buckling load factors (eigenvalues) for the pre- and post-RBDO CAS are given in Table 6.  

Note that in all cases, post-RBDO buckling load factors are higher.   

Using the simplifications described above, the series system reliability results are given in Table 7.  

Considering the entire structure with all limit states including buckling, the deterministic optimum (pre-

RBDO) CAS has reliability index bounds between 1.46 and 1.84.  For the 1-β case, system reliability 

bounds are between 1.74 and 2.09, while for the 3-β case, system bounds are between 2.10 and 2.33.  

Using the standard normal conversion from reliability index to failure probability, Pf = Φ(−β)  in the 1-β 

case, for a 0.4% increase in mass, the decrease in system failure probability is approximately 50% (pre-

RBDO: 0.034 < Pf < 0.071; RBDO (1- β): 0.018 < Pf < 0.042).  In the 3-β case, for a 5% increase in mass, 

the decrease in failure probability is approximately 70% (RBDO (3- β): 0.010 < Pf < 0.018).  Of course, 

larger gains in reliability can be achieved by increasing the target probabilistic constraint values, at the 

expense of larger increases in structural mass. 

Conclusion 

In this paper, we presented the description of RBDO methodology and its application in design of a large 

and complex marine structural system under uncertainties in load intensity and material resistance 

characteristics. The design procedure required the direct coupling of finite element analysis, numerical 

design optimization, and structural reliability algorithms while considering different modes of failure in 

the stiffened shell structure made of both metallic and laminated GRP composite materials. Through 

probabilistic sensitivity analysis, critical random variables were identified. The RBDO solutions indicated 

that a minor increase in structural mass can significantly increase both the component and system 

reliabilities of the CAS structure. Moreover, the overall structural stiffness was found to be generally 

more significant than critical component thickness values.. 

The inclusion of reliability-based design constraints was found to be the most expensive part of the 

algorithm, where moving from one to three such constraints more than tripled the computational cost (50 

CPU hours to 170 CPU hours).  Thus, judicial use of the number of reliability constraints, as was done in 
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this study, is essential to maintain reasonable computational effort when confronted with complex 

reliability-based structural optimization problems. 
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APPENDIX: Nomenclature 
 

a   constant in objective function 

ν  Poisson ratio 

AMV+  advanced mean value plus method 

CAS  Composite Advanced Sail 

CR  crown 

cx  compression, x-direction 

cy  compression, y-direction 

d  composite layer that has thickness as a DV 

DV  design variable 

E  modulus of elasticity 

FEA  finite element analysis 

FGRP  fabric GRP 

FP  critical FGRP strain 

fx  probability density function 

g  limit state function 

G  shear modulus 

GRP  glass-reinforced polymer 

hst  steel plate layer of base joint 

LL  wave slap load random variable  

MMFD  Modified Method of Feasible Directions 

MPP  most probable point of failure 

Pf  probability of failure 

R  response 

RBDO  reliability-based design optimization 

RV  random variable 

t  composite layer used for strain recovery 

TS  transverse stiffener 

tx  tension, x-direction 

ty  tension, y-direction 

UGRP  uni-directional GRP 

UP  critical UGRP strain 

X  a random variable 

x
*
  RV values at MPP 

Y  a design variable 

z  standard normal (reduced) RV 

α  probabilistic sensitivity 

β  reliability index 

γ  shear strain 

ε  strain 

µ  mean value 

σ  standard deviation 

Ф  standard normal cumulative distribution function 
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Table 1.  Material systems for the skin and stiffeners in CAS finite element model 

Structural Part Material System Laminate Composition Thickness 

Crown Steel Single Layer dC 

Transition FGRP [0-90/0-90/±45/±45/0-90]S [t/dT/t/dT/t]s 

Main FGRP [0-90/0-90/±45/±45/0-90]S [t/dM/t/dM/t]s 

Base Joint Steel/FGRP/Steel [ST/0-90/0-90/±45/±45/0-

90/0-90/±45/±45/0-90/0-

90/ST] 

[hst1/t/dB/t/dB/t/t/dB/t/dB/t/hst2] 

Stiffener Flange FGRP [±45/±45/±45/±45/±45]S [t/df/t/df/t]s 

Stiffener Web FGRP [±45/±45/±45/±45/±45]S [t/dw/t/dw/t]s 

Stiffener Cap FGRP & UGRP [±45/±45/0/0/±45/±45/±45]S [t/dc1/t/dc2/t/dc1/t]s 
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Table 2. Listing of Design Variables and Corresponding Values 

