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Abstract 

Secondary elements such as barriers, sidewalks, and diaphragms may affect the distribution 

of live load to bridge girders.  The objective of this study is to evaluate their effect on girder 

reliability if these elements are designed to be sufficiently attached to the bridge so as not to 

detach under traffic live loads. Simple span, two lane structures are considered, with composite 

steel girders supporting a reinforced concrete deck.  Several representative structures are 

selected, with various configurations of barriers, sidewalks and diaphragms.  Bridge analysis is 

performed using a finite element procedure.  Load and resistance parameters are treated as 

random variables. Random variables considered are composite girder flexural strength, secondary 

element stiffness, load magnitude (dead load and truck traffic live load), and live load position.    

It was found that typical combinations of secondary elements have a varying influence on girder 

reliability, depending on secondary element stiffness and bridge geometry.  Suggestions are 

presented that can account for secondary elements and that provide a uniform level of reliability 

to bridge girders. 

Introduction 

It is well known that traditional analysis models used for bridge design do not accurately  
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predict actual structural behavior (Burdette and Goodpasture 1973; Wegmuller 1977; Buckle et 

al. 1985; Bakht and Jaeger 1992; Nowak and Kim 1998; Nowak et al. 1999).  In particular, a 

significant discrepancy in behavior exists in the prediction of live load distribution to bridge 

girders. One recent study (Nowak et al. 1999) compared actual load distribution factors of short 

and mid-span bridges (20-30 m) tested in Michigan to the 1998 LRFD Code (AASHTO 1998) 

prediction (with two lanes loaded), and revealed differences of up to 35%.  Analytical results 

suggest that larger discrepancies exist for longer-span structures (Mabsout et al. 1997; Eamon 

and Nowak 2002).   Discrepancies exist primarily because traditional models do not account for 

features of actual bridges that may significantly affect load distribution. Features to be explored 

in this study are secondary elements such as barriers, sidewalks, and diaphragms.   

Although secondary elements are not designed to redistribute live load, the available 

experimental data indicate that in fact they may, even at extreme overloads, as collected from 

proof load and bridge ultimate capacity tests  (Nowak and Kim 1998; Nowak et al. 1999; 

(Burdette and Goodpasture 1973).    It must be noted that this data is limited and these elements 

should not be relied upon in design to participate in resisting vehicular live loads without further 

testing, as these components were not developed for this purpose.   However, the experimental 

observations cited above lead to two issues that this paper will explore.  First, as all bridges must 

have barriers, and many sidewalks, it may make sense to sufficiently increase their connectivity 

and take advantage of their presence, as the potential benefits of including these elements for 

consideration of live-load distribution may be significant.   And second, as the AASHTO LRFD 

Code was calibrated without considering the effects of secondary elements,  structures designed 

by this Code may have a variation in safety level, as these components clearly effect live load 

distribution even though not intended to.  The objective of this study is to determine how the 
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reliability of bridge girders may be affected by secondary elements, and to suggest a procedure 

that may account for these effects.   

 

Structures Considered 

Fifteen bridges were considered in this study, with typical cross-sections as shown in Fig. 1.  

All bridges are simple span, two lane structures, with spans of 10 m, 20 m, 30 m, 40 m, and 50 m 

combined with girder spacing of 2 m, 3 m, and 4 m. The parameters are selected so that the 

considered structures satisfy the structural design requirements of the AASHTO LRFD (1998) 

Code. There is a growing trend to use fewer girders, hence the large 4 m girder spacing is also 

included in this study.  For all of the structures, girders were composite steel and the deck was 

230 mm thick reinforced concrete.  Each structure was analyzed for six cases; 1) without any 

secondary elements; 2) with diaphragms only; 3) with barriers only; 4) with barriers and 

diaphragms; 5) with barriers and sidewalks; 6) with barriers, sidewalks, and diaphragms.  

