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do i1 = 1,4
    j(1) = i1
        do i2 = 1,4
            j(2) = i2
                do i3 = 1,4
                    j(3) = i3
                        do i4 = 1,4                        do i4 = 1,4
                            j(4) = i4
                                if (j(1) .eq. j(2) .or. j(1) .eq. j(3) .or. j(1) .eq. j(4)) cycle
                                if (j(2) .eq. j(3) .or. j(2) .eq. j(4)) cycle
                                if (j(3) .eq. j(4)) cycle
                            print*.j(1).j(2).j(3).j(4)
                        end do
                end do                end do
        end do
end do
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Regular Articles: 
Relative Importance of Predictors in 
Multilevel Modeling  
Yan Liu 
Harvard University 
Cambridge, MA 

Bruno D. Zumbo 
Univ. of British Columbia 
Vancouver, BC, CAN 

Amery D. Wu 
Univ. of British Columbia 
Vancouver, BC, CAN 

 
 
The Pratt index is a useful and practical strategy for day-to-day researchers when 
ordering predictors in a multiple regression analysis. The purposes of this study are to 
introduce and demonstrate the use of the Pratt index to assess the relative importance of 
predictors for a random intercept multilevel model. 
 
Keywords: Random Intercept model, multilevel model, Mplus, Structural equation 
modeling, Pratt Index 
 

Introduction 

Multiple regression analysis is a widely used statistical method in many fields. 
Once predictors in a regression model are selected, it is a common practice for 
researchers to investigate which predictors explains more variance than others, or 
to identify a sub-set of predictors that explain most of the variation in the outcome 
variable. Hence, how to measure the relative importance of explanatory variables 
has been widely discussed in the regression literature (e.g., Budescu, 1993; 
Darlington, 1968; Green, Carroll, & Desarbo, 1978; Kruskall, 1987; Pratt, 1987; 
Thomas, Hughes, & Zumbo, 1998). As is commonly noted in the literature, the 
relative importance of a predictor reflects how much it contributes to the 
explanation/prediction of an outcome variable, in the presence of the other 
correlated predictors.  

The Pratt index, a R-square based statistic, has been shown to be a useful 
and practical strategy when ordering predictors in terms of importance in a 

mailto:yan_liu@hms.harvard.edu
mailto:bruno.zumbo@ubc.ca
mailto:ameryw@yahoo.com
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multiple regression analysis. However, to date, this technique has not been 
adapted for multilevel model or hierarchical linear model (HLM) analysis because 
(a) there is no natural R-square measure for a multilevel regression model akin to 
one in multiple regression that can be partitioned additively, and (b) the within- 
and between-level correlation matrices are not readily available – both of which 
are key elements in R-square based methods for variable ordering. However, 
recent advances on multilevel modeling within a structural equation modeling 
(SEM) framework provides these two key elements (e.g., Asparouhov & Muthén, 
2006; Muthén, 1994) and hence allows one to apply the Pratt index to multilevel 
regression models. 

As Raudenbush and Bryk (2002) note, the random intercept model is widely 
used, especially when the clustering is a nuisance factor or one is interested in 
how the level-2 predictors affect the means of the outcome variable (e.g., Bryk & 
Driscoll, 1988; Englert, et al., 1988; Judge, Scott, & Ilies, 2006; Muijs, 2003), and 
hence the ordering of predictors has practical significance and value. The purpose 
of this study is to demonstrate how to order the relative importance of predictors 
in a multilevel regression analysis with a random intercept using the Pratt index 
(Pratt, 1987; Thomas, Hughes, & Zumbo, 1998; Zumbo, 2007). The article is 
organized as follows. First, the Pratt index is briefly described. "Next, the additive 
property of R-square measures and estimated covariance matrices at within- and 
between-levels are described. Finally, it will be demonstrated how to use the Pratt 
index in multilevel regression models using Mplus with two examples: (a) a 
random intercept only multilevel regression analysis, and (b) a random intercept 
only with a new multilevel regression approach-- latent covariate. 

Pratt Index 

Herein a very brief sketch of Pratt’s variable ordering measure is provided, 
similar to the one described in Zumbo (2007). The interested reader is referred to 
Pratt (1987) and Thomas, Hughes, & Zumbo (1998) for details. Pratt considered a 
linear regression of the form 
 
 0 1 1 ... p py b b x b x      ,  (1) 
 
where residual term   is uncorrelated with 1 2,, ..., px x x  and is distributed with 

mean zero and variance 2 . The total standardized variance (R2) in a population 
explained by the model in equation (1) can be written as 
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 2

j jj
R b    (2) 

 
where bj is the standardized regression coefficient corresponding to xj, and ρj is 
the simple correlation (i.e., zero-order correlation) between y and xj. Pratt justified 
the rule whereby relative importance of a predictor is equated to variance 
explained, provided that the explained variance attributed to xj is j jb  , a 
definition which is widely used in the applied literature (e.g., Green, Carroll & De 
Sarbo, 1978).  

An additional feature of Pratt’s measure is that it allows the importance of a 
subset of variables to be defined additively, as the sum of their individual 
importance irrespective of the correlation among the predictors. Other commonly 
used measures (e.g., the standardized beta-weights, the t-values, zero-order 
correlations, semi-partial correlations) do not allow for an additive definition and 
may be problematic with correlated predictor variables.  

Thomas, Hughes, and Zumbo (1998) provide a sample interpretation of 
Pratt’s measure based on the geometry of least squares. They considered a sample 
regression equation, 
 
 1 1

ˆ ˆˆ p py b x b x     (3) 
 
where the ˆ

jb s are estimates of the population regression coefficients, j = 1, …, p. 
They defined the partition of R2 of jx , j=1, ..., p, to be the signed length of the 

orthogonal projection of ˆ
j jb x  onto ŷ , to the length of ŷ . By definition, this ratio 

represents the proportion of R2 and sums to 1.0. Furthermore, the partitioning is 
additive, so that one could, for example, compute the proportion of R2 attributable 
to various subsets of the explanatory variables, irrespective of the correlations 
among the explanatory variables. 

One then can partition the resulting R2 by computing the Pratt index, dj, 
 

 2

ˆ
,  j j

j

b r
d

R


  (4) 

where, as above, ˆ
jb is the jth standardized regression coefficient (the “beta”), jr  is 

the simple Pearson correlation, also called zero-order correlation, between the 
response variable and jth explanatory variable in equations (1) and (3) in samples. 
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The sum of dj, computed from equation (4), over all predictors is one, and the 
relative importance of predictors can be ordered by dj, that is, the larger the value 
of dj the more important the predictor, as per Pratt (1987). Thomas (1992) 
suggested that as a general rule, if dj < 1/(2p) (where p is the number of 
predictors), namely half the average importance, then the predictor can be 
regarded as unimportant. 

A variety of strategies have been used in practice in the literature, such as 
standardized regression coefficients (i.e., beta-weights), zero-order correlations, 
and the t-tests and its p-values for the regression coefficients, but they can give 
inconsistent results when the predictors are correlated because they do not have 
the additive property as indicated above. In addition to the Pratt index, two other 
methods have also been recommended in the literature, dominance analysis 
(Budescu, 1993) and proportional marginal variance decomposition (i.e., a 
modified version of dominance analysis) (Feldman, 2005). However, these two 
methods are computationally intensive with even a modest number of predictors, 
whereas the Pratt index requires simple computation and is easy to understand and 
interpret. 

Additive R-squares and Correlations Using SEM 

R-square is a widely used global effect size in multiple regression analysis, 
which is used to quantify the variance in an outcome variable explained by the 
model (i.e., by all the explanatory variables). However, R-square in a multilevel 
analysis is not straightforward. Several R-square or effect size measures were 
suggested in the literature, but none of them is equivalent to the one used in a 
multiple regression and the calculation of R-square for a random slope model is 
more complex due to the covariance of residuals between the intercept and 
slope(s) (Gelman & Pardoe, 2006; Hox, 2010; Kreft & de Leeuw, 1998; 
Raudenbush & Bryk, 2002; Roberts & Monaco, 2006; Singer & Willett, 2003; 
Snijders & Bosker, 1999). 

Based on a SEM framework, the recent advances in multilevel modeling 
have made it possible for us to use the Pratt index in a multilevel regression 
analysis. Unlike the conventional multilevel modeling approach, the observed 
covariance matrix can be decomposed into within- and between-levels 
orthogonally using the SEM framework. Cronbach and Webb (1979) proposed to 
decompose the observed individual variables into within- and between- group 
components, which can be written as Ytot =Yw +Yb, and the components Yw and 
Yb are orthogonal and additive. This decomposition can be used for the partition 
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of population covariance matrix to w (within-level covariance matrix) and b 
(between-level covariance matrix). Muthén (1989, 1990, 1994) showed that the 
sample covariance matrices can be used to estimate the multilevel population 
covariance matrices. In addition, Muthén (1994) showed that the pooled within-
level covariance matrix is an unbiased estimate of the population within-level 
covariance matrix w, which is given by 
 

( )( )
ˆ 

G n

ij j ij j
j i

w w

Y Y Y Y
S

N G

 

  



  

 
where i denotes individuals, j denotes groups, N is the total sample size, G is the 
total number of groups, ijY  denotes individual observations of all observed 

variables, jY denotes the group means of all observed variables, and the symbol 
prime denotes transpose. Muthén further showed that the sample between-level 
covariance matrix is an estimate of the composite ˆ ˆ b w bS c    , where c is a 
scaling factor 
 

2 2

( 1)

G

j
j

N n
c

N G







 

 
and bS  is given by 
 

( )( )

1

G

j j
j

b

n Y Y Y Y
S

G

 





. 

 
The maximum likelihood estimate of ˆ

b is )(1
wb SSc  . 

The estimated within- and between-level covariance matrices allow us to 
obtain two key components that are needed for the calculation of the Pratt index: 
the correlations of the outcome variable with the predictors and the variances of 
the outcome variable explained by the model at within- and between-levels, 
respectively. The correlations can be obtained from covariance matrices as the 
correlation matrices are simply the standardized covariance matrices. The additive 
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property of estimated variance-covariance matrices at the within- and between-
levels makes it possible to obtain the R-square which is conceptually equivalent to 
the one used in a multiple regression analysis and is always positive – a property 
that is not always guaranteed by other “R-square” measures discussed in the 
literature. The total variance of the outcome variable at both levels can be 
obtained directly from the covariance matrices, the residual variances at both 
levels can be obtained from a multilevel model analysis, and R-square can be 

computed from the equation 
2

2
21 e

tot

R 


  , which applies to both within- and 

between-levels. It should be noted that R-square arising from this method is akin 
to the R-square in regression and hence can be partitioned using Equation (4). 
However, it should be noted that the additive property of R-square described here 
only applies to a random intercept regression model and the problems raised by a 
random slope model are still not yet solved. This limitation is also true for other 
methods of ordering in multilevel models such as those based on dominance 
analysis (Luo & Azen, 2013).  

The Mplus software program has currently made those parameter estimates 
available in the output file. The covariance as well as correlation matrices at both 
within- and between-levels can be obtained by requesting“SAMPSTAT” under 
the “OUTPUT” command. The request for“STANDARDIZED”under the 
“OUTPUT”command will give R-squares for within- and between-levels, 
respectively, and the standardized beta-weights (i.e., beta-weights in the section of
“STDYX Standardization”in the output). Researchers can also calculate R-
square using the variance of outcome variable and the residual variance obtained 
from the Mplus output. Examples of Mplus syntax and Mplus output can be found 
in Appendices A and B.  

Two Demonstrations  

In this section, the use of the Pratt index with two real data examples is 
demonstrated. The first is a demonstration of a commonly used model in 
conventional HLM practice and involves what is often referred to as a random 
intercept model with predictors at both within- and between-levels. The second is 
a demonstration of a model that is referred to as a latent covariate approach, 
wherein the observed predictors are decomposed into two latent components 
rather than the common practice of aggregating individual observations to form a 
group level predictor.   
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Data sources 
The data were retrieved from Trends in the International Mathematics and 
Science Study (TIMSS) 2007. TIMSS 2007 Grade-8 mathematics ability scores, 
plausible values, estimated by item response theory, were used as the outcome 
variable. For the purpose of demonstration, one of five plausible values for the 
analyses was chosen. Six predictors (either measured variables or derived indices 
by TIMSS) were chosen from the students’ questionnaire as within-level 
predictors. These within-level predictors included sex, use of calculator 
(Calculator), availability of computer (Computer), students’ positive affect toward 
mathematics (Affect), students’ valuing of mathematics (Valuing), and students’ 
perception about being safe at school (Safety). Three variables were chosen from 
the school principal’s questionnaire as between-level predictors — good school 
attendance (Attendance), principals’ perception of school climate (Climate), and 
percentage of students at economic disadvantage in the school (SES).  

Among those predictors, Calculator and Computer are on 4-point Likert 
scale (never, some lessons, half the lessons, & every or almost every lesson); 
Affect, Valuing, Safety, Attendance, and Climate are on 3-point Likert scale (low, 
medium, & high); and SES are on 4-point Likert scale (0-10%, 11-25%, 26-50%, 
& more than 50%). A detailed description of these variables can be found in the 
TIMSS 2007 User Guide (Foy & Olson, 2009). A total of 120 schools, 3470 
students from Hong Kong were included in the analysis and 50.4% of students are 
girls. It should be noted that the same data set will be used for both 
demonstrations. 

Demonstration One 
Data analysis. Please see Raudenbush and Bryk’s (2002) case study one 
for a description of the random intercept model in their notation. In the case 
herein, the random intercept multilevel regression model was estimated using 
Mplus 6.02 to address how students’ mathematics ability was affected by the 
between-level (school level) factors as well as the within-level (student level) 
factors. The Pratt indices were computed to answer the question—which 
predictors are more important when accounting for the variance in the outcome 
variable (mathematics ability). The two-level random intercept model in the 
Mplus formulation can be described as: 
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0 1 2 3

4 5

0 00 01 02 03 0

Within-model:  Gender  Valuing  Computer

 Affect  Calculator ,

Between-model:  Attendance  Climate  SES ,

ij j

ij

j j

Y
r

u

   

 

    

   

  

    

  (5) 

 
where i denotes the number of students; j denotes the number of schools; 0 j is 
the random intercept; other  s are the fixed slopes of within-model predictors; 

00 is the model grand mean; other  s are the slopes for the between model 
predictors; ijr is the within-level residual; and 0 ju  is the between-level residual for 
the random intercept. 
 
Results Table 1 shows the results of the multilevel regression analysis with 
a random intercept and the Pratt index for each predictor. The second column is 
the standardized regression coefficients (the ‘beta’-weights); the following 
columns present t-tests, the corresponding p-values, zero-order correlations, and 
Pratt indices. The upper and lower parts of the table contain the results of the 
student-level (within) and school-level (between) models, respectively. The 
Mplus syntax and output of Demonstrate One can be found in Appendix A. 

Using the common practices described above, would make contradictory 
conclusions about the relative importance of within-level predictors, sex, 
calculator, computer and valuing math, if using different strategies. For example, 
one would consider computer more important than sex, calculator and valuing 
math if relying on the beta-weights. However, one would regard sex more 
important if relying on t-tests or the corresponding p-values or regard valuing 
math more important than computer, sex, or calculator if using simple correlations. 
These strategies are problematic as they do not have the additive property 
mentioned earlier.  

However, due to its additive property, the Pratt index orthogonally partitions 
the R-square and sums to one, which can provide us a criterion of how much each 
predictor contributes to the explained variance in the outcome variable 
orthogonally. Using the Pratt indices, calculator is shown to be more important 
than sex, computer, and valuing math, but all of them have made trivial 
contributions to the model relative to affect, which accounted for 73.8% of the R-
square (R2=0.135).  
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Table 1. A Random Intercept Multilevel Regression Analysis and Corresponding Pratt 
Indices 
 
Within Level Beta-weight t-test p-value Correlation Pratt 
valuing math 0.048 2.610 0.009 0.158 0.056 
computer -0.104 -5.031 <0.001 -0.077 0.059 
sex 0.090 5.108 <0.001 0.094 0.063 
calculator 0.090 4.659 <0.001 0.121 0.081 
Affect 0.300 16.381 <0.001 0.332 0.738 
R-square 0.135       SUM=1.0 

      
Between Level Beta-weight t-test p-value Correlation Pratt 
school climate 0.249 3.831 <0.001 0.354 0.258 
low SES -0.259 -3.258 0.001 -0.430 0.326 
school attendance 0.319 4.196 <0.001 0.447 0.417 
R-square 0.342       SUM=1.0 
 

Note. The sum of Pratt index of all predictors in either within- or between-levels is not exactly one due to 
rounding errors from parameter estimates. 
 
 

For the between-level model, school attendance was shown as the most 
important predictor among the three school variables. The order of importance 
would also be different, depending on whether beta-weights, correlation, or t-tests 
are used as criterion. The Pratt indices showed that school attendance is the most 
important predictor, which accounted for 41.7% of the explained variance 
(R2=0.342). The next important predictors are low SES and school climate, which 
accounted for 32.6% and 25.8% of the explained variance, R-square, respectively. 
Using Thomas’ (1992) criterion, all the values of Pratt indices are greater than 
0.167, so that those between-level predictors could be considered as important 
predictors. 

Demonstration 2 
Data Analysis In the second example, a new approach is demonstrated 
that allows us to examine a predictor at both levels though it is collected at the 
individual level. In some situations, data was collected from individuals, but it 
was also desired to investigate them at an aggregate level. For example, imagine 
students’ socioeconomic status (SES) was collected from individual students, but 
also were interested in the effects of school SES. Rather than aggregating SES by 
taking an average from within-level, a new approach that decomposes SES 
variable into two latent components (SESwithin and SESbetween) in the multilevel 
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regression analysis can be used, which would reduce the measurement error 
arising from aggregating the data as is typical within SEM.  

In general, a manifest covariate ijX can be decomposed into two latent 
components ij wij bjX X X   where wijX  and bjX  are latent covariates. The 
multilevel equations are defined as Y ij = 0 j  + 1 j wijX  + ijr  and 0 j = 00  + 

01 bjX  + 0 ju  where all the notation is defined the same as in Equation (3). A 
detailed description can be found in Asparouhov and Muthen (2006) and Ludtke, 
et al. (2008). This approach has also been adopted in Preacher, Zyphur, and 
Zhang's (2010) multilevel mediational models. 

This latent variable decomposition approach is used in the second 
demonstration. Building on the model in the first demonstration, one variable 
safety (How safe students feel at schools) was added, which was collected from 
individual students, but the effects of safety at both student and school levels can 
be examined using this latent variable decomposition approach. The 2-level 
model is presented as follows: 
 

 

0 1 2 3

4 5 6 within

0 00 01 02 03

04 between 0

Within-model:  Gender  Valuing  Computer

 Affect  Calculator  ,

Between-model:  Attendance  Climate  SES

,

ij j

ij

j

j

Y
r

u

   

  

    



   

   

   

 

Safety

 Safety

  (6) 

 
where all parameters are defined as in the Equation (3) except that the variable 
safety was added into the within-level and between-level models in Equation (4); 

6 is the slope for safety in level-1 model; 04 is the slope for safety in level-2 
model. 

 
Results Table 2 presents the parameter estimates obtained from the random 
intercept multilevel regression analysis based on a latent variable decomposition 
approach. The columns 2-5 are the standardized beta-weights, t-tests, 
corresponding p-values, and correlations, respectively. The Pratt indices are 
calculated and shown in the last column. The Mplus syntax and output of 
Demonstrate Two can be found in Appendix B. 

The interesting findings of this analysis are that although it was collected at 
the individual level safety was a trivial predictor at the student level, beta-
weight=0.008, t=0.478, p=0.632, and the corresponding Pratt index=0.001, but it 
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became a salient predictor at the school level, beta-weight=0.306, t=2.925, 
p=0.004, and the corresponding Pratt index=0.306. 
 
 
Table 2. A Random Intercept Multilevel Regression Analysis Based on a Latent Variable 
Decomposition Approach and the Corresponding Pratt Indices 
 
Within Level Beta-weight t-test p-value Correlation Pratt 
Safety 0.008 0.478 0.632 0.005 0.001 
valuing math 0.048 2.657 0.008 0.158 0.056 
computer -0.102 -4.920 <0.001 -0.075 0.056 
sex 0.093 5.168 <0.001 0.097 0.066 
calculator 0.093 4.763 <0.001 0.124 0.085 
Affect 0.300 16.365 <0.001 0.333 0.735 
R-square 0.136       SUM=1.0 

      
Between Level Beta-weight t-test p-value Correlation Pratt 
school climate 0.228 3.840 0.005 0.355 0.185 
low SES -0.239 -3.042 0.002 -0.430 0.235 
school attendance 0.274 3.755 <0.001 0.447 0.280 
Safety 0.306 2.925 0.004 0.427 0.306 
R-square 0.436       SUM=1.0 
 

Note. The sum of Pratt index of all predictors in either within- or between-levels is not exactly one due to 
rounding errors from parameter estimates. 
 
 

Again, the relative importance of predictors would be ordered differently, 
depending on which criterion, beta-weights, t-tests, or correlations, were used for 
the judgment. For example, the effect of safety at the between level would not be 
considered as the most important predictor if the judgment is based on 
correlations or t-tests. However, using Pratt indices, safety was regarded as the 
most important predictor, which accounted for 30.6% of the R-square. The 
importance of the other between-level predictors is ranked in the following the 
order, school attendance (28%), low SES (23.5%), and school climate (18.5%). 
The order of relative importance for the within-level predictors was similar to that 
of Demonstration One except the inclusion of safety, which should not be 
regarded as an important predictor based on 1/(2p) criterion as it accounted for 
less than 8.3% of the R-square. 

Concluding Remarks 

Ordering the relative importance of predictors has been a common practice in 
multiple regression analysis, but the methods developed in multiple regression 
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have not been used in multilevel regression analysis due to several statistical 
challenges. This study demonstrated how to order the relative importance of 
predictors in a multilevel regression analysis using the Pratt index. The Pratt 
index has not been used in multilevel regression analyses mainly because the 
within- and between-level variance-covariance could not be partitioned 
orthogonally and thus an R-square measure equivalent to the one used in multiple 
regression analysis cannot be obtained. The recent advances in multilevel 
modeling using SEM framework made the R-square available for researchers to 
compute the Pratt index when conducting a random intercept multilevel 
regression analysis. 

The Pratt index provides a useful tool to day-to-day researchers. As 
indicated in the introductory section, the Pratt index can be used with random 
intercept models when one wants to eliminate a nuisance factor arising from 
clustering or when one is only interested in the relationship between the level-2 
predictors and the average scores of outcome.  

It should be noted that the Pratt index can currently only apply to a random 
intercept regression model. The problems of obtaining a R-square with a random 
slope described above have not been solved yet, such as the R-square values can 
be negative and the magnitude of global R-square measure depends on the scale 
of predictors included in the model. The residual covariances of the intercept and 
slopes give rise to the complexity of partitioning the within- and between-level 
variances-covariances. Luo and Azen (2013) also discussed this issue in their 
extension of dominance analysis to multilevel models. They pointed out that the 
random slope model is problematic when conducting dominance analysis and 
hence suggested readers to use the random intercept model when using 
dominance analysis.   

It is worth noting that the Pratt index is not used as a strategy to select 
variables, but a tool for ordering the relative importance of variables once 
predictors have been chosen. Selection of the variables should be based on the 
data as well as the theories and literature surrounding the dependent and predictor 
variables. Moreover, Pratt index can only tell us the statistical importance of 
variables, but in practice researchers also need to consider the 
practical/substantive importance of variables. 
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Appendix A: Mplus Syntax and Output for Demonstration 
One 

Mplus Syntax 

TITLE: this is an example of a two-level regression analysis for a continuous 

dependent variable with a random intercept and observed covariates 

DATA: FILE = HK_example2.dat 

 FORMAT ARE 136.F8; 

VARIABLE: 

 NAMES = idsch idstd y1-y5 sex calculator computer affect valuing 

    paredu safty attendan climate ses; 

 USEVARIABLES = y1 sex calculator computer affect valuing 

    attendan climate ses; 

 MISSING = blank; 

 WITHIN = sex calculator computer affect valuing 

 BETWEEN = attendan climate ses; 

 CLUSTER = idsch; 

 CENTERING = GRANDMEAN (sex calculat computer affect valuing); 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL: 

 %WITHIN% 

  y1 ON sex calculat computer affect valuing; 

 %BETWEEN% 

  y1 ON attendan climate ses; 

OUTPUT:  SAMPSTAT  STANDARDIZED; 

Mplus Output 

SAMPLE STATISTICS 

 

ESTIMATED SAMPLE STATISTICS FOR WITHIN 

Covariances 

 Y1 SEX CALCULAT COMPUTER AFFECT VALUING 

Y1 3259.376 

SEX 2.687 0.250 

CALCULAT 5.823 -0.037 0.706 

COMPUTER -3.661 0.051 0.030 0.700 

AFFECT 16.487 0.035 0.093 0.025 0.757 
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VALUING 5.847 0.007 0.062 0.024 0.192 0.420 

Correlations 

 Y1 SEX CALCULAT COMPUTER AFFECT VALUING 

Y1 1 

SEX 0.094 1 

CALCULAT 0.121 -0.089 1 

COMPUTER -0.077 0.122 0.042 1 

AFFECT 0.332 0.081 0.127 0.035 1 

VALUING 0.158 0.022 0.114 0.045 0.34 1 

 

ESTIMATED SAMPLE STATISTICS FOR BETWEEN 

Covariances 

 Y1 ATTENDAN CLIMATE SES 

Y1 5091.540 

ATTENDAN 19.053 0.357 

CLIMATE 14.287 0.049 0.319 

SES -32.546 -0.225 -0.138 1.127 

Correlations 

 Y1 ATTENDAN CLIMATE SES 

Y1 1 

ATTENDAN 0.447 1 

CLIMATE 0.354 0.144 1 

SES -0.43 -0.355 -0.23 1 

 

STANDARADIZED MODEL RESULTS 

STDYX Standardization 

Within Level 

 Estimate S.E. Est./S.E. P-Value 

Y1 ON 

SEX 0.090 0.018 5.108 0.000 

CALCULAT 0.090 0.019 4.659 0.000 

COMPUTER -0.104 0.021 -5.031 0.000 

AFFECT 0.300 0.018 16.381 0.000 

VALUING 0.048 0.018 2.610 0.009 

Residual Variances 

Y1 0.865 0.012 69.355 0.000 

 

Between Level 
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Y1 ON 

ATTENDAN 0.319 0.076 4.196 0.000 

CLIMATE 0.249 0.065 3.831 0.000 

SES -0.259 0.080 -3.258 0.001 

Intercepts 

Y1 7.939 0.554 14.319 0.000 

Residual Variances 

Y1 0.658 0.077 8.557 0.0000 

 

R-SQUARE 

Within Level 

Observed 

Variable  Estimate S.E. Est./S.E. P-Value 

Y1 0.135 0.012 10.786 0.000 

Between Level 

Y1 0.342 0.077 4.448 0.000 
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Appendix B: Mplus Syntax and Output for Demonstration 
Two 

Mplus Syntax 

TITLE: this is an example of a two-level regression analysis for a continuous 

dependent variable with a random intercept – latent variable 

decomposition 

DATA: FILE = HK_example2.dat 

 FORMAT ARE 136.F8; 

VARIABLE: 

 NAMES = idsch idstd y1-y5 sex calculator computer affect valuing 

    paredu safty attendan climate ses; 

 USEVARIABLES ARE y1 sex calculator computer affect valuing 

    safty attendan climate ses; 

 MISSING = blank; 

 WITHIN = sex calculator computer affect valuing 

 BETWEEN = attendan climate ses; 

 CLUSTER = idsch; 

 CENTERING = GRANDMEAN (sex calculat computer affect valuing 

    safty attendan climate ses); 

ANALYSIS: TYPE = TWOLEVEL; 

MODEL: 

 %WITHIN% 

  y1 ON sex calculat computer affect valuing safty; 

 %BETWEEN% 

  y1 ON attendan climate ses safty; 

OUTPUT:  SAMPSTAT  STANDARDIZED; 

Mplus Output 

SAMPLE STATISTICS 

 

ESTIMATED SAMPLE STATISTICS FOR WITHIN 

Covariances 

 Y1 SEX CALCULAT COMPUTER AFFECT VALUING SAFTY 

Y1 3255.204 

SEX 2.757 0.250 

CALCULAT 5.944 -0.038 0.706 
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COMPUTER -3.555 0.052 0.030 0.699 

AFFECT 16.522 0.036 0.093 0.025 0.757 

VALUING 5.853 0.007 0.062 0.024 0.191 0.420 

SAFTY 0.188 -0.040 -0.001 -0.024 0.009 -0.002 0.415 

Correlations 

 Y1 SEX CALCULAT COMPUTER AFFECT VALUING SAFTY 

Y1 1 

SEX 0.097 1 

CALCULAT 0.124 -0.091 1 

COMPUTER -0.075 0.124 0.043 1 

AFFECT 0.333 0.084 0.127 0.034 1 

VALUING 0.158 0.023 0.114 0.044 0.339 1 

SAFTY 0.005 -0.126 -0.001 -0.045 0.016 -0.004 1 

 

ESTIMATED SAMPLE STATISTICS FOR BETWEEN 

Covariances 

 Y1 SAFTY ATTENDAN CLIMATE SES 

Y1 5093.476 

SAFTY 4.285 0.020 

ATTENDAN 19.068 0.015 0.357 

CLIMATE 14.302 0.009 0.049 0.319 

SES -32.546 -0.020 -0.225 -0.138 1.127 

Correlations 

 VALUING SAFTY ATTENDAN CLIMATE SES 

VALUING 1 

SAFTY 0.427 1 

ATTENDAN 0.447 0.183 1 

CLIMATE 0.355 0.108 0.144 1 

SES -0.430 -0.137 -0.355 -0.230 1 

 

STANDARDIZED MODEL RESULTS 

STDYX Standardization 

Within Level 

 Estimate S.E. Est./S.E. P-Value 

Y1 ON 

SEX 0.093 0.018 5.168 0.000 

CALCULAT 0.093 0.020 4.763 0.000 

COMPUTER -0.102 0.021 -4.920 0.000 
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AFFECT 0.300 0.018 16.365 0.000 

VALUING 0.048 0.018 2.657 0.008 

SAFTY 0.008 0.016 0.478 0.632 

Residual Variances 

Y1 0.864 0.013 67.907 0.000 

 

Between Level 

Y1 ON 

ATTENDAN 0.274 0.073 3.755 0.000 

CLIMATE 0.228 0.059 3.843 0.000 

SES -0.239 0.079 -3.042 0.002 

SAFTY 0.306 0.105 2.925 0.003 

Intercepts 

Y1 7.972 0.546 14.601 0.000 

Residual Variances 

Y1 67 03 96 00 

 

R-SQUARE 

Within Level 

Observed 

Variable Estimate S.E. Est./S.E. P-Value 

Y1 0.136 0.013 10.660 0.000 

Between Level 

Y1 0.433 0.103 4.197 0.000 
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Estimators of the Two-Parameter Weibull 
Distribution 
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Weibull distributions are widely used in reliability and survival analysis. In this paper, 
different methods to estimate the shape and scale parameters of the two-parameter 
Weibull distribution have been reviewed and compared, based on the bias, mean square 
error and variance. Because a theoretical comparison is not possible, an extensive 
simulation study has been conducted to compare the performance of different estimators. 
Based on the simulation study it was observed that MLE consistently performs better 
than other methods. 
 
Keywords: Two-parameter Weibull distribution, scale parameters, shape parameters  
 

Introduction 

The Weibull distribution is a commonly used model in reliability, life time and 
environmental data analysis. A considerable literature discussing the methods of 
estimation of Weibull parameters exists (Sharoon, et al., 2012; Saralees et al., 
2011; Saralees et al., 2008) because of its applications in different fields. Kantar 
and Senoglu (2008) did a simulation comparison of different estimators for scale 
parameter when shape is known. Balakrishanan and Kateri (2008) showed the 
existence and uniqueness of maximum likelihood estimates (MLE) of Weibull 
distribution. Dubey (1967) derived the percentile estimators (Percentile 1) which 
uses 4 different percentiles to estimate the shape and scale parameters. Seki and 
Yokoyama (1993) proposed a simple and robust method that uses only two 
percentiles, 31st and 63rd percentile (Percentile 2) to estimate both parameters. 
Moment estimators (MOM) and median rank regression estimators (MRRS) are 
also commonly used in literature (Kantar and Senoglu, 2008) because of their 
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easiness in computation. Existing methods (namely MLE, MOM, MRRS, 
Percentile 1, and Percentile 2) for estimating both shape and scale parameters of 
two-parameter Weibull distribution are here reviewed and compared. A 
simulation study has been conducted to compare the performance of these 
methods under same simulation conditions. 

Statistical Methodology 

The Weibull distribution has the probability density function, 
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f x x e


 

 
 

     for 0, 0, 0,x     where   is the shape parameter and 
  is the scale parameter. The cumulative distribution function is given by 
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The distribution is reversed J-shaped when 1 , exponential when 1 and bell-
shaped when 1  (Kantar and Senoglu, 2008). Because of its wide-variety of 
shapes it is used extensively in practice for modeling real life data in different 
fields. 

Maximum Likelihood Estimators (MLE) 
The log-likelihood function of a random sample from the two-parameter Weibull 
distribution is given by 
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This will yield the following two score equations 
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The above two equations can be solved numerically to obtain MLEs. 
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Moment Estimators (MOM) 
The moment estimators are obtained by equating the population moments to the 
corresponding sample moments. The first and second moments of Weibull 
distribution are respectively 
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The first two moments from the sample are 2
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The moment estimates are obtained by solving the following two equations 
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Median Rank Regression Estimators (MRRS) 
MRR is a procedure for estimating the Weibull parameters by fitting a least 
squares regression line through the points on a probability plot. Thus, 
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This is now a linear model and method of least squares can be used to estimate α 
and β. The sample data are first sorted in ascending order and then following 
Abernethy (2006), the distribution function, F(xi) is approximated for each point 

(xi) in the sorted sample as 
0.3( ) ,
0.4i

iF x
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 where I is the ascending rank of the 

data point xi. 
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Percentile Estimators (Percentile 1) 
Percentile estimators for both shape and scale parameters were derived by Dubey 
(1967). He proposed an estimator based on 17th and 97th percentiles for shape 
parameter and one based on 40th and 82nd percentile for scale parameter. The 
formulae for the shape and scale percentile estimators are presented here; for 
details refer to Dubey (1967). Let p1 = 0.1673 and p2 = 0.9737. Define k1 =  
log (−log(1 − p1) ) –log (–log (1 – p2)). Let y1 and y2 represent the 100p1th 
percentile from the data. Then 
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Similarly to estimate β, define p3 = 0.3978 and p4 = 0.8211. Let k2 =  

log (−log(1 − p3) ) –log (–log (1 – p4)); k3 = –log (1 – p3) and 3

2

log( )1 kw
k

  . Let 

y3 and y4 represent the 100p3th and 100p4th percentile from the data. Then 
 

3 4exp( log( ) (1 )log( )w y w y    . 

Improved Percentile Estimators (Percentile 2) 
Seki and Yokoyama (1993) proposed this simple and robust method that uses only 
two percentiles, 31st and 63rd percentile to estimate α and β. The Weibull 
cumulative distribution function is given by 
 

( ) 1  for 0
x

F x e x




 
 
    . 

 
Hence the 100pth percentile of the Weibull distribution can be written as 

1/( log(1 ))px p    . Then the 100(1 – e–1) = 63.2th percentile is x0.632 = β for 

any Weibull distribution. This can be used to compute ̂ . Therefore, the estimate 

of the shape parameter can be obtained as  

0.632

log log(1 )ˆ
log p

p
x

x


 


 
 
 

. Seki and 

Yokoyama (1993) approximated the numerator of this estimator as –1 and then 
obtained p = 0.31, approximately, to obtain ̂ . 
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Simulation Study 

A simulation study has been conducted to explore the performances of the 
different methods discussed in this article.  

Simulation Technique 
The main objective of this study is to compare the performance of five different 
methods to estimate the shape and scale parameters of two-parameter Weibull 
distribution. Weibull distribution with parameters scale = 10 and shape = 0.5, 1, 
1.5,2,3 and 4 were used to generate 5,000 samples of sizes n = 5, 10, 20, 30, 50 
and 100. The estimates are compared using the values of average bias, mean 
squared error (MSE) and variance. The simulation was done using statistical 
software R version 2.15.2.  

Results and Discussion 
The results of the simulation are shown in Tables 1 to 3. The bias and MSEs from 
Weibull (10, 0.5) and Weibull (10, 3) are also presented in Figures 1 to 4. From 
Tables 1 to 3, it can be observed that as sample size increases, bias, MSE and 
variance decrease. For small sample size, the performance of methods differs 
significantly. For all methods, absolute bias, MSE and variance decrease as 
sample size increases.  It can be observed from Tables 1 to 3 and Figures 1 to 4, in 
almost all cases MLE performed better than the other 4 methods and percentile 
method-1 performed the worst.  In some situations, MRRS also performs well, 
especially for shape estimates. It can also be observed that both percentile 
estimators perform poorly in estimation of shape. There is no consistency in the 
performance of estimates by the method of moments. Because MLE is performing 
consistently better than the other 4 methods practitioners are encouraged to use 
MLE whenever possible. 
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Table 1. Bias, Variance and MSE of both Scale and Shape estimates α=10 and β=0.5; 1 
 

  
  Scale  Shape 

α, β n    MLE MOM MRRS Perctle1 Perctle2  MLE MOM MRRS Perctle1 Perctle2 

10, 0.5 

5 

Bias  2.929 6.216 5.361 5.340 4.394  0.219 0.351 0.025 0.661 0.497 

Vars  156.930 224.302 219.866 282.068 197.209  0.147 0.092 0.085 5.231 0.313 

MSEs  165.511 262.939 248.610 310.581 216.516  0.195 0.216 0.085 5.668 0.560 

10 

Bias  1.525 4.606 2.998 2.334 1.773  0.085 0.218 -0.015 0.283 0.193 

Vars  65.147 96.815 84.821 110.433 73.834  0.031 0.033 0.026 0.349 0.050 

MSEs  67.473 118.026 93.811 115.879 76.977  0.038 0.081 0.026 0.429 0.087 

20 

Bias  0.705 3.217 1.643 0.979 0.656  0.036 0.136 -0.021 0.112 0.079 

Vars  25.634 40.337 32.389 43.623 30.013  0.010 0.016 0.012 0.069 0.015 

MSEs  26.131 50.689 35.088 44.582 30.444  0.012 0.035 0.013 0.082 0.021 

30 

Bias  0.556 2.621 1.258 0.707 0.442  0.026 0.107 -0.017 0.072 0.054 

Vars  17.111 25.216 20.965 26.613 19.722  0.006 0.013 0.008 0.036 0.009 

MSEs  17.420 32.084 22.548 27.113 19.917  0.007 0.024 0.008 0.041 0.012 

50 

Bias  0.283 1.912 0.783 0.405 0.207  0.014 0.076 -0.016 0.039 0.034 

Vars  9.585 15.077 11.172 15.220 11.347  0.003 0.008 0.005 0.017 0.005 

MSEs  9.665 18.731 11.785 15.384 11.390  0.004 0.014 0.005 0.019 0.006 

100 

Bias  0.174 1.257 0.487 0.236 0.158  0.008 0.048 -0.011 0.021 0.018 

Vars  4.664 8.153 5.320 7.373 5.727  0.002 0.005 0.003 0.007 0.002 

MSEs  4.694 9.734 5.557 7.429 5.752  0.002 0.008 0.003 0.008 0.003 

 

10, 1 

5 

Bias  0.284 0.312 1.232 0.485 0.304  0.443 0.353 0.049 1.297 0.926 

Vars  23.380 23.097 27.835 29.087 24.408  0.621 0.411 0.347 10.932 1.147 

MSEs  23.461 23.194 29.353 29.322 24.501  0.817 0.535 0.349 12.614 2.005 

10 

Bias  0.190 0.222 0.840 0.223 0.060  0.173 0.173 -0.032 0.507 0.371 

Vars  11.082 11.192 12.944 15.822 12.013  0.127 0.108 0.106 0.991 0.199 

MSEs  11.118 11.241 13.650 15.872 12.016  0.157 0.137 0.107 1.247 0.336 

20 

Bias  0.072 0.100 0.486 0.067 -0.047  0.074 0.087 -0.042 0.225 0.158 

Vars  5.576 5.707 6.335 8.386 6.348  0.043 0.046 0.048 0.281 0.063 

MSEs  5.581 5.717 6.571 8.390 6.350  0.049 0.053 0.050 0.331 0.088 

30 

Bias  0.075 0.098 0.412 0.049 -0.006  0.049 0.062 -0.040 0.141 0.108 

Vars  3.671 3.796 4.182 5.412 4.340  0.025 0.029 0.032 0.134 0.037 

MSEs  3.676 3.805 4.351 5.414 4.340  0.027 0.033 0.033 0.154 0.048 

50 

Bias  0.050 0.062 0.281 0.028 -0.010  0.029 0.039 -0.031 0.087 0.069 

Vars  2.173 2.269 2.426 3.332 2.635  0.014 0.018 0.020 0.072 0.020 

MSEs  2.175 2.273 2.504 3.332 2.635  0.015 0.019 0.021 0.080 0.025 

100 

Bias  0.032 0.034 0.179 0.012 0.002  0.016 0.021 -0.021 0.045 0.037 

Vars  1.117 1.178 1.232 1.698 1.349  0.007 0.010 0.010 0.031 0.010 

MSEs  1.118 1.179 1.264 1.698 1.349  0.007 0.010 0.011 0.033 0.011 
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Table 2. Bias, Variance and MSE of both Scale and Shape estimates α=10 and β=1.5; 2 
 

  
  Scale  Shape 

α, β n    MLE MOM MRRS Perctle1 Perctle2  MLE MOM MRRS Perctle1 Perctle2 

10, 1.5 

5 

Bias  -0.081 -0.149 0.513 -0.149 -0.226  0.650 0.398 0.059 2.045 1.298 

Vars  9.333 9.331 10.477 11.069 9.546  1.374 0.947 0.713 47.203 2.365 

MSEs  9.340 9.353 10.740 11.091 9.597  1.797 1.106 0.717 51.386 4.050 

10 

Bias  0.038 -0.002 0.451 -0.016 -0.092  0.257 0.171 -0.048 0.755 0.537 

Vars  4.948 4.986 5.542 6.870 5.493  0.275 0.231 0.232 2.331 0.427 

MSEs  4.950 4.986 5.746 6.870 5.501  0.342 0.260 0.235 2.901 0.715 

20 

Bias  0.039 0.016 0.317 0.016 -0.046  0.114 0.081 -0.065 0.339 0.248 

Vars  2.508 2.517 2.763 3.802 2.851  0.097 0.090 0.109 0.606 0.144 

MSEs  2.509 2.517 2.863 3.802 2.853  0.110 0.096 0.113 0.721 0.205 

30 

Bias  0.014 -0.003 0.227 -0.006 -0.064  0.075 0.054 -0.054 0.209 0.167 

Vars  1.669 1.677 1.816 2.439 1.947  0.055 0.054 0.074 0.324 0.083 

MSEs  1.669 1.677 1.867 2.439 1.952  0.061 0.057 0.077 0.368 0.111 

50 

Bias  -0.008 -0.019 0.145 -0.021 -0.050  0.041 0.030 -0.050 0.121 0.099 

Vars  0.973 0.979 1.048 1.486 1.166  0.031 0.032 0.045 0.155 0.048 

MSEs  0.973 0.979 1.069 1.486 1.168  0.033 0.033 0.048 0.170 0.058 

100 

Bias  0.003 -0.004 0.102 -0.020 -0.027  0.022 0.016 -0.032 0.067 0.054 

Vars  0.493 0.495 0.533 0.748 0.591  0.014 0.016 0.023 0.070 0.021 

MSEs  0.493 0.495 0.543 0.749 0.592  0.015 0.016 0.024 0.074 0.024 

 

10, 2 

5 

Bias  -0.102 -0.123 0.339 -0.200 -0.263  0.868 0.510 0.089 2.499 1.673 

Vars  5.328 5.376 5.763 6.306 5.441  2.301 1.833 1.321 43.582 3.716 

MSEs  5.339 5.391 5.878 6.345 5.511  3.055 2.093 1.329 49.828 6.516 

10 

Bias  -0.049 -0.065 0.254 -0.132 -0.189  0.338 0.191 -0.060 1.024 0.699 

Vars  2.797 2.830 3.090 3.811 3.062  0.459 0.390 0.394 4.718 0.699 

MSEs  2.799 2.834 3.154 3.829 3.098  0.573 0.427 0.398 5.767 1.187 

20 

Bias  -0.041 -0.051 0.157 -0.089 -0.136  0.151 0.087 -0.080 0.473 0.331 

Vars  1.359 1.368 1.461 2.068 1.560  0.171 0.159 0.197 1.296 0.262 

MSEs  1.361 1.371 1.486 2.076 1.578  0.194 0.166 0.203 1.520 0.371 

30 

Bias  -0.004 -0.009 0.157 -0.023 -0.059  0.096 0.054 -0.081 0.275 0.222 

Vars  0.911 0.915 0.991 1.347 1.059  0.096 0.090 0.125 0.540 0.142 

MSEs  0.911 0.915 1.016 1.348 1.062  0.105 0.093 0.131 0.615 0.191 

50 

Bias  -0.007 -0.010 0.110 -0.028 -0.049  0.059 0.035 -0.063 0.166 0.141 

Vars  0.543 0.546 0.596 0.829 0.654  0.055 0.054 0.080 0.269 0.084 

MSEs  0.543 0.546 0.608 0.830 0.656  0.059 0.055 0.084 0.297 0.104 

100 

Bias  0.001 -0.002 0.071 -0.020 -0.022  0.031 0.019 -0.040 0.088 0.073 

Vars  0.276 0.276 0.296 0.427 0.332  0.025 0.025 0.041 0.120 0.037 

MSEs  0.276 0.276 0.301 0.427 0.333  0.026 0.026 0.042 0.128 0.043 
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Table 3. Bias, Variance and MSE of both Scale and Shape estimates α=10 and β=3; 4 
 

  
  Scale  Shape 

α, β n    MLE MOM MRRS Perctle1 Perctle2  MLE MOM MRRS Perctle1 Perctle2 

10, 3 

5 

Bias  -0.166 -0.138 0.122 -0.275 -0.320  1.295 0.767 0.131 3.899 2.417 

Vars  2.392 2.439 2.515 2.865 2.489  5.768 5.041 3.285 243.739 8.976 

MSEs  2.419 2.458 2.530 2.941 2.591  7.446 5.629 3.302 258.938 14.818 

10 

Bias  -0.053 -0.037 0.147 -0.129 -0.152  0.505 0.276 -0.102 1.461 1.048 

Vars  1.221 1.234 1.290 1.659 1.352  1.100 0.998 0.911 9.896 1.722 

MSEs  1.224 1.235 1.312 1.676 1.374  1.354 1.074 0.922 12.032 2.820 

20 

Bias  -0.017 -0.009 0.120 -0.060 -0.070  0.218 0.113 -0.134 0.689 0.487 

Vars  0.602 0.605 0.649 0.896 0.690  0.374 0.359 0.428 2.594 0.572 

MSEs  0.602 0.605 0.663 0.900 0.695  0.422 0.372 0.445 3.070 0.810 

30 

Bias  -0.022 -0.017 0.082 -0.049 -0.057  0.153 0.084 -0.110 0.452 0.341 

Vars  0.415 0.417 0.442 0.618 0.487  0.230 0.227 0.294 1.387 0.343 

MSEs  0.416 0.417 0.448 0.620 0.491  0.253 0.234 0.306 1.592 0.459 

50 

Bias  -0.020 -0.017 0.058 -0.039 -0.044  0.083 0.044 -0.101 0.254 0.209 

Vars  0.243 0.243 0.259 0.358 0.288  0.121 0.123 0.185 0.643 0.183 

MSEs  0.243 0.243 0.262 0.360 0.290  0.128 0.125 0.196 0.707 0.226 

100 

Bias  0.000 0.001 0.047 -0.003 -0.014  0.035 0.014 -0.075 0.098 0.096 

Vars  0.118 0.118 0.128 0.186 0.144  0.058 0.059 0.092 0.265 0.087 

MSEs  0.118 0.118 0.130 0.186 0.144  0.059 0.059 0.098 0.274 0.096 

 

10, 4 

5 

Bias  -0.125 -0.081 0.091 -0.230 -0.258  1.716 1.051 0.164 4.996 3.156 

Vars  1.388 1.411 1.442 1.683 1.471  9.001 7.677 5.003 141.435 13.999 

MSEs  1.404 1.418 1.451 1.736 1.537  11.945 8.782 5.029 166.393 23.962 

10 

Bias  -0.078 -0.054 0.076 -0.140 -0.156  0.686 0.401 -0.131 2.017 1.402 

Vars  0.670 0.675 0.709 0.913 0.747  2.063 1.999 1.723 16.360 3.181 

MSEs  0.676 0.678 0.714 0.932 0.772  2.535 2.159 1.740 20.429 5.146 

20 

Bias  -0.033 -0.021 0.070 -0.056 -0.076  0.305 0.166 -0.174 0.875 0.659 

Vars  0.362 0.364 0.391 0.545 0.420  0.691 0.695 0.774 4.648 1.023 

MSEs  0.363 0.365 0.396 0.548 0.426  0.783 0.723 0.804 5.414 1.457 

30 

Bias  -0.024 -0.016 0.055 -0.038 -0.055  0.194 0.107 -0.156 0.549 0.444 

Vars  0.229 0.230 0.245 0.339 0.271  0.388 0.411 0.523 2.300 0.567 

MSEs  0.229 0.230 0.248 0.341 0.274  0.425 0.423 0.547 2.601 0.764 

50 

Bias  -0.016 -0.011 0.042 -0.025 -0.035  0.112 0.060 -0.132 0.322 0.271 

Vars  0.138 0.139 0.149 0.209 0.163  0.224 0.237 0.323 1.087 0.342 

MSEs  0.138 0.139 0.151 0.209 0.165  0.237 0.241 0.341 1.190 0.415 

100 

Bias  -0.013 -0.011 0.023 -0.021 -0.025  0.060 0.036 -0.087 0.156 0.147 

Vars  0.066 0.067 0.071 0.104 0.082  0.108 0.116 0.174 0.478 0.157 

MSEs  0.066 0.067 0.072 0.105 0.083  0.111 0.118 0.181 0.503 0.178 
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Figure 1. Absolute Bias of Scale parameter estimate (left), Shape parameter estimate 
(right) vs. Sample size from Weibull (10, 0.5) 
 
 
 

 
 
Figure 2. MSE of Scale parameter estimate (left), Shape parameter estimate (right) vs. 
Sample size from Weibull (10, 0.5) 
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Figure 3. Absolute Bias of Scale parameter estimate (left), Shape parameter estimate 
(right) vs. Sample size from Weibull (10, 3) 
 
 
 

 
 
Figure 4. MSE of Scale parameter estimate (left), Shape parameter estimate (right) vs. 
Sample size from Weibull (10, 3) 
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Example 
Many researchers modeled wind data using the Weibull distribution (Dorvlo, 
2002; Weisser, 2003; Celik, 2003). The five methods with an example in 
Battacharya and Bhattacharjee (2010) will be discussed next. This example 
provides the average monthly wind speed (m/s) of Kolkata from 1st March 2009 
to 31st March 2009. Table 4 presents the data set. 

The estimates of the two-parameter Weibull distribution obtained by fitting 
to the data using the methods discussed in the article are given in the Table 5. It 
look like the Percentile 1 and Percentile 2 estimates are at the extreme ends and 
the MLE estimates lie somewhat between the values of other estimates. 
 
 
Table 4. Average daily wind speed in Kolkata 
during March 2009. 
Date Speed  (m/s) 

 
Date Speed (m/s) 

1 0.56  17 0.28 
2 0.28  18 0.83 
3 0.56  19 1.39 
4 0.56  20 1.11 
5 1.11  21 1.11 
6 0.83  22 0.83 
7 1.11  23 0.56 
8 1.94  24 0.83 
9 1.11  25 1.67 
10 0.83  26 1.94 
11 1.11  27 1.39 
12 1.39  28 0.83 
13 0.28  29 2.22 
14 0.56  30 1.67 
15 0.28  31 2.22 
16 0.28       
 
 

Table 5. Estimates of two-
parameter Weibull by different 
methods. 
 
Method Scale Shape 
MLE 1.1550 1.9081 
MOM 1.1501 1.8456 
MRRS 1.1636 1.8031 
Percentile 1 1.1100 1.8055 
Percentile 2 1.1816 2.1704 
 
 
 
 
 
 
 

Conclusion 

Five different methods for the joint estimation of both scale and shape parameters 
of two-parameter Weibull distribution were reviewed in this article. A simulation 
study was conducted to compare the five methods based on bias, mean square 
error and variance of estimates. From simulation results, it was observed that 
MLE performs consistently better than MOM, MRRS, percentile method and 
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improved percentile method and therefore MLE estimates are recommended to 
the practitioners. 
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An alternative test for the equality of several intraclass correlation coefficients under 
unequal family sizes based on several independent multinormal samples is proposed. It 
was found that the alternative test consistently and reliably produced results superior to 
those of Likelihood ratio test (LRT) proposed by Bhandary and Alam (2000) and maxF  
test proposed by Bhandary and Fujiwara (2006) in terms of power for various 
combinations of intraclass correlation coefficient values and also the alternative test stays 
closer to the significance level under null hypothesis compared to the Likelihood ratio 
test and maxF  test. This alternative test is computationally very simple and also can be 
used for both small sample and large sample situations. An example with real life data is 
presented. 
 
Keywords: Likelihood ratio test, Fmax-test, Alternative test, intraclass correlation 
coefficient  
 

Introduction 

It is sometimes necessary to estimate the correlation coefficient between blood 
pressures of children on the basis of measurements taken on p children in each of 
n families. The p measurements on a family provide p (p − 1) pairs of 
observations (x,y), x being the blood pressure of one child and y that of another. 
From the n families a total of np (p − 1) pairs are generated from which a 
correlation coefficient is computed in the ordinary way. 

mailto:bhandary_madhusudan@colstate.edu
mailto:koji.fujiwara@ndsu.edu
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The correlation coefficient thus computed is called intraclass correlation 
coefficient. It is important to have statistical inference concerning intraclass 
correlation, because it provides information regarding blood pressure, cholesterol 
etc. in a family within some race in the world. 

The intraclass correlation coefficient ρ has a wide variety of applications. It 
can be used to measure the degree of intra-family resemblance with respect to 
characteristics such as blood pressure, cholesterol, weight, height, stature, lung 
capacity, etc. 

Statistical inference concerning ρ based on a single multinormal sample has 
been studied by several authors (Scheffe, 1959; Rao, 1973; Rosner, et al., 1977, 
1979; Donner and Bull, 1983; Srivastava, 1984; Konishi, 1985; Gokhale and 
SenGupta, 1986; SenGupta, 1988; Velu and Rao, 1990). 

For a two sample problem, Donner and Bull (1983) discussed the likelihood 
ratio test for testing the equality of two intraclass correlation coefficients based on 
two independent multinormal samples under equal family sizes.  Konishi and 
Gupta (1987) proposed a modified likelihood ratio test and derived its asymptotic 
null distribution. They also discussed another test procedure based on a 
modification of Fisher’s Z-transformation following Konishi (1985). 

For a several sample problem, Huang and Sinha (1993) considered an 
optimum invariant test for the equality of intraclass correlation coefficients under 
equal family sizes for more than two intraclass correlation coefficients based on 
independent samples from several multinormal distributions. 

For unequal family sizes, Young and Bhandary (1998) proposed Likelihood 
ratio test, large sample Z-test and large sample Z*-test for the equality of two 
intraclass correlation coefficients based on two independent multinormal samples. 

For several populations and unequal family sizes, Bhandary and Alam 
(2000) proposed Likelihood ratio test and large sample ANOVA test for the 
equality of several intraclass correlation coefficients based on several independent 
multinormal samples. Bhandary and Fujiwara (2006) proposed Fmax test for the 
equality of several intraclass correlation coefficients under unequal family sizes. 
Donner and Zou (2002) proposed asymptotic test for the equality of dependent 
intraclass correlation coefficients under unequal family sizes. 

An alternative test for the equality of several intraclass correlation 
coefficients is considered based on several independent multinormal samples 
under unequal family sizes. 