 

Final-to-Initial ratio Label Designed part DV Normalized 

Initial Value 1-β  case 3-β  case 

MS  Main Skin Y1 0.85 1.00 1.07 

Transition Skin Y2 0.78 1.04 1.12 

TS 1 Flange Y3 0.07 0.98 0.93 

 Web Y4 0.22 1.03 0.96 

 Cap FGRP Y5 0.29 1.03  1.00 

 Cap UGRP Y6 0.14 1.04 1.00 

TS 2 Flange Y7 0.20 1.03 0.99 

 Web Y8 0.20 1.01 0.96 

 Cap FGRP Y9 0.48 1.00  1.00 

 Cap UGRP Y10 0.32 1.01 1.03 

LS 2 Cap UGRP Y11 0.19 0.99 1.57 

TS 3 Flange Y12 0.30 1.06 0.97 

 Web Y13 0.35 1.02  1.01 

 Cap FGRP Y14 0.47 1.01 1.03 

 Cap UGRP Y15 0.23 1.02 1.77 

LS 1 Cap UGRP Y16 0.13 1.02 1.04 

TS 4 Flange Y17 0.23 1.06  1.10 

 Web Y18 0.23 1.01 0.94 

 Cap FGRP Y19 0.65 1.02 0.97 

 Cap UGRP Y20 0.44 1.02 1.09 

TS 5 Flange Y21 0.39 0.82  1.20 

 Web Y22 0.39 0.93 1.02 

 Cap FGRP Y23 0.40 1.14 1.68 

 Cap UGRP Y24 0.30 1.00 1.35 

TS 6 Flange Y25 0.60 1.00  1.00 

 Web Y26 0.60 1.02 1.04 

 Cap FGRP Y27 1.00 1.03 1.05 

 Cap UGRP Y28 0.70 1.03 1.03 

TS 7 Flange Y29 0.70 1.00  0.98 

 Web Y30 0.53 1.00 1.01 

 Cap FGRP Y31 1.00 1.00 0.98 

 Cap UGRP Y32 0.71 1.05 1.01 

TS 8 Flange Y33 0.25 1.00  0.99 

 Web Y34 0.36 1.08 1.51 

 Cap FGRP Y35 0.94 0.97 0.79 

 Cap UGRP Y36 0.63 1.01 1.06 

LS 1 Flange Y37 0.06 1.04  1.12 

 Web Y38 0.14 1.02 1.07 

 Cap FGRP Y39 0.18 1.02 0.93 

LS 2 Flange Y40 0.35 1.00 1.00 

 Web Y41 0.34 1.02  0.99 

 Cap FGRP Y42 0.41 1.02 1.00 

Crown Skin Y43 0.42 -- 1.00 
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Table 3. Listing of Properties Treated as Design Constraints 

Deterministic Constraints 

RBDO (3-β)* RBDO (1-β)* Property Lower 

Bound 

Upper 

Bound 

Initial 

Value 
Final-

to- 

Bound 

Ratio 

Final-

to-

Initial 

Ratio 

Critical 

Comp. 

Final-

to-

Bound 

Ratio 

Final-

to-

Initial 

Ratio 

Critical 

Comp. 

UGRP (in stiffener caps) 

εtx  none 0.00685 0.0066 -- -- -- 0.94 0.98 TS7 

εty  none 0.00685 0.0055 0.71 0.89 TS6 0.79 0.98 TS7 

εcx -0.0057 none -0.0049 0.79 0.90 TS4 0.86 0.99 TS4 

εcy  -0.0057 none -0.0040 0.61 0.88 TS1 0.69 0.99 TS2 

γ -0.0114 0.0114 0.0041 0. 33 1.12 TS8 0.37 1.02 TS8 

FGRP (in skin and stiffeners)  

 εtx  none 0.00685 0.0060 

(0.0048) 

0.94 

(0.57) 

1.06 

(0.81) 

transition 

(TS4) 

0.87 

(0.70) 

0.99 

(0.99) 

main skin 

(TS3) 

 εty  none 0.00685 0.0057 

(0.0048) 

0.74 

(0.66) 

0.88 

(0.94) 

main skin 

(TS4) 

0.83 

(0.69) 

0.99 

(0.99) 

main skin 

(TS4) 

 εcx -0.00587 none -0.0058 

(-0.0056) 

1.00 

(0.79) 

1.04 

(0.92) 

transition 

(TS3) 

0.98 

(0.91) 

0.95 

(0.98) 

main skin 

(TS8) 

 εcy  -0.00587 none -0.0056 

(-0.0051) 

0.91 

(0.79) 

1.00 

(0.85) 

main skin 

(TS3) 

0.95 

(0.85) 

0.97 

(0.99) 

main skin 

(TS3) 

Steel (Crown) 

εst none 0.00210 0.00210 -- -- -- 1.00 1.00 crown 

Probabilistic Constraints 

RBDO (3-β) RBDO (1-β) Property Lower 

Bound 

Upper 

Bound 

Initial 

Value 
Final Value Critical Comp. Final Value Critical Comp. 