 Diaphragm, barrier, and sidewalk dimensions are based on current Michigan DOT designs, 

which are representative of many state DOTs.  The concrete barrier considered is idealized as a 

rectangular cross-section with 340 mm width and 1000 mm height.  Idealized dimensions were 

chosen such that the model barrier has the same stiffness value as the more commonly seen 

slanted base barrier used by Michigan DOT.  The sidewalk has a width of  2000 mm, measured 

from the outside edge of the bridge deck to the interior edge of the sidewalk, and a height of 240 

mm.  The diaphragm is of the cross-bracing type and made of three steel angle shapes (two 

diagonals and one lower horizontal). These are 4x4x5/16 angles for 2 m girder spacing, 5x5x3/8 

for 3 m girder spacing, and 6x6x3/8 for 4 m girder spacing.  For the 10 m span bridge, one 

(transverse) row of diaphragms was placed between girders at midspan. For the 20-30 m spans, 
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two rows of diaphragms were equally spaced along the bridge length. For the 40-50 m span, three 

rows of diaphragms were used.  A prior study indicated that increasing the number of diaphragms 

has little effect on load distribution at maximum moment position near midspan (Eamon and 

Nowak 2002).   An important consideration is the degree of connectivity between bridge 

components (barrier, sidewalk, diaphragm), as if the elements detach under traffic loads, they can 

no longer aid in load re-distribution.  As noted in the introduction, although these elements have 

performed favorably under substantial overloads, insufficient data exist to adequately assess the 

reliability of typical connection details, as these elements are not explicitly designed nor tested to 

aid in redistributing live loads.   However, for the exploratory purposes of this study,  they are 

modeled such that they remain positively attached to the bridge under a live load level that may 

cause a single girder failure.  

 

Load Models 

Bridge dead load and live load (truck traffic) are considered in this study.  The load models 

are based on those developed for the calibration of the AASHTO LRFD Code (Nowak 1993 and 

1999). 

Dead load included the weight of the girders, deck slab, wearing surface, barriers, sidewalks, 

and diaphragms. Statistical parameters, the bias factor (λ) and coefficient of variation (V), are 

taken as λ = 1.03 and V = 0.08 for factory-made components (girders, diaphragms); λ = 1.05 and 

V = 0.10 for cast-in-place components (deck, barriers, sidewalks); and asphalt wearing surface is 

taken to have a mean value of 90 mm (3.5”) with V = 0.25 (Nowak 1993 and 1999). 

Live load parameters were derived from a truck survey used for calibration of the AASHTO 

LRFD Code (Nowak 1993, 1999).  The model includes the parameters for a single lane and for 
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two traffic lanes.  Based on the available data, this model assumes that every 15th truck on the 

bridge is accompanied by another truck side-by-side.  It further assumes that with every 10th 

simultaneous occurrence (trucks side-by-side), the truck weights are partially correlated (ρ=0.5), 

and every 30th occurrence the truck weights are fully correlated (ρ=1.0).  Moreover, with regard 

to multiple presence (multiple trucks in a single lane), every 50th truck is followed by another 

truck with distance between trucks from 4.5 to 30 m; every 150th truck is followed by a partially 

correlated truck (with regard to weight); and every 500th truck is followed by a fully correlated 

truck.  The results of the model, as pertinent to this study, are as follows: for the single-lane 

loaded case, λ (ratio of actual moment to AASHTO LRFD HL-93 design moment) for a single 

lane varies from 1.35 at the shortest span (10 m) to 1.25 for longer spans (50 m), while V is 0.18 

for all spans.  For the two-lanes loaded case, λ for each truck varies from 1.2 at 10 m to 1.0 at 50 

m (note λ for the total moment on the bridge would then be equivalent to 1.2 x 2 trucks = 2.4 at 

10 m and 1.0 x 2 = 2.0 at 50 m), while V varies from 0.14 at 10 m to 0.18 at 50 m.  For the 

bridges considered here, it was found that the two-lane loaded case dominates girder reliability 

index, to the extent that the single-lane loaded case can be neglected.   

Recent field tests of 11 bridges conducted by the University of Michigan revealed a dynamic 

load factor of less than 0.10 for two heavily loaded trucks traveling side-by-side over various 

bridges (Nowak and Kim 1998; Nowak et al. 1999).    Based on these results, the mean dynamic 

load factor is conservatively taken as 0.10 while the coefficient of variation is 0.80. 