A conditional analysis is carried out here, assuming family sizes fixed 
though unequal. 
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It could be of interest to see whether blood pressure or cholesterol or lung 
capacity, etc., among families in Caucasian, Asian, Hispanic or African races, etc., 
differ or not; therefore a small sample test for the equality of intraclass correlation 
coefficients under unequal family sizes has been developed. 

Also, an alternative test is proposed for the equality of intraclass correlation 
coefficients under unequal family sizes, which is computationally very simple. A 
brief discussion of likelihood ratio test proposed by Bhandary and Alam (2000) 
and Fmax test proposed by Bhandary and Fujiwara (2006) are provided. 

These tests are compared in the section titled Simulation Results, using 
simulation technique. It is found on the basis of simulation study that the 
alternative test consistently and reliably produced results superior to those of 
Likelihood ratio test and Fmax test in terms of power for various combination of 
intraclass correlation coefficient values and also the alternative test stays closer to 
the significance level under null hypothesis compared to the Likelihood ratio test 
and Fmax test. 

An example with real life data is given in the section titled Example With 
Real Life Data. 

Tests of H0 : ρ1 = ρ2 = ρ3 Versus H1 : NOT H0 

Likelihood Ratio Test 

Let 1 2( , , , )
ii i i ipX x x x   be a 1ip x  vector of observations from the ith family; 

1,2, , .i k  The structure of mean vector and the covariance matrix for the 
familial data is given by the following (Rao, 1973): 
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where 1i  is a 1ip x  vector of 1’s, ( )     is the common mean and 

2 2( 0)    is the common variance of members of the family and ρ, which is 
called the intraclass correlation coefficient, is the coefficient of correlation among 

the members of the family and 
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It is assumed that 
~   ~   

~ ( , ); 1,...,
ii p i ix N i k   , where 

ipN  represents ip -variate 

normal distribution and 
~   

, 'i i s   are defined in (1). 

Let 1 2
~   ~   

( , ,..., )
ii i i ip iu u u u Q X    (2) 

 
where Q  is an orthogonal matrix. 

Under the orthogonal transformation (2), it can be seen that 
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The transformation used on the data from x  to u  above is independent of ρ. 

One can use Helmert’s orthogonal transformation. 
Srivastava (1984) gives estimator of ρ and 2  under unequal family sizes 

which are good substitute for the maximum likelihood estimator and are given by 
the following: 
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                and 11  ii pa . 
 
Now, consider the three sample problem with k1, k2 and k3 families from each 
population. 
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Let 1 2
~   

( , ,..., )
ii i i ipx x x x   be a 1ip x  vector of observations from ith family; 
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and 
3

31

1max 1
1l k

lr


 

 
   

 
. 

 
Using orthogonal transformation, the data vector can be transformed from 

~   
ix to 

~   
iu , 

~   
jy  to 

~   
jv and 

~   
lz  to 

~   
lw  as follows: 
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The transformations used on the data above from x  to u , y  to v  and z  to w   

are independent of 1 , 2  and 3 . It is assumed that 2 2 2 2
1 2 3      . 
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Under the above setup, Bhandary and Alam (2000) derived likelihood ratio test 
statistic for testing 0 1 2 3:H      Vs. 1 :H NOT 0H which is given by the 
following: 
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where,   = likelihood ratio test statistic, 
 ̂  = estimate of common intraclass correlation coefficients under 0H , 
 
 1̂  = estimate of intraclass correlation coefficient from first sample 
   under 1H , 
 2̂  = estimate of intraclass correlation coefficient from second sample 
   under 1H , 
 3̂  = estimate of intraclass correlation coefficient from third sample 
   under 1H , 
 2̂  = estimate of 2  
and 1̂ , 2̂  and 3̂  are estimates of means from first ,second and third samples 
respectively. 

The estimators 2
1 2 3 1ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,      , 2̂  and 3̂  can be obtained from 

Srivastava’s estimator given by (3). 
It is known from asymptotic theory that 2log   has an asymptotic chi-

square distribution with 2 degrees of freedom. 
Bhandary and Alam (2000) also suggested large sample ANOVA test and 

showed through simulation that likelihood ratio test given by (8) consistently 
produced results superior to those of the large sample ANOVA test. 

The likelihood ratio test given by (8) is computationally complex, and used 
asymptotically – that is, when family sizes are large (at least 30). But situations 
may also call for a small sample case. An alternative test is here proposed, which 
is computationally very simple and can be used for both small sample and large 
sample situations. 

Fmax test 
The Fmax test is described as follows: 
 
               Fmax  1 2 3 4 5 6max , , , , ,F F F F F F   (9) 
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where, 2

n  denotes chi-square distribution with n degrees of freedom 

and 
31 2

1 1 1
( 1); ( 1); ( 1).
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Therefore, using (14) under 0H , the exact distribution of the 1F  given 
by (10) is ,pp qqF . 

 (15) 

Similarly, using (14) under 0H , the exact distributions of 2 3 4 5, , ,F F F F  
and 6F  are ,pp rrF , ,qq rrF , ,qq ppF , ,rr ppF  and ,rr qqF  respectively, where 

1 2,n nF  denotes F-distribution with 1n  and 2n  degrees of freedom 
respectively. 
 
 
 

 
  (16) 
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Hence, using (9), (15) and (16) and using Bonferroni’s bound, approximate 
critical value at   for testing 0H  Vs. 1H  can be proposed as 
 

 
; , ; , ; , ; , ; , ; ,

6 6 6 6 6 6

max , , , , ,
pp qq pp rr qq rr qq pp rr pp rr qq

C F F F F F F     

 
  

 
  (17) 

 

where, ; ,a bF  is the upper 100 %  point of F-distribution with degrees of freedom 
a and b respectively. 

The critical region for testing 0H  Vs. 1H  is proposed as follows: 
 
 maxF C   (18) 
 
where max  and F C  are given by (9) and (17), respectively. 

The test statistic maxF  given by (9) is very simple to compute, and the 
distributions of 1 2 3 4 5, , , ,F F F F F  and 6F  are exact and hence can be used for both 
small sample and large sample situations. 

Alternative test 
For the alternative test, the test statistic is described as follows: 
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                  4F  1 5 2 6 31/ , 1/  and 1/F F F F F     (19) 
 

Using (14), it can be said that under 0H , the exact distribution of the 1F  is   

,pp qq rrF  . 
Similarly, under 0H , the exact distributions of 2 3 4 5, , ,F F F F  and 6F  are 

,qq pp rrF  , ,rr pp qqF  , ,qq rr ppF  , ,pp rr qqF  and ,pp qq rrF   respectively, where, 
1 2,n nF  

denotes F-distribution with 1n  and 2n  degrees of freedom respectively. 
Set the P-values to be the right tail probability of the statistics calculated 

above such that ( )i iP P X F   where iF ’s are explained in (19). 
Sort the P-values obtained as above in an ascending order and denote them 

by (1) (2) (6), , ,P P P . 
 

Reject 0H  if ( ) 6i
iP   for some {1,2, ,6}i .  (20) 

 
In order that 0H  is insignificant, it is required that 

(1) (2) (6)
1 2, ,...,
6 6

P P P     . So, if ( ) 6i
iP   then the test corresponding to 

(1)P  is insignificant, corresponding to (2)P  is insignificant, …, corresponding to 

( 1)iP   is insignificant and corresponding to ( )iP  is significant and the overall test is 
significant. 

Simulation Results 

Multivariate normal random vectors were generated using R program in order to 
evaluate the power of the alternative test as compared to Fmax test and the LRT 
test. Five and thirty vectors of family data were created for each of the three 
populations. The family size distribution was truncated to maintain the family size 
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at a minimum of 2 siblings and a maximum of 15 siblings. The previous research 
in simulating family sizes (Rosner et al., 1977; Srivastava and Keen, 1988) 
determined the parameter setting for FORTRAN IMSL negative binomial 
subroutine with a mean = 2.86 and a success probability = 0.483. Here, it is set at 
a mean = 2.86 and a theta = 41.2552. 

All parameters were set the same for each population, except the values of 
1 , 2  and 3  which took various combinations over the range of values from 0.1 

to 0.9 at increments of 0.1. 
The R program produced estimates of 1 2,   and 3  along with Fmax 

statistic and LRT statistic and the new statistic 10,000 times for each particular 
combination of population parameters ( 1 2,   and 3 ). 

The frequency of rejection of each test at   = 0.05 was noted and the 
proportion of rejections are noted for a sample combinations of 1 2,   and 3 . 

The size comparison for the alternative test, Fmax test and the LRT test for 
various combinations of 1 2,   and 3  is also presented. 

A few figures are presented of powers estimates as well as size estimates for 
these tests. On the basis of this study, it was found that the alternative test showed 
consistently better results in terms of power as well as in size than LRT and Fmax 
test. This alternative test is computationally very simple and also can be used for 
both small sample and large sample situations. The alternative test stays closer to 
the significance level under null hypothesis compared to the Likelihood ratio test 
and maxF  test.  It is recommend that the alternative test is used in practice. 
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Figure 1. Size Estimates (α = 0.05 and 
k = 5) 

 
 
Figure 2. Size Estimates (α = 0.05 and 
k = 30) 
 

 

 
 
Figure 3. Power Estimates (α = 0.05,  
k = 5, ρ1 = 0.1 and ρ2 = 0.3) 

 
 
Figure 4. Power Estimates (α = 0.05,  
k = 5, ρ1 = 0.7 and ρ2 = 0.9) 
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Figure 5. Power Estimates (α = 0.05,  
k = 5, ρ1 = 0.9 and ρ2 = 0.8) 

 
 
Figure 6. Power Estimates (α = 0.05,  
k = 30, ρ1 = 0.4 and ρ2 = 0.6) 
 

 

 
 
Figure 7. Power Estimates (α = 0.05,  
k = 30, ρ1 = 0.7 and ρ2 = 0.7) 
 
 
 
 
 
 

Table 1. Size Estimates (α = 0.05) 
 
 k = 5  k = 30 

ρ LRT Fmax Fnew   LRT Fmax Fnew 

0.1 0.0400 0.0244 0.0450  0.0228 0.0360 0.0436 

0.2 0.0296 0.0228 0.0466  0.0328 0.0392 0.0502 

0.3 0.0322 0.0264 0.0524  0.0326 0.0320 0.0456 

0.4 0.0280 0.0286 0.0486  0.0330 0.0368 0.0462 

0.5 0.0300 0.0306 0.0500  0.0242 0.0332 0.0434 

0.6 0.0250 0.0266 0.0464  0.0250 0.0346 0.0474 

0.7 0.0228 0.0296 0.0522  0.0210 0.0368 0.0468 

0.8 0.0160 0.0252 0.0472  0.0142 0.0362 0.0442 

0.9 0.0166 0.0272 0.0510   0.0128 0.0358 0.0424 
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Table 2. Rejection Proportions (α = 0.05) 
 

   k = 5  k = 30 
ρ1 ρ2 ρ3 LRT Fmax Fnew  LRT Fmax Fnew 
0.1 0.3 0.6 0.1290 0.1420 0.2312  0.9182 0.9284 0.9396 
0.1 0.3 0.8 0.4310 0.5832 0.6954  0.9736 1.0000 1.0000 
0.1 0.5 0.4 0.0794 0.0810 0.1542  0.7454 0.6638 0.7186 
0.1 0.5 0.6 0.1472 0.1452 0.2654  0.9316 0.9294 0.9450 
0.1 0.5 0.8 0.4134 0.5306 0.6652  0.9764 1.0000 1.0000 
0.1 0.6 0.2 0.1392 0.1644 0.2620  0.9318 0.9512 0.9614 
0.1 0.6 0.4 0.1354 0.1370 0.2402  0.9164 0.9180 0.9318 
0.1 0.6 0.6 0.1752 0.1882 0.3288  0.9604 0.9698 0.9832 
0.1 0.6 0.8 0.4122 0.5172 0.6700  0.9780 1.0000 1.0000 
0.1 0.7 0.2 0.2500 0.3150 0.4448  0.9682 0.9992 0.9994 
0.1 0.7 0.4 0.2386 0.2756 0.4108  0.9690 0.9968 0.9962 
0.1 0.7 0.6 0.2518 0.2806 0.4578  0.9716 0.9968 0.9982 
0.1 0.7 0.8 0.4558 0.5534 0.7364  0.9774 1.0000 1.0000 
0.3 0.3 0.2 0.0290 0.0252 0.0534  0.0846 0.0684 0.0902 
0.3 0.3 0.4 0.0336 0.0254 0.0530  0.0904 0.0874 0.1048 
0.3 0.3 0.6 0.0896 0.0860 0.1458  0.7282 0.7184 0.7524 
0.3 0.3 0.8 0.3786 0.4610 0.5968  0.9988 1.0000 1.0000 
0.3 0.5 0.4 0.0428 0.0380 0.0756  0.2446 0.2254 0.2708 
0.3 0.5 0.6 0.0818 0.0768 0.1432  0.6008 0.6058 0.6564 
0.3 0.5 0.8 0.3206 0.3696 0.4984  0.9978 0.9994 0.9998 
0.3 0.6 0.2 0.1052 0.1076 0.1842  0.8546 0.8410 0.8650 
0.3 0.6 0.4 0.0770 0.0642 0.1276  0.6194 0.6144 0.6488 
0.3 0.6 0.6 0.0968 0.0910 0.1706  0.7276 0.7232 0.7886 
0.3 0.6 0.8 0.3090 0.3502 0.4932  0.9974 0.9996 0.9998 
0.3 0.7 0.2 0.2158 0.2444 0.3632  0.9866 0.9942 0.9954 
0.3 0.7 0.4 0.1566 0.1628 0.2594  0.9426 0.9596 0.9688 
0.3 0.7 0.6 0.1554 0.1592 0.2730  0.9226 0.9376 0.9526 
0.3 0.7 0.8 0.3392 0.3662 0.5462  0.9984 1.0000 1.0000 
0.5 0.3 0.4 0.0424 0.0384 0.0704  0.2348 0.2226 0.2598 
0.5 0.3 0.6 0.0774 0.0756 0.1346  0.5986 0.5948 0.6466 
0.5 0.3 0.8 0.3306 0.3816 0.5086  0.9986 0.9996 1.0000 
0.5 0.5 0.4 0.0350 0.0316 0.0570  0.0936 0.0998 0.1276 
0.5 0.5 0.6 0.0340 0.0334 0.0610  0.1144 0.1418 0.1690 
0.5 0.5 0.8 0.2116 0.2464 0.3606  0.9730 0.9916 0.9924 
0.5 0.6 0.2 0.1132 0.1152 0.1998  0.8388 0.8172 0.8516 
0.5 0.6 0.4 0.0478 0.0422 0.0860  0.3062 0.3314 0.3778 
0.5 0.6 0.6 0.0386 0.0342 0.0684  0.1150 0.1402 0.1756 
0.5 0.6 0.8 0.1694 0.1986 0.2982  0.9350 0.9782 0.9828 
0.5 0.7 0.2 0.1996 0.2070 0.3240  0.9750 0.9838 0.9854 
0.5 0.7 0.4 0.1068 0.1054 0.1812  0.7638 0.8224 0.8454 



BHANDARY & FUJIWARA 

51 

Table 2. Continued 
 

   k = 5  k = 30 
ρ1 ρ2 ρ3 LRT Fmax Fnew  LRT Fmax Fnew 
0.5 0.7 0.6 0.0580 0.0574 0.1142  0.4240 0.5082 0.5506 
0.5 0.7 0.8 0.1648 0.1808 0.3036  0.9100 0.9668 0.9718 
0.7 0.3 0.2 0.1966 0.2346 0.3370  0.9868 0.9940 0.9966 
0.7 0.3 0.4 0.1582 0.1680 0.2686  0.9534 0.9690 0.9746 
0.7 0.3 0.6 0.1536 0.1550 0.2734  0.9302 0.9452 0.9604 
0.7 0.3 0.8 0.3616 0.3926 0.5638  0.9980 1.0000 1.0000 
0.7 0.5 0.2 0.1924 0.2068 0.3222  0.9770 0.9856 0.9878 
0.7 0.5 0.4 0.1104 0.1088 0.1890  0.7676 0.8230 0.8476 
0.7 0.5 0.6 0.0594 0.0644 0.1152  0.4272 0.5164 0.5638 
0.7 0.5 0.8 0.1578 0.1838 0.3014  0.9238 0.9696 0.9750 
0.7 0.6 0.2 0.2146 0.2156 0.3686  0.9800 0.9860 0.9888 
0.7 0.6 0.4 0.1088 0.1116 0.1944  0.7580 0.8078 0.8348 
0.7 0.6 0.6 0.0396 0.0398 0.0732  0.1454 0.2096 0.2416 
0.7 0.6 0.8 0.0852 0.0976 0.1700  0.6738 0.8080 0.8364 
0.7 0.7 0.2 0.2650 0.2754 0.4550  0.9914 0.9952 0.9980 
0.7 0.7 0.4 0.1354 0.1346 0.2554  0.8650 0.8924 0.9240 
0.7 0.7 0.6 0.0358 0.0394 0.0742  0.1648 0.2256 0.2772 
0.7 0.7 0.8 0.0386 0.0520 0.0950  0.2916 0.4322 0.4732 
0.9 0.3 0.2 0.6918 0.9104 0.9448  0.9978 1.0000 1.0000 
0.9 0.3 0.4 0.6914 0.8582 0.9058  0.9996 1.0000 1.0000 
0.9 0.3 0.6 0.6584 0.8110 0.8774  0.9996 1.0000 1.0000 
0.9 0.3 0.8 0.6780 0.7952 0.8918  0.9998 1.0000 1.0000 
0.9 0.5 0.2 0.6888 0.8716 0.9154  0.9962 1.0000 1.0000 
0.9 0.5 0.4 0.6394 0.7738 0.8564  1.0000 1.0000 1.0000 
0.9 0.5 0.6 0.5408 0.6740 0.7706  1.0000 1.0000 1.0000 
0.9 0.5 0.8 0.5152 0.6016 0.7428  0.9998 1.0000 1.0000 
0.9 0.6 0.2 0.6806 0.8504 0.9114  0.9972 1.0000 1.0000 
0.9 0.6 0.4 0.6200 0.7356 0.8200  1.0000 1.0000 1.0000 
0.9 0.6 0.6 0.4552 0.5694 0.6916  0.9996 1.0000 1.0000 
0.9 0.6 0.8 0.3686 0.4440 0.5958  0.9964 0.9998 0.9998 
0.9 0.7 0.2 0.6782 0.8318 0.8934  0.9974 1.0000 1.0000 
0.9 0.7 0.4 0.5848 0.7014 0.8020  1.0000 1.0000 1.0000 
0.9 0.7 0.6 0.3790 0.4932 0.6234  0.9980 1.0000 1.0000 
0.9 0.7 0.8 0.2014 0.2706 0.3984  0.9666 0.9970 0.9974 
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Example with Real Life Data 

In this section, three tests using real life data collected from Srivastava and 
Katapa (1986) are prepared. The data is split randomly into three samples. Table 3 
gives the values of pattern intensity on soles of feet in fourteen families, where 
values for daughters and sons are combined. 
 
 
Table 3. Values of pattern intensity on soles of feet in 14 families 
 
  Family # Mother Father # Siblings Siblings Values 

Sample A 

2 2 3 2 2, 3 
7 4 3 7 2, 2, 3, 6, 3, 5, 4 
8 3 7 7 2, 4, 7, 4, 4, 7, 8 
11 5 6 4 5, 3, 4, 4 
14 2 3 3 2, 2, 2 

Sample B 

1 2 3 2 2, 2 
5 2 3 2 6, 6 
6 4 3 3 4, 3, 3 
9 5 5 2 5, 6 
13 6 3 4 4, 3, 3, 3 

Sample C 

3 2 3 3 2, 2, 2 
4 2 4 5 2, 2, 2, 2, 2 
10 5 4 3 4, 5, 4 
12 2 4 2 2, 4 

 
 

First ignoring the father’s and mother’s values, transform the siblings’ 
values by multiplying each observation vector by Helmert’s orthogonal matrix Q  

where 

     

 

 

1 1 1 1

1 1 0 0
2 2

1 1 2where 0 0
6 6 6

11 1 1
1 1 1 1

i i

i i i i
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This gives transformed vectors 
~   ~   ~   

,i j lu v and w
 
respectively for 11,2,...,i k ; 

21,2,...,j k  and 31,2,...,l k . Here, 1 25, 5k k   and 3 4.k   
Srivastava’s formula, given by (3), is used to compute intraclass correlation 
coefficients. The computed values of intraclass correlation coefficients are 

1ˆ 0.5895  , 2ˆ 0.9159   and 3ˆ 0.7685    and ̂  =0.4923. 
 
 
Table 4. Raw Computations 

     i i*α/6 P(i) 
Col3 < 
Col2? 

F1 9.2874 P1 0.000014  1 0.008333 0.000014 yes 
F2 0.1355 P5 0.003139  2 0.016667 0.003139 yes 
F3 0.1640 P6 0.003859  3 0.025000 0.003859 yes 
F4 0.1077 P3 0.996140  4 0.033333 0.996140 no 
F5 7.3798 P2 0.996860  5 0.041667 0.996860 no 
F6 6.0994 P4 0.999990   6 0.050000 0.999990 no 
 

Note. Conclusion = Reject. 
 
 

The computed values of LRT statistic and Fmax statistic obtained from 
formula (8) and (9) respectively are as follows: 
 
 
Table 5. Test Statistics and their Critical Values 
 
  Test Statistic CV (α = 0.01) CV (α = 0.05) CV (α = 0.10) 
LRT 7.7820 9.2103 5.9915 4.6052 
Fmax 10.4510 10.1660 6.2630 5.0025 
Fnew N/A Reject Reject Reject 
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A new generalization of the logistic distribution is defined and studied, namely, the 
gamma-logistic distribution. Various properties of the gamma-logistic are obtained. The 
structural analysis of the distribution includes moments, mode, quantiles, skewness, 
kurtosis, Shannon's entropy and order statistics. The method of maximum likelihood 
estimation is proposed for estimating the model parameters. For illustrative purposes, a 
real data set is analyzed as an application of the gamma-logistic distribution. 
 
Keywords: gamma-logistic distribution, T-X family of distributions, Shannon's 
entropy, reliability parameter, order statistics  
 

Introduction 

The armory of statistical distributions is truly illimitable. New distributions are 
being unearthed literally on a weekly basis elicited by either theoretical 
considerations or by pressing practical applications or both. A new class of 
mixtures of two absolutely continuous distributions is investigated in this article, 
with the primary objective of exploring its enhanced flexibility in modeling 
skewed data.  

The simplicity of the logistic distribution and its importance as a growth 
curve has attracted many researchers to study this distribution. Also, the limitation 
of the shape of the logistic distribution merits further investigation to various 
other different types of generalized logistic distribution. Many other generalized 
distributions obtained from the logistic distribution were introduced in the 
literature to study its skewness properties and to examine its flexibility in 
modeling skewed data. It is noteworthy to mention that other generalizations of 
logistic distribution exists in the literature such as Types I, II, III and IV 
generalized logistic distributions (Johnson at el., 1994). Proposed here is a new 
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distribution, mixing two absolutely continuous distributions, Gamma and logistic, 
following the idea discussed in Alzaatreh, et al. (2013b). 

Let ( )F x  be the cumulative distribution function (CDF) of any random 
variable X and ( )r t be the probability density function (PDF) of a random variable 
T defined on [0, ) . The CDF of the T-X family of distributions defined by 
Alzaatreh, et al. (2013b) is given by 
 

 
  log 1 ( )

 0
( ) ( ) .

F x
G x r t dt

 

    (1) 

 
When X is a continuous random variable, the probability density function of 

the T-X family is 
 

   
( )( ) log 1 ( )

1 ( )
f xg x r F x
F x

  


  (2) 

 
Recently, many generalized distributions have been generated from the T-X 

family of distributions such as Weibull-Pareto distribution (Alzaatreh et al., 
2013a), gamma-Pareto distribution (Alzaatreh et al., 2012a), gamma-Pareto IV 
(Alzaatreh and Ghosh, 2013), gamma-half normal distribution (Alzaatreh and 
Knight, 2013) and the exponentiated-exponential geometric distributions 
(Alzaatreh et al., 2012b). For more information about methods for generating 
univariate continuous distributions, one may refer to Lee et al. (2013). 

If a random variable T follows the gamma distribution with parameters   
and  ,  

1 1 /( ) ( ) , 0tr t t e t   


    , the definition in (2) leads to the 

gamma-X family with the PDF 
 

     
11 11( ) ( ) log 1 ( ) 1 ( ) .

( )
g x f x F x F x




 

 
   


  (3) 

 
If X follows a logistic distribution with parameters  , / 1( ) 1 (1 ) ,xF x e x     , 
then (3) reduces to 
 

    
1 1 1// / /1( ) log(1 ) 1 , ; , , 0.

( )
x x xg x e e e x

 
  


  

 

  

    


  (4) 

 



ALZAATREH ET AL 

57 

Note that when 1,    the PDF in (4) reduces to the logistic distribution. 
When 1   and n   , the PDF in (4) reduces to the density function of the 

upper record values, ( )U nX , arising from a sequence   1

n
i i

X


 of identically 
independent logisitc random variables (Johnson, et al., 1994, pp. 135). From (4), 
the CDF of the gamma-logistic distribution can be written as 
 

  1 /1( ) , log(1 ) ,
( )

xG x e   


 


  (5) 

 

where 1

0
( , )

x a ta x t e dt     is the lower incomplete gamma function. 

Some properties of the gamma-logistic distribution 

The following lemma provides a characterization of the gamma-logistic 
distribution which establishes the relation between gamma-logistic and gamma 
distributions. 

Lemma 1 (Transformation) 
If a random variable X follows the gamma distribution with parameters   and  , 
then log( 1)XY e   follows gamma-logistic distribution with parameters  ,   
and  . 
 
Proof: The result follows by using the transformation technique.  □ 

Lemma 2 (Mode) 
The mode of the gamma-logistic distribution is the solution of the equation 

( ) 0,k x   where / 1 / /( ) log(1 )(1 ( 1) .)x x xk x e e e         
 
Proof: Setting ( ) 0g x   is equivalent to  

2 1 / / 2 / 2 1/( ( )) (log(1 )) (1 ) ( ) 0,x x xe e e k x                 where  
/ 1 / /( ) log(1 )(1 )) ( 1x x xk x e e e        . Hence, the critical values of ( )g x  is 

the solution of ( ) 0.k x   □ 
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In Figures 1 and 2, various graphs of ( )g x  are provided for different 
parameter values. The plots indicate that the gamma-logistic distribution is 
unimodal and can be symmetric, right-skewed or left-skewed. 
 
 

 
 
Figure 1. Graphs of the gamma-logistic PDF for various choices of α and β when θ = 1. 

 
 
 
 
 

 
 
Figure 2. Graphs of the gamma-logistic PDF for various choices of α and β when θ = 1. 
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Lemma 3 
Let ( ), 0 1,Q     denotes the quantile function for the gamma-logistic 
distribution. Then ( )Q   can be written as 
 
  

1 ( , ( ))( ) log 1 .Q e     
     (6) 

 
Proof: The result follows by using ( ( ))G Q    in (5) and then solving it for 

( ).Q   □ 
 

The Shannon's entropy (Shannon, 1948) plays an important role in 
information theory and it is used as a measure of uncertainty. Shannon's entropy 
for a random variable X with PDF ( )g x  is defined as [ log( ( ))].E g X  According 
to Alzaatreh, et al. (2013b), the Shannon's entropy for the gamma-X family can be 
written as 
 
  1log ( (1 )) (1 ) log log( ( )) (1 ) ( ),TE f F e                 

 
  (7) 

 
where (.)F  and (.)f  are the CDF and PDF of the Transformer family 
respectively, and T follows gamma distibution with parameters   and ,  and 

(.)  is the digamma function. 
The following theorem defines expression for the Shannon's entropy for the 
gamma-logistic distribution. 

Theorem 1 
The Shannon's entropy for the random variable X which follows a gamma-logistic 
distribution is given by 
 

 
1

1log( ) log ( ) (1 ) ( ) .
(1 )x

k k k 
      







      


   (8) 

 
Proof: In this case, / 1( ) 1 (1 ) .XF X e      So that 
 
  1log ( (1 )) log( 1) 2 log log(1 ) log ,T T Tf F e e T e T             (9) 

 



ON THE GAMMA-LOGISTIC DISTRIBUTION 

60 

where T follows the gamma distribution with parameters   and  . Now, 
consider (log(1 )).TE e  Using the Taylor's series expansion of log(1 ),Te  one 
can get 
 

  (log(1 ))TE e   1

1
( )kT

k
k E e


 



  1 / 1

0
1

1
( )

kt t

k
k e e t dt 

 

 
  



 


   

  
1

1 ,
(1 )k k k 





 


   

 

       Hence,  1

1

1log ( (1 )) ( ) log .
(1 )

T

k
E f F e E T

k k 





 



     
  

   (10) 

 
The result in (8) follows by using the fact that ( )E T   and substituting (10) in 
(7).  □ 

Moments and mean deviations 

The moment generating function for the gamma-logistic distribution is given by 
 

    
1 1 1/( 1/ ) / /1( ) ( ) log(1 ) 1 .

( )
tX x t x x

XM t E e e e e dx
 

  

  

   



   

    (11) 

 
On using the substitution /log(1 ),xu e    (11) can be written as 

1 /

0

1( ) ( 1) .
( )

u t u
XM t e u e du  

 


  

   

On writing ( 1) (1 )u t tu u te e e      and using the generalized binomial 

expression of ( )

0

( 1) ( )
(1 ) ,

!

k
ku t

k

kut
e

e
k


 






   one can get 

 

 ( )

0

( 1) ( )
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!( ( ) 1)
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k
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t
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   (12) 

 
provided that 1,t    and ( )( ) ( 1) ( 1).kt t t t k        
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A series expression for the rth moments of the gamma-logistic distribution 

can be obtained by using the fact that 
0

( ) ( )
r

r
Xr t

dE X M t
dt 

 . 

Skewness and kurtosis of a distribution can be measured by 3
1 3 /    and 

4
2 4 / ,    respectively. When the distribution is symmetric, 1 0   and when 

the distribution is right (or left) skew, 1 0  (or 1 0  ). As 2  increases the tail 
of the distribution becomes heavier. To investigate the effect of the two shape 
parameters   and   on the gamma-logistic distribution, 1  and 2  were 
computed for different values of   and  . Figures 3 and 4 display the skewness 
and the kurtosis for the gamma-logistic distribution when 1.   From Figure 3, 
the gamma-logistic distribution can be left skewed, right skewed or symmetric. 
Also, for fixed value of  , the skewness is an increasing function of  . As 
shown in Figure 4, as   gets smaller, the kurtosis of the gamma-logistic 
distribution increases rapidly as   increases. 
 

 
 

Figure 3. Skewness graph for gamma-logistic distribution when θ = 1. 
 

 

 
 

Figure 4. Kurtosis graph for gamma-logistic distribution when θ = 1. 
 



ON THE GAMMA-LOGISTIC DISTRIBUTION 

62 

The deviation from the mean and the deviation from the median are used to 
measure the dispersion and the spread in a population. If we denote the median by 
M, then the mean deviation from the mean, ( ),D   and the mean deviation from 
the median, ( ),D M  can be written as 
 

 ( ) | | 2 ( ) 2 ( ) .D E X G xg x dx


   


       (13) 

 

 ( ) | | 2 ( ) .
M

D M E X M xg x dx


       (14) 

 
Now, consider 
 

                   mI  ( )
m

xg x dx


    

 

    
1 1 1// / /1 log(1 ) 1

( )
x x xxe e e dx

 
  

 

   


  

    (15) 

 
Using the substitution /log(1 )xu e    in (15) results in 
 

 
/ /log(1 ) log(1 )/ 1 /
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Using the Taylor series expansion of log(1 )ue  results in 
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   (16) 

 
Using equations (5) and (16), the mean deviation from the mean and the mean 
deviation from the median are 
 

 
 1 /, log(1 )
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Mean residual life function and Reliability parameter 

Let X be a random variable with cumulative distribution function CDF F such that 
( ) .E X   The mean residual life (MRL) function ( )x  of X is defined by 
( ) ( | ).x E X x X x     The MRL function, also known as expected remaining 

life function or mean excess function, has been extensively studied in lifetime 
variables context. It plays a major role in many fields such as industrial reliability, 
life insurance and biomedical science. For more information about the MRL 
function, see Kotz and Shanbhag (1980), Hall and Wellner (1979) and Guess and 
Proschan (1985). The next theorem demonstrates the expression of the MRL 
function for the Gamma-logistic distribution. 

Theorem 2 
Let X be a random variable which follows the gamma-logistic distribution with 
parameters  ,   and  . Then the MRL function is given by 
 

  
 1 /

1 /

1

, ( ) log(1 )
( ) 1, log(1 ) ,

( ) ( 1)

x
x

k

k e
x e x
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where 1( , ) a

x

tx a t e dt


     is the upper incomplete gamma function. 

 
Proof: From (4), 
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On using the substitution /log(1 ),tu e    (18) reduces to 
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The result follows from equation (19).  □ 
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The reliability parameter R is defined as ( )R P X Y  , where X and Y are 
independent random variables. Many applications of the reliability parameter 
have appeared in the literature such as the area of classical stress-strength model 
and the breakdown of a system having two components. More applications of the 
reliability parameter can be found in Hall (1984) and Weerahandi and Johnson 
(1992). If X and Y are two continuous independent random variables with CDFs 

1( )F x  and 2 ( )F y  and their PDFs 1( )f x  and 2 ( )f y  respectively. Then the 

reliability parameter R can be written as 2 1( ) ( ) ( ) .R P X Y F t f t dt



     

The following theorem provides an expression for the reliability parameter 
R where the parameter   is fixed. 

Theorem 3 
Suppose that X and Y are two independent gamma-logistic random variables with 
parameters 1 1( , , )    and 2 2( , , )    respectively. Then 
 

 
2

1 1 2

01 2 2 2

( 1) ( )1( ) .
( ) ( ) !( )

k k

k

kP X Y
k k



  

   






     
   

   
   (20) 

 
Proof: From (4) and (5), 
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On using the following series expansion from Nadarajah and Pal (2008), 
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and then the substitution /log(1 )tw e   , equation (21) can be written as 
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Equation (23) reduces to (20). □ 
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Order Statistics for the gamma-logistic distribution 

Consider the general rth order statistic and the asymptotic distributions of the 
sample minimum and maximum when a random sample of size n is drawn from 
the gamma-logistic. From (5), the density function of the rth order statistic, :r nX , 
is given by 
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On using (22), the PDF of :r nX  can be written as 
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From (24), note that the PDF of the rth order statistic :r nX  can be expressed 
as infinite sums of the gamma-logistic PDFs. 

To study the asymptotic distributions of the sample minimum 1:nX  and the 
sample maximum :n nX , use Theorem 8.3.6 of Arnold et al. (2008) as follows: 
Since 1(0) ,G    it follows from the Theorem that the asymptotic distribution 
of the sample minimum 1:nX  will be of the Weibull type with parameter 0   if 
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( )lim , for all 0
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G x x x
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  . By using the L'Hospital's rule, it can be easily 
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shown that 
0 0

( ) ( )lim lim
( ) ( )

G x g xx x
G g



 

 

   
  . Hence, the asymptotic distribution of 

1:nX  is of the Weibull type with shape parameter .  The asymptotic distribution 
of the sample maximum :n nX  can be viewed as ( )nG x  where 1( ) 1 ( ),nG x G x    
where 1( )G x  is the CDF of 1: .nX  

Maximum likelihood estimation 

Let a random sample of size n be taken from the gamma-logistic distribution. The 
log-likelihood function for the gamma-logistic distribution in (4) is given by 
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The derivatives of (25) with respect to  ,   and   are given by 
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The MLE of ˆ ,  ̂  and ̂  are obtained by setting (26), (27) and (28) to zero and 
solving them iteratively. 

Application 

The gamma-logistic is applied to a data set from Brinbaum and Saunders (1969). 
The data set represents the fatigue life of 6061-T6 aluminum coupons cut parallel 
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with the direction of rolling and oscillated at 18 cycles per second. The data set 
was fitted in Table 1 and the result compared with the logistic, Type I logistic, 
Type II logistic, Type III logistic and Type IV logistic distributions (Johnson et al., 
1994). The maximum likelihood estimates, the log-likelihood value, the AIC 
(Akaike Information Criterion), the Kolmogorov-Smirnov test statistic (K-S) and 
the p-value for the K-S statistics for the fitted distributions are reported in Table 2. 
The results from Table 2 indicate that the gamma-logistic distribution provides 
the best fit among the distributions. Also, the K-S p-values indicate that only 
gamma-logistic and Type I logistic distributions provide an adequate fit to the 
data. The empirical and the fitted cumulative distribution functions are displayed 
in Figure 5. This figure supports the results in Table 2. 
 
 
Table 1. Fatigue Life of 6061-T6 Aluminum 
 

70 90 96 97 99 100 103 104 104 105 
107 108 108 108 109 109 112 112 113 114 
114 114 116 119 120 120 120 121 121 123 
124 124 124 124 124 128 128 129 129 130 
130 130 131 131 131 131 131 132 132 132 
133 134 134 134 134 134 136 136 137 138 
138 138 139 139 141 141 142 142 142 142 
142 142 144 144 145 146 148 148 149 151 
151 152 155 156 157 157 157 157 158 159 
162 163 163 164 166 166 168 170 174 196 
212                   

 
 
Table 2. Parameter estimates for the fatigue life of 6061-T6 aluminum coupons data 
 

Distribution ̂   ̂   ̂   
Log 

likelihood AIC KS 
K-S 

 p-value 
Logistic - - 87.1321 -646.5934 1295.1868 0.7209 0.0000 
Logistic I 288.2700 - 21.7088 -462.3355 928.6710 0.0868 0.4323 
Logistic II 0.0023 - 0.3021 -595.4801 1194.9602 0.7385 0.0000 
Logistic III 0.0000 - 0.0010 -665.4880 1334.9760 0.7189 0.0000 
Logistic IV 0.9869 0.0000 0.0022 -595.4802 1196.9604 0.5525 0.0000 
Gamma-
Logistic 35.6785 1.9360 1.9360 -456.3280 918.6560 0.0530 0.9388 
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Figure 5. CDF for fitted distributions for fatigue life of 6061-T6 aluminum data 
 

Conclusion 

In this article, a special case of the gamma-X family of distributions proposed by 
Alzaatreh, et al. (2013b), the gamma-logistic distribution is defined and studied. 
Various properties of the gamma-logistic distribution are studied, including 
moments, deviations from the mean and median, reliability parameter, Shannon 
entropy and order statistics. It is observed from figures 3 and 4 that the gamma-
logistic distribution exhibits a wide variety of skewness and kurtosis values and 
the distribution can be symmetric, right skewed or left skewed. A real data set is 
fitted to the gamma-logistic distribution and compared with other known 
distributions. The results show that the gamma-logistic distribution provides the 
best fit among the distributions. 
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The advantages of modeling the unreliability of outcomes when evaluating the 
comparative effectiveness of health interventions is illustrated. Adding an action-research 
intervention component to a regular summer job program for youth was expected to help 
in preventing risk behaviors. A series of simple two-group alternative structural equation 
models are compared to test the effect of the intervention on one key attitudinal outcome 
in terms of model fit and statistical power with Monte Carlo simulations. Some models 
presuming parameters equal across the intervention and comparison groups were under-
powered to detect the intervention effect, yet modeling the unreliability of the outcome 
measure increased their statistical power and helped in the detection of the hypothesized 
effect. Comparative Effectiveness Research (CER) could benefit from flexible multi-
group alternative structural models organized in decision trees, and modeling 
unreliability of measures can be of tremendous help for both the fit of statistical models 
to the data and their statistical power. 
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Introduction 

Assessing intervention effects poses some challenges to researchers, scholars, 
evaluators, and policy makers, especially when a quasi-experimental design is 
employed (Judd & Kenny, 1981; Stead, Hastings, & Eadie, 2002). When 
treatments and interventions move from the trial phase to being implemented on 
the ground, or Translating Research into Practice (TRIP, Feifer et al., 2004) the 
question of differential effects is of most concern to practitioners and researchers. 
Comparative Effectiveness Research (CER, Agency for Healthcare Research and 
Quality, 2007) is an emerging new approach addressing questions of comparative 
effects of alternative health interventions implemented in real world settings. 

It is particularly difficult to decide on the best comparative results for 
reporting, when alternative models, accounting for various differences by 
condition, reach different conclusions. Evaluation challenges posed by health 
intervention designs in which randomization to conditions is not feasible are 
illustrated, by comparing alternative Structural Equation Models (SEM, Kline, 
2010) testing for comparative intervention effects, in terms of both fit and 
statistical power. The benefits of modeling unreliability in increasing statistical 
power to detect true intervention effects are specifically demonstrated. 

Evaluating health interventions effects on outcomes in community-based 
settings involves statistical modeling of non-RCT (Randomized Control Trial) 
designs, when different comparable groups are contrasted in terms of differential 
changes or responses to some program. A number of statistical approaches are 
commonly employed for such tests, among them regression-based linear models 
testing for the impact of a condition variable (the intervention of interest vs. a 
comparison condition) on the outcome of interest (Aiken, West, Schwalm, Carroll, 
& Hsiung, 1998; Bentler, 1991; West, Biesanz, & Pitts, 2000). In real world 
implementation settings however, the groups always differ in model parameters 
like baseline means and variances of key outcomes and covariates, as well as in 
terms of the outcomes change trajectories, or stability.  

To accommodate such differences, structural models can be tested in several 
groups concurrently, like two-group models, thereby accounting for group 
differences that are commonly overlooked in analyses focused on whole-sample 
data, like paired t-tests (Macy, Chassin, & Presson, 2013) or analysis of variance 
(Young, Harrell, Jaganath, Cohen, & Shoptaw, 2013).  

Moreover, the very assumptions about various initial and time changing 
group differences impact how well models fit the data and more importantly the 
statistical power to detect the effects of interest (Hancock, 2004). These 
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assumptions need to be flexibly modeled for the estimates of post-test differences 
or differential changes to be trustworthy (Green & Thompson, 2006). A simple 
CER model comparison procedure for evaluating true group differences of non-
RCT interventions is presented, which specifically tests both the fit to data and the 
statistical power of alternative SEM models and helps in sorting through 
competing models, using a decision tree framework. The procedure is repeated for 
similar models that directly include measurement errors of the measures, and the 
benefits of modeling unreliability are shown. 

One key outcome was compared between groups of urban minority 
adolescents from two large cities in the USA, who were enrolled in summer job 
programs. One youth group was additionally engaged in a youth intervention 
designed to reduce drug and sexual risk behaviors (Berg, Coman, & Schensul, 
2009). Low-income urban youth are often more likely to engage in risky 
behaviors, like substance use or unprotected sex (Farahmand, Grant, Polo, & 
Duffy, 2011; Simons-Morton, Crump, Haynie, & Saylor, 1999). A host of factors 
have been shown to be linked with behaviors that impact youth substance use 
initiation, like poverty, exposure to violence and drug use in their community 
(Caldwell, et al., 2004; DeWit, Adlaf, Offord, & Ogborne, 2000; Grant, Stinson, 
& Harford, 2001; Swahn, et al., 2012).  On the other hand, parental support, 
positive peer influences and social support systems act as protective factors and 
are often targeted by prevention interventions (Catanzaro & Laurent, 2004; 
Cleveland, Gibbons, Gerrard, Pomery, & Brody, 2005). Furthermore, youth action 
and involvement in one’s community can reinforce group cohesion and increase 
individual skills and a sense of self-efficacy and control over their own behaviors 
(Schensul, Berg, Schensul, & Sydlo, 2004).  

YARP (Youth Action Research for Prevention) was a three-year summer 
and after-school preventive intervention (Berg, Owens, & Schensul, 2002; Reason 
& Bradbury, 2007). Three youth cohorts were employed and trained over the 
summer and were instructed to identify a youth-related problem in their 
community, to develop a research model and an action plan addressing that issue, 
gather and interpret community data, and actively engage in social action to 
promote changes in their community. This intervention group was compared to a 
matched youth group recruited from a comparable summer-job program in a 
neighboring city with similar economic conditions and ethnic/racial composition.   

A primary hypothesis proposed that youth-initiated research for action, 
along with involvement in multilevel social change activities (or activism) 
reinforce group cohesion and individual and collective efficacy. As a result, it was 
expected that among other outcomes, Internal Locus of Control (ILC) would 
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strengthen in the intervention group compared to the matched comparison group. 
Figure 1 shows the pre- and post-test sample means of the ILC outcome in the 
intervention and comparison YARP groups. It is specifically investigated which 
alternative models testing for intervention effects exhibit both good fit to data and 
enough statistical power to detect the effects, depending on different model 
specifications (Hancock, Lawrence, & Nevitt, 2000). The impact of accounting 
for measurement unreliability in the models, thereby estimating true differences 
of the latent (unobserved) outcome is also explored. The models belong to the 
Structural Equation Modeling (SEM) framework.  
 
 

 
 

Figure 1: Outcome means pre- and post-intervention for the YARP comparison and 
intervention groups 
 

Methodology 

Structural equation modeling for intervention effects 
A major methodological tool for understanding health intervention processes and 
assessing comparative outcome effects is the latent linear modeling with multiple 
simultaneous regression equations, known as Structural Equation Modeling (SEM, 
Bollen, 1989; Jöreskog, 1973) or covariance structure analysis (Bentler & 
Dudgeon, 1996). SEM is an enormously flexible technique that can carry out 
virtually any analysis (Muthén, 2002; Skrondal & Rabe-Hesketh, 2004). Current 
extensive SEM reviews position it as an integrative general modeling framework, 
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of which traditional analyses like the t-test, ANOVA, MANOVA, canonical 
correlation, or discriminant analysis are special cases (Fan, 1997; Graham, 2008; 
Muthén, 2008; Voelkle, 2007).  

A simple SEM setup for testing intervention effects is the common one-
group analysis of the effect of a dummy intervention variable on the post-
intervention outcome. This approach, called ‘group code’ SEM (Hancock, 1997), 
tends to overlook however group differences that may need to be modeled, in 
other words it cannot account for a number of differences between groups, 
because data from both groups are combined. A more flexible tool is the testing of 
causal models in multiple groups, which allows for a range of tests of group 
differences (Bagozzi & Yi, 1989; Kühnel, 1988; Thompson & Green, 2006). 
Two-group models, like a two-group simple regression, provide parameter 
estimates for each group (Green & Thompson, 2006), and are more versatile in 
that they are simultaneously tested in more than one sample, with the options to 
hold parameters equal or allow them to vary across groups.  

The general multiple-group manifest (observed) variable SEM model in 
multiple groups (indexed by g) is of the form:  

 
      g g g g gy x   (1) 
 
where y is the (q1) vector of exogenous and x the (p1) vector of endogenous 
manifest variables, τ is the (q1) vector of intercepts, Γ represents the (qp) 
matrix of slopes, and ζ the (q1) vector of residuals (or disturbances). However, 
when m latent variables are also modeled, the structure can be expressed 
separately for the latent variable relationships as: 

 
           g g g g g g g   (2) 
 
with η being the (m  1) vector of latent endogenous variables, α the (m  1) 
vector of factor score means, B the (m  m) coefficient matrix for the influence 
of endogenous η’s on η’s, Γ the (m  n) coefficient matrix of the effects of the n 
exogenous ξ variables on η’s, and ζ is the (m1) disturbance vector assumed to 
have an expected value of zero and be uncorrelated with ξ and η. The model for 
the measurement part linking the manifest to the latent variables is (Bollen, 1989: 
320): 
 
 g yg yg yg g     y   (3) 
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and 
 
 g x xg g     xg gx   (4) 
 

Model testing in SEM is meant to reproduce the variances, covariances and 
the means of the observed variables (Bentler & Yuan, 2000; Hancock, 2004). 
SEM testing requires first the assessment of the fit of the model to the data; the fit 
is simply the extent to which a model implies means and variances/covariances 
that are similar to the observed ones. The χ2 (chi-squared) fit statistic for instance 
assesses the closeness between the implied covariance matrix and the sample 
covariance matrix (Hayduk, 1987). For a multiple-group SEM model, the χ2 is 
obtained as (N-1) FML from the fit function FML, which is a weighted combination 
of the g groups fit functions (Bollen, 1989: 361): 

 
    1           gML g g g gF tr log log p q      S S   (5) 

 
where ∑ is the population covariance matrix and S is the sample covariance 
matrix.  

Lack of χ2 fit is generally a function of the constraints imposed on the model 
(Thompson & Green, 2006). A two-group SEM model fits to the extent that it 
closely reproduces the sample means and covariances in both groups, so model 
misfit can indicate misspecification at the level of both within-group means and 
covariances (Saris & Satorra, 1993), as well as in the assumptions about cross-
group equalities or differences, like the equality of pre-intervention means or 
variances  

However, some specific equality constraints are supported by some data sets 
and rejected by others (Green & Thompson, 2003), depending on actual 
community initial conditions, and on differential change processes.  For example, 
the assumption that the path (auto-regressive) coefficients from baseline to post-
test outcome are equal in the intervention and comparison groups is rarely true, 
primarily because the intervention itself is expected to change the stability of the 
outcome; these assumptions are rarely tested (Bentler, 1991). 

To compare groups (like gender, age, or intervention and comparison 
groups) on the means of the DV (dependent variable, or endogenous) in an SEM 
framework, researchers evaluate the fit of a structural model of no difference 
between the focal parameters (i.e. equality of intercepts is imposed) against 
another model where intercepts differ; if the models fit the data similarly, there is 
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no difference in intercepts, whereas if the different means model fits significantly 
better, there is evidence for a systematic group difference.  

Acceptable model fit alone however does not ensure that its conclusions are 
warranted, because alternative well-fitting models may lead researchers to 
divergent conclusions. This is partly because alternative well-fitting models can 
have different statistical power to detect the effects of interest (MacCallum, Lee, 
& Browne, 2010; Saris & Satorra, 1993), especially for small sample sizes and 
unequal groups (Hancock, et al., 2000). These models contain different 
specification errors, and therefore will vary in both fit and testing power. 
Researchers should then analyze the statistical power of all alternative well-fitting 
models that can be relied upon for testing the hypothesis of equal post-
intervention means.  

In summary, there always exists a range of well-fitting models that provide 
different model-implied estimates of between-group differences, when researchers 
compare effects of programs across different conditions or settings. For the sake 
of brevity the focus is on simple models with only one outcome variable 
measured twice, with the baseline measure affecting the post-test outcome, in two 
groups, enhanced intervention and comparison, a common quasi-experimental 
design (Meehl & Waller, 2002). These models can be easily expanded to include 
covariates and additional intervening factors.  
 
Analytic steps Two-group regression models were tested that gradually 
imposed equality constraints on model parameters across groups, in a hierarchical 
manner (somewhat similar the SEM decision trees, Brandmaier, von Oertzen, 
McArdle, et al., 2013), starting with a basic model with all parameters allowed to 
differ across groups. Specified models with increasingly more parameters were 
then constrained to be equal across the comparison and intervention groups: 
baseline means, then baseline variances, then the baseline to post-test regression 
coefficient, and combinations of them (Mplus syntax outputs are available online 
at http://trippcenter.uchc.edu/modeling/files/HEdRes.zip). The decisions to accept 
or reject models and equality-constraints are based on chi-square (χ2) tests and 
Wald tests. Wald tests are asymptotically equivalent to the chi-square difference 
tests (Δχ2) and do not require re-specifying the model (Bollen, 1989: 295). 

A simple two-group structural model with a baseline outcome causing the 
post-test outcome yields five model estimated parameters for each group (see for 
illustration the actual parameters in Figure 2). The model depicts variances as a 
double headed arrow, or as a covariance of the variable with itself. Such models 
can specify (or not) equality constraints between some of these parameters, and 

http://trippcenter.uchc.edu/modeling/files/HEdRes.zip
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then test the difference between post-intervention intercepts of the outcome. The 
linear equations can be directly spelled out from the model in Figure 2 as: 
 
 2 1*g g g g gILC ILC       (6) 
 
where ILC1g and ILC2g are the baseline and post-test variables, τg are the 
intercepts (the values of ILC2g when ILC1g are zero), γg are the auto-regressive 
coefficients, ζg the residual error terms, and g indexes group (intervention or 
treatment T, and comparison C). Organizing alternative SEM models using a 
decision tree that starts with an all-parameters-different model, and grows by 
imposing equality constraints on parameters across groups is proposed. 
 
 

 
 
Figure 2. Two group model specification for testing the equality of post-intervention 
difference τ2C = τ2T of the ILC outcome (Note: Hexagons represent means/intercepts; T: 
treatment group, C: comparison.) 
 
 
 
In addition to fit, models differ in statistical power to detect specific effects 
(Hancock, et al., 2000). The probability of rejecting the hypothesis of equal post-
test means, when the means are different in the population, is the statistical power 
of the test, and should ideally be one. The power of SEM models can be obtained 
generally by fitting on population data an F (full) model, then an alternative R 
(restricted) model with an additional constraint of interest (MacCallum, et al., 
2010; Satorra & Saris, 1985). Because the population F model fits perfectly, the 
only worsening (or ‘badness’) of fit of the reduced model R would come from the 
additional constraint imposed the equality of post-test means in this case. The 
difference between the two model χ2 values represents the noncentrality parameter 



COMAN ET AL 

79 

for the noncentral distribution with one degree of freedom (Hancock, et al., 2000). 
Alternatively, the Wald test χ2 is an asymptotically equivalent method of 
estimating power (Buse, 1982). 

The statistical power of each alternative model was assessed using Mplus 6 
Monte Carlo facility (Muthén & Muthén, 2002), which generates datasets 
according to an F causal model assumed to be the true in the population, generates 
simulated sample datasets (in this study, 1,000 simulations), and then can test a 
constrained model R to each simulated sample dataset. The Mplus output provides 
descriptives of the percent of times the R replicated models rejected the (assumed 
false) equality of post-test means, which is the power of the model to detect the 
effect. Specifically, the power of the model is given by the observed proportion of 
replication tests for which the Wald test exceeds the critical value of 3.841 (for 
degree of freedom df = 1, for the equality of intercepts constraint τC2 =  τT2). 
Unreliability was then modeled in both groups statistical power to detect 
intervention effects was tested for all the new models. (Muthén & Jöreskog, 1983; 
Thompson & Green, 2006). 

 
Study setting and data The research team conducted and evaluated the 
multi-year YARP project (2002-2005), a youth intervention implemented in 
Hartford, Connecticut (CT). The Institute for Community Research Institutional 
Review Board ensured that proper human subjects protocols were followed. The 
intervention group had NT = 90 participants who completed all four surveys, 
recruited from Hartford, CT, of whom 56% were females, 48% Blacks, 37% 
Latinos, mean age MT = 15.1 years, while the comparison group had NC =167 
from a similar inner-city youth in a summer job program in Massachusetts, U.S., 
with 58% females, 45% Blacks, 44% Latinos, and mean age MC = 15.5. 

Measures were taken at baseline, 2 month, 6 months, and 1 year in both 
groups. Internal locus of control was measured with 4 indicators (i.e., ‘I am 
responsible for accomplishing goals’, ‘Life offers me many choices’, ‘I can do 
things I set out to do’, and ‘I enjoy having control over own destiny’) from among 
the Internal subscale items of the Levenson Locus of Control scale (Levenson, 
1973) modified for younger ages. For simplicity and because interest lies in long-
term and potentially sustainable effects, the focus here is on the difference in 
changes from baseline to the final fourth measurement time point. A composite of 
the average items was calculated (rated from strongly disagree = 1, to strongly 
agree = 4, 4 being greater internality). Basic descriptive, reliabilities, correlations 
and covariances are shown in Table 1, for each group, and the entire sample. The 
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pre- and post-test ILC measures had acceptable reliabilities, Cronbach’s alphas 
between .725 and .871.   
 
 
Table 1: Covariances, correlations, means and Cronbach’s α of the pre- and post-test 
Internal Locus of Control (ILC) outcome for the two YARP groups and for the whole 
sample 
 

 Comparison 
NC = 167 

Intervention 
NT = 90 

Whole sample 
N = 257 

 ILC1 ILC2 ILC1 ILC2 ILC1 ILC2 Group 
ILC1 0.264 0.475* 0.174 0.448* 0.235 0.445* -0.081NS 
ILC2 0.264 0.325 0.174 0.480 0.134 0.385 0.104NS 

Group (C/T) - - - - -0.019 0.031 0.228 

Means μ 1.365 1.356 1.283 1.492 1.337 1.404 0.350 
Cronbach’s α 0.725 0.847 0.726 0.871 .726 .859 - 

 
Note. Covariances are shown in bold and below diagonal and correlations above diagonals, variances in italics 
on the diagonals. 
 