βγ  2.51 none 1.84 3.20 TS5 2.51 TS5 

βεt 2.51 none 3.97 4.19 TS7 -- -- 

βcr 2.51 none 2.09 2.51 crown -- -- 

 *Numbers in parentheses refer to results considering components 1-10 (i.e. the stiffeners) only while the 

upper number (without parentheses) considers results from all components including crown, main skin, 

and transition region. 
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Table 4. Statistical Properties of Random Variables 

 FGRP UGRP 

RV mean COV distribution mean COV distribution 

Exx* 3.50e6 psi 0.055 normal 5.53e6 psi 0.055 normal 

Eyy* 3.50e6 psi 0.055 normal 1.42e6 psi 0.055 normal 

Gxy* 5.0e5 psi 0.003 normal 5.0e5 psi 0.003 normal 

νxy* 0.098901 0.003 normal 0.2424 0.003 normal 

εtxmax
 or εtymax  0.0138 0.065 normal 0.012 0.065 normal 

 εcxmax
 or εcymax  -0.0121 0.050 normal -0.010 0.050 normal 

γmax 0.015 0.015 normal 0.015 0.015 normal 

  Other     

LL λ=2.28** 0.167 normal    

Est max* 2.96e6 psi 0.01 normal    

νst* 0.30 0.026 normal    

εstmax
 0.00290 0.05 lognormal    

*These RVs were found to be insignificant in the probabilistic sensitivity analysis and hence were excluded in the 

RBDO solutions. 

**Bias factor (ratio of mean to nominal) is given.  Load magnitude is comparable to hurricane-level wind pressure, 

but exact value is not available for public release. 

 

Table 5.  Components and Limit States 

Comp 

# 

Component 

Name 

Material Sub-

Components  

Limit States 

Considered  

Total # of Limit 

States per 

Component 

1-10 Stiffener 1-10 FGRP, UGRP g1-g5, g1-g5 10 (x 10 stiffeners) 

11 Transition  FGRP g1-g5 5 

12 Main Skin FGRP g1-g5 5 

13 Crown Steel yield 1 

14 Base Joint FGRP g1-g5 5 

     

  Total # of Limit States: 116 

 

 

 

 

 

 



Eamon and Rais-Rohani 

 32 

Table 6. Buckling Load Factors for Different CAS Designs 

Mode Pre-RBDO  RBDO (1-β) RBDO (3-β) 
1 1.42 1.45 1.72 

2 1.44 1.49 1.77 

3 1.55 1.60 1.79 

4 1.67 1.67 1.85 

5 1.77 1.84 1.87 

 

 

 

Table 7.  Estimated System Reliability Indices 

Subsystem Pre-RBDO RBDO (1-β) RBDO (3-β) 
Considered in CAS β, ρ  = 0 β, ρ  = 1 β, ρ  = 0 β, ρ  = 1 β, ρ  = 0 β, ρ  = 1 

all components 1-14 (g1-g5) 1.54 1.84 1.80 2.09 2.10 2.33 

buckling 2.29 2.52 2.55 2.69 4.23 4.31 

all components + buckling 1.46 1.84 1.74 2.09 2.10 2.33 
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Figure 2. Finite element model of the CAS with highlighted stiffener layout

Artist rendering of a VA-Class 

submarine with CAS 

Figure 1. Conceptual model of the CAS. 
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Figure 3. CAS RBDO flowchart 
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Figure 4.  Convergence history 
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Figure 5. Normalized sensitivities of CAS weight with respect to design variables. 
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Figure 6. Normalized sensitivities of deterministic UGRP constraints with respect to significant 

design variables. 

 

 

 

Figure 7. Normalized sensitivities of deterministic FGRP constraints with respect to significant 

design variables. 
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Figure 8. Normalized sensitivities of probabilistic constraints with respect to significant design 

variables. 
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