 

Structural Analysis Model 

To determine the effects of secondary elements on girder distribution factor, structures were 

analyzed using the finite element method.  Specific modeling details and results are fully 
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described by Eamon and Nowak (2002).  In general, these models used 4-node Mindlin structural 

shell elements to represent bridge girder flanges and webs, and 8-node hexahedral elements to 

represent the deck, sidewalk, and barriers. Diaphragm members were modeled explicitly with 

Timoshenko beam elements that can account for (St. Vernant’s) torsion of sections of arbitrary 

shape.  Standard material properties were used, and models were extensively verified by and 

calibrated to independent experimental data.  It is conservatively assumed that secondary 

elements add no capacity but affect load distribution only.  That is, they are included in the 

modeling when distributing live load to the girders, but they are not included when calculating 

girder capacity.  Further, following AASHTO Code load distribution assumptions, additional 

reductions in girder distribution factor (GDF) in the inelastic range are conservatively ignored.  

The wheel patches of the AASHTO HS20 truck load configuration, or its design tandem, which 

governs on the 10m spans, were used for this analysis.    

On each of the structures considered, two side-by-side trucks were positioned transversely until 

the maximum moment on any interior girder was found.   

For the bridges considered in this study, it was found that structures with barriers and 

diaphragms can result in GDF reductions from 11-25%, while structures with barriers, sidewalks, 

and diaphragms can result in GDF reductions from 17-42% (Eamon and Nowak 2002).  Most 

secondary element combinations tend to be more effective at closely-spaced girders and longer 

spans, and all elements are more effective on less-stiff bridges.   Based on a parametric analysis 

of over 240 cases using the finite element models described above (Eamon and Nowak 2002), it 

was found that GDF can be well-approximated by a closed-form function of secondary element 

stiffness and bridge geometry.  In general the empirical equations predict GDF within a few 

percent of the available data.  GDF can be taken as follows: 
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       GDF = (GDFbase)[αd][αe]          (1) 

 

Where:  

 

(GDFbase) is GDF without secondary elements, which can be taken as the GDF formula in the 

AASHTO Code for interior girders on two-lane bridges (the LRFD version is recommended, 

as it is more accurate). 

[αD] is an adjustment factor for the presence of diaphragms: 
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When barriers and sidewalks are present: 
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K .  EIg and EId are the rigidities of the interior composite girder and diaphragm, 

respectively, while EIs and  EIu are the rigidities of the stiffened and unstiffened exterior 

composite girder.  For EIs, the entire sidewalk width and the barrier are included in the 

calculation.  EIu is computed normally.  Further accuracy can be obtained if the effective slab 
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width is adjusted for shear lag (Hambly 1976).  S is the center-to-center girder spacing (meters) 

and L is the bridge span (meters).   

The equations are verified only for two-lane, simple span, girder bridges with concrete decks, 

having adequate shear connection between components (including girder, deck, barrier, 

diaphragm, and sidewalks, if present), with girder spacing from 2.0 to 4.0 m, span from 10 to 50 

m, deck thickness from 150 to 300mm, Kd from 10 to 630, and Ke from 1.5 to 20 for  barriers and 

from 1.5 to 3.5 for barriers and sidewalks.  If Ke exceeds 3.5 when barriers and sidewalks are 

present, it may be taken as 3.5.  In no case should any of the factors be taken greater than unity.  

This may conservatively occur if extreme values are entered into the formulas.  Sufficient data 

for shorter spans and more-closely spaced girders were not available.  This data would also have 

to be collected and processed to extend the range of applicability of the equations. 

 

Resistance Model 

There are numerous random variables that affect the strength of a composite girder.  These 

include material strengths, dimensions, and location of reinforcement in the composite section 

(classified as material properties and fabrication tolerances, FM).  There are also uncertainties 

that result from simplified or approximate analysis methods (classified as the professional factor, 

P).  A summary of these random variables and their parameters are given in Table 1, which are 

taken from the available literature (Ellingwood et al. 1980; Kennedy 1982; Siriaksorn 1980; 

Mirza and MacGregor 1979).   

To determine the statistical parameters of composite girder moment resistance considering 

these variables, a Monte Carlo simulation was conducted.  Practically, this involves randomly 

assigning values to the random variables (based on their statistical distributions), computing the 
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ultimate capacity of the resulting composite girder using the standard method, then repeating the 

process to obtain a sufficient number of capacity data, from which mean value and coefficient of 

variation can be calculated. The simulation was repeated, increasing the number of simulations 

each time, until further increases did not appreciably alter the results.  This typically required 

from 1000 to 3000 simulations.   

For FM the resulting bias factor is  λ = 1.07 and coefficient of variation is V = 0.08.  For P 

the bias factor is taken as λ = 1.05 and V = 0.06 (Nowak 1999).  The final resistance parameters 

are λ = 1.12 and V = 0.10.  The distribution function of resistance is approximately lognormal.  