 

 
 

Figure 3:  Alternative decision-tree SEM modeling for comparing post-intervention 
observed outcome means in two-group causal models (Notes: Shaded models: good chi-
square fit; model names indicate which equality constraints are imposed, on: σ2 = 
variances, µ = means; β = autoregressive paths; or T = the test of equality of post-test 
intercepts; numbers in boxes: in pentagons– power of each model, and lower right - fit 
ordered from best fitting (1) up; arrows going up show model comparison tests, with p 
value for significance of Wald test [p<.05 corroborates intervention effect.]) 
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The hypothesis of equal post-intervention ILC means (technically the 
intercepts τC/T) was tested with all well-fitting models. The models are shown as a 
decision tree in Figure 3. The baseline model with df = 0 (the ‘root’) assumes all 
parameters are different across groups, and each higher layer of nodes adds one 
more equality constraint, hence estimating one less parameter. When adding the 
equality constraint between post-test intercepts (the focal parameter) led to a 
significant worsening of fit, or a significant Wald test statistic, it was concluded 
that the means were different between groups.  

Results 

The results of alternative modeling of the tests of ILC outcome differences are 
now reported. The three well-fitting models are shown in Table 2, which lists the 
common SEM measures of fit ordered by descending p values for χ2 larger 
than .05, and the Wald tests of the post-intervention differences.  
 
 
Table 2: Ordered fit indices, Wald tests, and statistical power for the well-fitting 
alternative causal models of the YARP intervention effect on Internal Locus of Control 
 

  Model χ2 df χ2 p CFI RMSEA Wald Wald p Power 

1 1β β’s equal 1.517 1 0.218 .991 .063 5.685 0.017  0.70 

2 2μβ μ’s & β’s 
equal 3.436 2 0.179 .976 .075 5.719 0.017  0.70 

3 1μ μ 's equal 1.919 1 0.166 .985 .085 0.161 0.688  0.14 
 

Note: μ = baseline means; β = auto-regressive path; italics Wald test p indicate significant intervention effect. 
 
 

Two well-fitting models, 1γ, and 2μγ indicated that there was indeed a 
significant intervention effect (p = .017 for the Wald statistic in both), while 
another well-fitting model, 1μ, reached another conclusion. Note that the baseline 
means cannot be deemed statistically different, because the fit of the 1μ model 
(baseline means set equal across groups) indicates in fact that the perfectly fitting 
model with all parameters different (for which df = 0) does not worsen 
significantly when constraining the baseline means to be equal.  

The fact that only some models reject the equality of means hypothesis is an 
indication of differential statistical testing power (Hancock, 2006) linked to model 
misspecifications (Saris & Satorra, 1993). In other words, some models may have 
low power to reject the (false) hypothesis of equal post-test means.  
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In terms of statistical power, the equal baseline means model (1μ) that has 
initially found no effect yielded a probability to rightly reject the (assumed false) 
equal means hypothesis of p = .14, while the other two well-fitting models had 
higher sensitivities of p = .70. This indicates that for the observed sample sizes of 
90 and 167, the models compared here have dramatically different sensitivities to 
detect the effect of interest. Examination of model fit alone, therefore, without 
controlling for Type II errors could lead to accepting well fitting models that are 
not sensitive to detect specific effects (Saris, Satorra, & van der Veld, 2009). In 
this particular instance, the ‘stress’ induced in this simple linear model by 
constraining the baseline means to be equal rendered one well-fitting model (1μ) 
seriously under-powered to detect the intervention effect. Next it will be shown 
that this particular model was underpowered because the baseline equality of 
means assumption was imposed on the unreliable baseline measure.  

Informed knowledge of the reliability of an observed variable allows for 
modeling the true means of latent variables (unattenuated by measurement error). 
When measurement error is directly specified for composite or single-item 
variables, each measured variable is in fact subjected to a mini-factor analysis, in 
which a common factor (the true measure) is assumed to be responsible for 
(acting behind) the observed measure. The reliability of an observed variable is 
simply the proportion of the observed variance that is true variance, or the squared 
correlation between the true variable and the observed variable (Raykov, 1997), 
and a common estimate used in applied research for scale reliability is Cronbach’s 
alpha coefficient (Raykov & Marcoulides, 2011). Because reliability ρ is the 
percentage of variance that is true variance, the complement 1- ρ is the percentage 
that is measurement error, hence (1-ρ)*σ2

ILC1 is the measurement error variance 
(MacKinnon, 2008: 189). The measurement error variance for the comparison 
group δ1C  for ILC1C in Figure 4, for example, whose reliability was .73 and 
variance .26, was fixed at (1 - .73) * .26 = .27 * .26 = .070. 
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Figure 4. Illustration of two-groups model parameters with measurement errors directly 
modeled (Notes: Hexagons show the means/intercepts; ρ are reliabilities; σ2 are 
observed variances; g indexes group: comparison and intervention.) 
 
 
 

When directly modeling the unreliabilities of the baseline and post-
intervention ILC outcome in both groups, the power to detect the post-
intervention differences in mean ILC of the 1μ model increases to .716 (from the 
meager .14 of the manifest ILC model). So when assuming that the true (latent) 
baseline ILC means are equal, the model is better powered to detect the 
intervention effect unto the reliable (true) latent outcome, and the effect emerges 
as a significant larger increase in the true ILC in the intervention group, Wald test 
statistic of 6.14 (df=1), p = .012. 

Conclusion 

A decision-tree method of comparing alternative models of observed and true 
outcomes was illustrated (Kaplan, 1990), which tests for post-intervention health 
outcome differences between community-based groups, based on both fit to data 
and power to detect these effects. This procedure can assist in Comparative 
Effectiveness Research (CER) by providing the modeling flexibility required by 
actual data in terms of various group (or community) differences. It is particularly 
useful when trying to compare effects using summary data from separate studies, 
when available in the form of means, variances and covariances. 
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One manifest outcome well-fitting model was under-powered to detect the 
YARP intervention effect on Internal Locus of Control (ILC), but two other well-
fitting models with better statistical power detected a positive effect on ILC in the 
intervention group. It was found that even small differences in parameters of the 
unreliable measures create ‘stress’ in the structural models which can render them 
underpowered to detect the effects of interest. In the illustration, the lack of power 
of the baseline equal means two-group structural model derived from imposing a 
plausible equality constraint on the unreliable observed ILC measures, rather than 
on the true (latent) ones. 

The structural equation models tested here indicate that the lack of statistical 
power of the models with unreliable outcomes are due largely to modeling error-
in-variable measures (containing measurement errors). The example herein shows 
the importance of a priori specification of alternative models and the utility and 
relative ease of post-hoc power analysis, and also showed the benefits of directly 
modeling unreliabilities of outcome measures. The nuanced reporting of the 
alternative testing and plausibility of competing conclusions is essential for 
statisticians, prevention and comparative effectiveness researchers, as well as 
policy makers and community representatives interested in evaluating, replicating 
or translating successful programs.  

Some limitations are worth mentioning. To the extent that one tries out 
repeated models on the same data, procedure called specification search and 
available in current SEM software like AMOS (Arbuckle, 2007), the issue of 
over-fitting the model to the same data (or data dredging, see Brandmaier, et al., 
2013) could be a concern (Hayduk, 1987). This procedure is acceptable, if careful 
planning of model testing under alternative reasonable configurations is 
undertaken a priori (Jöreskog, Bollen, & Long, 1993), being akin to specifying 
equivalent models before data collection (Hershberger, 1994).  

The decision tree modeling approach is useful in identifying and classifying 
alternative multi-group models according to differential support from multiple-
group data in general. It does not of course provide criteria for deciding the true 
and false nature of the models, but rather their “truth-likeness” or closeness to the 
truth (Meehl & Waller, 2002). Quasi-experimental designs for instance require the 
use of covariates to control for additional baseline differences between the groups, 
and the modeling of selection biases (Muthén & Jöreskog, 1983); however, a 
basic model was chosen herein for simplicity to illustrate this method.  

The method presented here becomes cumbersome when models increase in 
complexity, e.g. when using multiple indicator measures with numerous possible 
cross-group constraints, like specific loadings and intercepts (Green & Thompson, 
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2006). Multiple latent covariates and possibly multiple outcomes with indirect 
effects complicate the picture even further. Study analyses, however, make clear 
the benefits of directly modeling unreliability, of careful inspection of alternative 
models and attending to both model fit measures and statistical power of the 
models, when comparing the effectiveness of health interventions translated and 
implemented differently in separate communities. 
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On finding a significant association between rows and columns of an r x c contingency 
table, the next step is to study the nature of the association in more detail. The use of a 
scree plot to visualize the largest contributions to Χ2 among all cells in the table in order 
to determine the nature of the association in more detail is proposed.  
 
Keywords: contingency table; graphical method; exploratory analysis; scree plot; 
contribution to chi-square 
 

Introduction 

A graphical method is proposed for exploring associations between rows and 
columns in an r x c contingency table. Typically, the Pearson chi-square test (or 
alternatively, the Fisher exact test) is used to test for independence of two 
categorical variables arranged in an r x c contingency table. (When one or both 
categories are ordinal, other procedures more suited to test for ordinal associations 
are available but the method being proposed here can be applied to both ordinal 
and non-ordinal data.)  

On finding a significant association between rows and columns of an r x c 
table, the next step is to study the nature of the association (i.e., lack of 
independence) in more detail. One approach is to partition the r x c table and to 
use principles of chi-square partitioning to compare various groupings of rows 
and columns in order to make sense of the association (Agresti, 1990). Another 
method is to “collapse” the r x c table into some meaningful 2 x 2 table, the 
results for which are much easier to interpret (Feinstein, 2002). The advantage of 

mailto:MLesser@nshs.edu
mailto:MAkerman@nshs.edu


EXPLORING R X C CONTINGENCY TABLES WITH SCREE PLOTS 

92 

the first approach is that it is truly inferential, but the choice of how to partition 
the table may be impractical for very large r x c tables. The second method, while 
appealing due to its simplicity, may result in combining categories that have no 
appropriate justification or interpretation with respect to the subject matter being 
studied. 

Consider the situation where the data analyst is interested more in 
exploration of the association rather than formal inference, in which case an 
exploratory graphical approach might be appropriate. There is the method known 
as Correspondence Analysis (CA) with applications in areas of social science, 
psychology, market research, and, to some extent, biomedical research (Greenacre, 
1984; Greenacre, 1992). This graphical approach is based on linear algebraic 
techniques, which project the rows and columns of a data matrix in points onto a 
graph in Euclidean space, from which a better understanding of the data may be 
derived.  

A simpler, yet intuitive method is proposed: exploratory graphical approach 
based on a method suggested by Snedecor and Cochran (1989), in which the data 
analyst identifies the cell entries providing the largest percentage contributions to 
Χ2 because those will suggest departure from the null hypothesis of independence, 
and will be row-column combinations of interest. Some drawbacks of this 
approach are that searching an r x c table for the “largest” contributions to Χ2 can 
be tedious (especially for large tables), inefficient, and prone to error (i.e., failing 
to identify all the cells that are “large” contributors). Given these potential 
problems, a graphical approach to summarizing these contributions would be 
helpful, especially when there are many cells to analyze. 

The graphical approach used herein is to use an adaptation of the scree plot 
to visualize the largest contributions to Χ2 among all of the cells of the r x c table. 
(The scree plot is commonly used in principal components analysis to help choose 
the most important principal components [Khattree and Naik, 2000]).  

As an example, Table 1 (hypothetical data for illustrative purposes) is a 6 x 
5 cross-tabulation of a patient’s primary hospital admitting diagnosis according to 
the patient’s race. There is a highly significant association between diagnosis and 
race (Χ2 = 326.4, p < 0.0001). The common interpretation of this significance is 
that diagnosis is not independent of race or, alternatively, that there are at least 
two races for which the distributions of diagnosis differ. Which two (or more) 
columns differ from one another? 
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Table 1. Cross-tabulation of a patient’s race according to patient’s primary hospital 
admitting diagnosis 
 

 Primary hospital admitting diagnosis 

 DM Chest pain CVA Fever GI distress Other Total 

White 
39 18 51 22 16 20 

166 
23.49 10.84 30.72 13.25 9.64 12.05 

Black 
11 15 8 2 92 48 

176 
6.25 8.52 4.55 1.14 52.27 27.27 

Hispanic 
90 56 19 15 13 29 

222 
40.54 25.23 8.56 6.76 5.86 13.06 

Asian 
13 0 14 7 15 0 

49 
26.53 0 28.57 14.29 30.61 0 

Other 
44 18 10 11 9 3 

95 
46.32 18.95 10.53 11.58 9.47 3.16 

Total 197 107 102 57 145 100 708 
 

Note. The top entry in each cell is the frequency count; the lower entry is the “row percent,” which is the 
percentage based on the row total. 
 
 

To answer that question, two methods are commonly used. The first is 
simply to inspect the many so-called “column proportions” and informally, based 
on subjective visualization, make a judgment as to which columns differ. The 
second is to more formally perform all 10 pairwise comparisons of the columns 
using a Χ2 test with 5 degrees of freedom and to declare two columns as different 
if the associated p-value is less than some critical value that is appropriately 
adjusted for multiple comparisons. (In general there would be c!/(2!(c-2)!) each 
with r-1 degrees of freedom.) 

The first method is deficient because it is highly subjective and requires 
simultaneous visual processing of all of the column percentages. The second 
method has the advantage of being truly inferential, but, in finding two columns 
that differ, it fails to identify the row locations of those differences.  

The graphical method proposed is computationally objective and 
reproducible and can be easily programmed in most statistical software packages, 
including SAS® for which a publically available macro has been written.  
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Methodology 

Suppose data are arranged in an r x c contingency table. The individual entries in 
the r x c table represent the frequency, or, number, of observations of a given row-
column combination (e.g. race and diagnosis as in Table 1.) 

Using standard statistical notation, let Oij represent the observed entry in row 
i, column j, Oi. the total of all entries in row i, O.j the total of all entries in column 
j, and Eij the expected entry in row i, column j. Letting n denote the sum total of 
all frequencies entered in the table, the expected frequency of row i, column j, Eij , 
is calculated as the product of the total frequency in row i multiplied by the total 
frequency in column j, divided by n (i.e.,   .  .  /  ij i jE O x O n ).  

Using this notation, the standard Pearson Χ2 statistic is calculated as 
 

  
22   –  /  i j ij ij ijX O E E 

 
 


 ,  

 
where the summations correspond to i = 1, 2, …, r and j = 1, 2, …, c. Snedecor 
and Cochran (1989) denote the contribution of the ijth entry to the Χ2 statistic as  
 

  
22  –  /  ij ij ij ijX O E E   

 

Compute all values of Χ2
ij for i=1, 2,…, r and j=1,2,…,c. Then compute Pij = 

100* Χ2
ij / Χ2 = percentage of overall Χ2 contributed by the ijth entry. Snedecor 

and Cochran (1989) propose that the entries providing the largest percentage 
contributions to Χ2 are those that will suggest departure from the null hypothesis 
of independence. Note that “contribution to Χ2” is sometimes referred to as the 
square of the “standardized residuals” (Agresti, 1990). 

The general idea of the proposed graphical method is to compute each table 
entry’s Pij, order the Pijs from largest to smallest, and to find the first Pij for which 
the remaining ordered Pijs remain relatively constant. This ordering can be 
visually displayed in a graph, known as a “scree plot”. The algorithm for 
constructing the scree plot is given in the following steps: 

Step 1 
Order the values of Pij from largest to smallest and denote the ordered values (i.e. 
“order statistics”) as P(1) ≥ P(2), ≥…, ≥P(rc).   
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Step 2 
Plot P(i) against i to form a scree plot, analogous to what is done with eigenvalues 
in principal components analysis (PCA) (Khattree and Naik, 2000).  

Step 3 
Find the cells in the r x c table that significantly contribute to the departures from 
independence. This can be done using any of the following three criteria. 
 
Cumulative Percent Method  Find the left-most point on the horizontal 
axis that corresponds to a cumulative sum of percent contributions to chi-square 
that totals as close to, but does not exceed some pre-specified percentage, π. For 
example, π might be set to 50%. It should be noted that π is often chosen 
arbitrarily with no formal justification of its utility. Using π = 50% is “middle of 
the road”. Increasing π would result in a more “liberal” rule, allowing more cells 
to be implicated in the departure from independence, possibly increasing the false 
positive rate with respect to identifying the number of such cells. Decreasing π 
would restrict the number of cells, possibly increasing the false negative rate. 
(Note that in PCA, π, which would be the cumulative variance explained, is often 
set to 90% [Khattree and Naik, 2000])  

 
Subjective Elbow Method  Find the “bend of the elbow” or “turning 
point” of the scree plot to determine which cells in the r x c table contribute 
substantially to the Χ2 statistic. Typically, the bend in the elbow would be defined 
as the point on the plot for which all points to the left of it will have a much 
steeper downward slope than those to the right. The idea behind this choice of a 
bending point is that the number of cells to be selected is such that the differences 
between consecutive contributions to chi-square are becoming increasing smaller 
(Khattree and Naik, 2000). This subjective method is based only on visual 
inspection of the scree plot. This approach may be useful when there is a fairly 
clear elbow. The primary shortcoming is that this method is subjective and may 
not be reproducible between data analysts. 
 
Objective Elbow Method  Because the determination of the bend in the 
elbow using the Subjective Elbow Method is not necessarily reproducible, it is 
proposed to systematize the identification of the elbow by finding the ordered pair 
(i,P(i)) which is closest to the origin (0,0). This can be done by computing the 
squared-Euclidean distances of each point on the scree plot, 
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(i−0)2 + (P(i)−0)2 = i2 + P(i)
2 and finding the ordered pair, (i*, P*), corresponding to 

the minimum value of those distances (i.e. (i*, P*) is the point closest to the 
origin). All cells that are represented on the plot with i ≤ i* would then be 
implicated in the departure from independence. In the context of a scree plot, 
which is a plot of a non-increasing concave function, the “ideal” elbow would be 
two straight line segments connected at a “pivot” point forming an angle of 90º to 
less than 180º between the segments. For such a function, the bend of the elbow 
would correspond to the point with minimum distance to the origin. An example 
of an ideal elbow would be a perfect “L” shape curve with its vertical and 
horizontal components parallel to the vertical and horizontal axes of the scree plot, 
respectively.  

It should be emphasized that while the proposed method relies on the use of 
the chi-square statistic, as an exploratory tool, it can be used even when the r x c 
table does not meet the criteria for the use of the Pearson chi-square test and a 
Fisher’s exact test would be more appropriate.  

For this manuscript, the authors used the PROC FREQ procedure in SAS 
Version 9.3 (SAS Institute, Cary, NC).  

Results and Examples 

The proposed method is illustrated using data from the Asia-Pacific Quality of 
Life Study (APQOL) in Lung Cancer. (The data are provided courtesy of Drs. 
Richard Gralla and Patricia Hollen [Gralla, 2013; Thongprassert, 2013]). This 
data consists of, among other variables, country of diagnosis (China, Korea, 
Thailand, Taiwan), Karnofsky Performance Status at diagnosis (KPS=50, 60, 70, 
80, 90, 100), lung cancer T stage (T0, T1, T2, T3, T4, and TX), node status (N0, 
N1, N2, N3, NX), and metastasis (M0, M1, MX). [The so-called “TNM staging 
system” for cancer classifies cancers according to tumor size (T), lymph node 
involvement (N), and presence or absence of metastatic disease (M). The KPS is a 
measure of a patient’s general well-being and activities of daily life.] Analyses 
investigated whether there was any association between any of these variables and 
country of diagnosis. Standard Pearson chi-square analysis for r x c contingency 
tables was carried out. Four examples were chosen to illustrate variation in the 
way that the location of the elbow might be visually and subjectively judged. 
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Example 1 
Table 2a is the contingency table of Country vs. KPS and displays, respectively, 
each cell’s frequency, deviation from expected (Oij−Eij), cell chi-square (X2

ij =[Oij–
Eij]2/Eij), and row percent (frequency relative to the row total). As shown in the 
footnote to Table 2a, Χ2 = 97.72, df = 15, p < 0.0001 and the Fisher exact test 
yields p < 0.0001. 
 
 
Table 2a. Country vs. KPS, including frequency, deviation, cell chi-square and row 
percent. 
 

 50 60 70 80 90 100 Total 

China 

0 0 8.0000 24.0000 52.0000 15.0000 

99 -0.1920 -0.1920 0.5174 -2.2850 0.7733 1.3779 
0.1919 0.1919 0.0358 0.1986 0.0117 0.1394 

0 0 8.0800 24.2400 52.5300 15.1500 

Korea 

0 0 8.0000 51.0000 111.0000 8.0000 

178 -0.3450  -0.3450 -5.4530 3.7403 18.8950 -16.4900 
0.3450 0.3450 2.2106 0.2960 3.8764 11.1050 

0 0 4.4900 28.6500 62.3600 4.4900 

Thailand 

1.0000 0 19.0000 48.0000 41.0000 9.0000 

118 0.7713 -0.2290 10.0810 16.6710 -20.0600 -7.2360 
2.6016 0.2287 11.3960 8.8705 6.5893 3.2252 
0.8500 0 16.1000 40.6800 34.7500 7.6300 

Taiwan 

0 1.0000 4.0000 14.0000 63.0000 39.0000 

121 -0.2340 0.7655 -5.1450 -18.1300 0.3895 22.3510 
0.2345 2.4990 2.8949 10.2270 0.0024 30.0050 

0 0.8300 3.3100 11.5700 52.0700 32.2300 
Total 1 1 39 137 267 71 516 

 

Note. Χ2=97.72, df=15, p<0.0001 and Fisher exact test p<0.0001. The top entry in each cell is the frequency 
count; the second entry is the cell deviation (O−E); the third entry is the cell contribution to chi-square [(O−E)2 / 
E]; the last entry is the “row percent,” which is the cell percentage based on the row total. 
 
 

Table 2b contains the same information as Table 2a (in a list format), where 
the percent contribution to chi-square of each cell has been computed (Pij= 
100*X2

ij / X2), the table has been sorted by decreasing Pij, and the cumulative 
percent contributions have been computed. 
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Table 2b. Country vs. KPS, including frequency, deviation, cell chi-square and row 
percent, in list format, sorted by decreasing Pij 
 

Rank Country KPS Cell Chi-
Square 

Deviation 
(O-E) 

% Row 
Frequency 

% contrib. 
to chi sq. 

Cumulative % 
contribution 

1 Taiwan 100 30.0048 22.3508 32.2314 30.7046 30.7046 
2 Thailand 70 11.3958 10.0814 16.1017 11.6616 42.3661 
3 Korea 100 11.1053 -16.4922 4.4944 11.3643 53.7305 
4 Taiwan 80 10.2270 -18.1260 11.5702 10.4655 64.1959 
5 Thailand 80 8.8705 16.6705 40.6780 9.0773 73.2733 
6 Thailand 90 6.5893 -20.0581 34.7458 6.7429 80.0162 
7 Korea 90 3.8764 18.8953 62.3596 3.9668 83.9830 
8 Thailand 100 3.2252 -7.2364 7.6271 3.3004 87.2834 
9 Taiwan 70 2.8949 -5.1453 3.3058 2.9624 90.2458 

10 Thailand 50 2.6016 0.7713 0.8475 2.6622 92.9081 
11 Taiwan 60 2.4990 0.7655 0.8264 2.5572 95.4653 
12 Korea 70 2.2106 -5.4535 4.4944 2.2622 97.7275 
13 Korea 50 0.3450 -0.3450 0 0.3530 98.0805 
14 Korea 60 0.3450 -0.3450 0 0.3530 98.4335 
15 Korea 80 0.2960 3.7403 28.6517 0.3029 98.7364 
16 Taiwan 50 0.2345 -0.2345 0 0.2400 98.9764 
17 Thailand 60 0.2287 -0.2287 0 0.2340 99.2104 
18 China 80 0.1986 -2.2849 24.2424 0.2033 99.4136 
19 China 50 0.1919 -0.1919 0 0.1963 99.6100 
20 China 60 0.1919 -0.1919 0 0.1963 99.8063 
21 China 100 0.1394 1.3779 15.1515 0.1426 99.9489 
22 China 70 0.0358 0.5174 8.0808 0.0366 99.9856 
23 China 90 0.0117 0.7733 52.5253 0.0119 99.9975 
24 Taiwan 90 0.0024 0.3895 52.0661 0.0025 100.0000 

 
 

Figure 1 displays the corresponding scree plot where each P(i) is plotted on 
the vertical axis against its rank order and the plot is further annotated with the 
respective cumulative cell percentages. Visual inspection of the scree plot (Figure 
1) does not reveal a clear cut turning point. Depending on the observer’s 
perspective, rank 2, 7, or 13 could be considered the turning point. Based on the 
more objective Euclidean distance method, the turning point corresponds to rank 
7. (The calculation of each cell’s Euclidean distance was deliberately omitted 
from each table in order to let the reader better appreciate the shortcomings of the 
visual process of finding the elbow, without being biased by knowing the 
corresponding distances. For the record, the squared distances for the first 10 
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ordered cells were 943.8, 140.0, 138.1, 125.5, 107.4, 81.5, 64.7, 74.9, 89.8, and 
107.1, with the minimum (64.7) occurring at rank 7.) 

Referring back to Table 2b one can examine the ranks of the cells 
corresponding to ranks 1 through 7 to identify those cells in the table that deviate 
the most from their expected values, as well as the direction of their deviation 
under the null hypothesis of independence, in order to better understand the nature 
of the association. Taiwan appears to have an overrepresentation of patients with 
KPS 100, while Korea’s frequency is less than expected. Patients with KPS 80 
tend to be underrepresented in Taiwan, but overrepresented in Thailand. Patients 
with KPS 90 tend to be underrepresented in Thailand and overrepresented in 
Korea. Finally, patients with KPS 70 tend to be overrepresented in Thailand. 
 
 

 
 
Figure 1. Scree plot of Country vs. KPS data in Table 2. P(i) is plotted on the vertical axis 
against its rank order; the plot is annotated with the respective cumulative cell 
percentages (rounded up).  
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Example 2 
Tables 3a and 3b show the relevant calculations for the association between 
Country and T stage. In this example, the association is not significant (Χ2=22.29, 
df=15, p=0.10, and the Fisher exact test yields p=0.085.) Although not significant 
and the general shape of the curve is similar to that in Figure 1, consider this 
example to show that it may still be of interest to apply the proposed method to 
discover patterns in the data. 
 
 
Table 3a. Country vs. Tumor stage, including frequency, deviation, cell chi-square and 
row percent. 
 

 T0 T1 T2 T3 T4 TX Total 

China 

0 3 26 19 43 9 

100 -1.758 -1.297 -0.563 -1.508 1.3984 3.7266 
1.7578 0.3914 0.0119 0.1109 0.047 2.6334 

0 3 26 19 43 9 

Korea 

4 9 47 31 73 8 

172 0.9766 1.6094 1.3125 -4.273 1.4453 -1.07 
0.3154 0.3505 0.0377 0.5177 0.0292 0.1263 

2.33 5.23 27.33 18.02 42.44 4.65 

Thailand 

5 6 28 22 48 9 

118 2.9258 0.9297 -3.344 -2.199 -1.09 2.7773 
4.1269 0.1705 0.3567 0.1999 0.0242 1.2396 

4.24 5.08 23.73 18.64 40.68 7.63 

Taiwan 

0 4 35 33 49 1 

122 -2.145 -1.242 2.5938 7.9805 -1.754 -5.434 
2.1445 0.2943 0.2076 2.5455 0.0606 4.589 

0 3.28 28.69 27.05 40.16 0.82 
Total 9 22 136 105 213 27 512 

 

Note. Χ2=22.29, df=15, p=0.10; Fisher exact test p=0.085. The top entry in each cell is the frequency count; the 
second entry is the cell deviation (O−E); the third entry is the cell contribution to chi-square [(O−E)2 / E]; the last 
entry is the “row percent,” which is the cell percentage based on the row total. 
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Table 3b. Country vs. Tumor stage, including frequency, deviation, cell chi-square and 
row percent, in list format, sorted by decreasing Pij 

 
 

In the scree plot for this example (Figure 2), the bend in the elbow is more 
obvious than in Figure 1 and appears to be at rank 8. This is confirmed using the 
Euclidean distance method. 
 
 

Rank Country Tumor Cell Chi-
Square 

Deviation 
(O-E) 

% of Row 
Frequency 

% contrib. 
to chi sq. 

Cumulative % 
contribution 

1 Taiwan TX 4.58903 -5.43359 0.8197 20.5890 20.589 
2 Thailand T0 4.12695 2.92578 4.2373 18.5159 39.105 
3 China TX 2.63344 3.72656 9.0000 11.8151 50.920 
4 Taiwan T3 2.54553 7.98047 27.0492 11.4207 62.341 
5 Taiwan T0 2.14453 -2.14453 0 9.6216 71.962 
6 China T0 1.75781 -1.75781 0 7.8866 79.849 
7 Thailand TX 1.23961 2.77734 7.6271 5.5616 85.411 
8 Korea T3 0.51773 -4.27344 18.0233 2.3229 87.733 
9 China T1 0.39142 -1.29688 3.0000 1.7561 89.489 

10 Thailand T2 0.35671 -3.34375 23.7288 1.6004 91.090 
11 Korea T1 0.35046 1.60938 5.2326 1.5723 92.662 
12 Korea T0 0.31543 0.97656 2.3256 1.4152 94.077 
13 Taiwan T1 0.29435 -1.24219 3.2787 1.3206 95.398 
14 Taiwan T2 0.20760 2.59375 28.6885 0.9314 96.329 
15 Thailand T3 0.19986 -2.19922 18.6441 0.8967 97.226 
16 Thailand T1 0.17047 0.92969 5.0847 0.7648 97.991 
17 Korea TX 0.12630 -1.07031 4.6512 0.5666 98.558 
18 China T3 0.11086 -1.50781 19.0000 0.4974 99.055 
19 Taiwan T4 0.06061 -1.75391 40.1639 0.2719 99.327 
20 China T4 0.04701 1.39844 43.0000 0.2109 99.538 
21 Korea T2 0.03771 1.31250 27.3256 0.1692 99.707 
22 Korea T4 0.02919 1.44531 42.4419 0.1310 99.838 
23 Thailand T4 0.02420 -1.08984 40.6780 0.1086 99.947 
24 China T2 0.01191 -0.56250 26.0000 0.0534 100.000 
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Figure 2. Scree plot of Country vs. Tumor stage data in Table 3. 
 
 
 

Referring back to Table 3b, it appears that the departures are explained by 
the frequency distribution of unclassified (TX) and in situ (T0) tumors primarily 
among China, Thailand, and Taiwan. Furthermore, the direction of the deviation 
from each country can be seen in the column labeled Deviation. China and 
Thailand appear to have more TX tumors than expected, while Taiwan’s 
frequency is decreased. T0 tumors tend to be underrepresented in China and 
Taiwan, but overrepresented in Thailand. 

Even though the observed association between Country and T stage was not 
significant (Fisher’s p=0.085), the observed pattern may still be of clinical interest. 

Example 3 
Tables 4a and 4b show the relevant calculations for the association between 
Country and N stage. In this example, the association is significant (Χ2=33.96, 
df=12, p=0.0007.) 
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Table 4a. Country vs. Node stage, including frequency, deviation, cell chi-square and row 
percent. 
 

 N0 N1 N2 N3 NX Total 

China 

10.0000 8.0000 29.0000 43.0000 10.0000 

100 
-3.0860 -0.5940 0.6797 4.5234 -1.5230 
0.7277 0.0410 0.0163 0.5318 0.2014 

10.0000 8.0000 29.0000 43.0000 10.0000 

Korea 

23.0000 22.0000 44.0000 74.0000 9.0000 

172 
0.4922 7.2188 -4.7110 7.8203 -10.8200 
0.0108 3.5254 0.4556 0.9241 5.9070 

13.3700 12.7900 25.5800 43.0200 5.2300 

Thailand 

19.0000 6.0000 25.0000 43.0000 25.0000 

118 
3.5586 -4.1410 -8.4180 -2.4020 11.4020 
0.8201 1.6907 2.1205 0.1271 9.5615 

16.1000 5.0800 21.1900 36.4400 21.1900 

Taiwan 

15.0000 8.0000 47.0000 37.0000 15.0000 

122 
-0.9650 -2.4840 12.4490 -9.9410 0.9414 
0.0583 0.5887 4.4857 2.1054 0.0630 

12.3000 6.5600 38.5200 30.3300 12.3000 
Total 67 44 145 197 59 512 

 

Note. Χ2=33.96, df=12, p=0.0007. The top entry in each cell is the frequency count; the second entry is the cell 
deviation (O−E); the third entry is the cell contribution to chi-square [(O−E)2 / E]; the last entry is the “row 
percent,” which is the cell percentage based on the row total. 
 
 
Table 4b. Country vs. Node stage, including frequency, deviation, cell chi-square and 
row percent, in list format, sorted by decreasing Pij 
 

Rank Country Nodes Cell Chi-
Square 

Deviation 
(O-E) 

% of Row 
Frequency 

% contrib. 
to chi sq. 

Cumulative % 
contribution 

1 Thailand NX 9.56146 11.4023 21.1864 28.1532 28.1532 
2 Korea NX 5.90703 -10.8203 5.2326 17.3930 45.5462 
3 Taiwan N2 4.48566 12.4492 38.5246 13.2078 58.7540 
4 Korea N1 3.52544 7.2188 12.7907 10.3805 69.1345 
5 Thailand N2 2.12048 -8.4180 21.1864 6.2437 75.3781 
6 Taiwan N3 2.10542 -9.9414 30.3279 6.1993 81.5774 
7 Thailand N1 1.69070 -4.1406 5.0847 4.9782 86.5556 
8 Korea N3 0.92411 7.8203 43.0233 2.7210 89.2766 
9 Thailand N0 0.82011 3.5586 16.1017 2.4148 91.6914 

10 China N0 0.72773 -3.0859 10.0000 2.1428 93.8341 
11 Taiwan N1 0.58870 -2.4844 6.5574 1.7334 95.5675 
12 China N3 0.53179 4.5234 43.0000 1.5658 97.1334 
13 Korea N2 0.45560 -4.7109 25.5814 1.3415 98.4749 
14 China NX 0.20140 -1.5234 10.0000 0.5930 99.0679 
15 Thailand N3 0.12711 -2.4023 36.4407 0.3743 99.4422 
16 Taiwan NX 0.06304 0.9414 12.2951 0.1856 99.6278 
17 Taiwan N0 0.05831 -0.9648 12.2951 0.1717 99.7995 
18 China N1 0.04102 -0.5938 8.0000 0.1208 99.9203 
19 China N2 0.01631 0.6797 29.0000 0.0480 99.9683 
20 Korea N0 0.01076 0.4922 13.3721 0.0317 100.0000 
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Visual inspection of the scree plot (Figure 3) reveals a much smoother curve 
then those shown in Figures 1 and 2 and does not reveal a clear cut bending point. 
Using the Euclidean distance method, the turning point corresponds to rank 5. 
Referring back to Table 4b, it appears that the departures are explained by the 
frequency distribution of unclassified (NX) and N2 nodes primarily among Korea, 
Thailand, and Taiwan. Thailand appears to have an excess of NX nodes, while 
Korea’s frequency is decreased. N2 nodes tend to be underrepresented in Thailand, 
but overrepresented in Taiwan. 
 
 

 
 
Figure 3. Scree plot of Country vs. Node stage data in Table 4. 
 
 

Example 4 
Tables 5a and 5b show the relevant calculations for the association between 
Country and M stage. In this example, the association is also significant 
(Χ2=30.64, df=6, p<0.0001.) 
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Table 5a. Country vs. Metastasis stage, including frequency, deviation, cell chi-square 
and row percent. 
 

 M0 M1 MX Total 

China 

26.0000 71.0000 3.0000 

100 
6.4688 -2.6330 -3.8360 
2.1425 0.0941 2.1525 

26.0000 71.0000 3.0000 

Korea 

19.0000 147.0000 6.0000 

172 
-14.5900 20.3520 -5.7580 

6.3398 3.2704 2.8196 
11.0500 85.4700 3.4900 

Thailand 

31.0000 71.0000 16.0000 

118 
7.9531 -15.8900 7.9336 
2.7445 2.9048 7.8030 

26.2700 60.1700 13.5600 

Taiwan 

24.0000 88.0000 10.0000 

122 
0.1719 -1.8320 1.6602 
0.0012 0.0374 0.3305 

19.6700 72.1300 8.2000 
Total 100 377 35 512 

 

Note. Χ2=30.64, df=6, p=0.0001. The top entry in each cell is the frequency count; the second entry is the cell 
deviation (O−E); the third entry is the cell contribution to chi-square [(O−E)2 / E]; the last entry is the “row 
percent,” which is the cell percentage based on the row total. 
 
 
Table 5b. Country vs. Metastasis stage, including frequency, deviation, cell chi-square 
and row percent, in list format, sorted by decreasing Pij 
 

Rank Country Metastasis Cell Chi-
Square 

Deviation 
(O-E) 

% of Row 
Frequency 

% contrib. 
to chi sq. 

Cumulative % 
contribution 

1 Thailand MX 7.80297 7.9336 13.5593 25.4664 25.466 
2 Korea M0 6.33980 -14.5938 11.0465 20.6911 46.158 
3 Korea M1 3.27036 20.3516 85.4651 10.6734 56.831 
4 Thailand M1 2.90479 -15.8867 60.1695 9.4803 66.311 
5 Korea MX 2.81961 -5.7578 3.4884 9.2023 75.514 
6 Thailand M0 2.74450 7.9531 26.2712 8.9572 84.471 
7 China MX 2.15251 -3.8359 3.0000 7.0251 91.496 
8 China M0 2.14245 6.4688 26.0000 6.9923 98.488 
9 Taiwan MX 0.33048 1.6602 8.1967 1.0786 99.567 
10 China M1 0.09414 -2.6328 71.0000 0.3072 99.874 
11 Taiwan M1 0.03736 -1.8320 72.1311 0.1219 99.996 
12 Taiwan M0 0.00124 0.1719 19.6721 0.0040 100.000 
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The scree plot (Figure 4) does not reveal a clear cut bending point. Either 
rank 3 or rank 9 could be judged as the turning points. However, using the 
Euclidean distance method, the turning point corresponds to rank 9. Thailand and 
Taiwan appear to have an excess of unknown metastases (MX), while Korea and 
China’s frequencies are decreased. Patients with no distant metastases (M0) tend 
to be underrepresented in Korea, but overrepresented in Thailand and China. 
Patients with metastases to distant organs (M1) tend to be overrepresented in 
Korea but underrepresented in Thailand.  
 
 

 
 
Figure 4. Scree plot of Country vs. Metastasis stage data in Table 5. 
 
 

Conclusion 

In statistical problems involving the cross-classification of frequency counts, it is 
common to test for an association between one variable and another using the 
well-known Pearson chi-square test (or, alternatively, the Fisher exact test, 
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particularly for sparse tables). Upon finding a significant association, it is of 
interest to identify the cells in the table that are “responsible” for the lack of 
independence. As the dimension of the table gets larger (i.e., the number of rows 
and/or columns grows larger), it becomes more difficult to identify these row-
column combinations. 

An exploratory, graphical method of discovering those cells that account for 
the observed association was proposed. This method is computationally objective 
and completely reproducible.  

The method is based on two frequently used techniques: assessment of 
contribution to chi-square in contingency tables and construction of scree plots as 
in principal components analysis. All of the computations required for applying 
this method are available in virtually all commonly used statistical software 
packages. 

Several examples of r x c tables were provided that exemplify the use of this 
method both when the observed associations are statistically significant and when 
they are not. The examples illustrate how the use of a cutoff point for the 
cumulative percent contribution to chi-square (“Cumulative Percent Method” as 
described above) is purely arbitrary. Of course, most statistical procedures include 
some elements of arbitrariness – most notably the use of “p < 0.05” or “95%” for 
constructing confidence intervals. The examples further show that visual appraisal 
of the scree plot (“Subjective Elbow Method”) can be highly subjective and might, 
therefore, vary from one observer to another.  

In order to address these shortcomings, it has been shown how the proposed 
Objective Elbow Method for exploring contingency tables parallels the currently 
accepted approach to identifying important principal components in PCA with the 
addition of an objective and reproducible calculation (Euclidean distance) that 
identifies the bend in the scree plot that constitutes the “elbow”. 

As discussed in the introduction, Correspondence Analysis has been used in 
the current r x c setting. While CA is a useful and powerful method, it requires 
somewhat specialized, albeit, readily available software (e.g., PROC CORRESP 
in SAS, CORRESPONDENCE module in SPSS). The proposed method, while 
not providing the level of detail contained in CA, is much simpler to execute, 
intuitively appealing to the non-statistician, and requires no more than the ability 
to perform standard contingency table analysis.  

The use of graphical methodology as a complement to inferential analysis is 
widespread in statistical practice – even in the absence of statistical significance. 
Common examples include the already cited scree plots in PCA, scatterplots, 
side-by-side boxplots, receiver operating characteristic (ROC) curves, survival 
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and hazard function curves, ANOVA interaction plots, heat maps in genetics 
problems, to name only a few.  

This method could be readily adopted by investigators in many fields of 
research involving r x c contingency tables because the ability to perform these 
calculations is readily available in commonly used statistical software packages. 

For this manuscript, the PROC FREQ procedure in SAS Version 9.3 (SAS 
Institute, Cary, NC) was used. The following list shows the availability of the 
components of the proposed calculation in various software packages. 

 
 SAS (SAS Institute, Cary, NC): PROC FREQ, “cellchi2” TABLE 

option. 

 JMP (SAS Institute, Cary, NC): Contingency Table, choose the drop 
down labeled “Cell Chi Square”. 

 Minitab (Minitab, Inc., State College, PA), Stat: Tables: Cross 
Tabulation and Chi-Square, check the box labeled “Each cell’s 
contribution to the Chi-Square statistic” 

 Stata (StataCorp LP, College Station, TX): “tabulate” with the cchi2 
option 

 R (R Foundation for Statistical Computing, r-project.org): 
chisq.detail 

 Excel (Microsoft Corp., Redmond, WA): programmed and 
calculated by user 

 SPSS (IBM Inc., Armonk, NY): Crosstabs, Cells subcommand, 
check the box labeled “Standardized” under Residuals; contribution 
to cell chi-square must be programmed and calculated from these 
Residuals by the user 

 
Finally, it is not proposed that the Objective Elbow Method be rigidly 

obeyed. This method simply provides a reproducible guidance as to which cells 
may be responsible for the observed association. Upon finding i*, corresponding 
to the point closest to the origin, the data analyst might also want to consider 
points to the right of i* but very close to it, as other potential cells of interest. 
Based on study results, the proposed method is believed to be potentially useful to 
data analysts using large r x c tables. 
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Monte Carlo methods were employed to investigate the effect of nonnormality on the 
bias associated with the squared canonical correlation coefficient (Rc

2). The majority of 
Rc

2 estimates were found to be extremely biased, but the magnitude of bias was impacted 
little by the degree of nonnormality. 
 
Keywords: canonical correlation coefficient, effect size, simulation, nonnormal, canonical 
correlation analysis 
 

Introduction 

Over the last several decades, the movement towards the use of effect size 
estimates in determining the importance of research results has intensified. This 
movement can be seen in the editorial policies of at least 25 educational and 
psychological journals (Wang & Thompson, 2007) that explicitly require the 
inclusion of effect sizes with statistical results. The sixth edition of the American 
Psychological Association Publication Manual (APA, 2001) deemed it “almost 
always necessary to include some measure of effect size” (p. 34) when reporting 
results. This shift has come with increased awareness that, when used alone to 
interpret results (i.e., without effect sizes or other statistics), p-values derived 
from null hypothesis significance tests (NHSTs) offer little information about the 
importance of results or their ability to replicate (Cumming, 2008; Henson & 
Smith, 2000; Kirk, 1996; Kline, 2004; Thompson, 1996, 1998). Effect size 
estimates offer “practical significance” information by quantifying the magnitude 
of a difference or relationship between variables. Consequently, numerous authors 
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and institutions have argued that effect sizes should be included with statistical 
results (e.g., APA, 2009, 2001; Henson, 2006; Thompson, 1996, 1998; Wilkinson 
& APA Task Force on Statistical Inference, 1999).  

Although there are many types of effect sizes from which researchers can 
choose, most fall into two broad categories: (a) standardized mean difference 
effects and (b) measures of strength of association (Kirk, 1996; Kline, 2004; 
Olejnik & Algina, 2000; Onwuegbuzie, Levin, & Leech, 2003), although other 
statistics such as Huberty’s I index certainly also qualify (Huberty & Lowman, 
2000). Outside of the correlation coefficient, one of the most common effect sizes 
reported in the literature is R2, likely due to the fact that R2 is routinely provided 
as part of the regression output in most statistical packages (Kirk, 1996). 

There has been some debate as to whether effect sizes should be included 
with all NHST results, even those that are not statistically significant or only for 
those tests that are statistically significant (Roberts & Henson, 2002; Robinson & 
Levin, 1997). Some researchers have gone as far as to recommend that hypothesis 
tests be banned entirely (e.g. Carver, 1993) and replaced with effect size estimates 
or other statistics (see also Harlow, Mulaik, Steiger, 1997, for a broader 
discussion). These views notwithstanding, there seems to be current consensus 
that effect sizes can add considerable value to research interpretation. 

However, effect sizes are not without their limitations and can be “subject to 
as much abuse and misuse as are tests for statistical significance” (Onwuegbuzie, 
Levin, & Leech, 2003, p. 38; see also O’Grady, 1982; Robinson & Levin, 1997). 
Many researchers are unaware that effect size estimates can be criticized on some 
of the same grounds as NHSTs, including but not limited to the fact that effects 
can vary according to sample size and variability, and they are often impacted by 
the shape of the data, including departures from normality (Knapp & Sawilowsky, 
2001; Onwuegbuzie & Levin, 2003; Onwuegbuzie, Levin, & Leech, 2003). As 
Henson (2006) noted, “If we fail to adequately understand what our effect sizes 
do and do not tell us, then we may fall victim to new misconceptions about our 
research methods” (p. 610). 

R2 Effect Size 
For example, studies have shown r2 (Wang & Thompson, 2007; Zimmerman, 
Zumbo, & Williams, 2003) and its analog, R2, to often overestimate the effect 
found in the population (Carter, 1979; Fan, 2001; Larson, 1931; Snyder & 
Lawson, 1993; Thompson, 1999; Yin & Fan, 2001). By design, the ordinary least 
squares estimation method commonly used in regression analyses seeks to 



BIAS AND PRECISION OF THE SQUARED CANONICAL COEFFICIENT 

112 

maximize the correlation between variables resulting in the largest possible effect 
size. To obtain the greatest possible effect, the analyses capitalize on all the 
variance in a given sample, including the variance attributable to sampling error 
(Thompson & Kieffer, 2000; Wang & Thompson, 2007). Because the effect size 
accounts for variability unique to the sample – variance that is unlikely to be 
found in the population or future samples – the resulting R2 is often a biased 
estimate of the effect in the population or in future samples (Roberts & Henson, 
2002; Snyder & Lawson, 1993; Yin & Fan, 2001). Similar to the univariate 
application of R2, studies have shown that the multivariate extension of R2, the 
squared canonical correlation coefficient (Rc

2) can be positively biased due to the 
influence of sampling error as well (Thompson, 1990; Thorndike & Weiss, 1973). 

Canonical Correlation Analysis 
Like other multivariate methods, CCA has seen increased use in educational and 
psychological research, presumably due to its ability to limit experimentwise error 
rates and the fact that, by design, research studies using multivariate methods such 
as CCA often more accurately reflect the situations to which researchers wish to 
generalize (Fish, 1988; Henson, 1999; Sherry & Henson, 2005). Its primary 
purpose is to describe the relationship between synthetic composites of two sets of 
variables, although CCA can theoretically be extended to more than two variable 
sets.  

Like other parametric methods, CCA applies weights, called standardized 
canonical function coefficients, to observed variables to create synthetic variables. 
The measure of effect, or canonical correlation coefficient (Rc), is calculated as 
the simple bivariate correlation between the two synthetic variables (Campbell & 
Taylor, 1996; Henson, 2000; Sherry & Henson, 2005; Thompson, 1984, 1991). It 
is important to note that the goal of CCA is to maximize this correlation. It is in 
this optimization process, however, that sample-specific variation can become 
problematic because, although it was considered in determining the sample 
magnitude of effect, the sample-specific variance cannot be expected to exist in a 
new sample. Thus, one would anticipate a lower magnitude of effect in the 
population and/or replication with a new sample than Rc identifies. When squared, 
the canonical correlation (Rc

2) represents the proportion of variance that two 
synthetic CCA composites linearly share (Henson, 2000; Sherry & Henson, 2005; 
Thompson, 1984) and, in doing so, signifies the percentage of variability in the 
criterion variable set that can be explained with knowledge of the predictor 
variable set.  
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Bias in Rc Estimates 
Empirical studies investigating bias in Rc estimates have found mixed results. 
Thorndike and Weiss (1973) first investigated the impact of sampling error on the 
canonical correlation using data from two different sources – clients of the 
Minnesota Division of Vocational Rehabilitation and data from Thorndike et al. 
(1968) (N=789 and 505, respectively). The analyses were split into two studies, 
and subjects from both sources were randomly split into two groups each (n=418 
and 371 and n=246 and 259, respectively) for a total of four subgroups. The 
canonical correlations were compared to the cross-validated canonical 
correlations for each of the four subgroups. According to the authors, large 
differences demonstrated that sample-specific covariation could affect sample 
results.  

Barcikowski and Stevens (1975) also investigated the effect of sampling 
error on the canonical correlation, but with results that differed from Thorndike 
and Weiss (1973). They selected 8 correlation matrices from the literature [two of 
which were from Thorndike and Weiss (1973)] and, using a procedure described 
by Huberty (1969), generated population matrices with the same properties as the 
selected datasets. Sample correlation matrices were generated from the population 
matrices, and canonical correlation analyses were performed. The number of 
variables ranged from 7 to 41, and the sample sizes ranged from 200-3000 in 
increments of 200; each sample size was replicated 100 times. The results 
indicated that the canonical correlations were “very stable under replication” 
(Barcikowski & Stevens, 1975, p. 362), even in the cases of small sample sizes 
(e.g., 100-200).  

Thompson (1990) investigated bias in the canonical correlation that resulted 
in findings that conflicted with Barcikowski and Stevens (1975). Unlike the 
studies by Thorndike and Weiss (1973) and Barcikowski and Stevens (1975) that 
employed real and modeled data, respectively, Thompson used Monte Carlo 
methods to simulate data such that it met predetermined properties. A fully-
crossed design was employed that varied the following conditions: (a) between-
set correlations, (b) within-set correlations, (c) sample-size to variable ratios, and 
(d) variable sets. Sixty-four (i.e., 4 correlation matrices x 4 sample sizes x 4 
variable sets) condition combinations were investigated. For each condition 
combination, 1,000 random samples were drawn and analyzed.  

The ratio of subjects to variables emerged as the best predictor of bias in all 
six analyses (i.e., one for each of three Rc

2 deviation scores and three Rc
2 standard 

error deviations). Because the bivariate correlations between these values were 
positive, Thompson (1990) concluded that a greater number of subjects per 
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variable could potentially lead to less bias in Rc
2. Furthermore, Thompson found 

that, though the estimates of Rc were somewhat positively biased, the bias was 
minimal unless a ratio “as small as three to one” was used (p. 27). Finally, 
Thompson contended that even then the bias could be minimized in some 
situations if the value of Rc was moderate to large (e.g., greater than .40).        

Thompson (1990) only examined the accuracy of Rc
2 when the multivariate 

normality assumption of CCA was met. Whereas the normality assumption is 
formally required only when testing the statistical significance of canonical results 
(Marascuilo & Levin, 1983; Sherry & Henson, 2005; Thompson, 1984), when 
normality is not met, distribution shapes must still be reasonably comparable. If 
not, entries in the matrix of association used to derive canonical estimates may be 
attenuated, which could compromise the results including the magnitude of the 
effect (Thompson, 1984). Studies have shown, however, that few educational and 
psychological datasets are exactly normally distributed (Blair, 1981; Bradley, 
1968, 1982; Micceri, 1989; Pearson & Please, 1975) and, as such, there is a need 
to investigate the performance of CCA under nonnormal data conditions to inform 
the use of CCA in applied studies. 

Purpose of the Study 

As a result of the equivocal prior findings and the lack of investigation of 
nonnormal distributional conditions, this study compared the degree of bias 
associated with the squared canonical correlation coefficient (Rc

2) gained from 
distributions possessing varying degrees of nonnormality to that found with 
multivariate normal distributions. Additional study factors were included to 
explore potential bias in this multivariate effect size across common conditions 
and to allow comparison with prior studies. Monte Carlo simulation methodology 
was used to fulfill this purpose. 

Methodology  

Design 
A fully-crossed design was employed in this study, manipulating the following 
conditions: (a) distribution shape, (b) variable sets, (c) sample sizes, (d) 
correlation matrices with varied between- and within-set correlations. See Table 1 
for the conditions and their respective levels. Six distribution shapes were 
investigated, as well as 4 variable sets, 4 sample sizes, and 7 correlation matrices 
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(manipulating both the between- and within-set correlations), resulting in a total 
of 672 manipulated conditions. Five-thousand samples were drawn for each 
condition for a total of 3,360,000 canonical analyses 
 
 
Table 1: Summary of Data Conditions Manipulated in the Study 
 

 
Note. k denotes univariate kurtosis. The various variable sets are denoted in the following manner: no. of 
variables in the predictor set + no. of variables in the criterion set (total number of variables in both sets). 
 
 
Multivariate normality` The shapes of the distributions were manipulated to 
facilitate comparison of results under normal theory to those found under 
multivariate nonnormal data conditions. Specifically, this study examined the 
impact of varying levels of kurtosis (k) on the squared canonical correlation 
coefficient. Five multivariate nonnormal datasets were generated such that all 
marginal distributions in each dataset possessed the following levels of univariate 
kurtosis: (a) negligible kurtosis (k = -1, 0, 1, 3) and (b) moderate kurtosis (k = 5, 
8). These value ranges are consistent with studies investigating the effect of 
nonnormality on other sample statistics (e.g., Curran, West, & Finch, 1996; 
Olsson, Foss, Troye, & Howell, 2000).  

It is unrealistic to expect that multivariate datasets seen in practical 
applications would typically possess equal univariate kurtoses across the marginal 

Data condition  Levels Manipulated 
Distribution shape  k = -1, 0, 1, 3, 5, 8 
   

Variable Sets  

6 + 6 (v=12) 
4 + 4 (v=8) 
4 + 2 (v=6) 

10 + 2 (v=12) 
   
Sample size: variable ratio  3:1, 10:1, 25:1, 40:1 
   

Correlation matrices  

Matrix  Between-set 
correlation 

 Within-set 
correlation 

A  0  0 
B  .1 (small)  .3 (moderate) 
C  .1 (small)  .5 (large) 
D  .3 (moderate)  .3 (moderate) 
E  .3 (moderate)  .5 (large) 
F  .5 (large)  .3 (moderate) 
G  .5 (large)  .5 (large) 
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distributions (Yuan & Bentler, 1997). But, for the sake of clarity and ease of 
interpretation, this procedure was used in this study study as it has been in past 
investigations (e.g., Curran, West, & Finch, 1996; Fouladi, 2000; Nevitt & 
Hancock, 2001; Olsson, Foss, Troye, & Howell, 2000). The results from these 
nonnormal distributions were compared to those from a multivariate normal 
distribution. Because tests of variances and covariances (e.g., CCA) in normal 
distributions have been found to be more affected by kurtosis than skewness 
(Mardia, Kent, & Bibby, 1979), skewness was held constant at symmetrical (i.e., 
skewness = 0).  
 
Variable sets  We incorporated the following variable sets [denoted as the 
number of variables in the predictor variable set + the number in the dependent 
set]: (a) 6+6 (v=12), (b) 4 + 4 (v=8), (c) 4 + 2 (v=6), (d) 10 + 2 (v=12). These sets 
replicate the variable sets used by Thompson (1990) and represent sets that one 
would likely see in behavioral studies. 
 
Sample size to variable ratios Sample size to variable ratios of 3, 10, 25, 
and 40 per variable were chosen to represent those likely seen in behavioral 
research. They are consistent with other studies investigating the accuracy of 
canonical correlation results (see, for example, Thompson, 1990). 
 
Correlation matrices  Six combinations of small, moderate, and large 
within- and between-set correlations made up the population correlation matrices 
in addition to a “null” model with all correlations equal to zero. Cohen’s (1988) 
conventions for values of r to correspond to his d benchmarks were used to 
determine the entries in the correlation matrix (r =.1, .3, and .5 indicating small, 
medium, and large effects, respectively). 

It is important to note that the benchmarks provided by Cohen (1988) were 
not intended to be used as rigid criteria for determining result importance. Effects 
should always be considered in the context of the study from which they result as 
well as the broader literature to determine if they indicate a small, moderate, or 
large effect.  In this article, we use the wording small, moderate, and large only to 
refer to the various effects; our choice of wording does not indicate that the 
various magnitudes will always represent small, moderate, and large effects, 
respectively. Furthermore, Cohen’s effect size rules of thumb were originally 
presented for use in univariate contexts. In multivariate contexts, one could 
conceivably expect larger effects as a result of the additional variance made 
available for prediction by multiple dependent variables. There is little research to 
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support these guidelines for multivariate outcomes, however, so the univariate 
approximations were used in this study.   

Varying combinations of between- and within-set correlations were used to 
define the correlation matrices (excluding the null model with rb=0 and rw=0). 
Within-set correlations were limited to moderate (.3) and large (.5) correlations 
because, in a typical CCA analysis, one would often expect the correlations within 
the variable sets to be moderately, if not highly, correlated. Between-set 
correlations would likely possess a wider range, and, as such, we chose to use 
small (.1), medium, and large correlations in this study. The combinations for the 
various population correlation matrices are presented in Table 1. 

Data Generation and Analysis 
Populations of data were randomly generated that mirrored the correlation 
matrices at the kurtosis levels previously specified. A total of 42 multivariate 
populations (N=100,000 each) were created (i.e., all paired combinations of the 6 
distribution shapes [1 multivariate normal and 5 kurtotic] and the 7 correlation 
matrices). See Appendix A for information regarding the data generation 
procedure. 

Sample canonical analyses were performed using SAS® (SAS Institute, Inc., 
Cary, NC, www.sas.com) version 9.1.3 syntax. The variance explained (Rc

2) for 
each of the first three canonical functions was computed. The accuracy of Rc

2 was 
then calculated as the difference between the sample Rc

2 and population Rc
2 values. 

The average level of accuracy, or bias, of the Rc
2 estimates was calculated as the 

mean of the accuracy values for each condition combination, and the precision of 
the Rc

2 estimates was represented by the standard deviation of the respective 
accuracy values. Bias was considered to be extreme if it exceeded ±.30 Rc

2; bias 
was considered to be minimal (and thus acceptable) if it was less than or equal to 
±.30 Rc

2. 
Analysis of variance (ANOVA) was used to identify the influence of each 

condition on the variability of the accuracy values. The accuracy – i.e., the 
differences between the population Rc

2s and the sample Rc
2s – acted as the 

dependent variable (DV) whereas the four conditions made up the independent 
variables. Only main effects were considered in this study. Main effects were 
evaluated based on statistical significance of the F tests  (alpha<.02 - value 
determined using the Bonferroni correction) as well as from η2 and ω2 effect size 
values (ω2 was included as a theoretical adjustment for sampling error).  

http://www.sas.com/
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Results 

Accuracy and Precision of Rc2 

Results from the first three functions were analyzed for each correlation matrix. 
All function II and III results were found to be extremely biased across all 
correlation combinations. For this reason and for the sake of brevity, only results 
from the first functions are reported and discussed in the present article. Second 
and third function results are available from the authors upon request. 

The bias and precision (SD) of the sample Rc
2 accuracy values for 

correlation matrices A through G are presented in Tables A1 through A7 in 
Appendix B, respectively. Note that all of the condition combinations for 
correlation matrices A and C produced extremely biased Rc

2 accuracy values. 
Likewise, all but two of the combinations (97.92% of 96 cases) for correlation 
matrix B produced Rc

2 values that were extremely biased. 
Correlation matrix D produced extremely biased accuracy values in only 

22.92% of the 96 condition combinations. All condition combinations for 
correlation matrix D with sample size to variable ratios greater than or equal to 
10:1 produced minimal amounts of bias. Conversely, the majority of the bias 
(91.67% of 21 cases) with a sample size to variable ratio of 3:1 were found to be 
extreme. Only two of the 3:1 n:v ratio condition combinations produced minimal 
bias; all other cases met the criteria to be considered extremely biased. 

Similar results were found with the correlation matrix E results. In this case, 
43.75% of the 96 condition combinations produced extreme bias. As a general 
rule, the condition combinations that were found to possess minimal levels of bias 
had sample size to variable ratios greater than or equal to 25:1. Unlike the other 
correlation matrices, results from all condition combinations in correlation 
matrices F and G were found to contain minimal bias.   

The average bias and precision values by the various condition levels are 
presented in Table 2. As demonstrated in the table, bias generally decreased as the 
sample size to variable ratio increased.  The most dramatic decrease in bias was 
seen in the difference in bias between the sample sizes of 3:1 and 10:1 (mean 
difference of .19). Differences between subsequent sample size to variable ratios 
were comparatively small. Bias values varied across the other condition 
combinations. 
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Table 2: Descriptive Statistics for Function I Bias by Sample Size to Variable Ratio, 
Variable Set, Univariate Kurtosis Level, and Correlation Matrix 
 

Condition M SD n 

Sample size: variable ratio (n:v)    
3:1 0.26 0.17 840,000 

10:1 0.07 0.07 840,000 

25:1 0.03 0.04 840,000 

40:1 0.02 0.03 840,000 

    
Variable Set    

6 + 6 0.10 0.14 840,000 

4 + 4 0.10 0.14 840,000 

4 + 2 0.09 0.01 840,000 

10 + 2 0.09 0.13 840,000 

    
Expected Kurtosis (k)    

-1 0.09 0.14 560,000 

0 0.09 0.13 560,000 

1 0.09 0.14 560,000 

3 0.09 0.14 560,000 

5 0.10 0.14 560,000 

8 0.10 0.14 560,000 

    
Correlation Matrix    

A (rb= 0, rw= 0) 0.15 0.16 480,000 

B  (rb= .1, rw= .3) 0.13 0.16 480,000 

C (rb= .1, rw= .5) 0.14 0.16 480,000 

D (rb= .3, rw= .3) 0.07 0.11 480,000 

E (rb= .3, rw= .5) 0.10 0.13 480,000 

F (rb= .5, rw= .3) 0.03 0.06 480,000 

G (rb= .5, rw= .5) 0.04 0.08 480,000 
 
 
 

The precision of results, or standard deviation of the accuracy values, 
appeared to increase (i.e., the SD value decreased) as the sample size to variable 
ratio increased. Although decreased standard errors would be expected with 
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increased sample size, a dramatic difference in precision was detected between 
results with a sample size to variable ratio of 3:1 versus results from an n:v ratio 
of 10:1 (difference of .10).The precision of results was varied across variable sets. 
The (6+6), (4+4), and (10+2) variable sets produced results with roughly equal 
amounts of precision (SD=.14, .14, and .13, respectively). But the (4+2) variable 
set saw extremely precise results overall (SD=.01).  Normality (or nonnormality) 
of the distributions seemed to matter little in the precision of results. The results 
had approximately the same precision regardless of the value of kurtosis (ranged 
from .13-.14). However, the precision of results varied by correlation matrix. 
Correlation matrices F and G saw greater precision (.06 and .08, respectively) 
than matrices A, B, C, D, and E (ranged from .11-.16). Because correlation 
matrices F and G had higher between- and within-set correlations, these results 
suggest that higher between- and within-set correlations may influence the 
precision of Rc

2 estimates. But these results should be taken tentatively because 
they are based on descriptive analyses alone; further exploration is needed.   

Explanation of Variability in Rc2 Bias 
An analysis of variance (ANOVA) was run to determine which of the study 
factors could account for the variability in the accuracy values. The ANOVA 
summary table for the function I results can be found in Table 3.  
 
 
Table 3: ANOVA Summary Table for Explanation of the Sources of Variation in Function 
I Rc

2 Bias 
 

Source of Variation SS df MS F p η2 ω2 

Expected univariate 
kurtosis (k) 

24.90 5 4.98 702.0 <.001 <.001 <.001 

       
Sample size: variable 

ratio (n:v) 31776.88 3 10592.29 1493068.8 <.001 0.51 0.51 

Variable set 8.14 3 2.71 382.3 <.001 <.001 <.001 
Correlation matrix 7060.75 6 1176.79 165878.3 <.001 0.11 0.11 

Error 23836.75 3359982 0.01     
Total 62707.42 3359999      

 
 
The Levene’s test for homogeneity of variance was statistically significant as 
might be expected given the large number of simulated conditions, F(671, 
3359328) = 2413.64, p < .001. Upon visual inspection of the variances by 
condition, we determined that the variances were roughly homogenous and 
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therefore most likely met the assumption of homogeneity of variance in this 
balanced design. Furthermore, the equal variances assumption is primarily related 
to the Type I error rate involved with the F tests. Because statistical significance 
of the ANOVA results was not our primary interest, meeting this assumption was 
less of a concern for this study. 

All five conditions produced statistically significant main effects with 
p<.001 in all cases. It is apparent from examination of the η2 values, however, that 
not all of the main effects were noteworthy. The sample size to ratio variable 
explained the greatest amount of variation in function I bias, accounting for 51% 
(η2=.51; ω2=.51) of the variation in the DV. The only other condition that had a 
somewhat notable effect on the DV was the correlation matrix, and it displayed a 
considerably weaker relationship with the DV than the sample size to variable 
ratio. The correlation matrix variable explained 11% (η2=.11; ω2=.11) of the 
variation in function I bias. 

Based on these results, it is apparent that, of the five conditions manipulated 
in this study, the sample size to variable ratio had the largest effect on function I 
bias (depicted in Figure 1). And, this effect was considerable given the fact that it 
could explain approximately half of the function I bias variation. It is worth 
noting that the 3:1 sample size to variable ratio had, by far, the greatest bias of all 
the ratios (M=.26, SD=.17), with less bias for the 10:1, 25:1, and 40:1 ratios 
(M=.07, SD=.07; M=.03, SD=.04; and M=.02, SD=.03; respectively). Larger 
sample size to variable ratios seemed to help decrease bias in Rc

2, particularly 
when n:v ≥ 10:1. The correlation matrix variable demonstrated a small, but still 
noteworthy effect in comparison (depicted in Figure 2). The correlation matrices 
with larger between- and within-set correlations – correlation matrices F and G 
(rb=.43, rw=.50 and rb=.50, rw=.50, respectively)  – had less bias than matrices A, 
B, C, D, and E, leading to the conclusion that larger correlations may help 
decrease bias in Rc

2. 
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Figure 1: Boxplot of function I Rc2 bias by sample size to variable ratio across all other 
conditions (N=3,360,000; n=840,000). 
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Figure 2: Boxplot of function I Rc2 bias by correlation matrix across all other conditions 
(N=3,360,000; n=480,000). Correlation matrix A was created with rb= 0 and rw = 0, 
correlation matrix B with rb = .1 and rw = .3, correlation matrix C with rb = .1 and rw = .5, 
correlation matrix D with rb = .3 and rw = .3, correlation matrix E  with rb = .3 and rw = .5, 
correlation matrix F  with rb = .5 and rw = .3, and correlation matrix G  with rb = .5 and rw 
= .5. 
 
 

Conclusion 

Overall, a large percentage of the first function results (47.92% of 672 total 
combinations) across correlation matrices provided minimal amounts of bias. 
With the exceptions of two minimal mean differences for the normal distribution 
of correlation matrix B data (i.e., the matrix with rb=.10 and rw=.30), all cases 
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with minimal bias were found with the correlation matrices reporting 
combinations of between-set and within-set correlations that were each greater 
than or equal to .30 (i.e., correlation matrices D, E, F, and G). 

As demonstrated by the ANOVA results, the accuracy of Rc
2 was largely 

impacted by the sample size to variable ratio. This can be seen in the bias values; 
as the sample size to variable ratio increased, bias consistently decreased. This 
finding is not surprising given the impact of both sample size and the number of 
variables on the theoretical amount of sampling error present. As sample size 
increases, sampling error theoretically decreases. The number of variables in a 
model typically has the opposite effect on sampling error; as the number of 
variables increases, so does the theoretical amount of sampling error present in a 
sample. It logically follows that a larger sample size to variable ratio would likely 
help decrease the amount of sampling error (i.e., bias) in canonical results.  

The current results speak directly to the sample size needed to obtain 
reasonable outcomes from CCA analyses. It is apparent from the descriptive 
statistics in Table 2 that, across all condition combinations, the 3:1 sample size to 
variable ratio produced substantial bias; bias dramatically decreased when a 
sample size to variable ratio of at least 10:1 was used. Larger sample sizes (e.g., 
25:1 and 40:1) produced even less biased results, further demonstrating the fact 
that larger sample size to variable ratios are ideal conditions for decreasing bias in 
Rc

2. This finding echoes that found by Thompson (1990), who found the sample 
size to variable ratio to be the best predictor of bias in the squared canonical 
correlation coefficient. Furthermore, Thompson found that, though the estimates 
of Rc were somewhat positively biased, the bias was minimal unless a ratio of “as 
small as three to one” was used (p. 27). This was also the case in this study. 
Dramatic decreases in bias were seen between the sample size to variable ratios of 
3:1 and 10:1. Thompson pointed out, however, that, with a small sample size to 
variable ratio (e.g., n:v=3:1), the bias could be minimized in some situations if the 
value of Rc was moderate to large. As can be seen across the matrices, this was 
somewhat true for the data with higher between- and within-set correlations in 
this study.  

None of the other conditions, including the marginal kurtosis level, notably 
impacted the accuracy of Rc

2. These results mirror Barcikowski and Stevens 
(1975) and Thompson (1990) that involved normal distributions. Keep in mind, 
however, that this study was limited to negligibly and moderately kurtotic 
distributions; data with more extreme kurtosis could have a differential effect on 
Rc

2 estimates. 
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In this study, precision of the Rc
2 values was examined only through 

descriptive analyses (i.e., standard deviation of the differences between the 
population and sample Rc

2 values) because there is only one value in each cell for 
all replications. Although conclusions are limited as a result of the descriptive 
analyses, some general comments about the precision of Rc

2 can be made. As with 
the accuracy of the Rc

2 estimates, it appears that the precision of Rc
2 may increase 

as the n:v ratio increases. This is logical given the effect of larger samples and 
fewer variables on sampling error. When sample size is maximized and the 
number of variables are minimized, a greater n:v ratio will likely produce more 
precise Rc

2 results. The pattern of results by the variable sets is somewhat unclear 
and needs further investigation. More often than not, the (6 + 6) and (10 + 2) 
produced the most precise results. And, for correlation matrices A, B, C, D, and E, 
the precision values generally remained the same for the various marginal kurtosis 
levels. Matrices F and G with higher between- and within-set correlations saw 
greater precision by comparison. But, because these results are based on 
descriptive analyses alone, these results should be taken tentatively and should 
likely only be used to inform future studies. 

Recommendations for Practice 
Based on the results of the study, several recommendations are warranted in the 
use of canonical correlation analyses in educational and psychological research. 
First, it is recommended that a sample size to variable ratio of at least 10:1 be 
used in CCA analyses to lessen the bias that may affect Rc

2 results. As was seen in 
the descriptive statistics presented in Table 2, under these study conditions, using 
an n:v ratio of 10:1 versus 3:1 led to dramatic reductions in bias. It would not be 
unlikely to expect similar results in applied studies under similar conditions.  

Greater sample size to variable ratios may also provide more precise results 
as well. Because larger sample size to variable ratios reduce bias even more, 
however, researchers are encouraged to use the largest sample that is available to 
them and the fewest variables that will adequately represent their model. 
Maximizing the sample size and minimizing the number of study variables will 
help to increase the n:v ratio and subsequently likely reduce bias and increase 
precision in the results.  

Second, because the univariate kurtosis level was shown to not substantially 
impact results, researchers can be relatively confident that, when k is homogenous 
across variables and within the range of -1 to 8, Rc

2 bias is not likely to be greater 
or less than that that would be found with results from a normal distribution. 
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Therefore, it is reasonable that multivariate distributions that consist of 
moderately kurtotic univariate distributions can be treated in the same manner as 
normal distributions.  These results may be encouraging to applied researchers 
given the fact that in practice, educational and psychological distributions are 
rarely exactly normally distributed (Blair, 1981; Bradley, 1968, 1982; Micceri, 
1989; Pearson & Please, 1975). Resulting Rc

2 values are likely to be accurate in 
cases even with data that are moderately kurtotic. 

Recommendations should be heeded with the limitations of the study in 
mind, however. Because the data were simulated, we were not able to model 
every conceivable condition that could impact the squared canonical correlation 
coefficient. Further research could seek to extend this study with a larger range of 
population effect sizes, sample sizes, distributional shapes, and numbers of 
variables.  

Despite its limitations, the findings from this study revealed important 
conditions to consider in the use of the squared canonical correlation coefficient, 
particularly under nonnormal data conditions. These findings and 
recommendations are meant to impact research practice and provide more 
accurate applications of canonical correlation analysis, particularly as regards the 
use of the squared canonical correlation coefficient. 
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Appendix A 

Procedures presented by Fleishman (1978), Kaiser and Dickman (1962), Vale and 
Maurelli (1983) were used to generate the multivariate random distributions in 
this study. More extreme values of kurtosis (e.g., k = 15, 25) were considered, but 
rejected because the data generation procedure could not produce distributions 
that contained the desired levels of nonnormality. 

Forty-two populations (i.e., one for each combination of the 6 kurtosis levels 
and 7 correlation matrices) were generated, and sample canonical analyses were 
performed using SAS® (SAS Institute, Inc., Cary, NC, www.sas.com) version 
9.1.3 syntax. It is important to note that correlation matrix F was intended to have 
rb=.3 and rw=.5, but the resulting matrix was not of full rank. For that reason, we 
generated correlation matrix F to have rb=.43 and rw=.5, the correlations that were 
the closest to the intended values that would generate a matrix of full rank. The 
syntax was written by the authors using the reference by Fan, Felsővályi, Sivo, 
and Keenan (2002).  For the sake of brevity, the syntax was not included in this 
article; copies can be obtained from the authors.  

Several checks were incorporated into the SAS® code to insure its accuracy. 
First, the variables in each of the populations were checked to make sure that they 
truly approximated the pre-specified correlations and kurtosis levels. Second, 
values of the condition variables were saved for each of the 3,360,000 canonical 
analyses so that they could be compared with the expected values. Third, 
calculations for randomly selected cases were manually checked to verify their 
accuracy. 
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Appendix B 

Table A1: Bias and Precision of Function I Sample 2
cR  Values for Correlation Matrix A 

 

  Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .45a  (.09)b .45  (.09) .45  (.09) .45  (.09) .45  (.09) .45  (.10) 

 10.1 .14  (.04) .14  (.03) .14  (.04) .14  (.04) .14  (.04) .14  (.04) 

 25.1 .06  (.02) .06  (.02) .06  (.02) .06  (.02) .06  (.02) .06  (.02) 

 40.1 .04  (.01) .03  (.01) .04  (.01) .04  (.01) .04  (.01) .04  (.01) 

v=8 (4+4) 3.1 .41  (.12) .41  (.12) .41  (.12) .41  (.12) .41  (.12) .41  (.13) 

 10.1 .13  (.05) .13  (.05) .13  (.05) .13  (.05) .13  (.05) .13  (.05) 

 25.1 .05  (.02) .05  (.02) .05  (.02) .05  (.02) .05  (.02) .05  (.02) 

 40.1 .03  (.01) .03  (.01) .03  (.01) .03   (.01) .03  (.01) .03  (.01) 

v=6 (4+2) 3.1 .36  (.14) .36  (.15) .36  (.14) .36  (.14) .36  (.15) .36  (.15) 

 10.1 .11  (.05) .11  (.05) .11  (.05) .11  (.05) .11  (.05) .11  (.06) 

 25.1 .04  (.02) .04  (.02) .04  (.02) .04  (.02) .04  (.02) .04  (.02) 

 40.1 .03  (.01) .03  (.01) .03  (.01) .03  (.01) .03  (.01) .03  (.01) 

v=12 (10+2) 3.1 .38  (.10) .38  (.10) .38  (.10) .38  (.10) .38  (.10) .38  (.11) 

 10.1 .11  (.04) .11  (.04) .11  (.04) .12  (.04) .12  (.04) .12  (.04) 

 25.1 .05  (.02) .05  (.02) .05  (.02) .05  (.02) .05  (.02) .05  (.02) 

  40.1 .03  (.01) .03  (.01) .03  (.01) .03  (.01) .03  (.01) .03  (.01) 
 

Note. Correlation matrix A was created with rw=0 and rb=0. k denotes univariate kurtosis. n=5,000 per cell. 
Bolded entries represent values that exceeded the ±.30 Rc

2 criterion for extreme bias. aThe bias of the Rc
2 

values is denoted as the mean difference between the known population value of Rc
2 and the average sample 

value of Rc
2 across 5,000 sample replications. bThe precision of the Rc

2 values is denoted as the standard 
deviation of the accuracy values. 
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Table A2: Bias and Precision of Function I Sample 2
cR  Values for Correlation Matrix B 

 

  Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .41a (.09)b .41   (.09) .41   (.09) .41   (.09) .41   (.09) .41   (.10) 

 10.1 .11   (.05) .11   (.04) .11   (.05) .11   (.05) .12   (.05) .12   (.05) 

 25.1 .04   (.03) .04   (.04) .04   (.03) .04   (.03) .04   (.03) .04   (.03) 

 40.1 .02   (.02) .02   (.02)  .02   (.02) .02   (.02) .02   (.02) .02   (.02) 

v=8 (4+4) 3.1 .39   (.12) .38   (.12) .38   (.12) .38   (.12) .39   (.13) .39   (.13) 

 10.1 .11   (.05) .11   (.05) .11   (.06) .11   (.06) .11   (.06) .11   (.06) 

 25.1 .04   (.03) .04   (.03) .04   (.03) .04   (.03) .04   (.03) .04   (.03) 

 40.1 .02   (.02) .02   (.02) .02   (.02) .02   (.02) .02   (.02) .02   (.03) 

v=6 (4+2) 3.1 .34   (.14) .34   (.15) .34   (.15) .34   (.15) .34   (.15) .34   (.16) 

 10.1 .10   (.06) .10   (.06) .10   (.06) .10   (.06) .10   (.06) .10   (.07) 

 25.1 .04   (.03) .04   (.03) .04   (.03) .04   (.03) .04   (.03) .04   (.04) 

 40.1 .02   (.02) .02   (.02) .02   (.02) .02   (.02) .02   (.02) .02   (.03) 

v=12 (10+2) 3.1 .36   (.10) .30   (.10) .36   (.10) .36   (.10) .36   (.11) .36   (.11) 

 10.1 .10   (.05) .08   (.06) .10   (.05) .10   (.05) .10   (.05) .10   (.05) 

 25.1 .04   (.03) .03   (.04) .04   (.03) .04   (.03) .04   (.03) .04   (.03) 

  40.1 .02   (.02) .02   (.03) .02   (.02) .02   (.02) .02   (.02) .02   (.02) 
 

Note. Correlation matrix B was created with rw=.3 and rb=.1  k denotes univariate kurtosis. n=5,000 per cell. 
Bolded entries represent values that exceeded the ±.30 Rc

2 criterion for extreme bias. aThe bias of the Rc
2 

values is denoted as the mean difference between the known population value of Rc
2 and the average sample 

value of Rc
2 across 5,000 sample replications. bThe precision of the Rc

2 values is denoted as the standard 
deviation of the accuracy values. 
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Table A3: Bias and Precision of Function I Sample 2
cR  Values for Correlation Matrix C 

 

  Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .43a (.09)b .43  (.09) .42  (.09) .43  (.09) .43  (.10) .44  (.10) 

 10.1 .13  (.04) .13  (.04) .13  (.04) .13  (.04) .13  (.04) .13  (.05) 

 25.1 .05  (.02) .05  (.02) .04  (.02) .05  (.02) .05  (.02) .05  (.02) 

 40.1 .03  (.02) .03  (.02) .03  (.02) .03  (.02) .03  (.02) .03  (.02) 

v=8 (4+4) 3.1 .40  (.12) .40  (.12) .40  (.12) .40  (.12) .40  (.12) .40  (.13) 

 10.1 .12  (.05) .12  (.05) .11  (.05) .12  (.05) .12  (.06) .12  (.05) 

 25.1 .04  (.03) .04  (.03) .04  (.03) .04  (.03) .04  (.03) .04  (.03) 

 40.1 .03  (.02) .03  (.02) .03  (.02) .03  (.02) .02  (.02) .03  (.02) 

v=6 (4+2) 3.1 .35  (.14) .35  (.14) .35  (.15) .35  (.15) .35  (.15) .35  (.15) 

 10.1 .10  (.06) .10  (.06) .10  (.06) .10  (.06) .10  (.06) .10  (.06) 

 25.1 .04  (.03) .04  (.03) .04  (.03) .04  (.03) .04  (.03) .04  (.03) 

 40.1 .02  (.02) .02  (.02) .02  (.02) .02  (.02) .02  (.02) .02  (.02) 

v=12 (10+2) 3.1 .37  (.10) .37  (.10) .37  (.10) .37  (.10) .37  (.10) .37  (.11) 

 10.1 .11  (.04) .11  (.04) .11  (.04) .11  (.04) .11  (.04) .11  (.05) 

 25.1 .04  (.02) .04  (.02) .04  (.02) .04  (.02) .04  (.02) .04  (.02) 

  40.1 .02  (.02) .02  (.02) .02  (.02) .02  (.02) .02  (.02) .02  (.02) 
 

Note. Correlation matrix C was created with rw=.5and rb=.1.  k denotes univariate kurtosis. n=5,000 per cell.  
Bolded entries represent values that exceeded the ±.30Rc

2 criterion for extreme bias. aThe bias of the Rc
2 values 

is denoted as the mean difference between the known population value of Rc
2 and the average sample value of  

Rc
2 across 5,000 sample replications.  bThe precision of the Rc

2 values is denoted as the standard deviation of 
the accuracy values. 
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Table A4: Bias and Precision of Function I Sample 2
cR  Values for Correlation Matrix D 

 

  Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .15a (.09)b  .16  (.09) .15  (.09) .16  (.09) .16  (.09) .17  (.09) 

 10.1 .04  (.06) .04  (.06) .04  (.06) .04  (.06) .05  (.06) .05  (.06) 

 25.1 .02  (.04) .02  (.04) .02  (.04) .02  (.04) .02  (.04) .02  (.04) 

 40.1 .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) 

v=8 (4+4) 3.1 .19  (.12) .19  (.12) .19  (.12) .20  (.13) .20  (.13) .21  (.13) 

 10.1 .05  (.08) .05  (.08) .05  (.08) .05  (.08) .05  (.09) .06  (.09) 

 25.1 .02  (.05) .02  (.05) .02  (.05) .02  (.05) .02  (.06) .02  (.06) 

 40.1 .01  (.04) .01  (.04) .01  (.04) .01  (.04) .01  (.04) .01  (.05) 

v=6 (4+2) 3.1 .22  (.15) .22  (.15) .22  (.15) .22  (.16) .23  (.16) .23  (.16) 

 10.1 .06  (.10) .06  (.09) .06  (.10) .06  (.10) .06  (.10) .07  (.11) 

 25.1 .02  (.06) .02  (.06) .02  (.06) .02  (.06) .02  (.06) .03  (.07) 

 40.1 .01  (.05) .01  (.05) .01  (.05) .01  (.05) .02  (.05) .02  (.05) 

v=12 (10+2) 3.1 .20  (.11) .20  (.11) .20  (.11) .20  (.11) .20  (.11) .22  (.11) 

 10.1 .05  (.07) .05  (.07) .05  (.07) .06  (.07) .06  (.07) .07  (.07) 

 25.1 .02  (.04) .02  (.04) .02  (.04) .02  (.04) .02  (.05) .03  (.05) 

  40.1 .01  (.04) .01  (.03) .01  (.03) .01  (.03) .02  (.04) .02  (.04) 
 

Note. Correlation matrix D was created with rw=.3 and rb=.3. k denotes univariate kurtosis. n=5,000 per cell.  
Bolded entries represent values that exceeded the ±.30 Rc

2 criterion for extreme bias. a The bias of the Rc
2 

values is denoted as the mean difference between the known population value of Rc
2 and the average sample 

value of  Rc
2 across 5,000 sample replications. b The precision of the Rc

2 values is denoted as the standard 
deviation of the accuracy values. 
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Table A5: Bias and Precision of Function I Sample 2
cR  Values for Correlation Matrix E 

 

  Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .28a  (.10)b .28  (.10) .28  (.09) .28  (.10) .28  (.10) .30  (.11) 

 10.1 .07  (.07) .07  (07) .07  (.07) .07  (.07) .07  (.07) .08  (.07) 

 25.1 .03  (.04) .03  (.04) .03  (.04) .03  (.04) .03  (.05) .03  (.05) 

 40.1 .02  (.03) .02  (.03) .02  (.03) .02  (.04) .02  (.04) .02  (.04) 

v=8 (4+4) 3.1 .28  (.12) .27  (.12) .27  (.13) .28  (.13) .28  (.13) .30  (.14) 

 10.1 .07  (.08) .07  (.08) .07  (.08) .07  (.08) .08  (.08) .08  (.09) 

 25.1 .03  (.05) .03  (.05) .03  (.05) .03  (.05) .03  (.05) .03  (.06) 

 40.1 .02  (.04) .02  (.04) .02  (.04) .02  (.04) .02  (.04) .02  (.04) 

v=6 (4+2) 3.1 .27  (.16) .26  (.15) .26  (.15) .27  (.16) .27  (.16) .28  (.17) 

 10.1 .07  (.09) .07  (.09) .06  (.09) .07  (.09) .07  (.10) .08  (.10) 

 25.1 .02  (.06) .03  (.06) .02  (.06) .03  (.06) .03  (.05) .03  (.06) 

 40.1 .02  (.05) .01  (.05) .02  (.05) .02  (.05) .02  (.05) .02  (.05) 

v=12 (10+2) 3.1 .27  (.11) .27  (.11) .27  (.11) .28  (.11) .27  (.11) .29  (.12) 

 10.1 .07  (.07) .07  (.07) .07  (.07) .08  (.07) .08  (.07) .08  (.07) 

 25.1 .03  (.04) .03  (.04) .03  (.04) .03  (.04) .03  (.04) .03  (.05) 

  40.1 .02  (.03) .02  (.03) .02  (.03) .02  (.03) .02  (.03) .02  (.04) 
 

Note. Correlation matrix E was created with rw=.5 and rb=.3. k denotes univariate kurtosis. n=5,000 per cell.  
Bolded entries represent values that exceeded the ±.30 Rc

2 criterion for extreme bias.  a The bias of the Rc
2 

values is denoted as the mean difference between the known population value of  Rc
2 and the average sample 

value of  Rc
2 across 5,000 sample replications. b The precision of the Rc

2 values is denoted as the standard 
deviation of the accuracy values. 
 
 
  



BIAS AND PRECISION OF THE SQUARED CANONICAL COEFFICIENT 

138 

Table A6: Bias and Precision of Function I Sample 2
cR  Values for Correlation Matrix F 

 

  Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .03a (.02)b .03  (.02) .02  (.02) .03  (.02) .03  (.02) .04  (.02) 

 10.1 .01  (.01) .01  (.02) .01  (.01) .01  (.02) .01  (.02) .01  (.02) 

 25.1   <.01 (.01) <.01  (.01) <.01  (.01) <.01  (.01) <.01  (.01) .01  (.01) 

 40.1 <.01 (.01) <.01  (.01) <.01  (.01) <.01  (.01) <.01  (.01) <.01  (.01) 

v=8 (4+4) 3.1 .07  (.07) .06  (.07) .06  (.07) .07  (.07) .07  (.07) .08  (.07) 

 10.1 .02  (.04) .02  (.04) .02  (.04) .02  (.05) .02  (.05) .03  (.05) 

 25.1 .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) 

 40.1 <.01 (.02) <.01  (.02) <.01  (.02) .01  (.02) .01  (.02) .01  (.03) 

v=6 (4+2) 3.1 .10  (.13) .10  (.12) .10  (.12) .11  (.12) .11  (.12) .13  (.12) 

 10.1 .03  (.08) .03  (.08) .02  (.07) .03  (.08) .03  (.08) .04  (.08) 

 25.1 .01  (.05) .01  (.05) .01  (.05) .01  (.05) .01  (.05) .02  (.05) 

 40.1 .01  (.04) .01  (.04) .01  (.04) .01  (.04) .01  (.04) .01  (.04) 

v=12 (10+2) 3.1 .09  (.07) .08  (.07) .08  (.06) .09  (.07) .09  (.07) .10  (.07) 

 10.1 .02  (.04) .02  (.04) .02  (.04) .03  (.04) .03  (.04) .04  (.05) 

 25.1 .01  (.03) .01  (.03) .01  (.03)  .01  (.03) .01  (.03) .02  (.03) 

  40.1 .01  (.02) .01  (.02) .01  (.02) .01  (.02) .01  (.02) .01  (.02) 
 

Note. Correlation matrix F was created to have  rw=.3 and rb=.5, but limitations with the data generation 
procedures required us to create a correlation matrix with rw=.43 and rb=.5.  k denotes univariate kurtosis. 
n=5,000 per cell.  Bolded entries represent values that exceeded the ±.30 Rc

2 criterion for extreme bias. a The 
bias of the Rc

2 values is denoted as the mean difference between the known population value of  Rc
2a\ and the 

average sample value of  Rc
2 across 5,000 sample replications. b The precision of the Rc

2 values is denoted as 
the standard deviation of the accuracy values. 
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Table A7: Bias and Precision of Function I Sample 2
cR  Values for Correlation Matrix G 

 

  Expected k 

Var. Set n: v  -1 0 1 3 5 8 

v=12 (6+6) 3.1 .08a (.06b) .08a (.06) .08  (.06) .08  (.06) .08  (.06) .09  (.06) 

 10.1 .02  (.04) .02  (.04) .02  (.04) .03  (.04) .03  (.04) .03  (.04) 

 25.1 .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) 

 40.1 .01  (.02) .01  (.02) <.01 (.02) .01  (.02) .01  (.02) .01  (.02) 

v=8 (4+4) 3.1 .11  (.10) .10  (.10) .10  (.10) .11  (.10) .11  (.10) .13  (.10) 

 10.1 .03  (.06) .03  (.06) .03  (.06) .03  (.06) .04  (.07) .04  (.07) 

 25.1 .01  (.04) .01  (.04) .01  (.04) .01  (.04) .02  (.04) .02  (.05) 

 40.1 .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.04) 

v=6 (4+2) 3.1 .13  (.14) .12  (.13) .12  (.13) .13  (.14) .14  (.14) .16  (.15) 

 10.1 .03  (.09) .03  (.08) .03  (.09) .04  (.09) .04  (.09) .05  (.09) 

 25.1 .01  (.06) .01  (.06) .01  (.06) .02  (.06) .02  (.06) .02  (.06) 

 40.1 .01  (.04) .01  (.04) .01  (.04) .01  (.04) .01  (.05) .01   (.05) 

v=12 (10+2) 3.1 .12  (.08) .11  (.09) .12  (.08) .12  (.09) .13  (.09) .14  (.09) 

 10.1 .04  (.05) .03  (.05) .03  (.05) .04  (.06) .04  (.06) .05  (.06) 

 25.1 .01  (.04) .01  (.03) .01  (.03) .02  (.04) .02  (.04) .02  (.04) 

  40.1 .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) .01  (.03) 
 

Note. Correlation matrix G was created with rw=.5 and rb=.5.  k denotes univariate kurtosis. n=5,000 per cell.  
Bolded entries represent values that exceeded the ±.30 Rc

2 criterion for extreme bias. a The bias of the Rc
2 

alues is denoted as the mean difference between the known population value of  Rc
2 and the average sample 

value of  Rc
2 across 5,000 sample replications. b The precision of the Rc

2 values is denoted as the standard 
deviation of the accuracy values. 
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Predicting Survival Time of Localized 
Melanoma Patients Using Discrete Survival 
Time Method 
Taysseer Sharaf 
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Melanoma is the most fatal type of skin cancer. It is ranked first in death of skin cancer 
diseases. This study establishes a statistical model that can predict the survival time of 
localized melanoma patients, as a function of age at diagnosis, tumor thickness, and 
extension of the tumor (tumor invasion). The discrete time survival method was used to 
build the statistical model. The patients involved in the current study were observed from 
the SEER database. Patients were divided into nine groups according to age at diagnosis. 
Variation in survival time was found to be significant among some of the age groups. 
 
Keywords: melanoma, survival time, discrete survival time, skin cancer, SEER, 
localized melanoma 
 

Introduction 

Melanoma is a malignant tumor associated with skin cancer. If melanoma is 
detected at a late stage, it can spread to other parts of the body and that’s what 
makes it a lethal form of cancer. More general information about melanoma can 
be found in (www.melanoma.org), (Markovic, et al., 2007) and (Mackle, et al., 
2009). Over the last decades, the incidence of melanoma has been rapidly 
increasing in the United States. It appears more in white populations than other 
races. According to clinical studies, risk factors of melanoma are but not limited 
to, ultraviolet light exposure, moles, light hair, freckling and family history of 
melanoma. Some of the statistical analyses done on the risk factors are shown in 
(Gandini, et al., 2005c; Naldi, et al., 2000; Cho, et al., 2005). 

mailto:tsharaf@mail.usf.edu
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Consider the survival time for melanoma patients. The primary objective is 
the time between when the patient is diagnosed with melanoma and when death 
occurs. The study includes the effect of three risk factors that drives the survival 
time for a patient. Those risk factors are Age at diagnosis, tumor thickness and 
extension of the tumor (invasion of tumor through the body). Other factors 
include gender and sequence number (a number that indicates how many tumors 
the patient had prior to being diagnosed with melanoma).  The main concern will 
be in estimating the survival time of melanoma patients diagnosed at stage one 
(localized Melanoma). More information regarding staging is discussed in the 
Methodology; for updates on the staging of melanoma visit www.cancer.gov. 
Soong, et al. (2010) developed an electronic prediction tool based on the 
American Joint Committee on Cancer (AJCC) melanoma staging database, to 
predict survival outcome of localized melanoma. Other predictive models of 
survival for localized melanoma have been developed in the United States and 
other countries (Clark, et al., 1989; MacKie, et al., 1995; Barnhill, et al., 1996; 
Schuchter, et al., 1996; Sahin, et al., 1997; Soong, et al., 2003). Soong, et al. 
(2010) used the Cox survival function model, which considers the survival time as 
a continuous random variable, where most survival times are recorded in discrete 
form as a number of months or years. They used same three risk factors in their 
analysis beside the primary melanoma site and primary tumor ulceration. As 
shown in Table 3, there exist 10 primary melanoma sites, and in order to reduce 
the variation in the model (biological variation between humans is a lurking 
variable), only one site of the ten was studied. Allison (1982) mentioned that in 
continuous survival time, maximum likelihood method ignores the discrete 
character of the data. 

Xie, Mchugo, Drake, and Sengupta (2003), summarized the advantages of 
using discrete-time survival analysis. These were initially suggested by Singer & 
Willett (1993) as primarily useful for many longitudinal studies in clinical settings 
where data are often collected at discrete time periods. Secondly, the analysis 
facilitates the examination of the shape of the hazard function. Third, the analysis 
is simple and convenient to use, because it is a modification of the logistic 
regression model. Lastly and most important, time-varying covariates can easily 
be included in the model. After Cox presented the discrete time survival model, 
two basic versions of logistic models were introduced: the ordinal version and the 
dichotomous version. The dichotomous version (Allison, 1982; Singer & Willett, 
1993; Xie, et al., 2003) represents each survival time as a set of indicators of 
whether or not an individual failed at each time point, until a person either 
experiences the event or is censored. 

http://www.cancer.gov/
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Methodology 

Allison (1982) and Singer and Willett (1993) proposed a discrete survival time 
method. The method starts by dividing the continuous time into an infinite 
sequence of contiguous time      1 1 2 10, , , , , , ,k kt t t t t  and so on. Let k 
represent the number of time intervals. In this case, time is recorded in months, 
where time is divided into 20 intervals each consists of 12 months: 
(1,12),(12,24),…,(228,240). If a patient’s survival time is 7 months, then this 
patient’s event is classified as happening during the 1st time interval; if another 
patient’s survival time is 50 months, then this is classified as happening during the 
5th time interval. 

To estimate the survival function, start with the discrete-time hazard model 
(Allison, 1982) 
 
 

    1 1 2 2 1 1 2 2
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where  1 2, , ,ik ik J JikT T T  are a sequence of dummy variables, with values 

 1 2, , ,ik ik Jikt t t  indexing time periods, where J refers to the last time period 
observed for any individual in the sample. If individual 𝑖  was observed 
(experienced the event or censored) in the fourth period, then J = 4, and the time 
period’s dummy variables are defined identically for each individual;   t1ik

=1 
when j = 1 and 0 when j takes any other value.  

The coefficients  1 2 J    act as the intercept parameters for the baseline 

hazard in each time period, and the coefficients  1 2 p    describe the effect of 

the predictors on the baseline hazard in the logit scale. Singer and Willett (1993) 
discussed briefly the procedures to construct the likelihood function (in terms of 
the discrete hazard function) used to estimates the latter intercepts and slope 
parameters. 

The likelihood function presented by Singer and Willett (1993) is given by 
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where 
 
y

ik
 is a sequence of dummy variables that records the event history for 

patient 𝑖, whose values are defined as: 
 

yik = { 1 if the ith patient experienced the event in period k 
0 if the ith patient did not experience the event in period k 

 
The likelihood function is identical to the likelihood function to a sequence 

of  1 2 nN k k k     independent Bernoulli trials with parameters ikh . 
Using results by Allison (1982), the iky  values can be considered as the 

outcome variable in a logistic regression analysis, which provides a simple model 
to obtain the maximum likelihood estimate rather than finding the solution by 
maximizing equation (2). 

For discrete event history data, each record consists of the information for 
one patient like survival time, Age and whether or not the patient time is censored 
or not. In order to apply the logistic model discussed previously, the data need to 
be converted into new person-period data, in which each patient will have 
multiple records, one per time period of observation. As shown by Singer and 
Willett (1993), the new person-period data will contain the information about the 
kth time period as follows 
 

 The time indicators. The set of dummy variables  1 2, , ,ik ik J JikT T T . 

 The predictors. Covariates under study, where the ability exists to use 
the time-varying covariates that have values differs from time period 
to time period. 

 The event indicator (response variable in the logistic model). This 
variable records whether the event of interest occurred in period j or 
not. The variable takes value 1 if the event occurred, takes 0 if did not. 

 
In this study, the survival time of melanoma patients diagnosed in the period 

of 1988 to 2008 was considered. The survival time was recorded up to the nearest 
month. The time period of the study was divided into 20 intervals, one year each. 
Besides the covariates age at diagnosis, tumor size and extension of the tumor, 
there were 20 dummy variables representing the 20 time periods as shown in 
Tables 1 and 2. In Table 1, there is a record of 3 patients as extracted from 
Surveillance Epidemiology and End Results database (SEER) database. In Table 
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2, there is a representation of the conversion of the data to fit the new person-
period data to be used for the logistic model. 
 
 
Table 1. A record of 3 patients from SEER database. 
 
Patient ID Survival Time (mos) Age Diagnosis Tumor Size Extension of Tumor 
7013574 49 84 120 10 
8862253 3 66 230 30 
8869492 86 61 134 30 
 
 

Table 1 shows that the first patient survival time is 49 months. The first 
patient lived for four years and died in the first month of the fifth year, which 
means that the event took place during the fifth time period. In the new data 
setting the first patient will have five records, one record corresponding to every 
time period (from the first to the fifth). The event indicator variable will take 0 for 
the first four records and 1 in the fifth record where the event took place. Table 2 
shows this conversion for the three patients in table one. 
 
 
Table 2. A sample of three patients from the new person-period data. 
 
Indc. ID ST A TS D1 D2 D3 D4 D5 D6 D7 D8 …  D20 
0 1 49 84 120 1 0 0 0 0 0 0 0 … 0 
0 1 49 84 120 0 1 0 0 0 0 0 0 … 0 
0 1 49 84 120 0 0 1 0 0 0 0 0 … 0 
0 1 49 84 120 0 0 0 1 0 0 0 0 … 0 
1 1 49 84 120 0 0 0 0 1 0 0 0 … 0 
1 2 3 66 230 1 0 0 0 0 0 0 0 … 0 
0 3 86 61 134 1 0 0 0 0 0 0 0 … 0 
0 3 86 61 134 0 1 0 0 0 0 0 0 … 0 
0 3 86 61 134 0 0 1 0 0 0 0 0 … 0 
0 3 86 61 134 0 0 0 1 0 0 0 0 … 0 
0 3 86 61 134 0 0 0 0 1 0 0 0 … 0 
0 3 86 61 134 0 0 0 0 0 1 0 0 … 0 
0 3 86 61 134 0 0 0 0 0 0 1 0 … 0 
1 3 86 61 134 0 0 0 0 0 0 0 1 … 0 
 
 

The variables 1 2 20, , ,D D D  represent the 20 dummy variables for the time 
intervals. Each row shows patient 𝑖 information during each time interval until the 
event occurs or he/she is censored. The first column in Table 2 (Indc.) represents 
the indicator variable, which takes 0 if the event did not take place during the 
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current time period interval, or 1 if the event occurs during the time period 
interval. The patient’s ID was changed to ID (1, 2 and 3) to optimize the table. 
The setting of the data shown in Table 2 can allow us to use time varying 
covariates easily, but because the data used does not support this information the 
covariates were repeated. Only the tumor size of the patient is known at the time 
of diagnosis; no follow up information was supported. Age at diagnosis can be 
changed, but no big difference will appear (as will be shown); ages were grouped 
into 9 intervals, each interval covering 10 years. 

The data set used was collected from the Surveillance Epidemiology and 
End Results database (SEER) 1973-2008. 208,143 patients were diagnosed in the 
United States from 1973 through 2008. Taking into account the patients that were 
confirmed dead because of melanoma cancer, and removing all the missing 
records in the covariates shown in Table 4, results in studying the patients 
diagnosed from 1988 through 2008. Melanoma cancer is classified into 4 stages 
as shown in Table 3, and there exist 10 sites of the skin where the cancer appears. 
In order to reduce the variation (biological difference between humans) and to get 
less prediction error in the statistical model, only ‘skin of trunk’ patients in stage 
1 (localized melanoma) are considered in this study. The sample size used in this 
study is 1,240. Table 3 shows the description of the coding used for the primary 
site and the staging of the cancer. 

The risk factors (affecting the survival time of patients) that were involved 
in the study are age of the patient, the tumor size and the tumor extension (how 
far the tumor spread). Around 99 percent of the 1,240 patients were white (due to 
the fact that melanoma is rare in people with dark skin), which is why race was 
not considered in the modeling aspects. 

Age of patients at Diagnosis was classified into 9 groups, 10 years each, 
starting from 11 to 20 years in the first group through 91 to 100 years old. Tumor 
thickness (instead of size as known in other cancer types, the thickness is 
measured, but size will be referred to for the remainder of this article) was 
classified into 3 groups, the first group from 1mm to 50mm, the second group 
from 51mm to 300mm and the last group from 301mm to 992mm. In the current 
sample the extension of the tumor contains 4 levels which are as stated in SEER 
EOD-88 3rd edition; (10) for papillary dermis (the middle layer of skin) invaded, 
(20) for papillary-reticular dermal interface invaded, (30) for reticular dermis 
invaded and finally (40) localized. A summary of the number of patients lying in 
the groups stated previously is shown in Table 4. 
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Table 3. SEER coding for the stage and primary site for Melanoma. 
 

Variable Code Description 

SEER Historic 
stage 

0 In situ : A tumor which has not penetrated the basement 
membrane nor extended beyond the epithelial issue 

1 Localized : An invasive neoplasm confined entirely to the 
organ of origin 

2 Regional: A neoplasm that has gone beyond the bounds of the 
organ of origin or into regional lymph nodes. 

4 Distant : A neoplasm that has spread to parts of the body 
distant from the primary tumor 

Primary Site 

C440 Skin of lip 
C441 Eyelid 
C442 External Ear 
C443 Skin of other and unspecified parts of face 
C444 Skin of Scalp and neck 
C445 Skin of Trunk 
C446 Skin of upper limb and shoulder 
C447 Skin of lower limp and hip 
C448 Overlapping lesion of skin 
C449 Skin NOS 

 
 

Table 4 illustrates that around 46.5% of the patients are diagnosed at the 
third level of tumor extension where the tumor invaded into the reticular dermis, 
indicating that there is a delay from patients until they figured out that they 
needed medical attention. It must be stressed that during the current study no 
treatment effects were added to the statistical model, so study results are 
considered as if patients did not get any treatment. The different treatment effects 
and histology effects will be studied in further publications. 

Descriptive statistics of the survival time of melanoma patients recorded in 
months from time of diagnosis till death for each age group are recorded in Table 
5. Because the survival time distribution is skewed, it is important to estimate the 
median survival time for the melanoma patients. The median will be more 
informative than the mean in this case. The large variance of survival time inside 
each group can be seen. This assures the presence of independent variables 
affecting the survival time. 
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Table 4. Distribution of the 1240 patients on the various groups. 
 

Factor  Extension of the Tumor    
Age Tumor Size   10 20 30 40   Total % 

11-20 
1        

0.4838710 2  1 4    5 
3     1  1 

21-30 
1  3 10 2 1  16 

4.2741935 2  3 11 12 4  30 
3    6 1  7 

31-40 
1  8 3 11 3  25 

13.3870970 2  11 52 50 8  121 
3   5 15   20 

41-50 
1  14 9 13 2  38 

20.3225810 2  10 87 73 12  182 
3   8 20 4  32 

51-60 
1  17 9 19 7  52 

20.3225810 2  17 61 73 14  165 
3   3 27 5  35 

61-70 
1  14 3 11 5  33 

20.4032260 2  14 59 87 18  178 
3   4 33 5  42 

71-80 
1  18 7 12 4  41 

15.2419350 2  8 36 60 15  119 
3   7 19 3  29 

81-90 
1  6 2 11 3  22 

5.0806452 2  3 9 14 5  31 
3   3 5 2  10 

91-100 
1  1  1   2 

0.4838710 2   1 2   3 
3    1   1 

%     11.94000 31.69000 46.53000 9.83871   1240 100% 
 
 
Table 5. Descriptive statistics of survival time. 
 

 Survival Time 
Age Count Mean Median St. deviation  Skewness 

11-20 6 74.50 57.00 42.43 1.39 
21-30 53 61.40 46.00 44.10 1.11 
31-40 166 66.95 52.50 48.48 1.21 
41-50 252 67.83 55.50 45.53 1.15 
51-60 252 56.90 43.00 41.17 1.32 
61-70 253 53.96 41.00 42.11 1.58 
71-80 189 50.38 45.00 32.86 0.89 
81-90 63 38.44 34.00 28.05 1.26 
91-100 6 32.17 26.00 31.92 1.91 
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Results 

Three out of the four models proposed models are discussed. The first model is 
the baseline model, estimating the survival function using the time periods. The 
second model introduces age at diagnosis as the first covariate with the time 
periods. The third model uses age at diagnosis and tumor size as covariates with 
the time periods. The fourth model introduces all three covariates with the time 
periods. 

Model 1 
The baseline model is the starting point of the proposed modeling procedure. The 
simplest hazard model from equation (1), considering only the 20 dummy 
variables that represent the time effect, is considered. The baseline hazard model 
for this case is represented as: 
 
 1 1 2 2 20 20( ) ( )ilogit h t t t        (3) 
 
Equation (3) represents the log transform of equation (1), where 
 

 ( ) log
1

ik
ik

ik

hlogit h
h

 
  

 
  (4) 

 
This model will answer the basic question ‘what is the probability of obtaining the 
event (melanoma patient dies due to the cancer) in each time period?’ In other 
words what is the probability that a melanoma patient will survive for one, or two 
years, etc. 

The parameters in equation (3) can be converted by exponentiation the right 
hand side. For example if it is desired to know the estimate of the probability of 
event occurrence in the fifth interval will be equal to 
 

 
55

1ˆ
(1 )

h
e 




  (5) 

 
The estimates of the baseline hazard are presented in Table 6. After 

estimating the baseline hazard one can calculate the corresponding survival 
function using 
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1

ˆˆ (1 )
k

k j
j

S h


    (6) 

 
 
Table 6. Estimates of the baseline hazard parameters. 
 
Param. ̂    Param. ̂   
D1 -2.687  D11 -0.743 
D2 -1.642  D12 -1.326 
D3 -1.372  D13 -1.017 
D4 -1.242  D14 -0.758 
D5 -1.275  D15 -1.273 
D6 -1.125  D16 -0.405 
D7 -1.233  D17 -0.693 
D8 -1.031  D18 0.000 
D9 -1.349  D19 1.386 
D10 -1.185  D20 21.203 
 
 

 
 

Figure 1. Scatter plot for the estimated baseline Hazard function. 
 
 
 

Thus to illustrate the output, the hazard probability of first time period is 
calculated and by substituting the values in equation (3) 2 3 20, , , 0t t t   while 
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1 1 2.687

1ˆ1, 0.06
(1 )

t h
e

  


, and to get the hazard probability of the second 

interval 2 1.642

1ˆ 0.16
(1 )

h
e

 


, and so on. The coefficient of the last time period 

had a high negative value, but was actually insignificant in the modeling process. 
This was due to the occurrence of only one event, which had held out till the final 
period in the sample. Also, removing the last interval from the modeling process 
did not induce any significant change to the −2loglikelihood, which was used to 
pick the best model from the four models that were tested. 

Once calculated for all 20 time periods the baseline survival function can be 
calculated using equation (6). Graphical representation of the estimated discrete 
hazard function is shown in Figure 1. And a comparison of the estimated base line 
survival function by the model and the sample survival function is shown in 
Figure 2. 
 
 

 
 

Figure 2. Sample Survival Function and Estimated Baseline Survival. 
 
 
 

In Figure 2 it is shown that the estimated base line model fits the data well. 
This is also supported by the residual analysis from the logistic model used to 
estimate the baseline hazard function. The model residuals came to be 
uncorrelated and with constant variance. Because the distribution of the survival 
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time is skewed, the median survival time is of great interest, as shown in the first 
graph in Figure 2: the estimated median survival time when ( ) 0.5S t  , which is 
equal to 0.5

ˆ 48months.t   It is customary to see the discrete survival function as a 
step down function in graphs, but for technical purposes and comparison issues, 
connected lines are used in these Figures rather than a step down function. 

Model 2 
The second model is to see the effect of the covariates on the survival time. The 
first covariate will be age at diagnosis. As discussed in the previous section the 
age of patient at diagnosis is grouped into 9 groups, 10 year interval each. The 
nine groups will be represented by 8 dummy variables with the first age group as 
the base. The parameter estimates are represented in Table 7.  
 
 
Table 7. Parameter estimates for discrete hazard function with Age as covariate 
 
Param. α  Param. α  Param. β 
D1 -3.13  D11 -1.02  age_1 0.28 
D2 -2.04  D12 -1.60  age_2 0.11 
D3 -1.75  D13 -1.28  age_3 0.09 
D4 -1.60  D14 -1.00  age_4 0.41 
D5 -1.62  D15 -1.51  age_5 0.39 
D6 -1.46  D16 -0.63  age_6 0.73 
D7 -1.55  D17 -0.90  age_7 1.00 
D8 -1.33  D18 -0.22  age_8 3.11 
D9 -1.64  D19 1.18    
D10 -1.48  D20 21.11    
 
 

The estimates for the alpha parameters correspond to the time periods. The 
first beta estimate 0.28 corresponds to the second age group (Age 21-30); recall 
that first age group is at base level. For example, the estimated discrete hazard 
probability for the first age group (Age 11-20) of the first time period is 

1 ( 3.13)

1ˆ 0.041887,
(1 )

h
e 

 


 the estimate of the survival probability for the same 

age group in the first time period by equation (4) 1 1̂
ˆ (1 ) 0.958.S h    Similar 

calculations were followed to get the survival for the 20 time periods for each Age 
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group. Figure 3 shows the graph illustration for those survival functions, for each 
age group. 
 