The results are verified by the values obtained by Nowak (1999), and were the same as those 

used for the AASHTO LRFD Code calibration.     

Secondary element and diaphragm stiffness were also initially included as random variables  

(due to variations in dimensions and material moduli).   However, analysis indicated that these 

variations have an insignificant effect on girder load distribution (and hence girder reliability).  

This is primarily because girder load distribution is relatively insensitive to small variations in 

secondary element stiffness when typical sizes of these elements are used (Eamon & Nowak 

2002).  Therefore, these variations are not included further in the analysis. 

 

Reliability Analysis 

Girders are designed as close as possible to the AASHTO LRFD Code (1998) minimum 

specifications for moment strength design, and all considered girder resistances are no greater 

than 3% of that required by Code (and verified for shear capacity).  Although the exact minimum 

required resistance was used for reliability analysis, a representative girder stiffness was needed 

to determine load distribution.  Girders were not specifically designed to satisfy the “optional” 
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deflection limit state, as this would result in artificially high strength reliabilities.  However, the 

LRFD Code does allow continuous barriers to be included in the analysis for serviceability 

checks.  With this consideration, the bridges of this study also satisfy the optional deflection limit 

state as well.  Note that for girders properly maintained and designed for moment resistance, 

shear does not typically govern composite steel girder reliability (Yamani 1992).  The total mean 

load effect (moment) to the governing composite girder is found from the finite element model, 

where truck weights are multiplied by bias factor λ and dynamic load factor 1.10.  Dead load is 

accounted for by including gravity effects in the analysis, while increasing component weights 

with their respective bias factors.  Reliability index (β) is calculated using the  Rackwitz-Fiessler 

procedure (Rackwitz and Fiessler 1978), an iterative process that approximates non-normal 

distributions with equivalent normal distributions at the design point.  In this case, total load 

effect is normally distributed while resistance is lognormal.  

Simulations indicated that the dominant live load case for the bridges considered both with 

and without (Nowak 1999) edge-stiffening elements was two simultaneous trucks side-by-side.  

Here, interior girders experience a significantly higher load effect than exterior girders, 

particularly when edge-stiffening elements are present.  Although a single truck  load case could 

in many cases (especially when edge-stiffening elements were absent) produce the greatest 

moment on an exterior girder, the resulting reliability of this case was significantly higher than  

the two-truck load case for interior girders.  Thus overall bridge girder reliability is governed by 

interior girders and only these are considered further.  The resulting reliability indices, using the 

models discussed above, are presented in Figures 3-10 .  In the figures, ‘base’ refers to the bridge 

without considering any secondary element effects.  As expected, in this case the girder reliability 

indices are uniform and equal to the values computed by Nowak (1999), as the LRFD Code is 
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calibrated for these structures.  Typical combinations of secondary elements (barrier + diaphragm 

and barrier + sidewalk + diaphragm), however, can increase the reliability index (from about 0.5 

to 1), depending on element stiffness and bridge geometry.   

There are several apparent trends in the data.  Figures 6-10, which plots the variation of β 

with girder spacing, indicate that secondary elements increase reliability to a greater degree on 

structures with closely-spaced girders.  This matches the results predicted from the finite element 

analysis, whereby the edge-stiffening elements have shown to be most effective in aiding load 

distribution at bridges with closely-spaced girders.  Although diaphragms roughly have the 

reverse result to a lesser degree, becoming more effective at wider girder spacings, their effect on 

load distribution is overpowered by edge-stiffening elements. 

Figures 3-5, which plot reliability index as a function of bridge span, indicates a peak β close 

to the 20m span structure.  This trend is caused by the interaction of GDF and the changing 

proportion of dead load to total load as span length changes.  Edge-stiffening and diaphragms 

primarily benefit live load distribution.  These elements have an increasing influence on live load 

distribution as span increases (the elements are more effective on the less-stiff spans, which tend 

to be longer).  However, as bridge span increases, dead load accounts for a larger proportion of 

the total load effect. Thus, as span increases, the effects of secondary elements on the total load 

decrease.   