 

 
 

Figure 3. Estimated Survival function plot from Model 2, for different Age groups. 
 
 
 

Looking at the survival plots in Figure 3, the duration time of the melanoma 
cancer is same for patients in the age group 5 and 6. The duration time for the 
second age group is lower than that for Age group 3 and 4, which is closer to the 
duration time of the first age group. For the last age group (Ages 91-100) the 
estimated median survival time corresponds to the first time period, which means 
it is between 1 and 12 months. 

Model 3 
Adding more covariates made the model more significant. Table 8 shows the 
different models that were applied to the data along with the corresponding 
−2loglikelihood and Cox & Snell R-square. The model that best fits the data is the 
last one with the three covariates: Age at diagnosis, Tumor Size and Extension of 
the tumor. 

This model with 0.383 Cox and Snell R-square is considered to be 
significant for the analysis of binary data. This model gave more informative 
estimates about the behavior of the survival time of melanoma cancer patients, 
across the 9 age groups. A plot showing the estimated survival time using the last 
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model based on patients diagnosed with tumor size of group 3 and extension of 
tumor of group 4 (refer to Table 4) is given in Figure 4. 
 
 
Table 8. −2loglikelihood for various models 
 

Model −2loglikehood Cox & Snell R-square 
Base 6088.32 0.369 
Base + Age 6016.71 0.376 
Base + Age + Tumor Size 5981.91 0.379 
Base + Age + Tumor Size + Extension of Tumor 5939.26 0.383 
 
 

 
 

Figure 4. Estimated Survival Function for the different age groups using Model 4. 
 
 
 

Figure 4 represents the estimated survival probability for the 9 age groups: 
A1 for first age group, A2 for second age group, … , A9 for the ninth group. 
According to the model (Model 4), the following results are found for patients 
diagnosed with tumor size between (301mm to 992mm) and at the fourth level of 
tumor extension (No treatment was involved in this model): 

 
 A patient diagnosed at ages 11-20 and 31-50 have the same estimate of 

median survival time less than 5 years. 
 A patient diagnosed at ages 21-30, have an estimate of median 

survival time less than 4 years. 
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 Age group 5 (51-60) and 6 (61-70) have the same estimate of median 
survival time between 3 to 4 years. 

 Figure 4 shows that the maximum estimated survival time for all age 
groups is around 15 years from the time of diagnosis. 

Conclusion 

A statistical model was developed to predict the survival time of localized 
melanoma patients using the discrete survival time method. The discrete survival 
time method gives better results when applied on follow-up data sets. If the 
information about the progress a patient’s tumor thickness and the time of 
treatment patients took is available, the results become more accurate and show 
less prediction error. 

Four different statistical models were developed with a recommended model 
(fourth one) to be the best model for predicting the survival time of a given 
localized melanoma patient. This model is the one that takes into consideration 
the patient’s age at diagnosis, tumor thickness and extension of the tumor. 

In comparison with research by Soong, et al. (2010), the primary melanoma 
site was not considered as one of covariates in the model. Patients were divided 
into 10 groups according to the primary site and model each group separately. 
Results from this study show less error compared with Soong, et al. (2010) 
because the variation due to the difference in the primary site was removed. 
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The autocorrelation function (ACF) plays an important role in the context of ARMA 
modeling, especially for their identification and estimation. This study considers the 
robust estimation of the ACF of the AR(1) model if the white noise (WN) process is non-
Gaussian. Three estimators including the ordinary moment estimator and two other 
(robust) estimators are considered. The impacts of the deviation from normality of the 
WN process on those estimators in terms of bias, MSE and distribution via Monte-Carlo 
simulation are examined. The empirical distribution of those estimators when the errors 
are normal, t, Cauchy and exponential are studied. Results show that the moment 
estimator is more affected by the change of the white noise distribution than other 
considered estimators. 
 
Keywords: autocorrelation function, robust estimation, Monte-Carlo simulation, 
kernel density estimation  
 

Introduction 

A time series (TS) can be defined as a sequence of observations taken 
sequentially in time. Time series can be observed in different fields; for example, 
in agriculture, business, engineering and medical studies. The list of areas in 
which time series is observed, studied and analyzed is endless. A major feature in 
the development of time series is an assumption of some form of statistical 
equilibrium, or known as stationarity. There are two types of stationarity; the first 
is called strict stationarity, and the other type is called weak stationarity. In 
practice, it is very difficult to examine time series being strictly stationary. Further, 
a stochastic process { }tX  is weak stationary if its mean is constant and the auto-
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covariance function (ACVF) depends on the time lag only, i.e., 
( , )t t k kCov X X    as well as its 0ACF / .k k    For more details on the ACVF 

and ACF of stationary time series and their properties, see Wei (2006, p. 12). 
The class of autoregressive moving average (ARMA) models is widely 

known for modeling stationary time series (Wei, 2006, p. 5664). The stochastic 
process { }tX  is said to follow the ARMA(p,q) model if: 
 
 1 1 1 1t t p t p t t q t qX X X u u u               
 
where 1, , p   and 1, , q   are the AR and MA parameters, respectively, and 

tu  is the white noise (WN) process, assumed iid (0, 2
u ) and usually assumed 

normal. A detailed account on ARMA models, their autocorrelation functions and 
building methodology is found in Box, et al. (1994). 

Beside the mixed ARMA model, the ARMA(p,q) models also include as 
special cases the pure AR and pure MA models when q = 0 and p = 0, 
respectively. In particular, the pure AR(1) model is given by: 
 
 1t t tX c X u      (1) 
 
which is stationary if 1   (Wei, 2006). 
 

The ACF plays an important role in the Box and Jenkins methodology for 
building ARMA models, especially for the identification and estimation of those 
models (Wei, 2006). In fact, there are other identification tools for the ARMA 
models, including the inverse ACF method (Cleveland, 1972); Akaike 
information criterion (AIC) (Akaike, 1974); the R and S array method (Gray, et 
al., 1978) and the corner method (Beguin, et al., 1980). 

Consider the robust estimation of the ACF of AR(1) model if the WN 
process  tu  is non-Gaussian. Berkoun, et al. (2003) investigated robust inference 
for serial correlation in AR(1) process in the presence of a single additive outlier. 
Assuming that  1, , nX X  is a time series following the zero-mean AR(1) model 
contaminated with a single additive outlier, they investigated three estimators of 

1 , namely: 
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   (4) 

 
where t tZ X X   are the mean-subtracted data, Med(.) stands for the median, 1r  
is the ordinary moment estimator of 1  whereas *

1  and 1  are two robust 
estimators of 1  originally proposed by Hurwicz (1950) and Haddad (2000), 
respectively. Berkoun, et al. (2003) showed that the inference of 1  based on 1r  is 
highly sensitive to a single additive outlier. 

Smadi, et al. (2009) generalized these estimators for the periodic AR(1) 
model. They again observed that the counterpart of 1r  is more sensitive to additive 
outliers than other estimators. 

For higher time lags k = 1, 2, … the estimators in (2) – (4) generalize to 
estimate k  as follows: 
 

 1
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   (7) 

 
In this research, the main objective is to study the statistical properties; 

namely the mean, variance as well as the distribution of various estimators of k . 
This study is restricted to the AR(1) model as (1) along various distributions for 
the WN process. Therefore, it focuses on the robustness of estimators above 
subject to the distribution of the WN process. 

In the literature of time series analysis, the area of robust inference has 
found considerable attention. Denby and Martin (1979) proposed the generalized 
M-estimates for autoregressive processes and Bustos and Yohai (1986) took the 
auto-covariance structure of time series into consideration when robustifying the 
estimators. Zieliński (1999) investigated the median–unbiased estimation of the 
stationary AR(1) process. Molinares, et al. (2009) investigated robust estimation 
in long-memory processes when the data contains additive outliers.  

Besides, several articles focused on the estimation of ACF of stationary time 
series including the work of Berkoun, et al. (2003) mentioned above. Smadi, et al. 
(2009) and Smadi (2013) generalized the work of Berkoun, et al. (2003) to 
periodic AR models. Alternatively, Hassani (2010) found that the distributions of 
a set of sample autocorrelations are neither independent nor identically distributed. 
This finding implies that the result of diagnostic check and model building based 
on kr , especially in the presence of some suspect data can be quite misleading. 
Kan and Wang (2010) provide an algorithm for evaluating the exact distribution 
of the sample autocorrelations. 

Some properties of the ACF of AR(1) model 

Let { }tX  be a stationary time series, then the auto-covariance function (ACVF) 
and the autocorrelation function (ACF) depend on time lag only. Based on a 
realization  1, , nX X , the moment estimator of k  is given by kr  defined in (5) 
above (Wei, 2006). For large n, kr  is approximately normally distributed with 
mean k . Also, for a stationary Gaussian process, based on Bartlett (1946), 
Brockwell & Davis (2002) have shown that for k > 0 and k + j > 0, 
 

     
1

1( , ) 2 2k k j i k i k i k j k j k j k
i

Cov r r
n

       


    



        (8) 
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which in turn for j = 0 reduces to 
 

  
2

1

1( ) 2k i k i k i k
i

Var r
n

   


 



     (9) 

 
For more details on properties of kr  for stationary time series, see Wei (2006). 

Now, if { }tX  follows the zero-mean AR(1) Model, as (1) with c = 0 and 
1  , then k

k  , k =0, 1, 2, … and (8) reduces to 
 

                      ( )kVar r     
2 22 1 2

1 1

1 k
k i i k k

i i kn
     


 

  

      

 

     
12 2 2 21 1 1 1 2 .k kk

n
   



       (10) 

 
A further approximation of (10) gives for k = 1 (Cryer & Chan, 2008) 
 

 
21( ) .kVar r

n


   (11) 

 
So that the closer   is to 1  the more accurate the estimate of 1( )   becomes. 
For large values of k, the terms in (10) involving k  could be ignored so that 
 

 
2

2

1 1( ) .
1kVar r

n




 
  

 
  (12) 

 
In Figure 1, nVar(rk) is sketched based on (10) for some selected values of ϕ. 

Notice in this figure that for k = 1, as |ϕ| gets larger, Var(rk) is decreasing. 
Therefore, with stronger autocorrelation among the data, the moment estimator r1 
is more accurate. The opposite happens for k ≥ 1, that is as |ϕ| approaches one, 
Var(rk) becomes larger. 
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Figure 1. nVar(rk) for the AR(1) model for several values of ϕ and k. 
 
 
 

For the AR(1) model, (8) can also be simplified for general 0 < k < k + j as 
(Cryer & Chan, 2008) 
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In particular, 
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Figure 2 shows |Corr(r1,r2)| for some selected values of ϕ. This figure shows 

a stronger association between r1 and r2 when |ϕ| is closer to one. More precisely, 
for the AR(1) time series data, when ϕ ≈ 1(ϕ ≈ −1) a large positive (negative) r1 is 
expected to be followed by a relatively large positive (positive) r2. This agrees 
with the theoretical ACF of AR(1) model, ρk = ϕk, which is alternating for 
negative values of ϕ. 

Notice from the discussion above, that for stationary time series data, rk is 
asymptotically unbiased. The formulas for the variance and covariances among 
various sample autocorrelations depend mainly on the theoretical ACF of the 
model and they are again asymptotic. In the following example, using Monte-
Carlo simulation, the bias and MSE of rk for the AR(1) model are studied and the 
accuracy of the asymptotic variance of rk given by (11) and (12) is investigated. 
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Figure 2. Asymptotic Corr(r1,r2) for AR(1) model for several values of ϕ. 
 
 

Example 1 
The accuracy of the formulas for Var(rk) given in (11) and (12) are now studied. 
Assuming the zero-mean AR(1) model with ϕ = −0.8, −0.5, −0.1, 0.1, 0.5, 0.8, 
one thousand realizations each of length n = 30,100 are generated from this model 
assuming that the WN process is iid N(0,1), then the sample ACF for lags 

1, ,5k   is computed, then the sample MSE are computed (in terms of ρ1 and its 
estimates r1(1),…,r1(1000)) as 
 

   
1000 2

1 1
1

1 .
1000 i

i
MSE r



    

 
finally Rel−MSE = MSE/Var(rk) are computed, where (11) and (12) are used for 
Var(rk), which in turn are sketched in Figure 3. The simulations are carried out 
using the R-package through the R-command sim.ARIMA 

In view of Figure 3, it can be seen that Rel−MSE is close to one (which 
means that the asymptotic formulas in (11) and (12) become more accurate) when 
ϕ is close to zero and n is large. In addition, it seems that (11) underestimates the 
actual variance for r1. For k ≥ 2, the asymptotic variance is defined by (12). For r2 
with n = 100 this formula again underestimates the actual variance but, 
unexpectedly, not true for n = 30. For larger time lags, it is seen that Rel−MSE < 
1, so that (12) overestimates the actual variance of rk. Therefore, in practice, (11) 
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and (12) should be used with caution as they may produce poor results depending 
on the type and strength of autocorrelation among data and the realization length. 
 
 

 
 
Figure 3. The Rel−MSE of rk for the AR(1) model for various values of ϕ (n = 30: ~, 
n=100: ---) 
 
 

The empirical distributions of some robust estimators of ρ1 
for the AR(1) model 

An estimation procedure is said to be robust if it is little influenced by blatant 
departures from assumptions. Such procedures aim to minimize the influence of 
outliers or departure from model assumptions while performing at the same time 
as well as the optimum methods when assumptions hold (Sprent and Smeeton, 
2001).  

In (3) and (4), two robust estimators of ρ1 are defined due to Berkoun, et al. 
(2003) which have been generalized to higher time lags in (6) and (7). Recall that 
ρ1 is of particular importance specially in the AR(1) model for which ρ1 = ϕ. This 
value determines the strength and pattern of all remaining autocorrelations. Also, 
in many routine statistical analyses, as for instance in testing for autocorrelated 
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errors in regression analysis, only ρ1 is usually investigated. The following 
example investigates the distributions of various estimators of ρ1 for the AR(1) 
model. 

Example 2 
Assuming the zero-mean AR(1) model with WN following N(0,σ2), then using 
Monte-Carlo simulation the distributions of *

1 1,r   and 1p  for 
20.1,0.8, 100 and 1n     are compared. An r-code is written by the authors 

to accomplish this job. The empirical distributions of various estimators are 
obtained based on one thousand repetitions using the r-command (density). 
Results are presented graphically in Figure 4. This figure shows that the empirical 
distributions of various estimators are unimodal and nearly symmetric. The 
distribution of *

1  seems closer to normality than other distributions. As ϕ is 
increased from 0.1 to 0.8, the location of various distributions is shifted up 
towards 0.8. Also, the variability in the distributions of r1 and *

1  is decreased 
more than that of the second robust estimator, 1p . 
 
 

 
 
Figure 4. The empirical pdf of three estimators of ρ1 for AR(1) model; for ϕ = 0.1 (left) 
and ϕ = 0.8 (right), n = 100 and σ2 = 1 
 
 
 

In traditional time series analysis, it is usually assumed that the WN terms in 
the AR(1) model are iid N(0,σ2), as above. Therefore, it is crucial to explore the 
robustness of various estimators of the ACF if the WN terms are not normal. In 
the following example the empirical distributions of various estimators for ρ1 in 
the AR(1) model are investigated assuming that the WN terms follow the normal, 
student-t, Cauchy and exponential. The choice of the student-t and Cauchy 
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distributions was to study the effect of tail-heaviness of WN distribution whereas 
the exponential distribution is used to study the effect of skewness of WN 
distribution. 

Example 3 

 

 

 
 
Figure 5. Empirical distributions of *

1 1,r   and 1p of AR(1) model; for ϕ = 0.1, for various 
error distributions. 
 
 
Assuming the zero-mean AR(1) model with WN following N(0,1), t5, Cauchy 
(0,1), and (the zero-mean) Exp*(1) (that is, the ordinary exponential distribution 
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with mean 1 but shifted left by one unit). Again, using Monte-Carlo simulation 
the distribution of *

1 1,r   and 1p  for ϕ = 0.1,0.8, n = 30,100 are compared. The 
empirical distributions of various estimators is obtained based on 1,000 
repetitions using the r-command (density). The results are summarized in Figure 5. 
Also, the p-values of two tests of normality for the empirical distributions, namely 
the Shapiro-Wilk test (SWT) and the Anderson-Darling test (ADT), are presented 
in Table 1. To perform these tests, the R-commands shapiro.test(X) and ad.test(x) 
were used which belong, respectively to the stats and nortest R-packages. A 
detailed account of these tests and other tests of normality is found in Thode 
(2002). 
 
 
Table 1. Normality tests of the distributions of r1, *

1  and 1  of AR(1) model; for 
ϕ=0.1,0.8, n=30,100, along various error distributions. 
 

 N  T 

 ϕ  n    1r   *
1    1       1r   *

1    1    

0.1 
30  0.0700 0.0458 2.50E-11  0.5264 0.9339 5.61E-12 

 0.0076 0.0259 2.20E-16  0.5338 0.9008 2.20E-16 

100  0.4270 0.7529 7.76E-11  0.3117 0.7291 2.20E-16 

 0.2414 0.7529 1.39E-15  0.6098 0.9912 2.20E-16 

0.8 
30  2.20E-16 2.20E-16 2.20E-16  2.20E-16 2.20E-16 2.20E-16 

 2.20E-16 2.20E-16 2.20E-16  2.20E-16 2.20E-16 2.20E-16 

100  9.23E-12 5.63E-09 1.96E-07  1.28E-11 1.19E-08 7.80E-07 
  6.05E-14 5.12E-07 2.00E-03   1.06E-13 3.48E-11 2.44E-03 

          
  C  E 

 ϕ  n    1r   *
1    1       1r   *

1    1    

0.1 
30  9.54E-16 2.20E-16 2.20E-16  0.01542 1.21E-05 3.35E-07 

 2.20E-16 2.20E-16 2.20E-16  0.01491 3.02E-05 1.60E-11 

100  2.20E-16 3.41E-15 2.20E-16  6.92E-05 4.12E-05 9.54E-15 

 2.20E-16 2.20E-16 2.20E-16  6.42E-05 7.41E-05 1.43E-15 

0.8 
30  2.20E-16 2.20E-16 2.20E-16  2.20E-16 2.20E-16 2.20E-16 

 2.20E-16 2.20E-16 2.20E-16  2.20E-16 2.20E-16 2.20E-16 

100  2.20E-16 2.20E-16 2.20E-16  3.29E-10 1.74E-13 3.77E-09 
  2.20E-16 2.20E-16 6.57E-15   2.16E-08 3.61E-14 3.47E-06 

 
 

In view of Table 1, it can be seen that the majority of distributions are far 
from normality, especially when the WN distribution is far from normality. The 
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departure from normality is specifically seen for smaller n as well as larger ϕ. The 
normality assumption is validated only with ϕ = 0.1, for *

1 1 and r   along normal 
and t WN distributions. In summary, results indicated that the assumption of 
normality for any of the estimators of ρ1 considered here is mostly invalid. This 
result agrees with those of Hassani (2010). 

As far as Figure 5 is considered, it can be seen that the empirical distribution 
of r1 is not affected by the WN distribution, except the Cauchy case which 
showed a much higher kurtosis than other distributions. This is true for n = 30 and 
100. A nearly similar conclusion is seen for *

1 . For 1p , no significant differences 
are seen, especially for n = 30, among its empirical distributions in terms of WN 
distribution including the Cauchy distribution, whereas all distributions here show 
some positive skewness. In overall, it seems that 1p  is less affected by the change 
of WN distribution as compared to other estimators. 

Bias and MSE for various estimators of ACF of AR(1) with 
Gaussian errors 

Now, go back to the case of normal WN distribution and again the AR(1) 
model. The objective is to study the precision and accuracy of various estimators 
for ρk defined in (5) – (7). Example 1 defined the empirical MSE of r1. Similarly, 
the bias of r1 is defined as 
 

  
1000

1 1( )
1

1 .
1000 i

i
Bias r



    

 
Because interest is in determining the bias and MSE for various time lags and ϕ 
which in turn change the theoretical autocorrelations, the better comparable 
measures are computed, namely the relative bias (RB) and relative root MSE 
(RRMSE) defined as 
 

  
 ˆˆ

B
RB





   

 
and 
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 ˆˆ .

MSE
RRMSE





   

 
 
Table 2. The RB and RRMSE for various estimators of the ACF of AR(1) model. 
 

 

n = 30 
ϕ Est 1 2 3 4 5 

-0.8 

kr   
0.079  0.172  0.232  0.313  0.355  

(0.168) (0.340) (0.485) (0.665) (0.827) 
*
kp  

0.038  0.056  0.078  0.111  0.153  
(0.235) (0.418) (0.626) (0.899) (1.197) 

kp  
0.127  0.176  0.199  0.218  0.244  

(0.331) (0.484) (0.651) (0.871) (1.136) 

-0.5 

kr   
0.062  0.240  0.234  0.565  (0.013) 

(0.301) (0.792) (1.528) (3.131) (5.987) 
*
kp  

0.028  0.081  0.188  0.203  0.013  
(0.494) (1.219) (2.520) (5.219) (11.136) 

kp  
0.201  0.282  0.355  0.394  0.262  

(0.561) (1.061) (2.043) (4.089) (8.723) 

-0.1 

kr   
(0.268) 2.610  (20.900) 287.000  (1960.000) 
(1.755) (17.020) (168.500) (1711.700) (16763.100) 

*
kp  

(0.040) (0.950) 9.000  137.000  1080.000  
(2.888) (27.530) (291.900) (3108.100) (31686.000) 

kp  
0.213  (0.130) 6.800  130.000  300.000  

(2.211) (22.270) (226.100) (2370.700) (25059.900) 

0.1 

kr   
0.442  4.180  47.100  295.000  3280.000  

(1.732) (17.970) (175.500) (1702.900) (17406.900) 
*
kp  

0.023  0.790  17.000  (147.000) (470.000) 
(2.827) (29.780) (302.700) (3028.200) (32542.300) 

kp  
0.247  0.450  11.400  (138.000) (920.000) 

(2.112) (22.270) (230.000) (2267.200) (24819.300) 

0.5 

kr   
0.209  0.526  0.966  1.634  2.906  

(0.388) (0.932) (1.787) (3.256) (6.336) 
*
kp  

0.060  0.076  0.198  0.195  0.221  
(0.507) (1.257) (2.747) (5.445) (11.250) 

kp  
0.218  0.270  0.289  0.350  0.346  

(0.562) (1.077) (2.172) (4.443) (9.230) 

0.8 

kr   
0.200  0.395  0.582  0.780  0.986  

(0.272) (0.508) (0.721) (0.945) (1.170) 
*
kp  

0.035  0.073  0.094  0.105  0.127  
(0.225) (0.428) (0.657) (0.891) (1.242) 

kp  
0.129  0.182  0.197  0.214  0.224  

(0.329) (0.497) (0.673) (0.863) (1.134) 
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Table 2, cont. 
 

 
 n = 100 

ϕ Est 1 2 3 4 5 

-0.8 

kr   
0.026  0.056  0.077  0.104  0.119  

(0.086) (0.176) (0.273) (0.387) (0.514) 
*
kp  

0.012  0.024  0.027  0.024  0.011  
(0.127) (0.243) (0.363) (0.504) (0.680) 

kp  
0.110  0.183  0.237  0.245  0.251  

(0.229) (0.357) (0.465) (0.555) (0.669) 

-0.5 

kr   
0.013  0.064  0.068  0.190  0.061  

(0.173) (0.458) (0.933) (1.986) (3.945) 
*
kp  

0.006  (0.001) 0.000  0.061  (0.125) 
(0.268) (0.655) (1.353) (2.889) (5.778) 

kp  
0.237  0.352  0.414  0.411  0.346  

(0.381) (0.632) (0.990) (1.893) (3.592) 

-0.1 

kr   
(0.037) 0.970  (10.800) 124.000  (720.000) 
(0.964) (10.200) (100.000) (1000.000) (10148.900) 

*
kp  

0.029  0.680  (8.800) (17.000) 520.000  
(1.565) (15.750) (154.600) (1486.600) (16522.700) 

kp  
0.414  0.640  (4.700) (20.000) (10.000) 

(1.058) (9.327) (93.270) (866.000) (9434.000) 

0.1 

kr   
0.158  1.360  14.000  102.000  1460.000  

(0.990) (10.050) (97.470) (964.400) (10148.900) 
*
kp  

0.046  0.100  (2.700) 21.000  470.000  
(1.533) (16.210) (156.800) (1612.500) (16673.300) 

kp  
0.438  0.330  (3.700) (6.000) 80.000  

(1.058) (9.434) (96.950) (927.400) (9848.900) 

0.5 

kr   
0.053  0.141  0.278  0.549  0.986  

(0.183) (0.478) (1.002) (1.992) (3.880) 
*
kp  

0.008  0.009  (0.010) 0.122  0.064  
(0.271) (0.650) (1.415) (2.920) (5.831) 

kp  
0.242  0.352  0.397  0.406  0.480  

(0.381) (0.620) (1.024) (1.979) (3.677) 

0.8 

kr   
0.052  0.108  0.168  0.230  0.302  

(0.098) (0.200) (0.309) (0.431) (0.574) 
*
kp  

0.009  0.010  0.029  0.018  0.014  
(0.123) (0.228) (0.348) (0.473) (0.660) 

kp  
0.115  0.190  0.235  0.256  0.275  

(0.229) (0.347) (0.451) (0.530) (0.639) 
 

Therefore, assuming the same model and settings in Example 1, and based 
on one thousand realizations, the RB and RRMSE for *,  and k k kr    are computed 
and then summarized in Table 2. The main advantage of adopting RB and 
RRMSE is that they can be used to compare any two cases (cells) within Table 2, 
regarding the value of ϕ, n or estimator.  
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The first conclusion from Table 2 is that, for fixed ϕ and n the RB and 
RRMSE increase for all estimators as the time lag k is increasing. The RB and 
RRMSE also increase for all estimators as |ϕ| approaches zero. Thus, it may be 
concluded that with stronger autocorrelation among data, all estimators perform 
better than for weaker autocorrelation. It can also be seen that the RB and 
RRMSE for negative values of ϕ are slightly smaller than their corresponding 
positive values.  

As the sample size increases, it can be seen that the RB and RRMSE are 
decreasing for * and k kr  . For *

k , the RRMSE is decreasing along n, but the RB 
shows no clear pattern. 

When |ϕ| is large, no big differences are seen in RB and RRMSE for various 
estimators, while discrepancies appear as |ϕ| gets closer to zero. In overall, it 
seems that *

k  is better than other estimators in terms of RB and kr  is better than 
other estimators in terms of RRMSE.  

Conclusions 

This study considered the statistical properties of the ACF of the AR(1) model, 
beginning with instigating some asymptotic formulas for the variances and 
covariance for the sample ACF (rk) for AR(1) model. It was noticed that some 
asymptotic formulas for Var(rk) are not accurate, especially for strong 
autocorrelation (|ϕ| closer to one).  

Later, the empirical distributions for three estimators of the first lag 
autocorrelation, *

1 1 1,  and r   , were studied, where the later two estimators are two 
robust estimators of 1 . These distributions are investigated for various error 
distributions. It is noticed that the empirical distributions of *

1 1 and r   are only 
affected when the error distribution is Cauchy, while the third estimator 1  is 
found more robust in this regard. Conversely, it is seen that the majority of 
empirical distributions are far from normality for all estimators. 

Earlier the accuracy and precision of higher lags estimators of k  , were 
studied, namely *,  and k k kr    for the AR(1) model with normal errors. It is seen 
that, all estimators were more accurate and precision for |φ| closer to one and 
small time lags. Besides, the RB and RRMSE dramatically increase when ϕ is 
closer to zero and large time lags. In overall, kr  perform better than other 
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estimators in terms of RRMSE while *
k  is better than other estimators in terms of 

RB. 
Finally, this study indicates that the moment estimator of the ACF of AR(1) 

model is an important tool in the identification and estimation of such models. It 
seems that it behaved well when the error of distributions is non-normal. However, 
the accuracy and precision of the moment ACF may suffer for weaker 
autocorrelations among data and higher time lags. It seems that more effort is 
needed following the current work, either regarding the model type of data or 
improving the accuracy and precision of the sample ACF of data. 
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The Linear Failure Rate Distribution (LFRD) is considered. The graphs of its probability 
density function are examined for selected parameter combinations. Some of them are 
similar to the well-known exponential distribution. Incidentally exponential distribution 
is one of the two component models of the LFRD model. In view of the simpler form of 
exponential model as applicable in inference, looking at the frequency curves of LFRD, a 
test statistic is proposed based on ratio of likelihood functions containing the standard 
forms of the density functions of both LFRD and Exponential to discriminate between 
LFRD and exponential models. The critical values and the powers of the test statistic are 
developed. 
 
Keywords: Linear failure rate distribution, likelihood ratio type, test statistic, power  
 

Introduction 

In reliability studies, series systems are one of many popular system 
configurations. If a series system has two components having independently 
distributed lifetime random variables with failure rate functions ℎ1(𝑥) and ℎ2(𝑥) 
then the reliability of the series system is 
 

     1 20
( )

x
R x exp h t h t dt   

     (1) 

 
The corresponding cumulative distribution function, failure density function 

and failure rate function are respectively given by 
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     1 20
( ) 1

x
F x exp h dt h tt    

     (2) 

 

 ( ) ( )df x F x
dx

   (3) 

 

 ( )( )
( )

f xh x
R x

   (4) 

 
Taking 1 2( ), ( )h x h x , as the failure rates of the exponential and Rayleigh 

distributions in (1) results in the most commonly used Linear Failure Rate 
Distribution (LFRD). More specifically, if 1( )h x a  and 2( )h x bx then the 
failure density function, cumulative distribution function, hazard or failure rate 
function of LFRD is: 
 

  

2

2( ) ; 0, 0, 0
bxax

f x a bx e x a b
 

   
        (5) 

 

 
2

2( ) 1 ; 0, 0, 0
bxax

F x e x a b
 

   
        (6) 

 
 ( )h x a bx    (7) 

 
Bain (1974) seems to be one of the earliest works that has touched upon 

LFRD as a model useful for analysis in life testing. Ananda Sen (2005) gave a 
detailed review along with the distributional characteristics and inferential aspects 
of LFRD. Some basic features of LFRD are as follows: 
 
Mean:  
 

 
2

22 1 (
a

b ae
b b


 
 

  
 

  (8) 

 
 

where   denotes the cumulative distribution function of a standard normal variate. 
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Variance:  
 

  2 22 1 a
b

       (9) 

 
Mode: 
 

  21 aM I a b
b b

 
    
 

  (10) 

 
where I(.) denotes indicator function. 
 
100 pth Percentile: 
 

  
2

1 2log(1 )a p aF p
b b b

  
   

 
  (11) 

 
and hence median is 
 

 
2 2log(0.5)

d
a aM
b b b

 
   

 
  (12) 

 
In biological sciences this is called 50% survival time denoted by t50. 
 
Recurrence relation for raw moments is 
 

 1 ' '
1 2;   0,1,2...

1 2k k k
a b k

k k
     

 
  (13) 

 
The second, third and fourth non-central moments are  
 

  '
2

2 1 a
b

     (14) 

 

  '
3

3 1a a
b b

  
 

   
 

  (15) 
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'
4 2 3 2 3

8 4 12 4a a a
b b b b

 
 

    
 

  (16) 

 
where µ is the mean of the distribution given by (8).  

It can be seen from (10) that LFRD has a non-zero mode only if its 
parameters a and b satisfy the relation 𝑎2 < 𝑏 with a> 0, b> 0. 

The graphs of LFRD density function for some combinations of the 
parameters a, b are shown in the following figures. 
 
 

 
 
Figure 1. LFRD Density function when  
a = 2.5, b = 0.5 
 

 
 
Figure 3. LFRD Density function when  
a = 3.5, b = 1 

 
 
Figure 2. LFRD Density function when  
a = 3, b = 0.5 
 

 
 
Figure 4. LFRD Density function when  
a = 5, b = 0.5 
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Figure 5. LFRD Density function when a = 5, b = 1 
 
 

 
In Figures 1 – 5, the combinations of a and b are bound by a2 > b, accordingly the 
mode is zero and the graphs are similar to that of exponential distribution. These 
characteristics of LFRD and its component distribution-exponential, motivated us 
to study the discriminatory aspect between LFRD and exponential through 
statistical test procedures. Such studies of discriminatory problems between 
probability models are made by Gupta, et al. (2002), Gupta and Kundu (2003a), 
Gupta and Kundu (2003b), Kundu and Gupta (2004a, 2004b), Kundu and 
Manglick (2004), Kundu, et al. (2005), Kundu and Manglick (2005), Kundu 
(2005), Kundu and Raqab (2007), Arabin and Kundu (2009), Arabin and Kundu 
(2010), Arabin and Kundu (2012a), Arabin and Kundu (2012b) and the references 
therein. The rest of the article is organised as follows. The methodology of the 
proposed LR type criterion for testing is described in the next section. The critical 
values of the test statistic are presented in following section. The aspects of power 
of the proposed test statistic are given in the final section, with a comparative 
study. 

LR Type Methodology 

Consider LFRD as a null population for example, P0, the exponential model is 
regarded as an alternative population such as P1. Let 1 2, , , nx x x  be a given 
random sample of size n. Let L1 denote the value of the likelihood function at the 
sample 1 2, , , nx x x  with reference to the population P1. L1 is obtained as follows. 
Considering 1 2, , , nx x x  as a sample from P1 with some method of point 
estimation using the P1 as the mathematical model, substituting the values of the 
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estimates so obtained and the sample observations 1 2, , , nx x x  in L1 results in a 
value of L1 from the sample 1 2, , , nx x x  with respect to P1. Using the sample  

1 2, , , nx x x  with P0 as the model one can get estimates of the parameters of P0 

thereby getting the value of the likelihood function in relation to P0 at 1 2, , , nx x x  
the parameters of P0 as estimated using 1 2, , , nx x x . L0 is thus the value of 
likelihood function substituting the same sample 1 2, , , nx x x  and the estimates of 
P0. Thus for the same sample 1 2, , , nx x x , two values of likelihood function with 
respect to P0 as well as P1 were obtained. 

Generally in likelihood ratio test procedure the MLEs of the parameters in 
L1 and L0 are substituted thereby getting the value of L1/L0 at a given samples 

1 2, , , nx x x  with the parameters of P1, P0 estimated by ML method using the 
respective models. Because likelihood is also joint probability of the sample 

1 2, , , nx x x , had the sample belonged to P0 the ratio L1/L0 tends to be very small. 
If it is the other way—that is the sample is truly from P1—then the ratio L1/L0 
tends to be very large. Hence the ratio L1/L0 can be a criterion to test whether the 
sample 1 2, , , nx x x  actually belongs to the population P1 or P0. If L1/L0 is very 
small it may be stated that the sample belongs to P0. Thus the ratio L1/L0 decides 
the sample to have belonged to either P1 or P0. It is therefore necessary to get 
critical values for L1/L0 to decide whether a given sample belongs to P1 or P0. In 
turn this leads to the knowledge of percentiles of the sampling distribution of 
L1/L0. In the proposed method of testing LFRD vs. exponential, point estimates of 
the parameters were used in both null and alternative populations using any other 
point estimation instead of the classical ML method, because MLEs of LFRD 
parameters are not analytically available. Similar testing processes were adopted 
by other researchers (Gupta & Kundu, 2003a; Kundu, et al., 2005). The proposed 
method is named the LR Type Criterion. In the discussion, the methods of point 
estimation that are considered are Least Squares estimators, Percentiles estimators, 
and Weighted Least Squares Estimators. The sampling distribution of L1/L0 is not 
mathematically tractable. The percentiles of L1/L0 were obtained through Monte-
Carlo simulation as described in the following section. For comparison purposes, 
the following parametric combinations were chosen. 
 
 
  



LIKELIHOOD RATIO TYPE TEST FOR LINEAR FAILURE RATE 

180 

Table 1. Parametric combinations chosen for the study. 
 

Least Squares Estimators  Percentiles Estimators  
Weighted Least Squares 

Estimators 
a b   a b   a b 

0.5 4.0  0.5 4.0  0.5 4.0 
2.5 0.5  2.5 0.5  2.5 0.5 
3.0 0.5  3.0 0.5  3.0 0.5 
3.5 1.0  3.5 1.0  3.5 1.0 
5.0 0.5  5.0 0.5  5.0 0.5 
5.0 1.0   5.0 1.0   5.0 1.0 

 

LR Type Test Statistic – Critical Values 

A random sample of size n is generated from LFRD (P0) with parameter 
combinations as specified in the Table 1. Using that sample the parameters of 
LFRD are estimated by least square method / percentile method / weighted least 
square method given method of estimation. The estimates so obtained are 
substituted in P0 in the respective places of the parameters along with the sample 
observations used to get those estimates thus having an estimated value of L0. 
Using the same sample, the parameters appearing in P1 are estimated by a least 
square method / percentile method / weighted least square method in succession 
using the model P1 method suitable for P1. Here because P1 is an exponential 
distribution the MLEs of parameters of P1 were calculated using formulae and 
expressions suitable for P1. The estimates of the parameters of P1 so obtained are 
then substituted in P1 along with the sample observations used to get the estimates. 
Thus estimated likelihood function L1 are obtained by three separate methods. The 
ratio L1/L0 for different samples with the same parameter combinations as 
described in the previous section is calculated for each sample. This procedure 
was repeated 10,000 times for accuracy and precision. Among these 10,000 
values, various specified cut off points (percentiles) would form the critical values 
of L1/L0 useful for testing. These are given below in the following Tables 2 and 3, 
for only the parameters (a=2.5, b=0.5), (a=3, b=0.5). Results of other parameter 
combinations are available from the authors. 
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Table 2a: Percentiles of L1/L0 :: P0: LFRD vs P1: EXP, Least Square Estimation, (a=2.5, 
b=0.5) 
 

 
Least Square Estimation 

n 5 10 15 20 
0.00100 0.05555 0.00866 0.00641 0.00495 
0.00135 0.05579 0.00980 0.00700 0.00551 
0.00270 0.05802 0.01389 0.01311 0.01005 
0.00500 0.06338 0.01944 0.01997 0.01839 
0.01000 0.07127 0.03196 0.03634 0.04059 
0.02500 0.09607 0.07852 0.09572 0.09172 
0.05000 0.15049 0.17091 0.17663 0.16909 
0.10000 0.27829 0.32933 0.33165 0.32362 
0.90000 1.45170 1.30077 1.31607 1.35776 
0.95000 2.36966 1.56559 1.55775 1.59782 
0.97500 4.97214 2.00069 1.86525 1.85212 
0.99000 20.67554 3.27230 2.50671 2.34857 
0.99500 89.41741 6.02098 3.90709 3.01258 
0.99730 206.88170 10.79545 5.50735 4.79198 
0.99865 938.89170 20.64189 19.63486 12.46792 
0.99000 1441.98200 40.78289 23.69878 36.68090 

 
 
Table 2b: Percentiles of L1/L0 :: P0: LFRD vs P1: EXP, Weighted Least Square Estimation, 
(a=2.5, b=0.5) 
 

 
Weighted Least Square Estimation 

n 5 10 15 20 
0.00100 0.05558 0.00865 0.00560 0.00541 
0.00135 0.05639 0.00958 0.00619 0.00693 
0.00270 0.06081 0.01370 0.01244 0.00971 
0.00500 0.06562 0.01851 0.01819 0.01855 
0.01000 0.07279 0.03215 0.03719 0.04195 
0.02500 0.09342 0.07797 0.09896 0.09637 
0.05000 0.14239 0.16794 0.17843 0.18065 
0.10000 0.26167 0.32321 0.33875 0.34647 
0.90000 1.42631 1.28926 1.36464 1.46510 
0.95000 2.39327 1.58677 1.65037 1.76804 
0.97500 5.02094 2.18780 2.14986 2.28297 
0.99000 19.63531 3.80238 4.02971 3.72403 
0.99500 88.76622 9.38806 9.31526 8.65864 
0.99730 222.91150 19.79771 28.90935 27.69206 
0.99865 825.53910 58.24844 314.41790 122.53770 
0.99000 1537.66000 125.22960 826.64140 388.92530 
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Table 2c: Percentiles of L1/L0 :: P0: LFRD vs P1: EXP, Percentile Estimation, (a=2.5, 
b=0.5) 
 

 
Percentile Estimation 

n 5 10 15 20 
0.00100 0.07292 0.01208 0.00611 0.00468 
0.00135 0.07628 0.01361 0.00718 0.00559 
0.00270 0.08055 0.01710 0.00989 0.00979 
0.00500 0.08669 0.02131 0.01592 0.01877 
0.01000 0.09456 0.03308 0.03379 0.03679 
0.02500 0.12043 0.07695 0.08074 0.07452 
0.05000 0.16311 0.15190 0.15107 0.15069 
0.10000 0.24330 0.28240 0.28224 0.28175 
0.90000 2.08305 1.52860 1.46043 1.44967 
0.95000 4.89041 2.23917 1.97528 1.82456 
0.97500 14.79908 4.16817 3.02435 2.50522 
0.99000 123.33970 19.42763 7.95037 5.62689 
0.99500 748.87240 71.67762 31.90508 13.60665 
0.99730 2710.38500 246.98620 100.23880 55.98616 
0.99865 71595.25000 623.14900 454.89490 233.64480 
0.99000 190377.10000 897.07890 952.26130 833.10900 

 
 
Table 3a: Percentiles of L1/L0 :: P0: LFRD vs P1: EXP, Least Square Estimation, (a=3.0, 
b=0.5) 
 

 
Least Square Estimation 

n 5 10 15 20 
0.00100 0.05603 0.01062 0.00596 0.00513 
0.00135 0.05691 0.01139 0.00662 0.00634 
0.00270 0.06038 0.01314 0.01177 0.01171 
0.00500 0.06443 0.02129 0.02265 0.02324 
0.01000 0.06995 0.03725 0.04223 0.04346 
0.02500 0.08877 0.09321 0.09890 0.09904 
0.05000 0.13725 0.17716 0.17834 0.18288 
0.10000 0.26580 0.33410 0.34319 0.33358 
0.90000 1.43639 1.33367 1.35457 1.37469 
0.95000 2.31841 1.62922 1.59357 1.61963 
0.97500 4.98869 2.14252 1.94302 1.93538 
0.99000 21.02987 4.00168 2.80106 2.50630 
0.99500 80.51004 8.20346 3.78306 3.15834 
0.99730 252.88440 20.03408 6.46744 3.97503 
0.99865 3116.18000 71.98767 11.33482 6.36183 
0.99000 59094.28000 179.53870 17.87834 7.78476 
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Table 3b: Percentiles of L1/L0 :: P0: LFRD vs P1: EXP, Weighted Least Square Estimation, 
(a=3.0, b=0.5) 
 

 
Weighted Least Square Estimation 

n 5 10 15 20 
0.00100 0.05647 0.01066 0.00576 0.00664 
0.00135 0.05761 0.01104 0.00669 0.00795 
0.00270 0.06264 0.01395 0.01140 0.01456 
0.00500 0.06704 0.02150 0.02225 0.02212 
0.01000 0.07299 0.03735 0.04243 0.04817 
0.02500 0.08761 0.08531 0.09748 0.10723 
0.05000 0.12932 0.17186 0.18351 0.19496 
0.10000 0.25456 0.32422 0.34730 0.36366 
0.90000 1.42080 1.31768 1.38883 1.49770 
0.95000 2.32665 1.65014 1.67716 1.86482 
0.97500 4.88276 2.28681 2.14252 2.36452 
0.99000 20.92875 4.86321 3.67318 3.89300 
0.99500 72.31535 11.28078 6.79731 6.48627 
0.99730 281.68090 32.09840 21.00146 24.05159 
0.99865 2668.58100 204.66170 82.91345 187.71560 
0.99000 60999.62000 313.55800 123.97500 744.18340 

 
 
Table 3c: Percentiles of L1/L0 :: P0: LFRD vs P1: EXP, Percentile Estimation, (a=3.0, 
b=0.5) 
 

 
Percentile Estimation 

n 5 10 15 20 
0.00100 0.07245 0.01317 0.00645 0.00460 
0.00135 0.07337 0.01435 0.00712 0.00557 
0.00270 0.08110 0.01997 0.01176 0.01181 
0.00500 0.08790 0.02728 0.01912 0.02171 
0.01000 0.09718 0.04102 0.03919 0.03662 
0.02500 0.11891 0.08040 0.08506 0.08822 
0.05000 0.16062 0.15065 0.15994 0.16028 
0.10000 0.25323 0.28654 0.30645 0.29008 
0.90000 2.06479 1.54506 1.49559 1.46275 
0.95000 5.04268 2.27774 1.96774 1.85958 
0.97500 14.98131 4.37480 3.03259 2.57786 
0.99000 95.64787 17.19165 7.48988 4.85088 
0.99500 765.44120 76.76962 19.14950 14.15270 
0.99730 4913.02900 229.08730 59.52394 70.34382 
0.99865 343286.90000 526.59070 325.89340 280.56010 
0.99000 2031568.00000 1125.17300 478.65110 711.98170 
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LR Type Test Statistic – Power 

The LR type statistic suggested would be meaningful only if it is able to 
distinguish between the null and alternative populations. As is generally 
considered, the level of significance was fixed at 0.05. The critical value of L1/L0 
corresponding to the level of significance 0.05 is (corresponding to the percentile 
at 0.95) identified from the relevant portion of Tables 2 and 3. 

10,000 random samples of size each n = 5 (5) 20, from the alternative 
population (exponential) are generated. The MLE (reciprocal of sample mean) of 
the parameter of the alternative population, the individual sample values are 
substituted in L1 to get the value of L1. Using the same sample the value of L0 as 
described in the previous section is also computed in order to get 10,000 values of 
L1/L0 for a given sample size, for a given parametric combination and for a given 
method of point estimation applied to the parameters of P0. The proportion of 
values of L1/L0 that exceeded the critical value (c0) out of 10,000 is computed and 
is considered as the power of the test statistic at level of significance 0.05.  
 
 
Table 4. Powers of LR Test Criterion at α = 0.05 Parameter Estimates Using P.E., L.S.E., 
W.L.S.E. Methods 

 
Estimation Method 

 Percentile Least Squares Weighted Least Squares 
Parameter 
Combinations n=5 n=10 n=15 n=20 n=5 n=10 n=15 n=20 n=5 n=10 n=15 n=20 

a=2.5, b=0.5 0.0539 0.0601 0.0606 0.0729 0.0598 0.0692 0.0735 0.0737 0.0587 0.0672 0.0646 0.0697 

a=3, b=0.5 0.0516 0.0585 0.0608 0.0704 0.0612 0.0619 0.0676 0.0700 0.0608 0.0607 0.0609 0.0599 

a=3.5, b=1 0.0534 0.0586 0.0613 0.0726 0.0632 0.0714 0.0740 0.0786 0.0621 0.0668 0.0806 0.0678 

a=5, b=0.5 0.0505 0.0500 0.0533 0.0608 0.0581 0.0570 0.0592 0.0599 0.0589 0.0559 0.0525 0.0543 

a=5, b=1 0.0505 0.0540 0.0549 0.0606 0.0920 0.0639 0.0645 0.0619 0.0571 0.0613 0.0534 0.0589 

a=0.5, b=4 0.0517 0.1126 0.3692 0.6813 0.1987 0.4105 0.6137 0.7472 0.2018 0.0613 0.5280 0.6024 

 
 

A large value of the power shows that the test statistic is able to distinguish 
between the null and alternative populations. A small value of the power would 
show the indistinguishability between P1 and P0 as decided by LR type test 
statistic. The powers so obtained are given in Table 4, treated separately for each 
method of estimation at a specified level of significance 0.05. 

The tabulated power values are very poor touching a maximum of 0.092 at 
n=5, a=5, b=1. These recorded powers show that the LR type test statistic is not 
able to discriminate between LFRD and exponential at all the values of n and the 
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respective parametric combinations across the methods of estimation, except the 
last row of each table. It shows that exponential distribution can be used as an 
alternative for LFRD without much loss whereas the last row of each table shows 
that LFRD and exponential stand apart from each other for a=0.5, b=4. It is 
therefore concluded that the simple and powerful inferential tools available for 
exponential may be used for LFRD also. The discrimination between LFRD and 
exponential is clear as evident from the last row of each table. 
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The problem of non-response in double (or two phase) sampling is dealt with combined 
ratio, product and regression estimators. Expressions of bias and MSE for these 
estimators are obtained. Comparisons of a proposed strategy with a usual unbiased 
estimator and other estimators are carried out and results obtained are illustrated 
numerically using an empirical sample. 
 
Keywords: Study variable, auxiliary variable, bias, mean squared error, non-
response 
 

Introduction 

In surveys regarding human populations, it is common for some information to be 
missing, even after some callbacks. Hansen and Hurwitz (1946) considered the 
problem of non-response while estimating a population mean by taking a sub 
sample from the non-respondent group and proposed an estimator by considering 
the information available from response and non-response groups. In estimating 
population parameters such as the mean, total or ratio, product and regression, 
sample survey experts sometimes use auxiliary information to improve the 
precision of estimates. Using Hansen and Hurwitz’s (1946) technique, several 
authors including Cochran (1977), Rao (1986, 1987), Khare and Srivastava (1993, 
1995, 1997), Okafor and Lee (2000), Lundström and Särndal (2001), Särndal and 
Lundström (2005), Tabasum and Khan (2004, 2006), Singh and Kumar (2008, 
2009a, b, 2010), and Singh, et al. (2010) have suggested improvements to the 
population mean estimation procedure in the presence of non-response using an 
auxiliary variable. 

mailto:sunilbhougal06@gmail.com
mailto:vmatam@gmail.com
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Following Singh and Ruiz Espejo (2007), a class of ratio-product estimators 
in two phase sampling in the presence of non-response is suggested in this article, 
and its properties studied. An estimator was studied by using one auxiliary 
variable for two phase sampling, which is the combined regression with Okafor 
and Lee’s (2000) estimator and Singh and Ruiz Espejo’s (2007) estimator for no 
information case. The conditions for attaining minimum mean squared error of the 
proposed classes of estimators were obtained. A comparison of the proposed 
estimator with other estimators was conducted and a numerical illustration is 
provided to support the proposed estimator. 

Double Sampling Ratio, Product and Regression Estimator 

Let y  and x  be the study and auxiliary variables with population means Y  and 
X  respectively. The population is divided into 1N  (responding) and 2N  (non-
responding) units such that 1 2N N N  . When the population mean X  of the 
auxiliary variable x  is unknown, it is suggested that a first phase sample of size 
n  be selected from the population of size N  using the simple random sampling 
without replacement (SRSWOR) method, and observing the information on 
variable x . From these selected n  units, a second phase sample size  n n  is 
selected for the study variable y , and it is observed that 1n  units respond and 2n  
units do not respond in the sample of size n . Further, from 2n  non-responding 

units, select a sub sample of size 2 ; 1nr k
k

 
  
 

 using SRSWOR. Hence, there 

are 1n r  responding units on y . Consequently, to estimate Y  using the sub 
sampling scheme suggested by Hansen and Hurwitz (1946),  
 

*
1 1 2 2ry w y w y  , 

 
where    1 1 2 2,w n n w n n  ; 1y  and 2ry  denotes the sample means of the y  
variable based on 1n  and r  units, respectively.  

Similarly, to estimate the population mean X  of the auxiliary variable x , 
the estimator *x , 

 
 *

1 1 2 2rx w x w x    (1) 
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with variance 
 

 
 2* 2 2

(2)

11 1
x x

W k
Var x S S

n N n
 

   
 

  

 
where 2

xS  and 2
(2)xS  are the population mean square of the auxiliary variable y  

for the entire population and for the non-responding portion of the population. 
Khare and Srivastava (1993) proposed ratio and product methods for 

estimators respectively as: 
 

*
1 *R

xt y
x
 

  
 

  

 
and 

*
*

1 .P
xt y
x

 
  

 
 

 
The MSE’s of the estimators 1Rt  and 1Pt  to the first degree of approximation, are 
 

 
    

 
  

2 2 2
1

2 2 2
(2) (2) (2)

1 1 1 12

1
2

R y yx x y

y yx x

MSE t S R R S S
n n n N

W k
S R R S

n





   
             

 
   



  (2) 

 

 
    

 
  

2 2 2
1

2 2 2
(2) (2) (2)

1 1 1 12

1
2

P y yx x y

y yx x

MSE t S R R S S
n n n N

W k
S R R S

n





   
             

 
   



  (3) 

 
where  R Y X , yx yx y xS S S , (2) (2) (2) (2)yx yx y xS S S ,  2

yx yx xS S  ,  

 2
(2) (2) (2)yx yx xK S S , and yx  and (2)yx  respectively denote the correlation 

coefficients between x  and y  for the whole population and for the non-response 
group of the population.  
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Okafor and Lee (2000) proposed a double (two phase) sampling regression 
estimator in the presence of non-response on study as well as auxiliary variables, 
as  
  * *

3Ret y b x x     (4) 

where 
 

 
2 2* * * * * 2 2 *

1 1 1 1

1 1ˆ ,  ,  
1 1

n r n r

xy x xy i i i i x i i
i i i i

b s s s x y k x y nxy s x k x nxx
n n   

   
         

    
    .

 
 
The MSE of the estimator 3Ret  is  
 
    

 
  22 2 2 2 2

3Re (2) (2) (2)

11 1 1 11 2yx y y y yx yx yx x

W k
MSE t S S S S

n n n N n
   

    
           

     

  (5) 

 
Singh and Ruiz Espejo (2007) defined an estimator in presence of non-

response as 
 

  
*

* *
* 1SR

x xt y
x x

 
 

   
 

  (6) 

 
where   is any suitably chosen constant.  

For 0,1  , the class of estimators *
SRt  reduces to the Khare and Srivastava 

(1993, 1995) and Tabasum and Khan (2004) product and ratio type estimators, 
that is, 1Pt  and 1Rt .  

The MSE of the estimator *
SRt  to the first degree of approximation is 

 

 
       

 
     

* 2 2 2

2 2 2
(2) (2) (2)

1 1 1 1 2 1 2 1 2

1
2 1 2 1 2

SR y y yx x

y yx x

MSE t S S R R S
n N n n

W k
S R R S

n

  

  

   
               

 
     



  (7) 

which is the minimum, when 
 

*1 1
2

D
RD


 

  
 

,  
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where 
 

   2 22 2 * 2 2
(2) (2) (2)

1 11 1 1 1, x x yx x yx x

W k W k
D S S D K S K S

n n n n n n
       

           
       

. 

 
Thus, the minimum MSE of *

SRt  is given by  
 

 
 

 

* *
* 2 2 2

( )

* *
2 2 2

(2) (2) (2)

1 1 1 1 2

1
2 .

SR opt y y yx x

y yx x

D DMSE t S S S
n N n n D D

W k D DS S
n D D





       
                    

    
     

   

  (8) 

The Proposed Estimator 

An estimator was developed using one auxiliary variable for two phase sampling 
for estimating the population mean Y  of a study variable y  in the presence of 
non-response. Okafor and Lee’s (2000) estimator is combined with the estimator 

*
SRt . Thus, the proposed estimator is: 

 

 
    

 

*
* * *

*

*

3Re *

1

1

CR
x xt y b x x
x x

x xt
x x

 

 

 
     

 

 
   

 

  (9) 

 
where   is any suitably chosen constant and 3Ret  is defined at (4). 

To obtain the bias and mean squared error of *
CRt , 

 
         

2* * * * 2
0 1 2 3 41 , 1 , 1 , 1 , 1 ,xy xy x xy Y x X x X s S s S                

 
such that 
 
  0 0 4iE i to    ; 
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 22 2 2

0 (2)

11 1
y y

W k
E S S

n N n


 
   
 

;  
 22 2 2

1 (2)

11 1
x x

W k
E S S

n N n


 
   
 

; 

 

 2 2
2

1 1
xE S

n N


 
  

 
;  

 2
0 1 (2)

11 1
yx yx

W k
E S s

n N n
 

 
   
 

; 

 

 0 2
1 1

yxE S
n N

 
 

  
 

;   2
1 2

1 1
xE S

n N
 

 
  

 
; 

 

 
 

  

  21(2)221
1 3

1
1 2 xy xy

N N n W k
E

N N nXS n XS


 
 

 
 

; 

 

 
 

  
21

2 3 1 2 xy

N N n
E

N N n XS


 



 

; 

 

 
 

  

  30(2)230
1 4 2 2

1
1 2 x x

N N n W k
E

N N nXS n XS


 
 

 
 

; 

 

 
 

  
30

2 4 21 2 x

N N n
E

N N n XS


 



 

; 

 
where  
 

   
1

1 N r s
rs i i

i
x X y Y

N




   ;    
1 2

(2) 2 2
12

1 N N N
r s

rs i i
i

x X y Y
N


 



   ;  

1 2

2
12

1 N N N

i
i

X x
N

 



  ; 
1 2

2
12

1 N N N

i
i

Y y
N

 



  ;  ,r s   

 
being non negative integers.  
 