The result is that the shortest spans benefit little, as secondary elements affect live load 

distribution only marginally at short spans.  The longest spans also benefit little, as although live 

load distribution is affected significantly here, dead load accounts for a large proportion of the 

total load. Mid-range spans thus benefit most from secondary elements, where the spans are long 

enough so that the effect of secondary elements on live load distribution is significant, but short 
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enough that live load remains a large portion of the total load effect.  This is shown in Figure 11, 

which for a 3m girder spacing bridge with barrier, sidewalk, and diaphragm, plots the two 

opposing trends of secondary element effectiveness (GDF base/ GDF actual) and proportion of 

live load to total load effect (LL/(LL+DL)).  Also on the graph is an indication of the interaction 

of these two trends, total girder resistance divided by the total load (Resistance / Load), which 

peaks around 20m (as does reliability index).  

 

Recommendations 

To provide a uniform level of reliability to bridges designed with positively-connected 

secondary elements, the load distribution effects should be accounted for.    One way that this can 

be done is by adjusting girder distribution factor appropriately, an approach which would be 

compatible with existing LRFD Code format and is straightforward to implement.  The GDF 

equations presented above may be used for this purpose, but can be simplified greatly if the 

following observations are considered: 

1) Diaphragms were found in most cases to have little effect on load distribution and hence 

reliability. It would therefore be reasonable to neglect equation (2).   

2) The equations presented were formulated to match results for a wide range of parameters, 

many of which are not typically used in current bridge design practice (for example, a wide girder 

spacing on a short span bridge, or very stiff/very flexible secondary elements).  Results of the 

most typical design geometries (in terms of span, girder spacing, and secondary element stiffness 

combinations) are given in Figures 12-14.   

3) The complexity of the equations may imply a predictive accuracy which does not exist for 

actual structures, as other factors specific to particular structure may affect load distribution as 
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well (partial bearing fixity, deterioration, other alterations to ideal boundary conditions and 

stiffness parameters). 

From the observations stated above and taken from Figures 12-14, the following load 

distribution effects can be expected and can be recommended for typical secondary element 

configurations when these elements are positively connected to the structure: 

• Diaphragm alone -- no reduction in GDF 

• Barriers -- reduce GDF by 10% 

• Sidewalks -- at 10m and shorter spans, no reduction in GDF; at 25m and greater 

spans, reduce GDF by 10% or 15% for girder spacing of 3m or 2m, respectively.  

Note that barrier and sidewalk GDF reductions are additive.  Linear interpolation is 

reasonable. 

If structures are designed or evaluated considering the load distribution effects of secondary 

elements, the reliability indices will become more uniform from one structure to the next.  

However, the overall effect is that design moment is lowered and thus reliability is lower than 

that intended.  Therefore, an additional load factor γ is needed to account for this.  Reliability 

indices adjusted for the load distribution effects of secondary elements with γ = 1.15 are given in 

Figures 12-14 (indicated as “NEW bar. + dia.” and “NEW bar. + s.w. + dia.” on the graphs).   

Here the values for base, barrier + diaphragm, and barrier + sidewalk + diaphragm are copied 

from Figures 3-5 for comparison.    In this case, γ is chosen such that the reliability index for the 

bridge geometry that was considered to represent the ‘target’ index for the AASHTO LRFD 

Code calibration (18m span, 1.8m girder spacing; see Nowak 1999) is unchanged.   Notice on the 

graphs that, when secondary elements are accounted for, the target bridge happens to represent 

the most reliable of the cases considered.    This is by coincidence, but results in the majority of 
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the structures to have β’s raised above their previous levels.  This is the most conservative target, 

but may not be the best choice if the safety of the majority of existing bridge designs is deemed 

satisfactory.   Clearly, other choices of γ are also possible which my represent a more desirable 

‘average’ safety level. 

It should be emphasized that the process presented does not alter the currently accepted safety 

level of existing bridges, but rather strives to increase the uniformity in safety level from one 

structure to the next.  Therefore, even though the load distribution effects of secondary elements 

are not considered in traditional bridge design procedures, no increases in live loads are 

warranted for analyses that do include these elements, as doing so would lower the safety level of 

new bridge designs.  This is because, as noted earlier, although secondary elements are not 

designed to affect load distribution, they do so even at extreme overloads, and thus affect girder 

reliability when not intended to. 