Expanding *
CRt  in terms of 's  results in 

 
             1 1 1*

0 0 2 1 3 4 2 1 1 21 1 1 1 1 1 1 1CRt Y A          
  

              (10) 
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where    0 ;A R R Y X  . 

Assume that 4 1  , 1 1   and 2 1   so that  
1

41 


 ,  
1

11 


  and 

 
1

21 


  are expandable in terms of 's . Expanding the right hand side of (10) 
in terms of 's  and neglecting terms of 's  with power greater than two results 
in: 
 

      

   

* 2 2 2
0 2 1 2 1 2 0 2 0 1 2 1 1 2 0 2 0 1

2 2 2 2
0 2 1 1 2 0 2 1 2 1 1 2 2 4 1 4 2 3 1 3

2 2 2

2 2 .

CRt Y Y

A A

                   

                  

             

           

  (11) 

 
Taking expectations of both sides of (11) results in the bias of *

CRt  to the first 
degree of approximation, as  

 

 
 

     
 

    

  

 

2

2* 2
(2) (2)

2
21(2) 30(2)23021

2 2

1 1 1 1 2 2

1
1 2 2 .

11 1
1 2

yx yx x

CR yx yx x

yx
xy x xy x

S R R S
X n n

W k
B t S R S

nX
W kNK

N N n n S S n S S

  

  

 

 
       

  
 


     
 
 

       
                      

  (12) 

 
Squaring both sides of (11) and neglecting terms of 's  with power greater 

than two results in 
 

 
       

     
       

2 2* 2
0 2 1 0 2 1

22 2 2 2 2 2 2
0 2 1 1 2 0 2 1 1 2

2 2
0 2 0 1 0 2 1 1 2 0 0 2 0 1

2 1

2 1 2 2

2 2 1 2 2 1 2 2 .

CRt Y Y A

Y A

A A

     

         

             

      

       

        

 (13) 

 
Taking expectations of both sides of (13) results in the MSE of *

CRt  to the 
first degree of approximation as: 
 

 
      

 
    

2* 2 2 2 2
0 0

22 2 2 2
(2) 0 (2) 0 (2)

1 1 1 1 2 1 2 2 1

1
2 1 2 2 1

CR y y x yx

y x yx

MSE t S S A R S A RS
n N n n

W k
S A R S A RS

n

 

 

   
                 

 
       



  (14) 
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which is the minimum 
 

*

0
1 1
2

DA
RD


 

   
 

. 

 
The resulting minimum mean squared error of *

CRt  is therefore given by:  
 

 

 

 

 

* *
* 2 2 2

( )

* *
2 2 2

(2) (2) (2)

*
( )

1 1 1 1 2

1
2

.

CR opt y y yx x

y yx x

SR opt

D DMSE t S S S
n N n n D D

W k D DS S
n D D

MSE t





       
           

         

    
     

   



  (15) 

 
From (1), (2), (3), (5), (7) and (14), 
 
         2* * 2 *

0 02 1 2 2 1CRVar y MSE t A R D R A D          (16) 

 

         2* 2 * 2 *
1 0 02 2 1 2 2 1R CRMSE t MSE t R D RD A R D A RD            (17) 

 

         2* 2 * 2 *
1 0 02 2 1 2 2 1P CRMSE t MSE t R D RD A R D A RD           (18) 

 

       * 2 2 * 2
3Re 4 4CR yxMSE t MSE t R D R RD D D R D           (19) 

 

      * * 2 *
0 0 0 02 4 2SR CRMSE t MSE t RD A A A A D       (20) 

 
The differences given by (16), (17), (18), (19) and (20) are positive, respectively, 
if  
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  (24) 

 

 

*
0

*
0

10 1
2 2 2

1 1 0
2 2 2

A Deither
RD

A Dor
RD





 
     

  


         

  (25) 

 

The proposed estimator *
CRt  is more robust than estimators *y , 1Rt , 1Pt  and *

SRt  
respectively, if (21) – (25) hold true. 

Empirical Study 

To examine the robustness of the proposed estimators, consider the following data 
sets (Khare & Sinha, 2004, p. 53) from a survey on physical growth of an upper 
socioeconomic group of 95 Varanasi school children under an Indian Council of 
Medical Research (ICMR) study, Department of Pediatrics, Banaras Hindu 
University (BHU) during 1983-1984. The first 25% (24 children) were considered 
non-response units.  
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The parameter values related to the study variable y  (weight in kg) and the 
auxiliary variable x  (chest circumference in cm) were: 
 

19.4968Y  , 55.8611X w , 0435.3yS , 2735.3xS , 3552.2)2( yS , 
5137.2)2( xS , 8460.0yx , 7290.0)2( yx , 3490.0R , 7865.0yx , 
6829.0)2( yx , 25.02 W , 242 N , 711 N , 95N , 35n , 70n . 

 
The percent relative efficiencies (PREs) of different suggested estimators 

were computed with respect to a usual unbiased estimator *y  for different values 
of k . 
 
 
Table 1: Percent relative efficiency of different Y  estimators with respect to *y . 

Estimators (1/k) 
(1/5) (1/4) (1/3) (1/2) 

*y  100.00 100.00 100.00 100.00 

1Rt  165.65 165.35 164.95 164.41 

3Ret  218.74 220.25 222.29 225.16 
* *

( ) ( ) = SR opt CR optt t  220.00 221.16 222.81 225.18 
 
 
Table 1 shows that  
 

(i) the PRE’s of the estimators 3Ret  and *
( )CR optt  increase as the value of 

k  increases, while the PRE’s of the estimator 1Rt  decrease as the 
value of k  increases. 

(ii) the performance of the proposed estimator *
( )CR optt  is the best among 

all other estimators *y , 1Rt  and 3Ret  because it has the largest gain in 
efficiency. 

 
Based on these study results, the proposed estimator *

CRt  is recommended for use 
in practice. 
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Consider the two parameter modified ratio estimators for the estimation of finite 
population mean using the skewness, kurtosis and correlation coefficient of two auxiliary 
variables. The efficiencies of the proposed modified ratio estimators are assessed with 
that of the simple random sampling without replacement (SRSWOR) sample mean and 
some of the existing ratio estimators in terms of mean squared errors. The entire above is 
explained with the help of certain natural populations available in the literature. 
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Introduction 

In survey sampling, consider the problem of estimating the population mean 

1

1 N
ii

Y Y
N 

   for a finite population U = {U1,U2,…,UN} of N distinct and 

identifiable units, where the value Yi is measured on Ui, i = 1,2,3,…,N. Normally 
the population mean is estimated by the sample mean obtained from a random 
sample of size n drawn by simple random sampling without replacement 
(SRSWOR) from a finite population, when there is no auxiliary information 
available. Suppose that there is an auxiliary variable X available that is positively 
correlated with a study variable Y, in this case, either a ratio estimator or linear 
regression estimator may be used to improve the efficiency of the SRSWOR 
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sample mean under certain conditions (see, Cochran (1977) and Murthy (1967) 
for example). Further improvements can be achieved on the ratio estimator by 
using known parameters such as skewness, kurtosis, quartiles and coefficient of 
variation of the auxiliary variable; the resulting estimators are called modified 
ratio estimators. For further details on the modified ratio estimators, readers are 
referred to Kadilar and Cingi (2004, 2009), Singh and Tailor (2003, 2005), Singh 
(2003), Sisodia and Dwivedi (1981), Subramani (2013), Subramani and 
Kumarapandiyan (2012a, b, c, 2013), Upadhyaya and Singh (1999), and Yan and 
Tian (2010).  

If two auxiliary variables exist, then several modified ratio estimators have 
been proposed by linking together ratio estimators, product estimators and 
regression estimators in order to obtain more efficient estimators. For more 
detailed discussion about ratio estimators and their modifications using two 
auxiliary variables readers are referred to: Abu-Dayyeh et al. (2003), 
Bandyopadhyay (1980), Cochran (1940), Kadilar and Cingi (2004, 2005), Khare 
et al. (2013), Murthy (1967) , Naik and Gupta (1991), Olkin (1958), Perri (2004, 
2007), Rao and Mudholkar (1967), Raj (1965), Sahoo and Swain (1980), Singh 
(2003), Singh (1965, 1967), Singh and Tailor (2003, 2005), Srivenkataramana 
(1980), Srivenkataramana and Tracy (1981), Tailor et al. (2011), and Tracy et al. 
(1996). 

Existing Estimators with and without auxiliary variables 
If (y1,y2,…,yn) is a random sample of size n drawn from a population of size N 
using SRSWOR, then the population mean Y  can be estimated by the sample 

mean 
1

1 n
ii

y y
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  , which is an unbiased estimator, and its variance is given by: 
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The ratio estimator for estimating the population mean Y  of the study variable Y 
is defined as 
 ˆ ˆy

R xY X RX  . (2) 
 
The mean squared error of the ratio estimator ˆ

RY  to the first degree of 
approximation is: 
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fMSE Y Y C C p C C
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   .  (3) 

 
Singh (2003) suggested a ratio estimator with two auxiliary variables for 
estimating a population mean: 
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 .  (4) 

 
The mean squared error of 1Ŷ  to the first order of approximation is: 
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       (5) 

 
Singh and Tailor (2005) suggested the following modified ratio cum product 
estimator with known correlation coefficient between auxiliary variables: 
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The mean squared error of  2Ŷ  to the first order of approximation is: 
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and 

1 2x x  is the coefficient of correlation between X1 and X2.  
 

Kadilar and Cingi (2005) proposed a new ratio estimator using two 
auxiliary variables as: 
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The mean squared error of 3Y  to the first order of approximation is: 
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Perri (2007) suggested some modified ratio cum product estimators using two 
auxiliary variables for estimating the population mean: 
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The mean squared errors of 4 5 6

ˆ ˆ ˆ,  ,  Y Y Y   to the first order of approximation are: 
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where   
1 2 1 21 2 1 21 1x x x xR R S     ,  

1 11 11x xR S   ,  
2 22 21x xR S    

1 11 1(1 )yx yxR S   .
2 22 2and (1 )yx yxR S   . 

 
This article is concerned with estimating the population mean of a study 

variable Y by two parameter modified ratio estimators with known correlation 
coefficient, skewness and kurtosis of two auxiliary variables X1 and X2.  

Proposed Two Parameter Modified Ratio Estimators 

Whenever one or two auxiliary variables exist, a number of estimators including 
ratio, regression, product and chain ratio type estimators and their linear 
combinations have been proposed in the literature. These estimators are improved 
by using the known values of parameters such as skewness, kurtosis and 
coefficient of variation of the auxiliary variables. All of these estimators are 
functions of the ratio, product, regression estimators and their linear 
combinations; hence, an attempt is made herein to introduce the weighted average 
of the ratio estimators whenever there are two auxiliary variables available. As a 
result, two parameter modified ratio estimators with known correlation coefficient, 
skewness, kurtosis and their linear combinations of two auxiliary variables are 
proposed. 

When the coefficient of kurtosis 2 1( )X  of the auxiliary variable X1, and 
β2(X2) of the auxiliary variable X2 is known, the following two parameter 
modified ratio estimator is proposed: 
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Using the linear combinations of coefficient of kurtosis 2 1( )X  of the 

auxiliary variable X1, β2(X2) of the auxiliary variable X2 and correlation coefficient 
1 2x x  between X1 and X2, the following two parameter modified ratio estimators 

are proposed: 
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and 
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Using the linear combinations of coefficient of skewness 1 1( )X  of the 

auxiliary variable X1, β1(X2) of the auxiliary variable X2, coefficient of kurtosis β2 
(X1) of the auxiliary variable X1 and 2 2( )X  of the auxiliary variable X2 the 
following two parameter modified ratio estimators are proposed: 
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In general, the estimators proposed in (14) to (18) can be defined as 

particular cases of the estimator: 
 

 
   

1 1 1 2 2 2

1 1 1 2 2 2

ˆ
SPT

X T X T
Y y

x T x T
 

 

           
   
 

.  (19) 

 
For suitable choices of T1 and T2 in (19), the estimators defined in (14) to 

(18) are obtained. 
Suppose that, 
i. if 1 2 1( )T X  and 2 2 2( )T X  in (19), then ˆ

SPTY  becomes 1
ˆ
SPY  as 

defined in (14); 

ii. if 
1 2
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ˆ
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defined in (15); 

iii. if 1 2
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2 1( )
x xT
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2
2 2( )
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in (19), then ˆ

SPTY  becomes 3
ˆ
SPY  as 

defined in (16); 



SUBRAMANI & PRABAVATHY 

205 

iv. if 1 1
1

2 1

( )
( )
XT
X




  and 1 2

2
2 2

( )
( )
XT
X






 
in (19), then ˆ

SPTY  becomes 4
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( )
XT
X




  in (19), then ˆ

SPTY  becomes 5
ˆ
SPY  as 

defined in (18). 

Derivation of Mean Squared Error of the proposed estimators 

The mean squared error of the proposed estimator ˆ
SPTY  is derived as follows. If 
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The proposed estimator ˆ
SPTY  can be written in terms of 0e , 1e  and 2e  as: 
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Neglecting higher order terms 
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and squaring and taking expectations on both sides results in: 
 

2 2 2
0 1 1 2 2

ˆ ˆ( ) ( ) ( )SPT SPTMSE Y E Y Y Y E e e e         
 

 2 2 2 2 2 2
0 1 1 2 2 1 0 1 2 0 2 1 2 1 2

ˆ( ) 2 2 2SPTMSE Y Y E e e e e e e e e e                  

 
 2 2 2 2

0 1 2 0 1 0 2 1 2

2 2
1 2 1 1 1 2

ˆ( ) ( ) ( ) ( ) 2 ( ) 2 ( ) 2 ( )SPTMSE Y Y E e E e E e E e e E e e E e e                   
 

 
1 2 1 1 2 2 1 2 1 2

2 2 2 22 2
1 2 1 2 1 2

1ˆ( ) 2 2 2SPT y x x yx y x yx y x x x x x

f
MSE Y Y C C C C C C C C C

n
        


            (20) 

 
The proposed modified ratio estimator ˆ

SPTY  can be easily generalized to include 
several auxiliary variables. If X1, X2,…,Xk are k auxiliary variables that are 
positively correlated with a study variable Y, then the generalized modified ratio 
estimator is defined as 
 

1 1 1 2 2 2 3 3 3
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where 1 , 2 , …, k  are the weights and the 1T , 2T ,…, kT  are the known 
parameters of the auxiliary variables. 

Efficiency Comparisons 

The efficiencies of the proposed estimators for estimating the finite population 
mean are assessed with that of SRSWOR sample mean and other existing 
estimators, as previously proposed.  

From expressions (20) and (1), the proposed estimators ˆ
SPTY  are more 

efficient than the SRSWOR sample mean ry . The derived conditions are: 
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From expressions (20) and (5), the proposed estimators ˆ

SPTY  are more 

efficient than the existing ratio estimator 1Ŷ . The derived conditions are: 
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From expressions (20) and (7), the proposed estimators ˆ

SPTY  are more efficient 

than the existing ratio estimator 2Ŷ . The derived conditions are: 
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From expressions (20) and (9), the proposed estimators ˆ

SPTY  are more 

efficient than the existing ratio estimator 3Ŷ . The derived conditions are: 
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From expressions (20) and (11), the proposed estimators ˆ
SPTY  are more 

efficient than the existing ratio estimator 4Ŷ . The derived conditions are: 
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From expressions (20) and (12), the proposed estimators ˆ

SPTY  are more 

efficient than the existing ratio estimator 5Ŷ . The derived conditions are: 
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From expressions (20) and (13), the proposed estimators ˆ

SPTY  are more 

efficient than the existing ratio estimator 6Ŷ . The derived conditions are: 
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where 
1 1 1 2 2 2( ) ( )sp

YR
X T X T 

 
  

  

Numerical Study 

The performance of the proposed two parameter modified ratio estimators have 
been compared with that of the SRSWOR sample mean and some existing 
modified ratio estimators algebraically. However, the proposed estimators 
perform well compared to the existing estimators only under certain conditions 
and - for numerical comparisons - they are assessed for certain natural populations. 
In this connection, two natural populations were considered to assess the 
performance of the proposed estimators with that of existing estimators. 
Population 1 is from Singh and Chaudhary (1986, p. 177) and population 2 is 
from Kadilar and Cingi (2009, p. 117). The description of the study and auxiliary 
variables for the two populations are shown in Table 1. 
 
 
Table 1. Description of the study variable and auxiliary variable 
 
Population Study Variable Y Auxiliary Variable X1 Auxiliary Variable X2 

1 Area under wheat in 1974 Area under wheat in1971 Area under wheat in1973 
2 Length of the fish Length of the head Length of the fin 

 
 

The population parameters and constants computed for the two populations 
are given in Tables 2-4.  



TWO PARAMETER MODIFIED RATIO ESTIMATORS 

210 

Table 2. Parameters and Constants of the Populations 
 
Parameter N  n Y    1X   2X   

1yx   
2yx   

1 2x x   11   

Pop. 1 34.00 20.00 856.41 208.88 199.44 0.45 0.45 0.98 0.87 

Pop. 2 25.00 10.00 75.28 14.30 6.82 0.99 0.89 0.92 1.24 

          
Parameter 12   21   22   yS  yC  

1x
S   

2xS   
1x

C   
2xC   

Pop. 1 1.28 2.91 3.73 733.14 0.86 150.51 150.22 0.72 0.75 

Pop. 2 0.86 4.26 4.35 17.27 0.23 3.17 1.53 0.22 0.22 
 
 
Table 3. Variance/Mean squared error of the existing and proposed estimators for 
Population 1 
 

Existing Estimators  

Proposed Estimators 

ˆ
rY   1Ŷ  2Ŷ  

 

37940.84 90847.02 40145.19  

1  2  
3Ŷ  4Ŷ  5Ŷ  6Ŷ  

 
1

ˆ
SPY  2

ˆ
SPY  3

ˆ
SPY  4

ˆ
SPY  5

ˆ
SPY  

0.0 1.0 67310.24 64818.97 64818.97 64818.97  37057.66 37047.45 37541.57 37466.93 37396.04 

0.1 0.9 62385.73 60005.70 60005.90 60005.94  36843.39 36834.06 37275.19 37210.98 37138.09 

0.2 0.8 58048.59 56317.41 56317.77 56317.84  36654.14 36645.64 37036.69 36982.32 36907.47 

0.3 0.7 54298.80 53754.11 53754.56 53754.66  36489.42 36481.71 36825.28 36780.23 36703.44 

0.4 0.6 51136.38 52315.78 52316.28 52316.42  36348.74 36341.77 36640.21 36604.01 36525.27 

0.5 0.5 48561.32 52002.43 52002.92 52003.10  36231.61 36225.37 36480.75 36452.97 36372.28 

0.6 0.4 46573.62 52814.07 52814.49 52814.70  36137.58 36132.02 36346.17 36326.46 36243.79 

0.7 0.3 45173.28 54750.68 54750.99 54751.23  36066.20 36061.30 36235.78 36223.84 36139.12 

0.8 0.2 44360.30 57812.27 57812.42 57812.69  36017.00 36012.74 36148.92 36144.46 36057.65 

0.9 0.1 44134.68 61998.84 61998.77 61999.08  35989.55 35985.91 36084.91 36087.73 35998.74 

1.0 0.0 44496.43 67310.39 67310.05 67310.39  35983.42 35980.39 36043.13 36053.04 35961.79 
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Table 4. Variance/Mean squared error of the existing and proposed estimators for 
Population 2 
 

Existing Estimators  

Proposed Estimators 

ˆ
rY   1Ŷ  2Ŷ  

 

17.90 17.58 17.58  

1  2  
3Ŷ  4Ŷ  5Ŷ  6Ŷ  

 
1

ˆ
SPY  2

ˆ
SPY  3

ˆ
SPY  4

ˆ
SPY  5

ˆ
SPY  

0.0 1.0 35.07 34.61 34.61 34.61  5.32 5.54 3.89 3.90 5.72 

0.1 0.9 32.15 31.58 31.62 31.64  4.50 4.72 2.84 2.84 4.72 

0.2 0.8 29.57 29.24 29.31 29.34  3.85 4.07 2.12 2.12 3.92 

0.3 0.7 27.33 27.58 27.67 27.71  3.32 3.53 1.62 1.62 3.28 

0.4 0.6 25.42 26.60 26.71 26.75  2.89 3.10 1.26 1.26 2.77 

0.5 0.5 23.85 26.31 26.41 26.47  2.54 2.74 1.01 1.01 2.36 

0.6 0.4 22.62 26.71 26.79 26.86  2.26 2.44 0.83 0.83 2.03 

0.7 0.3 21.72 27.78 27.83 27.92  2.02 2.19 0.70 0.70 1.76 

0.8 0.2 21.16 29.55 29.55 29.65  1.83 1.99 0.61 0.61 1.55 

0.9 0.1 20.94 31.99 31.94 32.05  1.67 1.81 0.55 0.55 1.38 

1.0 0.0 21.05 35.12 35.00 35.12  1.53 1.67 0.51 0.51 1.25 

 
 

From the values in Tables 3 and 4, the mean squared error of the proposed 
modified ratio estimators ,

ˆ 1,2,3,4,5SPjY j 
 
are less than the variance of 

SRSWOR sample mean, the mean squared error of the existing modified ratio 
estimators ˆ ; 1,2,3,...,6jY j  . Further, to show the efficiency of the proposed 
estimators, the percentage relative efficiencies (PRE’s) of the proposed estimators 
with respect to the existing estimators is computed by: 
 

 
 

(.)ˆ *100ˆSPj

SPj

MSEPRE Y
MSE Y

 . 
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Table 5. PRE of the proposed estimator ˆ
SPjY  for Population 1 

 

α1 α2 Proposed 
Estimators 

Existing Estimators 
SRSWOR Modified Ratio Estimators 

ry  
1Ŷ  2Ŷ  3Ŷ  4Ŷ  5Ŷ  6Ŷ  

0.0 1.0 

1
ˆ
SPY  102.38 245.15 108.33 181.64 174.91 174.91 174.91 

2
ˆ
SPY  102.41 245.22 108.36 181.69 174.96 174.96 174.96 

3
ˆ
SPY  101.06 241.99 106.94 179.30 172.66 172.66 172.66 

4
ˆ
SPY  101.26 242.47 107.15 179.65 173.00 173.00 173.00 

5
ˆ
SPY  101.46 242.93 107.35 179.99 173.33 173.33 173.33 

0.1 0.9 

1
ˆ
SPY  102.98 246.58 108.96 169.33 162.87 162.87 162.87 

2
ˆ
SPY  103.00 246.64 108.99 169.37 162.91 162.91 162.91 

3
ˆ
SPY  101.79 243.72 107.70 167.37 160.98 160.98 160.98 

4
ˆ
SPY  101.96 244.14 107.89 167.65 161.26 161.26 161.26 

5
ˆ
SPY  102.16 244.62 108.10 167.98 161.57 161.58 161.58 

0.2 0.8 

1
ˆ
SPY  103.51 247.85 109.52 158.37 153.65 153.65 153.65 

2
ˆ
SPY  103.53 247.91 109.55 158.41 153.68 153.68 153.68 

3
ˆ
SPY  102.44 245.29 108.39 156.73 152.06 152.06 152.06 

4
ˆ
SPY  102.59 245.65 108.55 156.96 152.28 152.28 152.28 

5
ˆ
SPY  102.80 246.15 108.77 157.28 152.59 152.59 152.59 

0.3 0.7 

1
ˆ
SPY  103.98 248.97 110.02 148.81 147.31 147.32 147.32 

2
ˆ
SPY  104.00 249.02 110.04 148.84 147.35 147.35 147.35 

3
ˆ
SPY  103.03 246.70 109.02 147.45 145.97 145.97 145.97 

4
ˆ
SPY  103.16 247.00 109.15 147.63 146.15 146.15 146.15 

5
ˆ
SPY  103.37 247.52 109.38 147.94 146.46 146.46 146.46 
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Table 5, continued 
 

α1 α2 Proposed 
Estimators 

Existing Estimators 
SRSWOR Modified Ratio Estimators 

ry  
1Ŷ  2Ŷ  3Ŷ  4Ŷ  5Ŷ  6Ŷ  

0.4 0.6 

1
ˆ
SPY  104.38 249.93 110.44 140.68 143.93 143.93 143.93 

2
ˆ
SPY  104.40 249.98 110.47 140.71 143.95 143.96 143.96 

3
ˆ
SPY  103.55 247.94 109.57 139.56 142.78 142.78 142.78 

4
ˆ
SPY  103.65 248.19 109.67 139.70 142.92 142.92 142.93 

5
ˆ
SPY  103.88 248.72 109.91 140.00 143.23 143.23 143.23 

0.5 0.5 

1
ˆ
SPY  104.72 250.74 110.80 134.03 143.53 143.53 143.53 

2
ˆ
SPY  104.74 250.78 110.82 134.05 143.55 143.55 143.55 

3
ˆ
SPY  104.00 249.03 110.04 133.11 142.55 142.55 142.55 

4
ˆ
SPY  104.08 249.22 110.13 133.22 142.66 142.66 142.66 

5
ˆ
SPY  104.31 249.77 110.37 133.51 142.97 142.97 142.97 

0.6 0.4 

1
ˆ
SPY  104.99 251.39 111.09 128.88 146.15 146.15 146.15 

2
ˆ
SPY  105.01 251.43 111.11 128.90 146.17 146.17 146.17 

3
ˆ
SPY  104.39 249.95 110.45 128.14 145.31 145.31 145.31 

4
ˆ
SPY  104.44 250.08 110.51 128.21 145.39 145.39 145.39 

5
ˆ
SPY  104.68 250.66 110.76 128.50 145.72 145.72 145.72 

0.7 0.3 

1
ˆ
SPY  104.99 251.38 111.09 125.00 151.50 151.50 151.50 

2
ˆ
SPY  104.74 250.79 110.83 124.71 151.15 151.15 151.15 

3
ˆ
SPY  104.71 250.71 110.79 124.66 151.10 151.10 151.10 

4
ˆ
SPY  105.21 251.92 111.32 125.27 151.83 151.83 151.83 

5
ˆ
SPY  105.20 251.89 111.31 125.25 151.81 151.81 151.81 
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Table 5, continued 
 

α1 α2 Proposed 
Estimators 

Existing Estimators 
SRSWOR Modified Ratio Estimators 

ry  
1Ŷ  2Ŷ  3Ŷ  4Ŷ  5Ŷ  6Ŷ  

0.8 0.2 

1
ˆ
SPY  105.34 252.23 111.46 123.16 160.51 160.51 160.52 

2
ˆ
SPY  105.35 252.26 111.47 123.18 160.53 160.53 160.53 

3
ˆ
SPY  104.96 251.31 111.06 122.72 159.93 159.93 159.93 

4
ˆ
SPY  104.97 251.34 111.07 122.73 159.95 159.95 159.95 

5
ˆ
SPY  105.22 251.95 111.34 123.03 160.33 160.33 160.33 

0.9 0.1 

1
ˆ
SPY  105.42 252.43 111.55 122.63 172.27 172.27 172.27 

2
ˆ
SPY  105.43 252.45 111.56 122.64 172.29 172.29 172.29 

3
ˆ
SPY  105.14 251.76 111.25 122.31 171.81 171.81 171.81 

4
ˆ
SPY  105.14 251.74 111.24 122.30 171.80 171.80 171.80 

5
ˆ
SPY  105.39 252.36 111.52 122.60 172.23 172.22 172.23 

1.0 0.0 

1
ˆ
SPY  105.44 252.47 111.57 123.66 187.06 187.06 187.06 

2
ˆ
SPY  105.45 252.49 111.58 123.67 187.08 187.07 187.08 

3
ˆ
SPY  105.27 252.05 111.38 123.45 186.75 186.75 186.75 

4
ˆ
SPY  105.24 251.98 111.35 123.42 186.70 186.70 186.70 

5
ˆ
SPY  105.50 252.62 111.63 123.73 187.17 187.17 187.17 
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Table 5 shows the following ranges for the PRE of the proposed estimators: 
 
 from 101.06 to 105.50 in comparison with the SRSWOR sample 

mean; 
 from 241.99 to 252.62 in comparison with the existing estimator 1Ŷ  

defined in (4); 
 from 106.94 to 111.63 in comparison with the existing estimator 2Ŷ  

defined in (6); 
 from 122.30 to 181.69 in comparison with the existing estimator 3Ŷ  

defined in (8); 
 from 142.55 to 187.17 in comparison with the existing estimator 4Ŷ ,

5Ŷ , 6Ŷ  defined in (10). 
 
Based on these comparisons, it is concluded that the proposed estimators 

perform better than the SRSWOR sample mean and other existing ratio estimators 
for the natural population 1 considered in this study. 
 
 

Table 6. PRE of the proposed estimator ˆ
SPjY  for Population 2 

 

α1 α2 Proposed 
Estimators 

Existing Estimators 
SRSWOR Modified Ratio Estimators 

ry  
1Ŷ  2Ŷ  3Ŷ  4Ŷ  5Ŷ  6Ŷ  

0.0 1.0 

1
ˆ
SPY  336.47 330.45 330.45 659.21 650.56 650.56 650.56 

2
ˆ
SPY  323.10 317.33 317.33 633.03 624.73 624.73 624.73 

3
ˆ
SPY  460.15 451.93 451.93 901.54 889.72 889.72 889.72 

4
ˆ
SPY  458.97 450.77 450.77 899.23 887.44 887.44 887.44 

5
ˆ
SPY  312.94 307.34 307.34 613.11 605.07 605.07 605.07 
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Table 6, continued 
       

α1 α2 Proposed 
Estimators 

Existing Estimators 
SRSWOR Modified Ratio Estimators 

ry  
1Ŷ  2Ŷ  3Ŷ  4Ŷ  5Ŷ  6Ŷ  

0.1 0.9 

1
ˆ
SPY  397.78 390.67 390.67 714.44 701.78 702.67 703.11 

2
ˆ
SPY  379.24 372.46 372.46 681.14 669.07 669.92 670.34 

3
ˆ
SPY  630.28 619.01 619.01 1132.04 1111.97 1113.38 1114.08 

4
ˆ
SPY  630.28 619.01 619.01 1132.04 1111.97 1113.38 1114.08 

5
ˆ
SPY  379.24 372.46 372.46 681.14 669.07 669.92 670.34 

0.2 0.8 

1
ˆ
SPY  464.94 456.62 456.62 768.05 759.48 761.30 762.08 

2
ˆ
SPY  439.80 431.94 431.94 726.54 718.43 720.15 720.88 

3
ˆ
SPY  844.34 829.25 829.25 1394.81 1379.25 1382.55 1383.96 

4
ˆ
SPY  844.34 829.25 829.25 1394.81 1379.25 1382.55 1383.96 

5
ˆ
SPY  456.63 448.47 448.47 754.34 745.92 747.70 748.47 

0.3 0.7 

1
ˆ
SPY  539.16 529.52 529.52 823.19 830.72 833.43 834.64 

2
ˆ
SPY  507.08 498.02 498.02 774.22 781.30 783.85 784.99 

3
ˆ
SPY  1104.94 1085.19 1085.19 1687.04 1702.47 1708.02 1710.49 

4
ˆ
SPY  1104.94 1085.19 1085.19 1687.04 1702.47 1708.02 1710.49 

5
ˆ
SPY  545.73 535.98 535.98 833.23 840.85 843.60 844.82 

0.4 0.6 

1
ˆ
SPY  619.38 608.30 608.30 879.58 920.42 924.22 925.61 

2
ˆ
SPY  577.42 567.10 567.10 820.00 858.06 861.61 862.90 

3
ˆ
SPY  1420.63 1395.24 1395.24 2017.46 2111.11 2119.84 2123.02 

4
ˆ
SPY  1420.63 1395.24 1395.24 2017.46 2111.11 2119.84 2123.02 

5
ˆ
SPY  646.21 634.66 634.66 917.69 960.29 964.26 965.70 
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Table 6, continued 
       

α1 α2 Proposed 
Estimators 

Existing Estimators 
SRSWOR Modified Ratio Estimators 

ry  
1Ŷ  2Ŷ  3Ŷ  4Ŷ  5Ŷ  6Ŷ  

0.5 0.5 

1
ˆ
SPY  704.72 692.13 692.13 938.98 1035.83 1039.76 1042.13 

2
ˆ
SPY  653.28 641.61 641.61 870.44 960.22 963.87 966.06 

3
ˆ
SPY  1772.28 1740.59 1740.59 2361.39 2604.95 2614.85 2620.79 

4
ˆ
SPY  2361.39 2604.95 2614.85 1772.28 1740.59 1740.59 1772.28 

5
ˆ
SPY  758.47 744.92 744.92 1010.59 1114.83 1119.07 1121.61 

0.6 0.4 

1
ˆ
SPY  792.04 777.88 777.88 1000.88 1181.86 1185.40 1188.50 

2
ˆ
SPY  733.61 720.49 720.49 927.05 1094.67 1097.95 1100.82 

3
ˆ
SPY  2156.63 2118.07 2118.07 2725.30 3218.07 3227.71 3236.14 

4
ˆ
SPY  2156.63 2118.07 2118.07 2725.30 3218.07 3227.71 3236.14 

5
ˆ
SPY  881.77 866.01 866.01 1114.29 1315.76 1319.70 1323.15 

0.7 0.3 

1
ˆ
SPY  886.14 870.30 870.30 1075.25 1375.25 1377.72 1382.18 

2
ˆ
SPY  817.35 802.74 802.74 991.78 1268.49 1270.78 1274.89 

3
ˆ
SPY  2557.14 2511.43 2511.43 3102.86 3968.57 3975.71 3988.57 

4
ˆ
SPY  2557.14 2511.43 2511.43 3102.86 3968.57 3975.71 3988.57 

5
ˆ
SPY  1017.05 998.86 998.86 1234.09 1578.41 1581.25 1586.36 

0.8 0.2 

1
ˆ
SPY  978.14 960.66 960.66 1156.28 1614.75 1614.75 1620.22 

2
ˆ
SPY  899.50 883.42 883.42 1063.32 1484.92 1484.92 1489.95 

3
ˆ
SPY  2934.43 2881.97 2881.97 3468.85 4844.26 4844.26 4860.66 

4
ˆ
SPY  2934.43 2881.97 2881.97 3468.85 4844.26 4844.26 4860.66 

5
ˆ
SPY  1154.84 1134.19 1134.19 1365.16 1906.45 1906.45 1912.90 

       
       
       



TWO PARAMETER MODIFIED RATIO ESTIMATORS 

218 

Table 6, continued 
       

α1 α2 Proposed 
Estimators 

Existing Estimators 
SRSWOR Modified Ratio Estimators 

ry  
1Ŷ  2Ŷ  3Ŷ  4Ŷ  5Ŷ  6Ŷ  

0.9 0.1 

1
ˆ
SPY  1071.86 1052.69 1052.69 1253.89 1915.57 1912.57 1919.16 

2
ˆ
SPY  988.95 971.27 971.27 1156.91 1767.40 1764.64 1770.72 

3
ˆ
SPY  3254.55 3196.36 3196.36 3807.27 5816.36 5807.27 5827.27 

4
ˆ
SPY  3254.55 3196.36 3196.36 3807.27 5816.36 5807.27 5827.27 

5
ˆ
SPY  1297.10 1273.91 1273.91 1517.39 2318.12 2314.49 2322.46 

1.0 0.0 

1
ˆ
SPY  1169.93 1149.02 1149.02 1375.82 2295.42 2287.58 2295.42 

2
ˆ
SPY  1071.86 1052.69 1052.69 1260.48 2102.99 2095.81 2102.99 

3
ˆ
SPY  3509.80 3447.06 3447.06 4127.45 6886.27 6862.75 6886.27 

4
ˆ
SPY  3509.80 3447.06 3447.06 4127.45 6886.27 6862.75 6886.27 

5
ˆ
SPY  1432.00 1406.40 1406.40 1684.00 2809.60 2800.00 2809.60 

 
 

Table 6 shows the following ranges for the PRE of the proposed estimators: 
 
 from 312.94 to 3509.80 in comparison with SRSWOR sample mean; 
 from 307.34 to 3447.06 in comparison with the existing estimator 1Ŷ  

defined in (4) and 2Ŷ  defined in (6); 

 from 613.11 to 4127.45 in comparison with the existing estimator 3Ŷ  
defined in (8); 

 from 605.07 to 6886.27 in comparison with the existing estimator 4Ŷ  
defined in (10); 

 from 605.07 to 6862.75 in comparison with the existing estimator 5Ŷ  
defined in (10); 

 from 605.07 to 6886.27 in comparison with the existing estimator 6Ŷ  

defined in (10). 
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Based on these comparisons, it may be concluded that the proposed 
estimators perform better than the SRSWOR sample mean and other existing ratio 
estimators for the natural population 2 considered in this study. 

Conclusion 

This article proposed two parameter modified ratio estimators with known 
correlation coefficient, skewness and kurtosis of the auxiliary variables and their 
linear combinations. The mean squared errors of the proposed estimators were 
derived and compared with that of SRSWOR sample mean, the classical ratio 
estimator and the existing modified ratio estimators. The performance of the 
proposed estimators was also assessed with that of the existing estimators for 
certain natural populations. It was observed from the numerical comparisons that 
the mean squared errors of the proposed estimators are less than the mean squared 
error of the existing estimators. Further it was shown that the PREs of the 
proposed estimators, with respect to existing estimators, range from 101.06 to 
6886.27. Hence, the proposed modified ratio estimators are strongly 
recommended and may be preferred over existing estimators for practical 
applications. 
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Separate ratio-type estimators for population mean with their properties are considered. 
Some separate ratio-type estimators for population mean using known parameters of 
auxiliary variate are proposed. The bias and mean squared error of the proposed 
estimators are obtained up to the first degree of approximation. It is shown that the 
proposed estimators are more efficient than unbiased estimators in stratified random 
sampling and usual separate ratio estimators under certain obtained conditions. To judge 
the merits of the proposed estimators, an empirical study was conducted. 
 
Keywords: Finite population mean, separate ratio estimator, auxiliary variable, bias, 
mean squared error, stratified random sampling 
 

Introduction 

The use of auxiliary information improves the efficiency of estimators. Cochran 
(1940) used auxiliary information at the estimation stage and envisaged the ratio 
estimation method. This method provides a ratio estimator which assumes that the 
population mean of the auxiliary variate is known. The ratio estimator performs 
well when a study and auxiliary variate are positively correlated. When these 
variates are negatively correlated, Robson’s (1957) product method, which was 
independently given by Murthy (1964), is used. Searls (1964) utilized the 
coefficient of variation of an auxiliary variate to estimate the population mean of 
a study variate. Based on the work of Searls (1964), Sisodia and Dwivedi (1981) 
used a coefficient of variation of an auxiliary variate. Singh, et al. (2004) 
proposed ratio and product type estimators using the coefficient of kurtosis of an 
auxiliary variate, whereas Upadhyaya and Singh (1999) utilized both the 
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coefficients of variation and kurtosis of an auxiliary variate. Kadilar and Cingi 
(2003), Sisodia and Dwivedi (1981), Upadhyaya and Singh (1999) and Singh, et 
al. (2004) defined estimators in stratified random sampling. This article develops 
separate ratio-type estimators along the lines of Kadilar and Cingi (2003).  

Consider a population U of size N consisting of units 1U , 2U , 3U ,..., NU . 
Let x  and y  be the auxiliary variate and study variate, respectively. If population 
U is divided into L homogenous strata of sizes hn  ( h =1, 2, 3 ..., l), and a sample 
of size hn  is drawn from the thh  stratum, then the usual separate ratio estimator 
for population mean Y  is defined as 
 

1

ˆ L
h

RS h h
h h

XY W y
x

 
  

 
 , 

 
where hx  is the sample mean of the auxiliary variate in stratum h , and hy  is the 
sample mean of a study variate of interest in stratum h   

To the first degree of approximation, the bias and mean squared of the usual 
separate ratio estimator are 
 

    2

1

ˆ L

RS h h h xh yxh xh yh
h

B Y W Y C C C 


    (1) 

and 

    2 2 2 2

1

ˆ 2
L

RS h h yh h xh h yxh
h

MSE Y W S R S R S


   . (2) 

Proposed separate ratio-type estimator using coefficient of 
variation 

Sisodia and Dwivedi (1981) defined a ratio-type estimator using coefficient of 
variation xC  of auxiliary variate x  as 
 

 ˆ x
SD

x

X CY y
x C

 
  

 
  (3) 

 
Kadilar and Cingi (2003) further defined Sisodia and Dwivedi’s (1981) estimator 
in stratified random sampling as 
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1

1

ˆ

L

h h xh
ST h

SD st L

h h xh
h

W X C
Y y

W x C





 
 

 
  
 




  (4) 

 
Motivated by Sisodia and Dwivedi (1981), Kadilar and Cingi (2003), 

suggested a separate ratio-type estimator using coefficient of variation xhC  of 
auxiliary variate in thh  stratum as 

 

 
1

ˆ L
SD h xh

RS h h
h h xh

X CY W y
x C

 
  

 
   (5) 

 
To obtain the bias and mean squared error of the proposed separate ratio-

type estimator ˆ SD
RSY : 

 
 1h h ohy Y e   and  11h h hx X e   ,  

 
such that    1 0oh hE e E e   and 

 

 2 2 21 1 ,oh yh h yh
h h

E e C C
n N


 

   
   

  
 

 2 2 2
1

1 1 ,h yh h xh
h h

E e C C
n N


 

   
   

 

 1
1 1 .oh h yxh yh xh h yxh yh xh

h h

E e e C C C C
n N

  
 

   
 

 

 
Expressing ˆ SD

RSY  in terms of 'ie s  results in 
 

 2 2
1 1 1 1 1 1

1 1

ˆ L L
SD

RS h h h h oh h h h h h oh h
h h

Y W Y W Y e e e e e  
 

      .
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Thus, the bias and mean squared error of the proposed ratio estimator ˆ SD
RSY  

up to the first degree of approximation is obtained as 
 

    2 2
1 1

1

ˆ L
SD

RS h h h h xh h yxh yh xh
h

B Y W Y C C C   


    (6) 

 

    2 2 2 2 2
1 1

1

ˆ 2
L

SD
RS h h yh h h xh h h yxh

h
MSE Y W S R S R S  



     (7) 

 

where 1
h

h
h xh

X
X C

 


, h
h

h

YR
X

  and yxh
yxh

xh yh

S
S S

  . 

Suggested separate ratio-type estimator using coefficient 
of kurtosis 

Singh, et al. (2004) defined a modified ratio estimator using the coefficient of 
kurtosis )(2 x  of an auxiliary variate x  as 
 

 2

2

( )ˆ
( )SE

X xY y
x x





 
  

 
  (8) 

 

Kadilar and Cingi (2003) defined Singh, et al’s (2004) estimator in stratified 
random sampling as 
 

 
 

 

2
1

2
1

( )
ˆ

( )

L

h h h
ST h

SE st L

h h h
h

W X x
Y y

W x x









 
 

 
  
 




  (9) 

 

Motivated by Kadilar and Cingi (2003) and Singh, et al. (2004), the 
proposed estimator using the coefficient of kurtosis )(2 x  of auxiliary variate x  
in thh  stratum is  
 

 2

1 2

( )ˆ
( )

L
SE h h

RS h h
h h h

X xY W y
x x





 
  

 
   (10) 
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The bias and mean squared error of the proposed estimator ˆ SE
RSY  are obtained 

as   
 

    2 2
2 2

1

ˆ L
SE

RS h h h h xh h yxh yh xh
h

B Y W Y C C C   


    (11) 

 

    2 2 2 2 2
2 2

1

ˆ 2
L

SE
RS h h yh h h xh h h yxh

h
MSE Y W S R S R S  



     (12) 

 

where 2
2 ( )

h
h

h h

X
X x







. 

Proposed separate ratio-type estimator using coefficient of 
variation and coefficient of kurtosis 

Upadhyaya and Singh (1999) suggested two different ratio-type estimators using 
the parameters coefficient of variation and coefficient of kurtosis as 
 

 2
1

2

( )ˆ
( )

x
US

x

X x CY y
x x C




 
  

 
   (13) 

 
and 

 2
2

2

( )ˆ
( )

x
US

x

X C xY y
x C x





 
  

 
  (14) 

 
Kadilar and Cingi (2003) defined Upadhyaya and Singh’s (1999) estimators 

in stratified random sampling as 
 

 
 

 

2
1

1

2
1

( )
ˆ

( )

L

h h h xh
ST h

US st L

h h h xh
h

W X x C
Y y

W x x C









 
 

 
  
 




  (15) 

 
and 
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2
1

2

2
1

( )
ˆ

( )

L

h h xh h
ST h

US st L

h h xh h
h

W X C x
Y y

W x C x


















  (16) 

 
Based on Upadhyaya and Singh (1999) and Kadilar and Cingi (2003), the 

proposed separate ratio-type estimator using coefficients of kurtosis and variation 
in thh  stratum are 
 

 1 2

1 2

( )ˆ
( )

L
US h h xh

RS h h
h h h xh

X x CY W y
x x C




 
  

 
   (17) 

 
and 
 

 2 2

1 2

( )ˆ
( )

L
US h xh h

RS h h
h h xh h

X C xY W y
x C x





 
  

 
   (18) 

 
Using the standard procedure for finding the bias and mean squared errors 

shown previously, the bias and mean squared error of the proposed separate ratio-
type estimators up to the first degree of approximation are obtained as: 
 

    1 2 2
3 3

1

ˆ L
US

RS h h h h xh h yxh yh xh
h

B Y W Y C C C   


    (19) 

 

    1 2 2 2 2 2
3 3

1

ˆ 2
L

US
RS h h yh h h xh h h yxh

h
MSE Y W S R S R S  



     (20) 

 

    2 2 2
4 4

1

ˆ L
US

RS h h h h xh h yxh yh xh
h

B Y W Y C C C   


    (21) 

 

    2 2 2 2 2 2
4 4

1

ˆ 2
L

US
RS h h yh h h xh h h yxh

h
MSE Y W S R S R S  



     (22) 

 

where 2
3

2

( )
( )

h h
h

h h xh

X x
X x C








 and 4

2

.
( )

h xh
h

h xh h

X C
X C x
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Efficiency comparisons 

The variance of the usual unbiased estimators in stratified random sampling is  
 

   2 2

1

L

st h h yh
h

V y W S


   (23) 

 
From (7) and (23), it is observed that the proposed estimator SD

RSŶ  would be 
more efficient than the usual unbiased estimator sty if 
 
 2A B . (24) 

 
A comparison of (7) and (2) shows that the proposed estimator SD

RSŶ  would 

be more efficient than the usual ratio estimator RSŶ  if 
 
 2C D .  (25) 

 
Comparing (12) and (23), it is observed that the proposed estimator SE

RSŶ  
would be more efficient than the usual unbiased estimator sty  if 

 
 2E F .  (26) 
 

From (12) and (2) it is observed that the proposed estimator SE
RSŶ  would be 

more efficient than the usual separate ratio estimator RSŶ  if 
 

 2G H .  (27) 
 

Comparison of (20) and (23) shows that the proposed estimator 1ˆ US
RSY  would 

be more efficient than the usual unbiased estimator sty if 
 

 2L M .  (28) 
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From (20) and (2), it is observed that the proposed estimator 1ˆ US
RSY  would be 

more efficient than the usual separate ratio estimator RSŶ  if 
 

 2N P .  (29) 
 
Comparison of (22) and (23) shows that the proposed estimator 2ˆ US

RSY  would 
be more efficient than the usual unbiased estimator sty  if 

 
 2Q R .  (30) 

 
From (22) and (2), it is observed that the proposed estimator 2ˆ US

RSY  would be 

more efficient than the usual separate ratio estimator RSŶ  if 
 

 2S T ,  (31) 
 

where 2 2 2 2
1

1

L

h h h xh h
h

A W S R 


 , 2
1

1

L

h h h h yxh
h

B W R S 


 , 

 2 2 2 2
1

1
1

L

h h xh h h
h

C W S R 


  ,  2
1

1
1

L

h h h yxh h
h

D W R S 


  , 2 2 2 2
2

1

L

h h h xh h
h

E W S R 


 , 

2
2

1

L

h h h h yxh
h

F W R S 


 ,  2 2 2 2
2

1
1

L

h h xh h h
h

G W S R 


  ,  2
1

1
1

L

h h h yxh h
h

H W R S 


  , 

2 2 2 2
3

1

L

h h h xh h
h

L W S R 


 , 2
3

1

L

h h h h yxh
h

M W R S 


 ,  2 2 2 2
3

1
1

L

h h xh h h
h

N W S R 


   ,

 2
3

1
1

L

h h h yxh h
h

P W R S 


  , 2 2 2 2
4

1

L

h h h xh h
h

Q W S R 


 , 2
4

1

L

h h h h yxh
h

R W R S 


  

 2 2 2 2
4

1
1

L

h h xh h h
h

S W S R 


   and  2
4

1
1 .

L

h h h yxh h
h

T W R S 


 
 

 

Empirical study 

To examine the performance of the proposed estimator in comparison to other 
estimators considered in this study, three natural population data sets were 
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considered (see Populations 1-3). The estimators based on the population data are 
compared in Table 1. 
 
 
Population 1. (Singh and Mangat, 1996, p. 208) 
 

N = 1344, 
n = 52 

1n =14 2n =9 3n =12 4n =17 

1N =400 2N =216 3N =364 4N =364 

1X =76.21 2X =58.11 3X =69.08 4X =63.71 

1Y =79.35 2Y =59.44 3Y =76.66 4Y =64.57 

 21 x =2.22  22 x =2.29  23 x =1.96  24 x =2.47 

1x
C =0.1906 

2xC =0.2416 3xC =0.201 4xC =0.1908 

1

2
xS =210.9938 

2

2
xS =197.1041 

3

2
xS =192.7954 2

4xS =147.7651 

1

2
yS =166.70 

2

2
yS =174.28 

3

2
yS =226.60 

4

2
yS =170.61 

1yxS =148.76 
3yxS =161.19 

3yxS =192.21 
4yxS =143.83 

 
 
Population 2. (Murthy, 1967, p. 228) 
 

N = 10, 
n = 4 

1n =2 2n =2 

1N =5 2N =5 

1X =214.4 2X =333.8 

1Y =1925.8 2Y =3115.6 

 21 x =1.88  22 x =2.32 

1yx =0.85
 2yx =0.98

 

1x
C =0.34 

2xC =0.19 

1

2
xS =5605.84 

2

2
xS =4401.76 

1

2
yS =379360.16 

2

2
yS =115860.24 

1yxS =39360.69 
2yxS =22356.52 
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Population 3. (Singh and Mangat, 1996, p. 219) 
 

N = 10, 
n = 4 

1n =2 2n =2 

1N =5 2N =5 

1X =214.4 2X =333.8 

1Y =1925.8 2Y =3115.6 

 21 x =1.88  22 x =2.32 

1yx =0.85
 2yx =0.98

 

1x
C =0.34 

2xC =0.19 

1

2
xS =5605.84 

2

2
xS =4401.76 

1

2
yS =379360.16 

2

2
yS =115860.24 

1yxS =39360.69 
2yxS =22356.52 

 
 

Table 1. Percent Relative Efficiency of sty , ˆ
RSY , ˆ SD

RSY , ˆ SE
RSY , 1ˆUS

RSY  and 2ˆUS
RSY  with 

respect to sty  
 

 

Conclusion 

The conditions under which the proposed estimators have less mean squared error 
in comparison to the usual unbiased estimator in stratified random sampling and 
usual separate ratio estimator were described. Table 1 shows that the proposed 
estimators have the highest percent relative efficiency compared to the usual 

Estimators Population I Population II Population III 

sty  100.00 100.00 100.00 
ˆ
RSY  350.08 239.76 254.99 

ˆ SD
RSY  351.53 240.35 255.22 

ˆ SE
RSY  364.51 244.55 258.23 

1ˆUS
RSY  350.76 240.05 255.10 

2ˆUS
RSY  397.29 260.33 275.69 
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unbiased estimator and separate ratio estimator, in all three populations. Thus, the 
proposed estimators ˆ SD

RSY , ˆ SE
RSY , 1ˆUS

RSY  and 2ˆUS
RSY  are recommended for use in 

practice for estimating the population mean when the described proper conditions 
are satisfied.  
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New median based modified ratio estimators for estimating a finite population mean 
using quartiles and functions of an auxiliary variable are proposed. The bias and mean 
squared error of the proposed estimators are obtained and the mean squared error of the 
proposed estimators are compared with the usual simple random sampling without 
replacement (SRSWOR) sample mean, ratio estimator, a few existing modified ratio 
estimators, the linear regression estimator and median based ratio estimator for certain 
natural populations. A numerical study shows that the proposed estimators perform better 
than existing estimators; in addition, it is shown that the proposed median based modified 
ratio estimators outperform the ratio and modified ratio estimators as well as the linear 
regression estimator. 
 
Keywords: Bias, inter-quartile range, linear regression estimator, mean squared error, 
natural population, simple random sampling 
 

Introduction 

Consider a finite population  1 2, , , NU U U U   of N  distinct and identifiable 
units. Let Y  be a study variable with value iY  measured on , 1,2,3, ,iU i N   
giving a vector  1 2, , , NY Y Y Y  . The goal is to estimate the population mean, 

1
1 N

i iY Y
N   , with some desirable properties on the basis of a random sample of 

size n selected from the population U. The simplest estimator of population mean 
is the sample mean, obtained by using simple random sampling without 

mailto:drjsubramani@yahoo.co.in
mailto:praba.gopal.23@gmail.com
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replacement (SRSWOR), when there is no information on the auxiliary variable 
available. Let X be an auxiliary variable that is positively correlated with the study 
variable Y: Sometimes the information on auxiliary variable X, positively 
correlated with Y, may be utilized to obtain a more efficient estimator of the 
population mean (for further details on ratio estimators see Cochran, 1977 and 
Murthy, 1967.) When the population parameters of an auxiliary variable X, such 
as, population mean, coefficient of variation, coefficient of kurtosis, coefficient of 
skewness and median are known, ratio, product and linear regression estimators 
(and their modifications) have been proposed in the literature – many of which 
perform better than the SRSWOR sample mean for estimating the population 
mean of a study variable. 

Subramani (2013a) proposed a median based ratio estimator by using the 
median of a study variable as auxiliary information, and it has been shown that 
this median based ratio estimator outperforms the usual SRSWOR sample mean, 
ratio estimator, modified ratio estimator and linear regression estimator. Based on 
Subramani’s (2013a) median based ratio estimator, some new median based 
modified ratio estimators with known quartiles of the auxiliary variable are 
proposed. 

The first quartile, also called lower quartile, is denoted by 1Q ; the third 
quartile, also called the upper quartile, is denoted by 3Q . The lower quartile is a 
point where 25% of the observations are less than 1Q  and 75% are above 1Q . The 
upper quartile is a point where 75% observations are less than 3Q  and 25% are 
above 3Q . Quartiles are unaffected by extreme values unlike the population mean, 
variance, correlation coefficient, etc. 