 

Conclusions 

The reliability of bridge girders was determined considering the effects of barriers, sidewalks, 

and diaphragms positively connected to the structure.  The results indicate that significant 

differences in reliability may exist between structures with and without these elements.  The 

target safety level can be obtained by accounting for secondary elements in design.  A practical 

solution, in lieu of conducting a finite element analysis for each bridge designed or evaluated, is 

to adjust the current LRFD GDF formula.  Such an approach is compatible with existing LRFD 

Code format and is straightforward to implement.  Additional considerations come with this task, 

however, such as insuring the initial and continuing contribution of secondary element stiffness 

to the structure.  Not only would this involve verifying the rigor of initial detailing, but also the 
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long-term effects of stiffness deterioration.  These tasks are significant and beyond the scope of 

this study. 

Although this study focused on simple span structures, which represent the majority of 

existing steel bridges (FHWA 2001), many modern structures are continuous.  As girders in 

continuous span bridges typically experience lower maximum load effects and slightly better 

transverse load distribution, the expectation is that these structures would display somewhat less 

reliability index variation caused by secondary elements.  Trends would remain similar, however.   

As the current design trend is to use fewer bridge girders, this study explored structures with 

large girder spacings.  Most (older) existing structures have smaller girder spacings (1.5-1.8 m).  

As overall load distribution considering secondary elements tends to be more uniform with 

smaller girder spacings, results here can be considered conservative for these structures. 

   For now, even without accounting for secondary elements in design, it is clear that girder 

bridges in general have better load distribution than assumed.  The load distribution equations 

and recommendations presented can be used without reference to reliability index, such as to 

approximate load distribution effects without conducting a more rigorous (but potentially more 

accurate) analysis.  Results might be used for service load evaluations such as those for fatigue 

investigations, for example.  As load distribution results here are based primarily on calibrated 

numerical models, however, significant additional experimental studies, particularly with loads at 

girder ultimate capacity levels, are warranted before any codification can be recommended. 
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Table 1. Resistance Model Random Variables  

 

Random Variable* Bias Factor 

λ 

Coefficient of 

Variation V 

Concrete   

Compressive Strength 0.95-1.08 0.15-0.18 

Deck Thickness (t) 1.0 0.4/t 

Barrier Height (h) 1.0 0.4/h 

Barrier Width (w) 1.0 0.4/w 

Sidewalk Thickness (s) 1.0 0.4/s 

Sidewalk Width (l) 1.0 0.4/l 

   

Reinforcing Steel   

Yield Strength 1.03 0.022 

Area of Rebar 1.0 0.015 

Distance, steel to slab top (d) 1.0 0.7/d 

   

Girder and Diaphragm Steel   

Yield Strength 1.06-1.13 0.10-0.12 

*Strength distributions are lognormal; geometry distributions are normal. 

 

 

 

 

 

Figure 1. Idealized Bridge Cross-Sections 
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Figure 2. Typical Finite Element Model 
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Fig. 3.  Reliability Index as a Function of Span, 2m Girder Spacing 
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Fig. 4.  Reliability Index as a Function of Span, 3m Girder Spacing 
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Fig. 5.  Reliability Index as a Function of Span, 4m Girder Spacing 
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Fig. 6. Reliability Index as a Function of Girder Spacing, 10m Span 
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Fig. 7. Reliability Index as a Function of Girder Spacing, 20m Span 
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Fig. 8. Reliability Index as a Function of Girder Spacing, 30m Span 
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Fig. 9. Reliability Index as a Function of Girder Spacing, 40m Span 
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Fig. 10. Reliability Index as a Function of Girder Spacing, 50m Span 
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Fig. 11. Typical Load Proportion as a Function of Span 
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Fig. 12. Typical Moment Reduction due to Diaphragms 
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Fig. 13. Typical Moment Reduction due to Barriers  
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Fig. 14. Typical Moment Reduction due to Barriers and Sidewalks  
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Fig. 15.  New Reliability Indices as a Function of Span, 2m Girder Spacing 
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Fig. 16.  New Reliability Indices as a Function of Span, 3m Girder Spacing 
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Fig. 17.  New Reliability Indices as a Function of Span, 4m Girder Spacing 
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Notation List 

 

Kd Diaphragm stiffness ratio 

 

Ke Edge stiffness ratio 

 

L Girder spacing (m) 

 

S Bridge span (m) 

 

V Coefficient of Variation 

 

αd GDF adjustment factor for diaphragms 

 

αe GDF adjustment factor for edge-stiffening elements 

 

β Reliability Index  

 

λ  Bias factor  
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