The inter-quartile range used as a measure of spread in a data set. The inter-
quartile range of a distribution is the difference between the upper and lower 
quartiles. The formula for computing the inter-quartile range is 

 
 3 1rQ Q Q  .  (1) 
 

The semi-quartile range of a distribution is half the difference between the 
upper and lower quartiles, or half the inter-quartile range. The formula for 
computing the semi-quartile range is 

 

 3 1

2d
Q QQ 

   (2) 
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Another measure, the quartile average, noted by aQ , was suggested by 
Subramani and Kumarapandiyan (2012a) and is defined as  
 

 3 1

2a
Q QQ 

   (3) 

 
The notations and formulae used in this article are: 
 

N:  Population size 
n:  Sample size 
Y:  Study variable 

M:  Median of the study variable 
X:  Auxiliary variable 
iQ :  ith Quartile of auxiliary variable, i=1,3 
 :  Correlation coefficient between X and Y 

,X Y :  Population means 
,x y :  Sample means 
M :  Average of sample medians of Y 
m:  Sample median of Y 
 :  Regression coefficient of Y on X 
 .B :  Bias of the estimator 
 .V :  Variance of the estimator 
 .MSE :  Mean squared error of the estimator 

 
 

 
, *100

MSE e
PRE e p

MSE p


: 

Percent relative efficiency of the 
proposed estimator p with respect to the 
existing estimator e 

 
 

The formulae for computing various measures including the variance and 
the covariance of the SRSWOR sample mean and sample median are: 
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2 22 2

1 1

2

1

1 1 1,

1 ,

1 ,
C Cn n

n n

Cn

n

N N

y xi i
i iC C

N

i
iC

f fV y y Y S V x x X S
N n N n

MSE m V m m M
N

 



 
     

  

 

  

 

       
1 1

1 1 1,
1

Cn

n

N N

i i i i
i iC

fCov y x x X y Y X X Y Y
N n N 


     


  , 

 

    
1

1,
Cn

n

N

i i
iC

Cov y m m M y Y
N 

   , 

 
       ' ' ' '

2 2

, ,
,  ,  ,  xx mm ym yx

V x V m Cov y m Cov y x
C C C C

X M MY XY
    , 

 

where    
2 22 2

1 1

1 1;  ,  
1 1

.
N N

y i x i
i i

nf S Y Y S X X
N N N 

    
 
   

 
In the case of SRSWOR, the sample mean, y , is used to estimate the 

population mean, Y . That is, the estimator of ˆ
rY Y y   with variance  

 

   21ˆ
r yY fV S

n


 . (4) 

 

The classical ratio estimator for estimating the population mean Y of a study 

variable Y is defined as ˆ ˆ .R
yY X RX
x

   The bias and mean squared error of ˆ
RY  

are: 
    ' 'ˆ

xR x yxB CY Y C    (5) 

and 

        2 2 ,ˆ
RMSE V y R V x RC y xY ov   .  (6) 
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The other commonly used estimator using the auxiliary variable X is the 
linear regression estimator. The linear regression estimator and its variance with 
known regression coefficient are: 

 
  ˆ

lr y XY x     (7) 
 

     
 

   
2 ,

1  where ˆ
*

lr

Cov y x
V V y

V x V y
Y       (8) 

 
Subramani & Kumarapandiyan (2012a) suggested some modified ratio 

estimators using known quartiles and their functions of an auxiliary variable, 
these are: 
 

 1

1
1

ˆ
RM

X Qy
x Q

Y
 

  
 

  (9) 

 

 3

3
2

ˆ
RM

X Qy
x Q

Y
 

  
 

  (10) 

 

 3
ˆ r
RM

r

Y X Qy
x Q

 
  

 
  (11) 

 

 4
ˆ d
RM

d

Y X Qy
x Q

 
  

 
  (12) 

 

 5
ˆ a
RM

a

Y X Qy
x Q

 
  

 
  (13) 

 
The bias and the mean squared error of the modified ratio estimators in (9) 

to (13) are:  
 

    2 ' 'ˆ
i xx i yxRMiB Y C CY      (14) 
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        2 2 2 ,ˆ
i iRMiMSE V y R V x R Cov y xY       (15) 

 

where YR
X

  and  

 

4
1

51 2 3
3

, ,  , ,  ; 1,2,3,4,5
r d a

X X X X X i
X Q X Q X Q X Q X Q

         
    

 

 
Recently Subramani (2013a) suggested a median based ratio estimator for 

estimating Y  when the median of the study variable Y is known. The estimator 
with its bias and mean squared error are: 

 

 ˆ
MY y M

m
   (16) 

 

    ' 'ˆ
mm ymM

Bias m
B

M
Y Y C C

 
   

 
  (17) 

 

        2 '2 ,  where ˆ
M

YMSE V y R V m R Cov m R
M

Y y    .  (18) 

 
For further details on modified ratio estimators with known population 

parameters of an auxiliary variable, such as coefficient of variation, skewness, 
kurtosis, correlation coefficient, quartiles and their linear combinations, readers 
are referred to Kadilar and Cingi (2004, 2006a, b, 2009) Koyuncu and Kadilar 
(2009), Singh and Kakran (1993), Singh and Tailor (2003, 2005), Singh (2003), 
Sisodia and Dwivedi (1981), Subramani (2013a, b), Subramani and 
Kumarapandiyan (2012a, b, c, 2013), Tailor and Sharma (2009), Tin (1965), and 
Yan and Tian (2010).  

The median based ratio estimator proposed by Subramani (2013a) is 
extended and, as a result, some new median based modified ratio estimators 1

ˆ
SPY , 

2
ˆ
SPY , 3

ˆ
SPY , 4 5and ˆ ˆ SP SPY Y  with known quartiles and their functions of auxiliary 

variables are proposed.  

file:///C:/Users/Julie/Desktop/JMASM%2013.1/RefSubramaniKumarapandiyan2013
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Proposed Median Based Modified Ratio Estimators 

The proposed median based modified ratio estimators for estimating a population 
mean Y  based on Subramani’s (2013a) ratio estimator are: 
 

 1

1
1

ˆ
SP

M Qy
m Q

Y
 

  
 

  (19) 

 

 3

3
2

ˆ
SP

M Qy
m Q

Y
 

  
 

  (20) 

 

 3
ˆ r
SP

r

Y M Qy
m Q

 
  

 
  (21) 

 

 4
ˆ d
SP

d

Y M Qy
m Q

 
  

 
  (22) 

and 

 5
ˆ a
SP

a

Y M Qy
m Q

 
  

 
. (23) 

 
To the first degree of approximation, the bias and mean squared error of ˆ

SPjY  are 
derived as: 
 

    ' 2 ' ' ' ' , 1,2,3,4,5,ˆ
j mm j ym jSPj

Bias m
B Y C j

M
Y C  

 
    

 
  (24) 

 

        2 ' 2 '2 , ,  1,2,3,4 5ˆ ,jSPj jMSE V y R V m R Cov y m jY         (25) 

 
where 
 

' ' ' ' ' '
1 2 3 4 5

1 3

,  ,  ,  ,  ,  
r d a

Y M M M M MR
M M Q M Q M Q M Q M Q

         
    

. 
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See Appendix A for detailed derivation of the bias and the mean squared error of 
ˆ
SPjY . 

Efficiency Comparisons 

Comparison with SRSWOR Sample Mean 
The conditions (see Appendix B) for which the proposed estimators 

,  1,2ˆ ,3,4,5SPjY j   are more efficient than the SRSWOR sample mean ˆ
rY  were 

derived from expressions (25) and (4) and are: 
 
     ' ' ' if 2 ;  1,2,3,4,5ˆ ˆ

ym jPj r mmSM Y YSE V C C j   .  (26) 

Comparison with Ratio Estimators 
The conditions (see Appendix B) for which the proposed estimators 

,  1,2ˆ ,3,4,5SPjY j   are more efficient than the usual ratio estimator ˆ
RY  were 

derived from expressions (25) and (6) and are: 

 
      ' 2 ' 2 ' ' ' ' if 2 ; ,  1,2,3,4ˆ ˆ ,5j mm i xx j ym i yxSPj RMSE MSE C C C C iY jY         .  (27) 

Comparison with Modified Ratio Estimators 
From expressions (25) and (15), the conditions (see Appendix B) for which the 
proposed estimators ,  1,2ˆ ,3,4,5SPjY j   are more efficient than the existing 

modified ratio estimator ,  1,2ˆ ,3,4,5RMiY i   were derived and are: 
 

   ˆ ˆ
SPj RMiM MSEY YSE   

if  
 
      ' 2 ' 2 ' ' ' ' if 2 ;  ,  1,2 3 ,ˆ ,4ˆ , 5j mm i xx j ym i yxSPj RMiY YMSE MSE C C C C i j          (28) 
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Comparison with Linear Regression Estimator 
From expressions (25) and (8), the conditions (see Appendix B) for which the 
proposed estimators ,  1,2ˆ ,3,4,5SPjY j   are more efficient than the usual linear 

regression estimator ˆ
lrY  were derived and are: 

 

    
2'

' ' ' 2 '
'

ˆ ˆ  if 2 ; 1,  2yx
j ym jSPj l mm

xx
rY Y

C
MSE V C C j

C
 

 
     .  (29) 

Comparison with Median Based Ratio Estimator 
From expressions (25) and (18), the conditions (see Appendix B) for which the 
proposed estimators , 1,2 3 4,5ˆ , ,SPjY j   are more efficient than the existing 

modified ratio type estimator ˆ
MY  were derived and are: 

 
      ' ' ' if 2 1 ; 1,2,3,4,5ˆ ˆ

SP ymj j mmMMSE MSE CY CY j    .  (30) 

Numerical Comparison 

The conditions for which the proposed median based modified ratio estimators 
performed better than the other usual estimators considered in this study have 
been obtained. In order to show that the proposed estimators perform better than 
the other estimators, numerical comparisons were made to determine the 
efficiencies of the proposed estimators. Two populations were used to assess the 
efficiencies of the proposed median based modified ratio estimators with that of 
the existing estimators. Populations 1 and 2 are from Singh and Chaudhary (1986, 
p. 177). The parameter values and constants computed for the populations are 
given in Table 1, the bias for the proposed and existing estimators computed for 
the two populations are given in Table 2 and the mean squared errors are given in 
Table 3. 
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Table 1. Parameter values and constants for 2 different populations 
 

Parameter 
n = 3  n = 5 

Pop 1 Pop 2  Pop 1 Pop 2 
N  34.0000 34.0000  34.0000 34.0000 
n  3.0000 3.0000  5.0000 5.0000 

C n
N  5,984.0000 5,984.0000  278,256.0000 278,256.0000 

Y  856.4118 856.4118  856.4118 856.4118 

M  747.7223 747.7223  736.9811 736.9811 

M  767.5000 767.5000  767.5000 767.5000 

X  208.8824 199.4412  208.8824 199.4412 

1
Q  94.2500 99.2500  94.2500 99.2500 

3
Q  254.7500 278.0000  254.7500 278.0000 

r
Q  160.5000 178.7500  160.5000 178.7500 

d
Q  80.2500 89.3750  80.2500 89.3750 

a
Q  174.5000 188.6250  174.5000 188.6250 

R  4.0999 4.2941  4.0999 4.2941 

R  1.1158 1.1158  1.1158 1.1158 

1
  0.6891 0.6677  0.6891 0.6677 

2
  0.4505 0.4177  0.4505 0.4177 

3
  0.5655 0.5274  0.5655 0.5274 

4
  0.7224 0.6905  0.7224 0.6905 

5
  0.5448 0.5139  0.5448 0.5139 

'

1
  0.8906 0.8855  0.8906 0.8855 

'

2
  0.7508 0.7341  0.7508 0.7341 

'

3
  0.8270 0.8111  0.8270 0.8111 

'

4
  0.9053 0.8957  0.9053 0.8957 

'

5
  0.8148 0.8027  0.8148 0.8027 

 var y  163,356.4086 163,356.4086  91,690.3713 91,690.3713 

 var x  6,884.4455 6,857.8555  3,864.1726 3,849.2480 

 var m  101,518.7738 101,518.7738  59,396.2836 59,396.2836 

 cov ,y m  90,236.2939 90,236.2939  48,074.9542 48,074.9542 

 cov ,y x  15,061.4011 14,905.0488  8,453.8187 8,366.0597 
  0.4491 0.4453  0.4491 0.4453 
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Table 2. Bias of existing and proposed estimators 
 

Estimators n = 3  n = 5 
Pop 1 Pop 2  Pop 1 Pop 2 

Existing 

ˆ
R

Y  63.0241 72.9186  35.3748 40.9285 

1

ˆ
RM

Y  14.4774 15.9291  8.1261 8.9409 

2

ˆ
RM

Y  -5.0570 -5.4535  -2.8385 -3.0610 

3

ˆ
RM

Y  2.4369 1.6513  1.3678 0.9269 

4

ˆ
RM

Y  18.4357 18.8016  10.3478 10.5531 

5

ˆ
RM

Y  0.8276 0.5910  0.4645 0.3317 
ˆ

M
Y  52.0924 52.0924  57.7705 57.7705 

Proposed 

1

ˆ
SP

Y  32.0179 31.1618  43.0405 42.3993 

2

ˆ
SP

Y  11.4953 9.4306  27.2167 25.5531 

3

ˆ
SP

Y  21.9708 19.6375  35.4268 33.6263 

4

ˆ
SP

Y  34.5121 32.8700  44.9012 43.6773 

5

ˆ
SP

Y  20.1662 18.4422  34.0355 32.6983 
 
 
Table 3. Variance/mean squared error of existing and proposed estimators 
 

Estimators n = 3  n = 5 
Pop 1 Pop 2  Pop 1 Pop 2 

Existing 

ˆ
r

Y  163356.4086 163356.4086  91690.3713 91690.3713 
ˆ

R
Y  155577.8155 161802.8878  87324.3215 90818.3961 

1

ˆ
RM

Y  133203.7861 134261.9210  74765.9957 75359.9173 

2

ˆ
RM

Y  131205.2291 131950.5079  73644.2252 74062.5432 

3

ˆ
RM

Y  130523.6191 131018.5135  73261.6440 73539.4239 

4

ˆ
RM

Y  134530.4901 135259.2456  75510.6618 75919.7060 

5

ˆ
RM

Y  130420.4186 130968.9816  73203.7186 73511.6221 
ˆ
lr

Y  130408.9222 130964.1249  73197.2660 73508.8959 
ˆ

M
Y  88379.0666 88379.0666  58356.9234 58356.9234 

Proposed 

1

ˆ
SP

Y  84266.7092 84147.8927  54798.7634 54675.1252 

2

ˆ
SP

Y  83413.6960 83642.1970  52826.6580 52784.4688 

3

ˆ
SP

Y  83266.0122 83175.3231  53543.5010 53322.4123 

4

ˆ
SP

Y  84643.7479 84390.4264  55174.2962 54924.5239 

5

ˆ
SP

Y  83190.4430 83153.4557  53369.8070 53221.3731 
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The percentage relative efficiencies of the proposed estimators with respect to the 
existing estimators were also obtained and are shown in Tables 4-5. 
 

Table 4. Percentage Relative Efficiency of ˆ
SPjY  for Population 1 

 

Existing 
Estimators 

For sample size n=3 For sample size n=5 
Proposed Estimators Proposed Estimators 

1
ˆ
SPY  

2
ˆ
SPY  3

ˆ
SPY  4

ˆ
SPY  5

ˆ
SPY  1

ˆ
SPY  

2
ˆ
SPY  3

ˆ
SPY  4

ˆ
SPY  5

ˆ
SPY  

ˆ
rY  193.86 195.84 196.19 192.99 196.36 167.32 173.57 171.24 166.18 171.80 
ˆ
RY  184.63 186.51 186.84 183.80 187.01 159.35 165.30 163.09 158.27 163.62 

1
ˆ
RMY  158.07 159.69 159.97 157.37 160.12 136.44 141.53 139.64 135.51 140.09 

2
ˆ
RMY  155.70 157.29 157.57 155.01 157.72 134.39 139.41 137.54 133.48 137.99 

3
ˆ
RMY  154.89 156.48 156.75 154.20 156.90 133.69 138.68 136.83 132.78 137.27 

4
ˆ
RMY  159.65 161.28 161.57 158.94 161.71 137.80 142.94 141.03 136.86 141.49 

5
ˆ
RMY  154.77 156.35 156.63 154.08 156.77 133.59 138.57 136.72 132.68 137.16 

ˆ
lrY  154.76 156.34 156.62 154.07 156.76 133.57 138.56 136.71 132.67 137.15 
ˆ
MY  104.88 105.95 106.14 104.41 106.24 106.49 110.47 108.99 105.77 109.34 

 
 

Table 5: Percentage Relative Efficiency of ˆ
SPjY  for Population 2 

 

Existing 
Estimators 

For sample size n=3 For sample size n=5 
Proposed Estimators Proposed Estimators 

1
ˆ
SPY  

2
ˆ
SPY  3

ˆ
SPY  4

ˆ
SPY  5

ˆ
SPY  1

ˆ
SPY  

2
ˆ
SPY  3

ˆ
SPY  4

ˆ
SPY  5

ˆ
SPY  

ˆ
rY  194.13 195.30 196.40 193.57 196.45 167.70 173.71 171.95 166.94 172.28 
ˆ
RY  192.28 193.45 194.53 191.73 194.58 166.11 172.06 170.32 165.35 170.64 

1
ˆ
RMY  159.55 160.52 161.42 159.10 161.46 137.83 142.77 141.33 137.21 141.60 

2
ˆ
RMY  156.81 157.76 158.64 156.36 158.68 135.46 140.31 138.90 134.84 139.16 

3
ˆ
RMY  155.70 156.64 157.52 155.25 157.56 134.50 139.32 137.91 133.89 138.18 

4
ˆ
RMY  160.74 161.71 162.62 160.28 162.66 138.86 143.83 142.38 138.23 142.65 

5
ˆ
RMY  155.64 156.58 157.46 155.19 157.50 134.45 139.27 137.86 133.84 138.12 

ˆ
lrY  155.64 156.58 157.46 155.19 157.50 134.45 139.26 137.86 133.84 138.12 
ˆ
MY  105.03 105.66 106.26 104.73 106.28 106.73 110.56 109.44 106.25 109.65 
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Tables 4 and 5 show that the percent relative efficiencies of the proposed 
estimators, with respect to existing estimators, range in general from 104.41 to 
196.45. In particular, the PRE ranges from 166.18 to 196.45 for comparing with 
the SRSWOR sample mean; ranging from 158.27 to 194.58 for comparing with 
the ratio estimator; ranging from 132.68 to 162.66 for comparing with the 
modified ratio estimators; ranging from 132.67 to 157.50 for comparing with the 
linear regression estimator and ranging from104.41 to 110.56 for comparing with 
the median based ratio estimator. This demonstrates that the proposed estimators 
perform better than the existing SRSWOR sample mean, ratio, modified ratio and 
linear regression estimators for the two populations considered. Further it is 
observed from the numerical comparisons that the following inequalities hold: 
 

           ˆ ˆ ˆ ˆ ˆ ˆ
SPj M lr RMi R rMSE Y MSE V MSE MSE VY Y Y Y Y    

 

Conclusion 

This article proposed some new median based modified ratio estimators using 
known quartiles and their functions of the auxiliary variable. The conditions for 
which the proposed estimators are more efficient than the existing estimators were 
derived. Further the percentage relative efficiencies of the proposed estimators 
with respect to existing estimators were shown to range in general from 104.41 to 
196.45 for certain natural populations available in the literature. It is usually 
believed that the linear regression estimator is the optimum estimator for 
estimating the population mean whenever an auxiliary variable exists that is 
positively correlated with that of a study variable. However, it was shown that the 
proposed median based modified ratio estimators outperform not only the ratio 
and modified ratio estimators but also the linear regression estimator. Based on 
results of this study, the proposed median based modified ratio estimators are 
recommended for estimating finite population means. 
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Appendix A 

The derivation of the bias and the mean squared error of 1SPY  are given below: 
Consider  
 

 1
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The estimator 1SPY  can be written in terms of 0e  and 1e  as  
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1'

1 0 1 1
ˆ 1 1SPY Y e e



    

 
Neglecting the terms of higher order, we have 
 

  ' '2 2
1 0 1 1 1 1

ˆ 1 1SPY Y e e e    
 

 
' ' '2 2

1 0 1 1 1 0 1 1 1
ˆ
SPY Y Ye Y e Y e e Y e        

 
' ' '2 2

1 0 1 1 1 0 1 1 1
ˆ
SPY Y Ye Y e Y e e Y e         (A4) 

 
Taking expectations on both sides of (A4) we have, 
 

         ' ' '2 2
1 0 1 1 1 0 1 1 1

ˆ
SPE Y Y YE e Y E e Y E e e Y E e        

 

  2
1 11 1

ˆ ( )
P m mS m y

Bias mE Y Y C CY
M

  
 
         

 
 from (A2) and (A3) 

 

   '2 ' ' ' '
1 1 1 1

ˆ
SP mm ym
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Bias Y Y C C

M
  
 

    
 

  (A5) 

 
The derivation of mean squared error of 1SPY  is given below: 
 

     
2 2'

1 1 0 1 1
ˆ ˆ
SP SPMSE Y E Y Y E Ye Y e   

 
 

        2 2 '2 2 '
1 0 1 1 1 0 1
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       2 '2 '
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2' '2 '

1 1 1
ˆ 2 , ;SP

YMSE Y V y R V m R Cov y m R
M

        (A6) 

 
In the Similar manner, the bias and mean squared error of 2 3 4 5

ˆ ˆ ˆ  ˆ, , and SP SP SP SPY Y Y Y  
can be obtained. 
 

Appendix B 

The conditions for which the proposed estimators perform better than the existing 
estimators are derived here and are given below: 

Comparison with that of SRSWOR sample mean 
 

Consider    ˆ ˆ
SPj rMSE Y V Y  

       
2' ' 2 '2 ,j jV y R V m R Cov y m V y      
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Comparison with that of Ratio Estimator 
 

Consider    ˆ ˆ
SPj RMSE Y MSE Y  

           
2' ' 2 ' 22 , 2 ,j jV y R V m R Cov y m V y R V x RCov y x        

 
       

2' ' 2 ' 22 , 2 ,j jR V m R Cov y m R V x RCov y x      
 

       
2' ' 2 2 '2 , 2 ,j jR V m R V x R Cov y m RCov y x      

 

       
2 2

' 2 '
2 2 2 , 2 ,j j

Y Y Y YV m V x Cov y m Cov y x
M X M X

    
 

 
       ' 2 '

2 2

, ,
2j j

V m V x Cov y m Cov y x
M X YM YX

 
 

    
   

 
 ' 2 ' ' ' ' '2 ; 1,2,3,4,5j mm xx j ym yxC C C C j     

 

Comparison with that of Modified Ratio Estimators 

Consider    ˆ ˆ
SPj RMiMSE Y MSE Y  
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       ' 2 2 '
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Comparison with that of Linear Regression Estimator 
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Comparison with that of Median Based Ratio Estimator 
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Wavelet transformation is commonly used in calibration models as a preprocessing step. 
This preprocessing does not involve all results of a spectrum discretization; consequently, 
a lot of information can be missing. To avoid missing information, a symmetric padding 
extension (SPE) can be used to place all data points into dyadic scales, however, high 
dimensional discretization points need to be reduced. Dimension reduction can be 
performed with Daubechies wavelet transformation (DWT). Scale function and 
Daubechies wavelet are continuous functions, thus they perform a faster approximation. 
SPE-DWT preprocessing combines SPE and DWT. Multicollinearity often occurs in 
calibration models; the ridge regression (RR) method can be used to solve 
multicollinearity problems. This article proposes the RR method with SPE-DWT 
preprocessing. The proposed method is applied to determine a model for predicting the 
content of curcumin in turmeric. Selection of the best model is carried out by comparing 
coefficient of determinations, p-values of the Kolmogorov-Smirnov (KS) error models, 
and Root Mean Square Error Prediction (RMSEP). Results show that the RR method with 
SPE-DWT preprocessing gives an accurate prediction. 
 
Keywords: Calibration models, Daubechies wavelet transform, symmetric padding 
extension 
 

Introduction 

In calibration models, the number of observations is usually much smaller than 
the number of points resulted from the spectrum discretization obtained from 
Fourier Transform Infrared (FTIR). In preprocessing calibration models, some 
researchers use Daubechies wavelet transformation (DWT) without involving all 
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points resulted from discretization; this means that a lot of information will be 
missing in building models. Using DWT, Brown et al. (2001) involved 28 of 700 
points in building models to estimate the content of fat, sugar, flour and water in 
bread dough. Using Haar wavelet transform, Sunaryo and Retnaningsih (2008) 
used 210 of 1,866 points to estimate the content of gingerol in ginger. In these two 
studies there are as many as 444 and 842 missing information points, respectively. 

To avoid missing information, symmetric padding extension (SPE) can be 
used with all data points in dyadic scales. Spectrum discretization points are 
predictor variables with an original size of p, changed to q = 2M, where M is a 
positive integer and q ≥ p. Dimension reduction can be performed with DWT. The 
scale function and Daubechies wavelet are continuous functions; thus, they can 
perform a faster approximation. 

To date, SPE-DWT preprocessing, which combines SPE and DWT in 
calibration models, has not been used. SPE-DWT preprocessing avoids 
information loss during preprocess and determines the orthogonal matrix in 
dimension reduction process. Multicollinearity often occurs in calibration models; 
the ridge regression (RR) method can be used to solve multicollinearity problem. 
This manuscript proposes a RR method with SPE-DWT preprocessing. 

Methodology 

Several methods are available to categorize discretization points of wavelength 
into dyadic scales; one method is the SPE. According to Boggess & Narcowich 
(2001), SPE is defined as a spectrum that is evenly extended at the endpoints by 
reflection in two ways: (i) discretization points are reflected around mid-line 
between the end point and the next point, expressed by SPE1, and (ii) 
discretization points are reflected in the line through the two end points, expressed 
with SPE2. Figures 1(a) and 1(b) illustrate the SPE1 and SPE2 of 10 
discretization points. 
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(1a)  (1b) 

 
Figure 1: SPE1 (1a) and SPE2 (1b) of 10 Discretization Points 
 
 
 

If the discretization points are matrix 1

* ,n pX then centering and SPE are performed 

on this matrix, the resulting matrix will be 1

* .n qX  The next step is determining the 
orthogonal matrix, size q × q, for dimension reduction process by using the 
wavelet analysis. 

There are two main functions in wavelet analysis: scale function   (father 
wavelet) and wavelet function   (mother wavelet). Both functions produce a 
family of functions that can be used to solve or reconstruct a spectrum (Boggess 
& Narcowich, 2001). Daubechies wavelet (Daubechies, 1992) is one of these 
wavelet functions. The scale function and Daubechies wavelet are continuous 
functions and, thus, can perform a faster approximation. Advantages of the 
Daubechies wavelet are compact support (closed and bounded), and that the width 
of support depends on the number of vanishing moments L  (which limits the 
pedestal width) (Daubechies, 1992).  

A smoother scaling function and the Daubechies wavelet function can be 
determined by choosing the power 2 1L   and filter length 2N L . In the 
Daubechies wavelet, for each L  number of vanishing moments, there will be 2L  
coefficient scales with non-zero values. The scale and Daubechies wavelet 
functions are located on the interval 0 2 1t L   . Daubechies wavelet is 
commonly expressed by dbN  for 2,  ,  10L   or by db2L for 2,  ,  10L   
(Burrus et al., 1998; Boggess & Narcowich, 2001). To define the Daubechies 
wavelets, consider the two functions t( )  and t ( )  which are solutions to the 
following equations:  
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equation of scale function, 
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Filter coefficients of the scale function t( )  in (1) for the Daubechies wavelet 
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A set sequence of scale filter numbers  0 1 2 1
, , , ,

N
h h hhH


  called low-pass 

filters in a pyramid algorithm can be obtained from (3), (4), (5) and (6) (see 
Burrus et al. (1998) for a detailed discussion about the pyramid). The relationship 
between the scale filter coefficients 

k
h  and wavelet filter coefficients 

k
g : 
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k N k
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A set sequence of wavelet filter numbers  0 1 1, , , NG g g g   called high-

pass filters in the pyramid algorithm is obtained from (7); based on the orthogonal 
wavelet matrix that satisfies (1) and (2) it can be determined using: 

 
 ** * *( ) ( )t t

q
 W W W W I .  (8) 
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After centering and SPE are performed, the matrix *tW  in (8) is used for 
dimension reduction. Dimension reduction can be done by determining the 
diagonal of matrix *

q q  which are the eigenvalues of symmetric matrix t
q qX X( )  

(Anton & Rorres, 2005, p566, eq1) Hence, the diagonal of matrix *
q q  is 

obtained from:  
* * *( ) ( ) .t t

q q q q q q q q   W X X W( )   
 

Considering the proportion of 
 

* * * * * * *
1 2 1 2( ) ( ) / ( ),r r qp               

 
matrix t

q rW for dimension reduction is obtained, where .r q  Dimension 

reduction of predictor variables and parameters is determined with: 
 

1 1

t
n r n q q r  Z X W  and 1 1r r q q   W 

 
 
Because the points of the spectrum discretization resulted in calibration 

models are generally highly correlated, it is necessary to carry out muticollinearity 
detection. According to Shi-ji & Zhi-bin (1993), by taking into account the type of 
condition number 

max

min
cond( )t 


Z Z ,

 
 

multicollinearity can be detected through: 
 

i. If 0 ( ) 100tcond Z Z , there is no muticollinearity (Type I); 
ii. If 100 ( ) 1000tcond Z Z , there is some moderate or stronger degree of 

muticollinearity (Type II);  
iii. If ( ) 1000tcond Z Z , there is some serious degree of muticollinearity 

(Type III). 
 

In this study, the active compound curcumin in turmeric is the response 
variable determined from extraction using High Performance Liquid 
Chromatography (HPLC). Because data for this response variable does not follow 
a normal distribution, Johnson Transformation (JT) is carried out. The original 
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response variable is 
1

*
1n y , whereas 

1 1n y  is the response variable that has been 

transformed and centered. Given the normal distribution of *y : 
 

 
2* 2/2* 1( ) e , 
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*,  0,  .y         
 
If *y  is not normally distributed, the JT can be determined using: 

 
2* /2 *1( ) e , ,  

2
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where *( , , ),  1,  2,  3,iv f y i       v  is a standard normal random variable, 
  and   are the shape parameters,   is a scale parameter and   is a location 
parameter. It is assumed that 0   and 0.   Based on its curve, the JT can be 
differentiated into three systems (George, 2007): 
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1sinh ln 1 .y y y  

  



 
                      

 

 After the dimensional 

reduction process, calibration models are obtained as (Naes et al., 2002): 
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can be obtained from (9), where 
1 2 r
      and 0,  1,  2, ,

i
i r   . The 

parameter estimation using ordinary least square can be defined as: 
 

1 1

1
1 1ˆ t

r r r r n n


   γ Λ Z y
 

 
where 

1 1
ˆ ˆ ,t

n r n q q r  Z X W  
1 1

ˆ ˆ ,
t

q q r r  
 W γ

 
 

ˆE( ) ,   
2 1ˆvar( )

t

r r





 Z Z( )  and 
 

2 1

1

ˆMSE( ) .
r

i
i

 



 
 

 
One of the methods to overcome the multicollinearity problem is the RR 

method (Hoerl & Kennard, 1970). From (10) ridge parameter estimation can be 
obtained as: 

1

1

1 1
ˆ ( )

t t

q q q q n q



   
 Z Z I Z y ( )   

 
 

where 0,   and the ridge paramater can be determined using k  iterations (see 
Shi-ji & Zhi-bin (1993) for a detailed explanation of RR). 

In the process of building models it is important to validate the selected 
regression models. According to Neter et al. (1989), the regression models can be 
validated by dividing the data into two parts 

1 2
( ).n n n   The first set of data 1,n  

called the model building set, is used to build the model. The second data set 2 ,n  
called the validation or prediction set, is applied to validate the model.  
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Results 

Calibration models using the RR method with SPE-DWT preprocessing are built 
to predict the content of curcumin in turmeric. The discretization points resulted 
from FTIR spectrum and the content of curcumin in turmeric determined by 
HPLC is shown in Figure 2. Figure 2(a) shows the FTIR spectrum of a sample 
with 1866p   points, Figure 2(b) demonstrates the 616 first discretization points 
of the first sample data, Figure 2(c) illustrates the FTIR spectrum of 40 samples 
and Figure 2(d) shows the percentage of curcumin in turmeric as determined by 
the HPLC from 40 samples. These 40 samples are then divided into two parts, the 
first part of the data set consists of n1 = 30  samples as a model building set and 
the second part of data set comprises of, n2 = 10 samples as a prediction set. 
 
 

 
(2a) 

 

 
(2c) 

 
(2b) 

 

 
(2d) 

 
Figure 2. Data of Curcumin in Turmeric 
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In general, the number of samples in the calibration models is limited, 
therefore, it is important to conduct normality test for the response variables. 
There are 30 observations of curcumin in turmeric that do not meet the normality 
assumption as shown with the Kolmogorov-Smirnov (KS)  value 3.7478 13p e   
(see Figure 3(a)). The JT on the response variable yields: 

 

*
1 0.7084650.568871 0.784968 sinh  

0.0817548US
yv   

    
 

 

 
with the KS  value 0.6320.p   Further, y , a centered value of 

USv , is defined and 
illustrated in Figure 3(b). In this study, the building set is carried out only for 
SPE1 on predictor variables, thus, the number of discretization points is 112q  . 

Using DWT through the pyramid algorithm of 
k

h and 
k

g  for 10,N   an 
orthogonal matrix *

2048
W  is obtained. In data processing, the RR method requires 

1 1r n   where 1 30.n  Hence dimension reduction is done by determining the 
number of transformation matrices for 1,  2,  , 28,r   and finally, the reduced 
matrix 2048

ˆ t
rW  is obtained.  

For 1 and 2,r r   the reduced matrix 2048
ˆ t

rW  yields cond( )tZ Z  of Type I, 
while for 3,r   it yields cond( )tZ Z  of Type II. For 4,  5,  ,  28r   the reduced 
matrix 2048

ˆ t
rW  yields cond( )tZ Z  of Type III. 

The RR method to overcome the multicollinearity problem among predictor 
variables is completed with multiple iterations. Table 1 presents the results of this 
study. The best model gives the coefficient of determination (Johnson & 
Whincern, 2002; Seber & Lee, 2003) 2 0.85R  , has the smallest root mean 
square error (RMSE) (Naes et al., 2002) and has a KS  valuep  error model more 
than 0.05 (Marsaglia et al., 2003). As Table 1 shows, the RR method with the 
SPE-DWT preprocessing can be used to build the best models for accurate 
prediction. 
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Table 1: SPE1-Wavelet Daubechies Ridge Regression Models 
 

SPE1 Iteration 
KS 

 valuep  
error model 

2R  RMSEP 

     

1r   
cond( ) 1t Z Z

 
*
1( ) 83.9266p    

12,000 
12,100 
12,200 
12,225 
12,230 
12,235 

0.3333 
0.3123 
0.2922 
0.2873 
0.2864 
0.2854 

85.8942 
91.4549 
97.5712 
99.1949 
99.5245 
99.8556 

0.4513 
0.4551 
0.4592 
0.4603 
0.4605 
0.4607 

     
     
 
2r   

*
2( ) 90.0857p  

 
cond( ) 23.3715Z Zt  

11,650 
11.700 
11,800 
11,850 
11,875 
11,885 
11,888 

0.3337 
0.3228 
0.3017 
0.2915 
0.2865 
0.2846 
0.2840 

85.4124 
88.1813 
94.1391 
97.3455 
99.0096 
99.6871 
99.8917 

0.4518 
0.4537 
0.4578 
0.4599 
0.4610 
0.4615 
0.4616 

     
     
 
 
3r   

*
3( ) 92.8664p  

 
cond( ) 901.7588Z Zt  

8,625 
8,650 
8,700 
8,725 
8,750 
8,775 
8,785 
8,790 
8,791 
8,792 

0.3828 
0.3727 
0.3517 
0.3416 
0.3316 
0.3218 
0.3179 
0.3160 
0.3156 
0.3152 

85.3135 
87.2917 
91.4624 
93.6611 
95.9399 
98.3023 
99.2715 
99.7615 
99.8599 
99.9584 

0.3258 
0.3261 
0.3268 
0.3272 
0.3276 
0.3280 
0.3282 
0.3283 
0.3283 
0.3283 

     
 
 

 
(3a) 

 
(3b) 

 
Figure 3: Normal Probability Plot of 30 Curcumin Data 
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Conclusion 

In calibration models, response variables often do not meet the normal 
distribution assumption; therefore, the JT is necessary to fulfil model assumptions. 
The SPE-DWT with filter 10 is able to reduce the dimension, however, there is no 
guarantee that it can cope with multicollinearity problem. An effective method is 
needed to overcome the multicollinearity problem. This study shows that the 
combination of JT and SPE-DWT preprocessing in the RR method can be used to 
build models that will give accurate predictions. Further study is suggested by 
implementing the RR method with determination of optimum ridge parameter. 
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A generalization of the Half Logistic Distribution is developed through exponentiation of 
its survival function and named the Type II Generalized Half Logistic Distribution 
(GHLD). The distributional characteristics are presented and estimation of its parameters 
using maximum likelihood and modified maximum likelihood methods is studied with 
comparisons. Discrimination between Type II GHLD and exponential distribution in 
pairs is conducted via likelihood ratio criterion. 
 
Keywords:  Generalized Half Logistic Distribution (GHLD), maximum likelihood 
estimation (MLE), modified maximum likelihood estimation (MMLE), mean square error 
(MSE), likelihood ratio type criterion, percentiles, power of the test 
 

Introduction 

In life testing and reliability studies a combination of monotone and constant 
failure rates over various segments of the range of lifetime of a random variable is 
also known as bath tub or non-monotone failure rate. In biological and 
engineering sciences, situations of non-monotone failure rates are common (see 
Rajarshi & Rajarshi (1988) for a comprehensive narration of these models). 
Mudholkar, et al. (1995) presented an extension of the Weibull family that 
contains unimodel distributions with bathtub failure rates and also allows for a 
broader class of monotone hazard rates. They named their extended version the 
Exponentiated Weibull Family.  

Gupta and Kundu (1999) proposed a new model called the generalized 
exponential distribution. If  is a positive real number and F(x) is the cumulative 
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distribution function (cdf) of a continuous positive random variable, then [F(x)]θ 
and the corresponding probability distribution may be termed an exponentiated or 
generalized version of F(x). 

A half logistic model obtained as the distribution of absolute standard 
logistic variate is a probability model of recent origin (Balakrishnan, 1985). Its 
standard probability density function, cumulative distribution function and hazard 
functions are given by: 
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Kantam et al. (2011) adopted this generalization to the well-known half logistic 
distribution, and named it the Type-I Generalized Half Logistic Distribution 
(GHLD).  

Consider a series system of  components with individually and identically 
distributed (iid) individual lifetimes, for example, F(x). The reliability function of 
such a system is given by [1 – F(x)]θ; hence, the distribution function of the 
lifetime random variable of a series system is 1 – [1 – F(x)]θ. 

Taking F(x) as the half logistic model given by Equation (2), the 
corresponding distribution is termed the Type-II Generalized Half Logistic 
Distribution (GHLD-II). Its pdf, cdf and hazard function are given by:  
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Balakrishnan and Sandhu (1995) suggested a new probability model with a 
standard pdf and cdf given by: 
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The limits of (7) and (8) as k→∞ are respectively (1) and (2) – the pdf and cdf of 
HLD. Balakrishnan and Sandhu (1995) called the distribution (7) and (8) 
Generalized HLD. 

Olapade (2008) considered two distributions and discussed their 
distributional properties, order statistics in samples from these distributions: He 
named these distributions type-I and type-III GHLD, respectively. The types of 
generalized HLD of Olapade (2008) are through truncation of the type-I and type-
III generalized logistic distributions from Balakrishnan and Leung (1988) at the 
origin. Thus, this type-II GHLD is conceptually different from the GHLDs of 
Balakrishnan and Sandhu (1995) and Olapade (2008). Hence, the proposed 
models motivated a separate research study.  
 

Estimation in Type-II Generalized Half Logistic Distribution 
(GHLD-II)  
 
The probability density function and distribution function of GHLD-II with scale 
parameter  and power parameter  are given by: 
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Let x1 < x2 < … < xn be an ordered sample of size n from GHLD-II. The log 
likelihood function of the sample is  

 
/ /
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 The log likelihood equations to estimate the parameters  and  are given 
by  
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It can be seen that these two equations must be solved iteratively for  and  for a 
given sample. The asymptotic variances and covariances of MLEs of  and  can 
be obtained by inverting the information matrix whose elements are the 
mathematical expectation of the following expressions:  
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These equations, evaluated at estimates of  and , provide am estimated 
dispersion matrix. In order to obtain an analytical estimator for , its estimating 
equation is approximated by some admissible expression.  

Equation (11) to get MLE of , after simplification would become  
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i

z e xn z
e











  


   (16) 

 
To obtain the analytical expression for , approximate the following 

expression in (16) by some linear function in the corresponding population 
quartile. Let, 
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approximate  
 

 ( )i i i iG z z     (18) 
 

where i , i are to be suitably found. After using this approximation in (16) the 
solution for  is 
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  (19) 

 
This estimator is named the MMLE of , which is a linear estimator in xi’s 

To obtain i, i, let ; 1,2,...,
1i

ip i n
n

 


 and let *,i it t  be the solutions of 

equations: 
 

 '( )  (for example)i i
i j i

p qF t p p
n

     (20) 

 

 * "( )  (for example), where 1i i
i i i i

p qF t p p q p
n

       (21) 
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where F(.) is cdf of GHLD-II. 

The intercept i and slope i of linear approximation in the Equation (18) 
are respectively given by 
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 * *
i(t )i i iG t   . (23) 

 
Using distribution function F(.) of GHLD-II, the expressions for *,i it t  are 

given by 
 

' 1/

' 1/

2 (1 )log ,
(1 )

t
i

t

pt
p





  
  

 

" 1/
*

" 1/

2 (1 )log
(1 )

t
i

t

pt
p
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Table 1 shows the values of αi, βi for various ө and n. The MMLE of σ can 

be shown to be equivalent to the exact MLE with respect to the asymptotic 
variance. Their performance in small samples is also studied through simulation 
because the exact MLE is an iterative solution. The empirical sample 
characteristics are given in Table 2, which indicates the following: 

 
1. The empirical sample characteristics bias, variance and MSE 

decrease as sample size increases. 
 
2. MMLE is generally more biased than MLE; with reference to 

variance as well as MSE, MMLE is better than MLE for small 
samples.  
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Table 1. Intercept and Slope of the Approximation G(Zi) = αi + βi zi (GHLD –II) 
 

  θ = 2  θ = 3   θ = 4 
n i αi βi  αi βi   αi βi 
5 1 0.0000 0.7752  0.0000 1.2528   0.0000 1.7410 

 2 -0.0612 1.0780  -0.0391 1.5442   -0.0286 2.0251 

 3 -0.2071 1.4122  -0.1407 1.8906   -0.1060 2.3751 

 4 -0.4780 1.7832  -0.3573 2.3293   -0.2823 2.8464 

 5 -0.4013 1.5789  -0.3942 2.2353   -0.3891 2.8947 
10 1 0.0000 0.6432  0.0000 1.1294   0.0000 1.6223 

 2 -0.0150 0.7934  -0.0092 1.2679   -0.0066 1.7545 

 3 -0.0477 0.9512  -0.0299 1.4170   -0.0216 1.8985 

 4 -0.1010 1.1170  -0.0650 1.5785   -0.0476 2.0569 

 5 -0.1789 1.2912  -0.1187 1.7552   -0.0883 2.2334 

 6 -0.2866 1.4743  -0.1974 1.9509   -0.1496 2.4334 

 7 -0.4310 1.6668  -0.3111 2.1713   -0.2413 2.6662 

 8 -0.6219 1.8683  -0.4780 2.4268   -0.3826 2.9484 

 9 -0.8720 2.0755  -0.7370 2.7393   -0.6201 3.3206 

 10 -0.5324 1.7681  -0.5479 2.4572   -0.5547 3.1336 
15 1 0.0000 0.5960  0.0000 1.0870   0.0000 1.5020 

 2 -0.0066 0.6969  -0.0040 1.1781   -0.0028 1.6684 

 3 -0.0207 0.8003  -0.0127 1.2736   -0.0091 1.7596 

 4 -0.0430 0.9072  -0.0268 1.3739   -0.0193 1.8563 

 5 -0.0744 1.0176  -0.0472 1.4797   -0.0343 1.9591 

 6 -0.1161 1.1318  -0.0749 1.5917   0.0550 2.0691 

 7 -0.1698 1.2498  -0.1116 1.7106   0.0827 2.1875 

 8 -0.2357 1.3719  -0.1589 1.8377   -0.1191 2.3158 

 9 -0.3171 1.4981  -0.2196 1.9744   -0.1668 2.4564 

 10 -0.4159 1.6286  -0.2972 2.1226   -0.2292 2.6121 

 11 -0.5350 1.7632  -0.3970 2.2852   -0.3120 2.7877 

 12 -0.6781 1.9015  -0.5274 2.4665   -0.4245 2.9907 

 13 -0.8492 2.0417  -0.7032 2.6737   -0.5843 3.2348 

 14 -1.0496 2.1780  -0.9559 2.9223   -0.8344 3.5533 

 15 -0.5925 1.8548  -0.6260 2.5684   -0.6430 3.2610 
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Table 1, continued 

  θ = 2  θ = 3   θ = 4 
n i αi βi  αi βi   αi βi 

20 1 0.0000 0.5732  0.0000 1.0656   0.0000 1.5617 

 2 0.0037 0.6482  -0.0022 1.1334   0.0016 1.6259 

 3 0.0115 0.7251  -0.0070 1.2037   0.0050 1.6927 

 4 -0.0237 0.8039  -0.0146 1.2766   -0.0104 1.7623 

 5 -0.0406 0.8847  -0.0252 1.3522   -0.0182 1.8351 

 6 -0.0627 0.9675  -0.0394 1.4309   -0.0285 1.9112 

 7 -0.0903 1.0525  -0.0575 1.5129   -0.0419 1.9913 

 8 -0.1241 1.1395  -0.0802 1.5986   0.0588 2.0755 

 9 -0.1645 1.2288  -0.1080 1.6883   -0.0798 2.1647 

 10 -0.2123 1.3204  -0.1417 1.7825   -0.1057 2.2593 

 11 -0.2683 1.4143  -0.1825 1.8818   -0.1373 2.3603 

 12 -0.3332 1.5107  -0.2314 1.9869   -0.1760 2.4686 

 13 -0.4084 1.6094  -0.2904 2.0987   -0.2234 2.5859 

 14 -0.4948 1.7105  -0.3615 2.2183   -0.2819 2.7138 

 15 -0.5942 1.8139  -0.4479 2.3474   -0.3548 2.8551 

 16 -0.7081 1.9192  -0.5543 2.4881   -0.4475 3.1039 

 17 -0.8383 2.0254  -0.6878 2.6439   -0.5687 3.1967 

 18 -0.9857 2.1303  -0.8609 2.8203   -0.7349 3.4153 

 19 -1.1453 2.2265  -1.0994 3.0286   -0.9857 3.6982 

 20 -0.6282 1.9063  -0.6757 2.6416   -0.7012 3.3450 
 
 
Table 2. Empirical Sample Characteristics (Type-II GHLD) 
 

  Bias  Variance  MSE 
θ n MLE MMLE  MLE MMLE  MLE MMLE 
2 5 0.1077 0.0910  0.0651 0.0121  0.0766 0.0203 

 10 0.0551 0.0659  0.0320 0.0079  0.0350 0.0122 

 15 0.0364 0.0522  0.0206 0.0060  0.0219 0.0087 

 20 0.0273 0.0427  0.0153 0.0048  0.0160 0.0066 
3 5 0.1064 0.0977  0.0643 0.0125  0.0756 0.0220 

 10 0.0549 0.0667  0.0320 0.0081  0.0350 0.0125 

 15 0.0364 0.0530  0.0207 0.0061  0.0220 0.0089 

 20 0.0274 0.0435  0.0154 0.0049  0.0161 0.0067 
4 5 0.1055 0.0926  0.0636 0.0131  0.0747 0.0216 

 10 0.0546 0.0676  0.0318 0.0085  0.0347 0.0130 

 15 0.0362 0.0538  0.0206 0.0064  0.0219 0.0092 

 20 0.0273 0.0443  0.0153 0.0051  0.0160 0.0070 
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GHLD-II vs. Exponential Model 

The discrimination between GHLD-II and the exponential model is made using 
the likelihood ratio (LR) criterion. Specify GHLD-II as null population (P0) and 
the exponential model as alternative population (P1). A null hypothesis is 
proposed as H0: a given sample belongs to GHLD-II (P0) versus an alternative 
hypothesis H1: the sample belongs to the population Exponential model (P1). Let 
L1, L0, respectively, stand for the likelihood function of a sample with population 
P1 and P0. The percentiles of the LR criterion L1/L0 are obtained by simulation 
as:  

10,000 random samples of sizes n = 5, 10, 15, 20 are generated from the null 
population P0 and its parameters are estimated using each sample. The value of 
the likelihood function of the null population is computed at the generated sample 
observations and the corresponding parameter estimates; this value is denoted by 
L0. Using the same sample, generated from P0, the parameters and likelihood 
function value of the alternative population are calculated, for example, L1. The 
values of L1/L0 over 10,000 runs are sorted and selected percentiles are identified 
for a given n, θ (see Table 3).  
 
 
Table 3. Percentiles of L1/L0 (P0 : GHLD-II, P1: Exponential) 
 

θ n \ p 0.00135 0.01 0.025 500 0.95 0.975 0.99865 

2 

5 0.7468 0.9743 1.3335 1.7250 2.5433 2.6067 4.4061 

10 0.4786 0.7651 1.2327 1.6918 4.7663 4.8496 6.6528 

15 0.3369 0.7567 1.1770 1.6473 6.0976 7.4550 8.6546 

20 0.2520 0.7344 1.0456 1.5327 8.9127 8.9845 10.7528 

3 

5 1.6877 1.9325 2.2646 2.6432 3.4623 4.6379 20.6042 

10 2.5396 3.0615 4.0111 5.0243 8.7750 9.0357 39.9667 

15 3.1753 5.4376 7.9391 9.8175 18.5364 18.7628 50.6341 

20 3.9089 9.7390 14.7436 19.4296 54.4206 69.0316 80.0497 

4 
5 3.6630 4.5150 5.1328 4.0879 18.2493 18.4501 73.5894 

10 10.1778 12.7498 16.3453 12.4361 30.6046 31.1481 81.5585 
 
 

The entries under the column headings 0.95 in Table 3 may be taken as 5% 
level of significance critical values for discriminating between the GHLD-II and 
exponential models. The powers of the test statistic L1/L0 are also evaluated 
through simulation by calculating L1/L0 with samples generated from exponential 
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population (P1) and estimating, the parameters calculating the values of the 
likelihood functions L1, L0 with sample from P1. The proportion of L1/L0 values 
falling above 95th percentile of L1/L0 would become the power of the LR test 
criterion (see Table 4). It is observed that the discrimination between GHLD-II 
and exponential models falls with increased sample size, indicating less 
distinguishability between the exponential model and GHLD-II.  
 
 
Table 4. Powers of LR Test Criterion at α = 0.05 
 

θ n \ Distributions GHLD-II vs. Exponential 

2 

5 0.9123 
10 0.9239 
15 0.9373 
20 0.9441 

3 

5 0.9135 
10 0.9159 
15 0.9176 
20 0.9161 

4 

5 0.9072 
10 0.9057 
15 0.9053 
20 0.9025 
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A compound of Geeta distribution with Generalized Beta distribution (GBD) is obtained 
and the compound is specialized for different values of β. The first order factorial 
moments of some special compound distributions are also obtained. A chronological 
overview of recent developments in the compounding of distributions is provided in the 
introduction. 
 
Keywords: Compound distribution, Geeta distribution, Generalized Beta 
Distribution (GBD), factorial moments 
 

Introduction 

Regarding the problem of the compounding of the probability distributions, work 
has been conducted in this area since 1920. It is well known that the parameter in 
a Poisson distribution is considered to be a gamma variate in the famous article by 
Greenwood and Yule (1920). Skellam (1948) derived a probability distribution 
from the binomial distribution by regarding the probability of success as a beta 
variable between sets of trials. The interrelationships among compound and 
generalized distributions were first explored by Gurland (1957) after which, 
Molenaar (1965) discussed some important remarks on mixtures of distributions. 

Dubey (1970) derived compound gamma, beta and F distributions by 
compounding a gamma distribution with another gamma distribution and 
reducing it to the beta 1st and 2nd kind and to the F distribution via suitable 
transformations. The application of compounding of distributions to calculate 
moments was explored by Dyczka (1973). The problem of compounding of 
distributions was further addressed by Gerstenkorn (1993, 1996) who proposed 
several compound distributions; Gerstenkorn obtained a compound of gamma 

mailto:adilstat@gmail.com
mailto:drtrjan@gmail.com
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distribution with exponential distribution by treating the parameter of a gamma 
distribution as an exponential variate and obtained a compound of polya with beta. 
Gerstenkorn (2004) also found a compound of a generalized negative binomial 
distribution with generalized beta distribution by treating the parameter of 
generalized negative binomial distribution as a generalized beta distribution. Ali, 
Aslam and Kazmi (2011) improved the informative prior for the mixture of a 
Laplace distribution under different loss functions. Rashid and Jan (2013) recently 
obtained a compound of zero truncated generalized negative binomial distribution 
with that of generalized beta distribution. A broad range of relevant references 
can be found in studies by Johnson, Kotz and Kemp (1992). 

The compounding of probability distributions 

The following definition and relations are needed for compounding probability 
distributions. A certain compound distribution arises when all (or some) 
parameters of a distribution vary according to some probability distribution, 
called the compounding distribution. Suppose Xy is a random variable with a 
distribution function F(x|y) that depends on parameter y. If parameter y is 
considered to be a random variable Y with distribution function G(y), then the 
distribution that has the distribution function of X is defined by 
 

      |H x F x cy dG y




    (1) 

 
which is called compound, where c is an arbitrary constant or a constant bounded 
on some interval (Gurland, 1957). 

The occurrence of the constant c in (1) has a practical justification inasmuch 
as the distribution of a random variable, in describing a phenomenon, often 
depends on a parameter that is itself a realization of another random variable 
multiplied by a certain constant. A variable that has distribution function (1) will 
be symbolized by X   Y and will be called a compound of the variable X with 
respect to the compounding Y. 

Relation (1) is symbolized as follows: 
 
      |

Y
H x F x cy G y    (2) 
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Consider the case when one variable is discrete with probability function 
 iP X x cy , if parameter y is a random variable Y with density g(y), then (1) is 

expressed by  
 

   ( ) ( ) ( | )i i ih x P X x g y P X x cy dy




      (3) 

Compounding the Geeta Distribution with the Generalized 
Beta distribution 

Suppose X  is a discrete random variable defined over positive integers. The 
random variable X is said to have a Geeta distribution with parameters   and   if 
 

  
 111 1 ; 1,2,...

; 1
0 ;  

x xxx
x

P x xx
otherwise






 

 


  

   
   



  (4) 

 

where 0 1   and 11 


  . The upper limit on   has been imposed for the 

existence of the mean. When 1,   the Geeta distribution degenerates and its 
probability mass is concentrated at point 1x   (Consul, 1990). 

The Generalized Beta Distribution (GBD) is a distribution given by the 
density function 
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ay y y bwbwbw B r a wGB y a b w r
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  (5) 

 
where , , , 0a b w r   and ( / ,B r a w ) is a beta function. Distribution (5) is a special 
limit case of the Bessel distribution (Srodka, 1973; Seweryn, 1986) that has been 
applied in reliability theory (Oginski, 1979). 

Consider a Geeta distribution (4) that depends on cy : 
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111; 1 , 1,2,3...

1
x x xx

P x cy cy cy x
xx









  
   

  
  (6) 

 

where 0 1cy  , 11 


   and Y  is a random variable with GBD (5). 

Theorem 1 
The probability function of the compound of Geeta distribution with GBD is 
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and 1,2,3, , , , , 0,   0 1 and 1x a b w r cy cy       

 
Proof:  From (3), (5) and (6) 
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Substituting, 
ay t

bw
 , results in 
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1 1 1 1

1
0 0

1
x r kkk wa a

K

x x
P GB x D c bw t t dt

k

     



 
   

 
    (8) 

 

where , 
 

1
11,2,3, , , ,  , 0,  1 and 0

a

x a b w r c
bw





      . 

 
Using the definition of beta function, (7) is obtained.  

Special Cases 
Case I:  When 2   in (4), Haight’s distribution results and a compound 
of the Haight distribution with generalized beta follows from (8): 
 

      *
2 2

0

1,
kk a
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x x r kP GB x D c bw B w
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Case II: If b = 1/w and a = 1, in (5), the a beta distribution and a compound 
of Geeta distribution with beta distribution follow from (8): 
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x x
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Case III: When β = 2 and b = 1/w, a = 1 in (4) and (5), respectively obtained 
are the Haight and beta distributions and a compound of the Haight distribution 
with beta distribution follows from (8): 
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      *
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Factorial moments of the Compound of Geeta distribution 
with Generalized Beta distribution and some special cases 

Let yX  and X be a random variable with distribution function 
  
F x|y( ) and H(X), 

respectively (see (1)), and let parameter y have distribution G(y). Keeping in mind 
the formula for the so-called factorial polynomial 
 

       1 1 . 1lx x x x x l       

 

 
 

       l l
ylm E X E X dG y





     (12) 

is called a factorial moment of order l of the variable X with compound 
distribution (1). 

Relation (12) is symbolized as 
 
     ^l

y Y
E X G y .  (13) 

Theorem 2 
The first order factorial moments of the compound of Geeta distribution with 
GBD is given by  
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  (14) 
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Proof:  The first order factorial moments of the Geeta distribution is given 
by 
 

   1
1,

1
m 

 






. 

 
Thus, from (13), the 1st order factorial moment of the compound of the 

Geeta distribution with a Generalized beta distribution if cy   is 
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  (15) 

 
Using the definition of beta function, (14) is obtained.   

Special Case 
When b = 1/w and a = 1 in (15), the 1st order factorial moment of the compound 
of Geeta distribution with beta distribution is obtained as 
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Theorem 3 
First order factorial moments of the compound of Haight with generalized beta 
distribution. 
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Proof:  The result follows directly from (15) for 2  , 
 

 
     

   

 
     

1

/ 1 1 111 11 10

0 0

2; , , , ,

2
1 1

/ ,

Y

k k a r k r k
w wk a aa

m cy GB y a b r w

c bw
t t dt c bw t t dt

B r a w


  

  

 

 
   

 


 

  (17) 

 
which yields (16).   

Special case 
When b=1/w, a=1 in (17) the following result is obtained: 
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which gives the 1st order factorial moment of the compound of the Haight 
distribution with beta distribution. 
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Classical statistical analysis of the Rayleigh distribution deals with precise information. 
However, in real world situations, experimental performance results cannot always be 
recorded or measured precisely, but each observable event may only be identified with a 
fuzzy subset of the sample space. Therefore, the conventional procedures used for 
estimating the Rayleigh distribution parameter will need to be adapted to the new 
situation. This article discusses different estimation methods for the parameters of the 
Rayleigh distribution on the basis of a progressively type-II censoring scheme when the 
available observations are described by means of fuzzy information. They include the 
maximum likelihood estimation, highest posterior density estimation and method of 
moments. The estimation procedures are discussed in detail and compared via Monte 
Carlo simulations in terms of their average biases and mean squared errors. Finally, one 
real data set is analyzed for illustrative purposes. 
 
Keywords: Progressive type-II censoring, fuzzy information, maximum likelihood 
principle, highest posterior density estimation  
 

Introduction 

The Rayleigh distribution was originally introduced by Lord Rayleigh (1880) in 
the field of acoustics; since its introduction, many researchers have used the 
distribution in different fields of science and technology. The Rayleigh 
distribution is frequently used to model wave heights in oceanography, in 
communication engineering and it also has a wide application in lifetime data 
analysis, especially in reliability theory and survival analysis. An important 
characteristic of the Rayleigh distribution is that its hazard rate is a linearly 
increasing function of time at constant rate, which makes it a suitable model for 

mailto:a-pak@scu.ac.ir
mailto:parham_g@scu.ac.ir
mailto:seraj.a@scu.ac.ir


INFERENCE FOR THE RAYLEIGH DISTRIBUTION  

288 

the lifetime of components/items that age rapidly with time. Thus, as time 
increases, the reliability function of the Rayleigh distribution decreases at a much 
higher rate than the exponential reliability function does. The probability density 
function (pdf) and the cumulative distribution function (cdf) of a Rayleigh 
random variable X  can be written as: 
 
 

2

( ) 2 ; 0, 0,xf x xe x      (1) 
 
and 
 

 
2

( ) 1 ; 0,xF x e x     (2) 
 
respectively. Inferences for the Rayleigh distribution have been discussed by 
several authors. Dyer and Whisenand (1973) demonstrated the importance of this 
distribution in communication engineering. Bhattacharya and Tyagi (1990) 
mentioned that in some clinical studies dealing with cancer patients, the survival 
pattern follows the Rayleigh distribution. Chung (1995) obtained the best 
invariant estimator and the Bayes estimator of the parameter of Rayleigh 
distribution under entropy loss. Fernandez (2010) addressed the problems of 
estimating the parameter, hazard rate and reliability function of the Rayleigh 
distribution on the basis of sample quantiles. Dey and Maiti (2012) derived Bayes 
estimator of the Rayleigh parameter and its associated risk based on extended 
Jeffrey’s prior.  

In many life testing and reliability experiments, a sample of n items is tested, 
and the experiment is terminated when all of them fail. This procedure may take a 
long time when the lifetime distribution of items has a thick tail. Moreover, if the 
items are expensive, such as medical equipment, it is costly to gather information 
from the whole sample. There are many situations where experimental units are 
lost or removed from the test before complete failure. For example, individuals in 
a clinical trial may drop out of the study, the study may have to be terminated 
early for lack of funds or the test units may accidentally break. In other scenarios, 
the experiment may have to be terminated in order to free up testing facilities for 
other purposes. 

In view of above, censoring is used in life testing to save time and cost of 
testing units. The removal of units in a test may be unintentional or pre-planned. 
Data obtained from such experiments are called censored sample. There are many 
types of censoring schemes used in lifetime analysis. The two most common 
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censoring schemes are termed type-I and type-II censoring schemes. In the 
conventional type-I censoring scheme, the experiment continues up to a pre-
specified time T; the conventional type-II censoring scheme requires the 
experiment to continue until a pre-specified number of failures occur. These 
schemes, however, do not allow removal of units before the termination of the 
experiment; thus, a more general kind of censoring scheme called progressive 
type-II censoring is considered, which is as follows: Suppose that n units are 
placed on a life test and the experimenter decides beforehand a quantity m, the 
number of units to be failed. Now at the time of the first failure, R1 of the 
remaining n – 1 surviving units are randomly removed from the experiment. 
Continuing on, at the time of the second failure, R2 of the remaining n – R1 – 2 
units are randomly removed from the experiment. Finally, at the time of the mth 
failure, all the remaining n – m – R1 – … – Rm–1(=Rm) surviving units are 
removed from the experiment. The work on progressive censoring has become 
popular in life-testing and reliability studies. Kim and Han (2009) studied the 
problem of estimating the scale parameter of the Rayleigh distribution under 
general progressive censoring. Krishna and Kumar (2011) discussed reliability 
estimation for the Lindley distribution with progressive type-II censored data. Lee 
et al. (2011) obtained a Bayes estimator under the Rayleigh distribution with a 
progressive type-II right censored sample. Raqab and Madi (2011) addressed 
inference for the generalized Rayleigh distribution based on progressively 
censored data. Azimi et al. (2012) considered the Bayesian estimation of the 
parameter and reliability function of Rayleigh distribution based on a 
progressively type-II censored sample. Rastogi and Tripathi (2012) studied 
parameter estimation of the Burr type XII distribution on the basis of a 
progressively type-II censored sample. Pradhan and Kundu (2009) considered the 
statistical inference of the unknown parameters of the generalized exponential 
distribution in presence of progressive censoring. A recent account on progressive 
censoring schemes can be obtained in the monograph by Balakrishnan and 
Aggarwala (2000) or in the excellent review article by Balakrishnan (2007).  

The above referenced studies for estimating parameters of different lifetime 
distributions under progressive type-II censoring are limited to precise data. 
However, in real world situations, experiments do not provide exact information. 
For example, the reaction time of a person to a certain stimulus in a psychological 
experience cannot be exactly determined, but the psychologist is able to determine 
it by means of the following imprecise information, such as: The time of reaction 
is approximately 25 to 35 seconds. To deal with the lack of precision of the data, 
it is necessary to incorporate the fuzzy concept to statistical techniques. Recently, 
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Pak et al. (2013) proposed a new method to determine the maximum likelihood 
estimate of the scale parameter of a Rayleigh distribution under doubly type-II 
censored sample from fuzzy data. Further, in a life testing experiment, some test 
units may need to be removed at different stages in the study for various reasons. 
This would lead to progressive censoring. The purpose of this article is to develop 
the inferential procedures for the Rayleigh distribution under a progressive type-II 
censoring scheme when the available observations are reported by means of fuzzy 
information. The maximum likelihood estimate (MLE) of the parameter   is 
obtained by using EM algorithm and the highest posterior density (HPD) estimate 
of the unknown parameter is computed. The estimation via method of moments is 
discussed, a Monte Carlo simulation study is presented, and a comparison of all 
estimation procedures developed and one real data set is analyzed for illustrative 
purposes. 

First, the fundamental notation and basic definitions of fuzzy set theory used 
herein is reviewed. Consider an experiment characterized by a probability space 

 , ,S F P   where  , F  is a measurable space and P  belongs to a specified 

family of probability measures { , }P    on  , F . Assume that the observer 
cannot distinguish or transmit with exactness the outcome in the performance of S, 
but that rather the available observation may be described in terms of fuzzy 
information, which is defined as: 

Definition 1 
A fuzzy event   on  , characterized by a Borel measurable membership 
function ( )   from   to [0,1] , where ( )   represents the grade of 
membership of   to  , is called fuzzy information associated with the 
experiment .   
 
The set consisting of all observable events from the experiment  determines a 
fuzzy information system associated with it, which is defined as: 

Definition 2 

A fuzzy information system (f.i.s.)  associated with the experiment  is a fuzzy 
partition 1{ ,..., }K  of , i.e., a set of K  fuzzy events on  satisfying the 
orthogonality condition (see Tanaka et al., 1979): 
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1
( ) 1

k

K

k
 



 , 

 
where 

k
 denotes the membership function of k .  

 
According to Zadeh (1968), given the experiment  , ,F P  , ,   and a 

f.i.s.  associated with it, each probability measure P  on  , F  induces a 

probability measure on  defined as: 

Definition 3 

The probability distribution on  induced by P  is the mapping P  from  to 
[0,1]  such that  

 

 ( ) ( ) ( ),dP     


   .  (3) 

  
 

In particular, the conditional density of a continuous random variable Y  with 
p.d.f. ( )g y  given the fuzzy event   can be defined as  
 

 
( ) ( )( )
( ) ( )

gg
g d













y yy
u u u

.  (4) 

 
In order to model imprecise lifetimes, a generalization of real numbers is 

necessary. These lifetimes can be represented by fuzzy numbers. A fuzzy number 
is a subset, denoted by x , of the set of real numbers (denoted by ) and is 
characterized by the so called membership function (.)x . Fuzzy numbers satisfy 
the constraints (Dubois and Prade, 1980): 

 
1.  : 0,1x   is Borel-measurable; 
 
2.  0 0: 1xx x   ; and 
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3. The so-called    cuts  0 1 ,  defined as 

    : ,xB x x x     are all closed interval, i.e.,  

( ) [ , ], (0,1]B x a b      . 
 
Among the various types of fuzzy numbers, the triangular and trapezoidal 

fuzzy numbers are most convenient and useful in describing fuzzy lifetime data. 
The triangular fuzzy number can be defined as ( , , )x a b c  and its membership 
function is defined by the following expression: 

 

,

( ) ,

0 .

x

x a a x b
b a
c xx b x c
c b

otherwise




  




  






 

 
The trapezoidal fuzzy number can be defined as ( , , , )x a b c d  with the 

membership function: 
 

,

1
( )

,

0 .

x

x a a x b
b a

b x c
x

d x c x d
d c

otherwise




  


 

 
  

 

  

Maximum likelihood estimation 

Suppose that n identical units are put on a life testing experiment and that the 
lifetime distribution of each unit is given by (1). Prior to the experiment, a number 
m < n is determined and the censoring scheme 1( ,..., )mR R  with 0iR   and 

1

m

i
i

R m n


   is specified. Let 1( ,..., )mx xx  denote the corresponding 

progressively type-II censored sample. The likelihood function for the parameter 
  becomes proportional to 
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2

1
(1 )

( ; )

m

i i
i

R x
mL e



  

 
x   (5) 

 
Now consider the problem where x  is not observed precisely and only 

partial information about x  is available in the form of fuzzy numbers 
( , , ), 1,..., ,i i i ix a c b i m   with the corresponding membership functions

1 1( ),..., ( )
mx x mx x  . Let (1) (2) ( )... mc c c    denote the ordered values of the 

means of these fuzzy numbers. The lifetime of iR  surviving units, which are 
removed from the test after the i th failure, can be encoded as fuzzy numbers 

1,..., ii iRz z  with the membership functions 
 

( )

( )

0
( ) , 1,..., .

1ij

i
z i

i

z c
z j R

z c



 

  
 
The fuzzy data 1( ,..., , ,..., )mx x 1 mw z z where iz  is a 1 iR  vector with  

1( ,..., )
ii iRz ziz  for 1,...,i m , is thus the set of observed lifetimes. The 

corresponding observed data log-likelihood function can be obtained by using the 
expression (3) as follows:  

 

 

2 2

2

1 1 1

2
( )

1 1

( ; ) log 2 ( ) log 2 ( )

log log 2 ( ) .

i

i ij

i

Rm m
x z

O x z
i i j

m m
x

x i i
i i

L xe x dx ze z dz

m xe x dx R c

 



    

  

 

  



 

 

  

  

 

w
  (6) 

 
The maximum likelihood estimate of the parameter   can be obtained by 

maximizing the log-likelihood ( ; )OL w . Equating the partial derivative of the 
log-likelihood (6) with respect to   to zero, the resulting equation is: 

 

 
2

2

3
2
( )

1 1

( )( ; ) 0.
( )

i

i

xm m
xO

i ix
i ix

x e x dxL m R c
xe x dx







  




 


   




 


w
  (7) 

Because there is no closed form of the solution to equation (7), an iterative 
numerical search can be used to obtain the MLE. The Expectation Maximization 
(EM) algorithm is a broadly applicable approach to the iterative computation of 
maximum likelihood estimates and useful in a variety of incomplete-data 
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problems. Because the observed fuzzy data w  can be seen as an incomplete 
specification of a complete data, the EM algorithm is applicable to obtain the 
maximum likelihood estimate of the parameter. In the following, the fuzzy EM 
algorithm (see Denoeux, 2011) is used to determine the MLE of  .  

First, denote the lifetimes of the failed and censored units by 
1( ,..., )mX XX  and ( ,..., ) 1 mZ Z Z , respectively, where iZ  is a 1 iR  vector 

with 1( ,..., ),
ii iRZ ZiZ  for 1,...,i m . The combination of ( )W X,Z  forms the 

complete lifetimes and the corresponding log-likelihood function is denoted by 
( , )cL W , then, ignoring the additive constant, 

 

 2 2

1 1 1
( , ) log

iRm m

c i ij
i i j

L n x z  
  

 
   

 
 W . (8) 

 
For the E-step, it is necessary to compute the pseudo log-likelihood function. 

It can be obtained from (8) as follows: 
 

 2 2

1 1 1
log ( ) ( )

iRm m

i i ij ij
i i j

n E X x E Z z  
  

 
  

 
    (9) 

 
By using (4), the conditional expectations 2( )i iE X x  and 2( )ij ijE Z z  can be 

computed as: 
 

2

2

3
2

( )
( ) , 1,..., ,

( )
i

i

x
x

i i x
x

x e x dx
E X x i m

xe x dx



 








 


  
 

2 2
( )

1( ) , 1,..., , 1,..., .ij ij i iE Z z c i m j R


   
 

 
Next, the M-step involves the maximization of the pseudo function (9). 

Therefore, if at the h th stage, the estimate of   is ( )h , then ( 1)h   can be 
obtained by maximizing 

 

 ( ) ( )
* 2 2

1 1 1
( , ) log ( ) ( )

i

h h

Rm m

c i ij
i i j

L n E X x E Z z
 

  
  

 
   

 
 W   (10) 
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with respect to  . From 
* ( , ) 0cL 







W , 

 

 
( )

( 1)

2 2 ( )
( )

1

ˆ
[ ( ) ( 1/ )]h

h
m

h
i i i

i

n

E X x R c












 
  (11) 

 
The iteration process continues until convergence, i.e., until  

( 1) ( )( ; ) - ( ; )h h
O OL L   w w  for some pre-fixed 0  . 

HPD estimation 

Consider the highest posterior density (HPD) estimation of the Rayleigh 
parameter based on observed fuzzy sample w . As a conjugate prior for , take 
the ( , )Gamma a b  density with pdf given by 
 

 1( ) , 0,
( )

a
a bb e

a
     


  (12) 

 
where 0a   and 0b  . Based on this prior, the posterior density function of   
given the data can be written as follows: 

 

 
2
( ) 2

1
( )

1

1

( ) ( )

m

i i
i

i

mb R c
m a x

x
i

e xe x dx


   

 
  




 w   (13) 

 
The method of HPD estimation then estimates   as the mode of the 

posterior density ( )  w ; therefore, the HPD estimate of   can be obtained by 
solving the equation  

 

 log ( ) 0 








w   (14) 

 
where 
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2
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2
( )

1 1

( )log ( ) 1
( )

i

i

xm m
x

i i x
i i x

x e x dxm a b R c
xe x dx





 

  




 

  
   




 



w
.  (15) 

 
However, the solution cannot be obtained explicitly. Theorem 1 discusses the 
existence and uniqueness of the HPD estimate of  . 

Theorem 1 
Let ( )g   denote the function on the right-hand side of the expression in (15). 
Then the root of the equation ( ) 0g    exists and is unique. 

 
Proof.  From (15), it is seen that

 0
lim ( )g





  . Also, note that 

1( ) m ag 


 
 , (0, )   , and consequently 

 

0 0

1lim ( ) lim 0, (0, )m ag
 

 
 

 
     . 

 
Thus, the equation ( ) 0g    has at least one root in (0, ) . To prove that the root 
is unique, consider the first derivative of g , ( )g   given by 

 

 
2

2

2 2
1

1( ) log 2 ( )
i

m
x

x
i

m ag xe x dx 
 





  
   


    (16) 

 
Because the integrand of the second term in (16) is a log-concave function of  , 
and ( ) 0g   . It follows that g is a strictly decreasing function w.r.t.   and 
hence the equation ( ) 0g    has exactly one solution. The HPD estimate of   
must be derived numerically. In the following, the Newton-Raphson algorithm to 
determine the HPD estimate is described.  

The Newton-Raphson algorithm is a direct approach for estimating the 
relevant parameters in a likelihood function. In this algorithm, the solution of the 
likelihood equation is obtained through an iterative procedure. Let ( )ˆ h  be the 
parameter value from the h th step. Then, at the ( 1)h th step of iteration process, 
the updated parameter is obtained as  
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 ( 1) ( )
2

2

log ( )
ˆ ˆ

log ( )

h
h h

h

 

 
 







 




w

w
  (17) 

 
where the notation hA , for any partial derivative A , means the partial derivative 

evaluated at ( )ˆ h . The second-order derivative of log ( )  w  with respect to the 
parameter, required for proceeding with the Newton-Raphson method, is obtained 
as: 
 

 
2 2

2 2

5 32
2

2 2
1

( ) ( )log ( ) 1 [ ] .
( ) ( )

i i

i i

x xn
x x

x x
i x x

x e x dx x e x dxm a
xe x dx xe x dx

 

 

  

   

 

 


     
    

   

 


 

w
 (18) 

 
The iteration process then continues until convergence, i.e., until ( 1) ( )ˆ ˆh h     , 

for some pre-fixed 0  . 

Method of moments 

Let X be a random variable which has the Rayleigh distribution with pdf given by 
(1). It is known that the k th moment of the Rayleigh model with parameter   is 
 

 2( ) (1 ) .
2

k
k kE X 



     (19) 

 
Equating the first sample moment to the corresponding population 

moment, the following equation can be used to find the estimate of moment 
method: 
 

 
22

1 1 1
( ) ( ) .

4

iRm m

i ij
i i j

n E X x E Z z 






  

 
  

 
    (20) 

 
Because the closed form of the solution to (20) could not be obtained, an 

iterative numerical process to obtain the parameter estimate is described as: 
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1. Let the initial estimate of   be (0) , with 0h  . 
 
2. In the ( 1)h th iteration, first compute  
 

( ) 2

( ) ( ) 2

2

1
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h h
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i i x
x

x e x dx
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and  
 

( ) 2
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The new estimate of  , for example ( 1)h  , can be obtained from: 
 

22
( 1)

1 2
1

( )
4

m
h

i i i
i

n E R E








 
  

 
 . 

 
3. Checking convergence, if the convergence occurs then the current 

( 1)h 

 is the estimate of   by the method of moments; otherwise, set 
1h h   and go to Step 2. 

 

 
 
Figure 1. Fuzzy information system used to encode the simulated data 
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Numerical Study 

Experimental results illustrate how the different methods behave for varying 
sample sizes. First, for fixed 1   and different choices of n , m  and censoring 
scheme 1( ,..., )mR R , progressively censored samples from the Rayleigh 
distribution were generated, using the method proposed by Balakrishnan and 
Sandhu (1995), as follows: 

 
1. Generate iZ  from (0,1)U for 1,...,i m . 
2. For given values of the progressive censoring scheme 1( ,..., )mR R , 

set 1/ ia
i iV Z , 

1

m

i j
j m i

a i R
  

   , 1,...,i m . 

3. Set 1 21 ...i m i m i mU V V V     , 1,...,i m . 
4. Thus, 1( )i iX F U , 1,...,i m , is the desired progressive type-II 

censored sample from the Rayleigh distribution. 
 
Each realization of x  was then fuzzified using the f.i.s. shown in Figure 1, 

and the ML, HPD and moment estimates (MME) of   for the fuzzy sample were 
computed using the methods provided in the preceding sections. For computing 
the HPD estimate of the unknown parameter, assume that   has ( , )Gamma a b  
prior. To make the comparison meaningful, it is assumed that the priors are non-
informative, and they are 0a b  . Note that in this case the priors are non-
proper also. Press (2001) suggested using very small non-negative values of the 
hyperparameters in this case, and it will make the priors proper. This study uses 

0.0001a b  . The results are not significantly different than the corresponding 
results obtained using non-proper priors, and are not reported due to space. The 
average values and mean squared errors of the estimates, computed over 1,000 
replication, are presented in Tables 1-3. 
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Table 1. Average value (AV) and mean squared error (MSE) of the estimates of λ for 
different censoring schemes. (n = 20) 
 

m Censoring 
scheme 

MLE HPD MME 
AV MSE AV MSE AV MSE 

8 
(0,…,0,12) 1.181 0.219 1.163 0.185 1.184 0.221 
(12,0,…0) 1.178 0.211 1.159 0.173 1.175 0.207 

(0,12,0,…,0) 1.163 0.203 1.151 0.169 1.160 0.202 
        

10 
(0,…,0,10) 1.140 0.172 1.127 0.148 1.141 0.172 
(10,0,…0) 1.153 0.182 1.136 0.166 1.155 0.184 

(0,10,0,…,0) 1.145 0.177 1.130 0.154 1.148 0.179 
        

15 
(0,…,0,5) 1.127 0.155 1.114 0.132 1.122 0.151 
(5,0,…0) 1.132 0.161 1.119 0.137 1.130 0.159 

(0,5,0,…,0) 1.138 0.164 1.125 0.140 1.133 0.162 
 
 
Table 2. Average value (AV) and mean squared error (MSE) of the estimates of λ for 
different censoring schemes. (n = 30) 
 

m Censoring 
scheme 

MLE HPD MME 
AV MSE AV MSE AV MSE 

8 
(0,…,0,12) 1.163 0.185 1.149 0.162 1.166 0.187 
(12,0,…0) 1.167 0.188 1.152 0.169 1.165 0.184 

(0,12,0,…,0) 1.155 0.179 1.143 0.157 1.152 0.170 
        

10 
(0,…,0,10) 1.138 0.160 1.127 0.145 1.137 0.163 
(10,0,…0) 1.125 0.154 1.119 0.130 1.123 0.147 

(0,10,0,…,0) 1.132 0.159 1.122 0.138 1.130 0.156 
        

15 
(0,…,0,5) 1.112 0.136 1.103 0.117 1.114 0.139 
(5,0,…0) 1.116 0.138 1.105 0.125 1.119 0.131 

(0,5,0,…,0) 1.121 0.133 1.109 0.115 1.120 0.133 
 
 
Table 3. Average value (AV) and mean squared error (MSE) of the estimates of λ for 
different censoring schemes. (n = 50) 
 

m Censoring 
scheme 

MLE HPD MME 
AV MSE AV MSE AV MSE 

8 
(0,…,0,12) 1.134 0.115 1.124 0.098 1.137 0.118 
(12,0,…0) 1,141 0.122 1.130 0.113 1.145 0.125 

(0,12,0,…,0) 1.139 0.119 1.127 0.105 1.136 0.114 
        

10 
(0,…,0,10) 1.085 0.097 1.062 0.071 1.082 0.095 
(10,0,…0) 1.079 0.093 1.056 0.065 1.077 0.090 

(0,10,0,…,0) 1.073 0.088 1.051 0.059 1.070 0.084 
        

15 
(0,…,0,5) 1.038 0.069 1.021 0.037 1.042 0.072 
(5,0,…0) 1.025 0.045 1.011 0.026 1.025 0.053 

(0,5,0,…,0) 1.031 0.062 1.018 0.031 1.036 0.066 
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Several points are clear from the experiment: Even for small sample sizes, 
the performances of the estimates are satisfactory in terms of AVs and MSEs. For 
all the methods, it is observed that for fixed n as m increases, the MSEs of the 
estimates decrease. Among the three estimation procedures developed in the 
paper, the HPD procedure gives the most precise parameter estimates as shown by 
MSEs in Tables 1-3. 

Application example 
To demonstrate the application of proposed methods to real data, consider the 
data collected during the experiment reported by Pak et al. (2013). In this 
experiment, a sample of 25 ball bearings is placed on a life test. A ball bearing 
may work perfectly over a certain period but be breaking for some time and 
finally be unusable at a certain time. So, the observed failure times of the ball 
bearings are reported by fuzzy numbers ( , , )i i i ix a x b , where 0.05i ia x  and 

0.03i ib x  with the membership functions 

     
                      

 

              

( ) ,
( )

,
i

i i
i i i

i
x

i i
i i i

i

x x a x a x x
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x
x b x x x x b

b



 
  


 

    


         1,...,25.i   

 
Progressively censored samples of size 10m   were considered from these 

fuzzy data using three different sampling schemes, namely: 
 
Scheme 1: 1 1... 0mR R     and 15mR  . 
Scheme 2: 1 15R   and 2 ... 0mR R   . 
Scheme 3: 1 1... 1mR R     and 6mR  . 
 

the estimate of the parameter   was then computed using the ML, HPD and 
moment methods. For computing the HPD estimates, it was assumed that   has 

( , )Gamma a b prior, including the non-informative gamma prior, i.e. 0a b   and 
informative gamma prior, i.e. 2a b  . All the results are summarized in Table 4. 
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Table 4. ML, HPD and moment estimates of the parameter for Example 2 
 

Scheme MLE MME HPD (a = b = 0) HPD (a = b = 2) 
1 0.00016 0.00015 0.00027 0.00033 
2 0.00043 0.00048 0.00058 0.00061 
3 0.00019 0.00021 0.00032 0.00039 

Conclusions 

Some work has been done in the past on the estimation of the parameter of 
Rayleigh distribution based on complete and censored samples, but traditionally it 
is assumed that the data available are performed in exact numbers. In real world 
situations, however, some collected lifetime data might be imprecise and are 
represented in the form of fuzzy numbers. Therefore, suitable statistical 
methodology is needed to handle these data. This article proposed different 
procedures for estimating the parameter of Rayleigh distribution under 
progressive type-II censoring when the available observations are described by 
means of fuzzy information. They are maximum likelihood estimation (MLE), 
highest posterior density (HPD) estimation and method of moments (MME). A 
simulation study was conducted to assess the performance of these procedures. 
Based on the results of the simulation study, it may be observed that, the 
performance of the HPD estimates is generally best followed by the MLE and 
MME. Thus, it would seem reasonable to recommend the use of the HPD 
procedure for estimating the unknown parameter   from the Rayleigh 
distribution. 
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The Receiver Operating Characteristic (ROC) curve generated based on assuming a 
constant shape Bi-Weibull distribution is studied. In the context of ROC curve analysis, it 
is assumed that biomarker values from controls and cases follow some specific 
distribution and the accuracy is evaluated by using the ROC model developed from that 
specified distribution. This article assumes that the biomarker values from the two groups 
follow Weibull distributions with equal shape parameter and different scale parameters. 
The ROC model, area under the ROC curve (AUC), asymptotic and bootstrap confidence 
intervals for the AUC are derived. Theoretical results are validated by simulation studies. 
 
Keywords: Constant shape Bi-Weibull ROC model, area under the ROC curve, 
asymptotic variance of accuracy, confidence interval, parametric bootstrap variance 
 

Notations and Terminologies 
X Random variable representing controls t Cut-off point of classification, t x y    

Y Random variable representing cases I(θ) Fisher Information matrix 

m Number of controls y(x) ROC model 

n Number of cases MLE Maximum Likelihood Estimate  

f(x) Probability Density Function (PDF) of X x(t) False Positive Rate (FPR) at cut-off t 

g(y) PDF of Y y(t) True Positive Rate (TPR) at cut-off t 

F(x) Distribution function of X TPR Probability that cases are correctly  
identified (Sensitivity) 

G(y) Distribution function of Y FPR Probability that controls are wrongly 
identified as cases (1-Specificity) 

AUC  Population Area under the ROC curve α0, α1 Shape parameters of X and Y, respectively 

AUC  Observed Area Under the ROC curve β0, β1 Scale parameters of X and Y, respectively 

mailto:sudeshpundir19@gmail.com
mailto:amalar.statistics@gmail.com
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Introduction 

A Receiver Operating Characteristic (ROC) curve provides quick access to the 
quality of classification in many medical diagnoses. In ROC curve analysis, the 
accuracy has been analyzed in terms of a model relating the parameters of cases 
and controls called as the ROC model. ROC model can be defined as the TPR 
obtained as a function of FPR which takes the form 
 
        11 1 ; 0 1y x G F x t x t       (1) 

 
where x(t) and y(t) are defined as follows: 
 

 0

0

( ) ( ) ( ) 1- ( ) 1 ( )

( ) ( ) ( ) 1- ( ) 1 ( )

t

t
t

t

x t P X t f x dx f x dx F t

y t P Y t g y dy g y dy G t






      



     



 

 

  (2) 

 
Graphically, a ROC curve is a graph of TPR versus FPR for all possible 

threshold values. The ROC curve can be plotted by three approaches viz. 
parametric, non-parametric and semi-parametric. This article considers the 
parametric way of plotting the ROC curve. After the ROC curve is generated the 
intrinsic accuracy provided by the biomarker must be interpreted. To summarize 
the information contained in a ROC curve, many indices have been used. Among 
them, area under the ROC curve is most commonly adopted index. In this article, 
the inference about the area under the ROC curve is of primary interest.  

The problem of assessing the accuracy of diagnosis/Biomarker has been 
studied by several authors by assuming various distributions to the biomarker 
values. They are Bi-Normal ROC model (Zhou, Obuchowski & McClish, 2002), 
Bi-Logistic ROC model (Oglive & Creelman, 1968), Bi-Lomax ROC model 
(Campbell & Ratnaparkhi, 1993), Bi-Gamma ROC model (Dorfman et al., 1996), 
Bi-Exponential ROC model (Betinec, 2008), Generalized Bi-Exponential ROC 
model (Hussain, 2011), Bi-Rayleigh ROC model and its comparison with Bi-
Normal model (Pundir & Amala, 2012), comparison of Bi-Rayleigh ROC model 
with Bi-Normal and Bi-Gamma ROC models (Pundir & Amala, 2012) and a 
review of all parametric ROC models in case of continuous data (Pundir & Amala, 
2014), Normal-Exponential (Pundir & Amala, 2014).  
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A constant shape Bi-Weibull ROC model is proposed for non-normal data. 
Two parameter Weibull distribution is a most widely used life distribution in 
various fields viz. Survival analysis, Reliability engineering and recently in ROC 
curve analysis. Let 0 0~ ( , )X W   and 1 1~ ( , ),Y W   then the ROC model 
developed from two parameter Bi-Weibull distribution is given by 

 

  
1

00
1 0 1 0

1

ln( ( ))
( ) , , 0,  , 0

x t
y x Exp




   



 
 

    
 
 

  (3) 

 
One major disadvantage of assuming two parameter Weibull distribution to 

the biomarker is that the accuracy cannot be expressed in closed form. By 
substituting the MLE’s 0 1 0 1

ˆ ˆˆ ˆ, ,  and ,     the accuracy can be evaluated 
numerically using Monte Carlo integration or any other numerical procedure. In 
the absence of closed form expression, the statistical inference on the accuracy 
measure will not be possible. To overcome this problem and to obtain a closed 
form expression, equal shape parameter and different scale parameters are 
assumed. Moreover, the original accuracy of the diagnosis is not affected by 
taking equal shape parameter. The ROC model developed from this assumption is 
called the constant shape Bi-Weibull ROC model.  

Research interest may lie in comparing the effectiveness of two separate 
diagnostic tests or the efficiency of biomarkers in predicting the disease. The 
comparison can be accomplished either by AUC or sensitivity of the test. In order 
to compare the AUC and to construct the confidence interval, the Standard Error 
(SE) of AUC are needed. Here, the standard error of accuracy is studied by 
different methods viz. Monte Carlo, asymptotic MLE, parametric bootstrap and 
non-parametric methods. For parametric, the delta method will yield variance and 
SE with the help of asymptotic expressions for the variance and co-variances of 
the parameters.  

Constant Shape Bi-Weibull ROC Model 

The constant shape Bi-Weibull ROC model assumes that the biomarker values 
from controls and cases follow two parameter Weibull distribution with same 
shape parameter and different scale parameters.  
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The PDF of controls and cases take the form 
 

 1
0

0 0

( ) exp , 0, , 0xf x x x



 

 


  

    
  

  (4) 

 
and 

 

 1
1

1 1

( ) exp , 0, , 0yg y y y



 

 


  

    
  

  (5) 

 
respectively. 

The probabilities, Sensitivity and 1−Specificity for constant shape Bi-

Weibull distribution can be given as follows: 

 

 1

1 1 1

exp exp
t

y tSensitivity y dy
 



  




    

     
    

   (6) 

 

 1

0 0 0

1 exp exp
t

x tSpecificity x dx
 



  




    

      
    

   (7) 

 
Hence, the ROC model is given by  

 

 
0

1y( x ) x( t ) ;0 x( t ) 1




 
 
    .  (8) 

 
The ROC curve can be estimated by substituting the MLE of parameters in 

equation (8) and plotted by taking x(t) in equation (7) on x-axis and y(x) in 
equation (8) on y-axis. Also, one can plot the ROC curve by taking 1−Specificity 
on X axis and Sensitivity on Y axis. The area under the ROC curve is obtained by 
integrating the joint density function of X and Y and it has the following form.
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  (9) 

 
The MLEs of 0  and 1  can be used again to estimate the AUC. And the 

performance of the estimator AUC  can be assessed through variance estimate. 

Maximum Likelihood Estimate of Parameters 

The MLE of two parameter Weibull distribution has been discussed by (Kundu & 
Gupta, 2006) in the context of Reliability estimation. Let X1, X2,…..Xm be a 
random sample of size m from W(α, β0) and Y1, Y2,…..Yn be a random sample of 
size n from W(α, β1). The likelihood function of the selected sample is given by 
 

 0 1
1 1

( , / ) ( / , ) ( / , )
m n

i j X i Y j
i j

L x y f x f y    
 

    (10) 

 
where '

0 1( , , )     
The log-likelihood function is 
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Differentiating (11) with respect to α results in 
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j 1 i 1

n m
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LnL ( m n ) ln y ln x
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By differentiating the log-likelihood function with respect to 0 , 1  and equating 
to zero, we get the estimates. The MLE’s of β1 and β0 are determined as, 
 

 1 1
1 0

ˆ ˆ( )    and    ( )

n m

j i
j i

y x

n m

 

   
  

 
  (13) 

 
Substituting 0̂  and 1̂  in equation (12) and equating it to 0, results in a non-
linear equation: 
 

 1 1

1 1

1 1
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n m
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m n

i j
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  (14) 

 
Hence, ̂  can be determined as a solution of non-linear equation (14). By 

substituting equation (13) and (14) in equation (9), an estimate of AUC ( AUC ) 
will result.  

Asymptotic Distribution of area under constant shape Bi-
Weibull ROC Model 

To evaluate the significance of the statistic AUC, its variance and standard error 
must be computed. The following theorem evaluates the variance of the estimate, 
AUC . 
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Theorem 1 
The area under the constant shape Bi-Weibull ROC curve will converge in 
distribution to a Normal random variable with mean zero and variance  
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for large N, where N m n  . 

 

Proof:  Let  / ,L x y ;  0 1, ,      be the likelihood function of the 
sample observations from X and Y which is given by  
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  (15) 

 
Asymptotic normality of MLE states that a consistent solution of the 

likelihood equation is asymptotically normally distributed about the true value 

i.e.  1ˆ ~ N ,I ( ) .  

 
 
 1ˆN( ) N(0,I ( )).       (16) 
 
where I(θ) is the Fisher Information matrix which is given by 
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The 1( )I  is calculated as: 
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Because the area under the ROC curve is a function of parameters θ = (α, β0, 

β1)', the Delta method will be adopted for finding the approximate variance. 
V( AUC )  can be defined as: 
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where 1̂( )V  , 0
ˆ( )V   and 0 1

ˆ ˆ( , )Cov    are taken from the matrix 1( )I  . The 
estimate of variance is obtained by substituting the estimates of the parameters 

0 1, .   Hence, the estimate of accuracy follows that  
 



EVALUATION OF AREA UNDER BI-WEIBULL ROC CURVE 

314 
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   (22) 

 
where τ is obtained in equation (20) and it is proven that  ~ 0,AUC N  , 

  1 1

1
1 !

n

n n k
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  where γ is Euler-Mascheroni constant approximately 

equal to 0.5772. Note: AUC is an Unbiased Estimator of AUC (See Appendix D 
for the proof). 
 

Confidence Interval for AÛC  

Asymptotic Confidence Interval 
The asymptotic 100(1−α)% confidence interval for accuracy is given by 
 

  
2 2

AUC Z SE( AUC ), AUC Z SE( AUC ) . 
 

   
  (23) 

 
where SE( AUC ) can be obtained from equation (21), α is the level of significance 
and 

2

Z  is the critical value. For example, 
2

Z  for a 5% level of significance is 

1.96. 

Bootstrap Confidence Interval 
The parametric bootstrap is a resampling technique which can be used to find the 
variance of any estimator. The idea of bootstrap is to create or resample an 
artificial dataset from an empirical distribution with same sample size and 
structure as the original for large number of times. Once the dataset is created, the 
parameters of interest are to be estimated for each data set. The bootstrap variance 
of parameter is nothing but the variance of all estimated parameters. 

Parametric bootstrap is very similar to the non-parametric bootstrap method. 
In non-parametric bootstrap the sample is simulated from empirical distribution 
but in parametric bootstrap it is simulated from specified parametric distribution.  
The following are the steps involved in finding the parametric bootstrap estimate: 
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Step 1: Let X1, X2,…, Xm be a random sample of size m from W(α0, β0) and 
Y1, Y2,…, Yn be a random sample of size n from W(α1, β1).  By using equation (13) 
and (14), the ML estimates of the parameters α, β0, β1 are estimated.    

Step 2: By using the estimated parameters 0 1
ˆ ˆˆ,   ,and    the random 

observations Xb of size m and Yb of size n (Bootstrap samples) are generated. 
From Xb and Yb, the bootstrap estimates viz. 0 1

ˆ ˆˆ ,   b b band    are obtained. Using 
these bootstrap estimates the accuracy ( bAUC ) is obtained.  

Step 3: Step 2 is repeated 10,000 times.  The mean of all 10,000 estimates 
of 0 1

ˆ ˆˆ 's, 's  'b b band s    are called the bootstrap estimates of parameters

0 1,   and    respectively and mean of all bAUC ' s  is called the estimated 
bootstrap accuracy. The standard deviation of all estimates bAUC is called the 
standard error of bAUC . 

Step 4: The 100(1−α)% confidence interval for bAUC  is obtained as 
follows: 

 b b b b
2 2

AUC Z SE( AUC ), AUC Z SE( AUC ) . 
 

     
 
where α is the level of significance and 

2

Z  is the critical value. 

Simulation Studies 

Thus, the accuracy, standard error of AUC  and 95 % confidence interval for 
AUC  have been computed through four different techniques via Monte Carlo 
method, asymptotic MLE method, parametric bootstrap and non-parametric 
method. 

Monte Carlo Method 
The model in equation (3) does not possess a closed form, so Monte Carlo 
integration of equation (3) is necessary. A Monte Carlo simulation was performed 
to inspect the accuracy obtained by Monte Carlo integration. The Monte Carlo 
estimate of AUC, SE ( AUC ) and 95% confidence interval for AUC  is presented 
in Table 1. The R codes for the Monte Carlo simulation is provided in Appendix 
A. 
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Table 1. Accuracy, standard error and Confidence interval of AUC  based on Constant 
Shape Bi-Weibull ROC model through Monte Carlo Simulation 
 

SL. No. 0̂  1̂  0̂  1̂  AUC  V( AUC ) 
95% Confidence 

Interval 
Band 
Width 

1 3.0 2.0 9 45 0.9188 0.051969 [0.816923, 1] 0.1831 

2 3.0 2.0 9 30 0.8835 0.072986 [0.740444, 1] 0.2596 

3 2.5 1.5 9 12 0.7590 0.124569 [0.514798, 1] 0.4852 

4 3.5 2.5 9 10 0.6727 0.180434 [0.319085, 1] 0.6809 
 

Asymptotic MLE Method 
Numerical experiments were carried out to inspect how the MLE’s of AUC and 
their asymptotic results work for simulated data sets. Four different samples of 
size (m, n) = (30, 30) with different parametric values were considered as 
mentioned in column 2, 3 and 4 of Table 2. The corresponding accuracy, SE, 95% 
confidence interval and the band width are shown in 5, 6, 7, 8 columns of Table 1. 
As the accuracy increases, the SE tend to decrease, simultaneously, the coverage 
area of the confidence band are tends to decrease as accuracy increases. Because 
the asymptotic distribution is independent of α, α may be kept constant or it may 
vary. From the sample α is estimated using iterative procedure from equation (14) 
and using α, the other two parameters using were found using equation (13). 
Hence, the ML estimate of AUC is obtained. The 95% asymptotic confidence 
interval and the confidence width are also calculated. 
 
 
Table 2. Accuracy, standard error and Confidence interval of Â  based on Constant 
Shape Bi-Weibull ROC model through Asymptotic MLE method 
 

Sl. 
No. ̂  1̂  0̂  Â  ˆ( )V A  95% Confidence 

Interval 
Band 
Width 

1 2.530 12136 245.4000 0.980 0.00913 [0.9623, 0.99133] 0.02903 
2 3.140 66.123 6.8201 0.907 0.02924 [0.8491, 0.96380] 0.11460 
3 1.520 249.980 43.7500 0.850 0.03960 [0.7735, 0.92860] 0.15510 
4 1.430 167.430 47.3900 0.778 0.04950 [0.6824, 0.87638] 0.19398 
5 1.085 36.290 18.7200 0.660 0.05990 [0.5425, 0.77700] 0.23450 
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Table 3 shows simulated independent samples of m controls and n cases (m 
= n = 5, 10, 40, 50, 80, 100) to assess the behavior of asymptotic MLE’s and 
confidence interval over different sample sizes by fixing 0

ˆ 5   and for different 

values of 1̂  viz. 8, 12, 20, 100. In Tables 3 and 4, first row represents the AUC, 
second row gives the SE, third row gives the lower confidence limit and the 
fourth row represents the upper confidence limit. It is observed that, as the sample 
size increases the variance decreases and the coverage area of confidence interval 
is narrow. 
 
 

 
 
Figure 1. Constant Shape Bi-Weibull ROC model plotted for different AUC 
 
 
 

Table 4 shows simulated independent samples of m controls and n cases (m 
= n = 40, 50, 80, 100) to inspect the behavior of asymptotic MLE and confidence 
interval over different sample sizes by fixing 1̂ 45   and for different values of 

0̂  viz. 3, 8, 10, 20. It is observed that, as the sample size increases the variance 
decreases and the coverage area of confidence interval is narrow. 
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Table 3. Accuracy, Variance and 95% confidence Interval for AUC when 0̂  = 5 for 
different sample size 
 
Sample 
Size m = n = 5 m = n = 10 m = n = 40 m = n = 50 m = n = 80 m = n = 100 

1
ˆ 8   

0.6154 
0.0232 
0.3171 
0.9137 

0.6137 
0.0116 
0.4045 
0.8263 

0.6137 
0.0029 
0.5099 
0.7192 

0.6137 
0.0023 
0.5210 
0.7080 

0.6137 
0.0012 
0.5408 
0.6883 

0.6137 
0.0012 
0.5487 
0.6804 

       

1
ˆ 12   

0.7059 
0.0193 
0.4339 
0.9778 

0.7057 
0.0096 
0.5136 
0.8982 

0.7057 
0.0024 
0.6097 
0.8020 

0.7057 
0.0019 
0.6199 
0.7918 

0.7057 
0.0012 
0.6379 
0.7738 

0.70570 
0.00096 
0.64510 
0.76610 

       

1
ˆ 20   

0.8000 
0.0132 
0.5745 
1.0000 

0.8000 
0.0066 
0.6406 
0.9594 

0.8000 
0.0017 
0.7203 
0.8797 

0.8000 
0.0013 
0.7287 
0.8730 

0.80000 
0.00083 
0.74360 
0.85640 

0.8000 
0.0007 
0.7496 
0.8504 

       

1
ˆ 100   

0.9524 
0.0019 
0.8659 
1.0000 

0.9500 
0.0028 
0.7961 
1.0000 

0.95000 
0.00024 
0.92180 
0.98060 

0.9500 
0.0001 
0.9250 
0.9773 

0.95000 
0.00012 
0.93080 
0.97160 

0.95000 
0.00009 
0.93310 
0.96930 

 
 

Table 4: Accuracy, SE and 95% confidence Interval for AUC when 1̂ 45   for different 
sample size 
 
Sample 
Size m = n = 5 m = n = 10 m = n = 40 m = n = 50 m = n = 80 m = n = 100 

0
ˆ 3   

0.9375 
0.0029 
0.8318 
1.0000 

0.9375 
0.0015 
0.8628 
1.0000 

0.93750 
0.00036 
0.90010 
0.97490 

0.93750 
0.00029 
0.90410 
0.97090 

0.93750 
0.00018 
0.91110 
0.96390 

0.93750 
0.00015 
0.91390 
0.96110 

 

      

0
ˆ 8   

0.8490 
0.0096 
0.6575 
1.0000 

0.8491 
0.0048 
0.7136 
0.9845 

0.849100 
0.001194 
0.781300 
0.916782 

0.84910 
0.00096 
0.78850 
0.90960 

0.8491 
0.0006 
0.8012 
0.8969 

0.84910 
0.00047 
0.80620 
0.89190 

 

      

0
ˆ 10   

0.8182 
0.0119 
0.6044 
1.0000 

0.8182 
0.0059 
0.6670 
0.9694 

0.8182 
0.0015 
0.7426 
0.8938 

0.8182 
0.0012 
0.7506 
0.8858 

0.81820 
0.00074 
0.76470 
0.87160 

0.818200 
0.000595 
0.770400 
0.865900 

 

      

0
ˆ 20   

0.6923 
0.0200 
0.4154 
0.9693 

0.6923 
0.0100 
0.8881 
0.4965 

0.9500 
0.0025 
0.5944 
0.7902 

0.6923 
0.0019 
0.6048 
0.7799 

0.6923 
0.0012 
0.6231 
0.7615 

0.692300 
0.000998 
0.630400 
0.754200 
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Estimation of Bootstrap Variance 
For parametric bootstrapping, the data was generated from a uniform distribution 
using (m, n) as specified in Table 5. Then by inverse transformation method, it is 
converted into Weibull variate with the values of 0  and 0 1 1, ,    . Using Step 1 

results in the estimates as 0 ˆˆ , ,  1
ˆ .  By using Step 2, the estimate of bootstrap 

sample is obtained as b0 b1,  and b
ˆ ˆ   . From these 10,000 estimates of parameters, 

one can find an estimate of AUC by using the equation (10). By averaging these 
10,000 numbers of estimates of AUC, one can estimate the bootstrap estimate 
AUC. Standard error of bAUC  is nothing but the standard deviation of the b 

number '
bAUC s. By Step 4, the 95% confidence interval for bootstrap AUC is 

obtained as usual. Table 5 shows the bootstrap area under the curve, SE and 
confidence interval for bAUC . 
 
 
Table 5. Accuracy, standard error and Confidence interval of AUC  based on Constant 
Shape Bi-Weibull ROC model through Bootstrap Simulation 
 

(m, n) b̂  b0̂  b1̂  bAUC  bSE( AUC )  
95% 

Confidence 
Interval 

Band 
Width 

(10, 10) 2.6709 7.5414 201.8100 0.9249 0.04700 [0.8328, 
1.0000] 0.1672 

(20, 20) 2.5274 6.3739 103.9060 0.9240 0.03366 [0.8581, 
0.9899] 0.1318 

(30, 30) 2.4662 5.8770 84.2817 0.9220 0.02680 [0.8695, 
0.9745] 0.1050 

(50, 50) 2.4340 5.6493 74.3820 0.9222 0.02110 [0.8581, 
0.9636] 0.1055 

(100,100) 2.3948 5.4283 66.5260 0.9211 0.01450 [0.8926, 
0.9496] 0.0570 

 
 

Comparing asymptotic and bootstrap variance, both perform at the same 
level. The asymptotic variance does not perform well for small samples such as (5, 
5) and (10, 10) where the bound for accuracy has reached below 0.5 which is not 
regarded as a good estimate. Hence, the asymptotic variance holds for large 
samples only. 
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Sensitivity and Specificity  
To generate a Weibull random variate with parametric values 

 0 1 03; 2; 9      and 1 45  . The data is  
 

X = {0.76261, 0.803019, 0.863084, 0.905439, 1.146029, 1.338408, 1.366008, 
1.39672, 1.415312, 1.432053, 1.592267, 1.608494, 1.673259, 1.710255, 1.81614, 
1.899346, 1.903763, 1.991144, 2.011153, 2.024541, 2.05607, 2.31567, 2.36017, 
2.376429, 2.516461, 2.660371, 2.663695, 2.669402, 2.73371, 3.092265} 

 
Y = {1.183838, 1.472276, 1.849655, 3.121439, 3.298009, 3.478297, 3.512602, 

3.853157, 4.751021, 5.094757, 5.143248, 5.263026, 5.682114, 5.824499, 6.555983, 
6.71353, 6.747835, 7.373468, 7.736402, 7.743548, 8.111, 8.393854, 9.171785, 9.313726, 
9.789551, 10.28716, 10.63431, 11.08168, 12.01407, 12.10905} 

 
Using equations (12) and (13), ML estimates are found to be 

2.705 6.539 and 245.02690 1, .      Using equations (6) and (7) the 
sensitivity and specificity of the test were also calculated: the sensitivity of the 
test is 94% and specificity is 89%. To the data generated above all the four 
methods were applied and compared (see Table 6). The non-parametric estimates 
are obtained by the method of Hanley and McNeil (1982), and the R codes are 
given in Appendix F. 
 
 

 
 
Figure 2. Constant Shape Bi-Weibull ROC curve plotted for simulated data 
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Conclusion 

This article considered a ROC model developed from two parameter Weibull 
distributions for evaluating the accuracy of biomarkers in predicting disease status. 
It did not yield a closed form expression for area under the ROC curve. For this 
reason, equal shape parameter and different scale parameter were assumed. It 
should be noted that, the accuracy remains unchanged by this assumption. Hence, 
estimation of area under the constant shape Bi-Weibull ROC curve is a main 
objective for this study. 

The Maximum Likelihood technique is adopted for estimating the 
parameters. The technique yielded an asymptotically unbiased estimate of the 
accuracy. The asymptotic distribution of AÛC, SE(AÛC) and 95% confidence 
interval were found. The behavior of asymptotic SE and confidence interval is 
studied through simulation. The parametric AUC is higher than the AUC obtained 
by other methods including Monte Carlo, non-parametric and parametric 
bootstrap. 
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Appendix A. R Code for Evaluation of AUC and Estimation 
of Standard Error Using Monte Carlo Simulation 
m<-100; a0<-2.9753; a1=2.30387; 
b0<-10295.0304;b1<-20646.898;x<-runif(m) 
auc<-mean(exp(-(1/b1)* ( (-b0*log(x))^(a1/a0) ) )) 
print(auc) 
v.auc<-var(exp(-(1/b1)* ( (-b0*log(x))^(a1/a0) ) )) 
print(v.auc); print(sqrt(v.auc)) 

Appendix B. Evaluation of AUC 
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Appendix C. Evaluation of Asymptotic Distribution of AUC 
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iv)     
2 1

0

 * ^ 2* * *
1 1

yE Y Log Y y Log y y Exp dy


  

 



       
 

  

 

 

  

   

2
2

6 2 EulerGamma
1Conditional Expression[ 1 EulerGamma 6Log 1 ,

6
2 2EulerGamma Log 1

Re 0 & & 1 0]Re

  




 

  
 
   
 
   

 

 

 

v)   1

0

 * * * *
0 0

xE X Log X x Log x x Exp dx


  

 



  
     

 
  

   

10 1 EulerGamma Log
0

Conditional Expression[ ,

Re 0 & & 0 0]Re






 

  
    

  

 

 

 

vi)   1

0

 * * * *
1 1

yE Y Log Y y Log y y Exp dy


  

 



  
     

 
  

   

11 1 EulerGamma Log
1

ConditionalExpression[ ,

Re 0 & & 1 0]Re






 

  
    

  

 

 

 

vii)     1

0

log * * * *
1 1

yE Y Y y Log y y Exp dy




 



  
 
 

  

 

   

1

2

1 1ConditionalExpression[ 1 Gamma

1 1EulerGamma HarmonicNumber Log ,
1

Re 0 & & 1 0]Re


 

 

 

 
  

 

  
   

  

 

 

 
 



PUNDIR & AMALA 

325 

viii)     1
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ix) The first order differentiation of Γn is given by Γnψ(n) where ψ(n) is 
called the digamma function. The value of Γ’n at n is equal to is 1‒γ; 
where γ is the Euler-Mascheroni constant has the approximate value 
0.5772. The second order differentiation of Γn can be representated 
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In general the mth derivative of Γn is obtained by 
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Appendix D. Unbiasedness of Estimated AUC 

An estimator T is said to be an unbiased estimator if it satisfies the condition 
E(T) = μ. The estimated accuracy is 
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Taking the expectation results in  
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Hence AÛC is an unbiased estimator of AUC. 
 

Appendix E. R Code for Evaluation of Bootstrap AUC and 
Confidence Interval 
k<-10000 ;al0<-3.9; al1<-2.84;be1<-38.56;be0<-11.31;m<-30;n<-30; 
df1 <-data.frame(array(dim=c(n,k))); df0 <-data.frame(array(dim=c(m,k))) 
dfw0<-data.frame(array(dim=c(m,k))); dfw1<-data.frame(array(dim=c(n,k))) 
a<-array(dim=k); ave<-array(dim=k); b1<-array(dim=k); b0<-array(dim=k) 
auc<-array(dim=k); SE<-array(dim=k); for(i in 1:k) 
{ 
df1[i]<-runif(30); df0[i]<-runif(30); 
dfw0[i]<-(-be0*log(1-df0[i]))^(1/al0); 
dfw1[i]<-(-be1*log(1-df1[i]))^(1/al1); 
loglik<-function(param) 
{ 
a[i]<-param[1]; b0[i]<-param[2]; b1[i]<-param[3] 
ll<-(m+n)*log(a[i])+(a[i]-1)*(sum(log(dfw1[i]))+sum(log(dfw0[i])))-n*log(b1[i])-
m*log(b0[i])-(sum(dfw1[i]^a[i])/b1[i])-(sum(dfw0[i]^a[i])/b0[i]) 
ll 
} 
M0<-maxNR(loglik,start=c(1,2,3)) 
a[i]<-M0$estimate[1]; b0[i]<-M0$estimate[2]; b1[i]<-M0$estimate[3] 
auc[i]<-(b1[i]/(b1[i]+b0[i])); dt<-data.frame(a[i],b0[i],b1[i],auc[i]) 
} 
print(dt); b.auc<-mean(auc); b.se.auc<-sd(auc); 
cat(“Bootstrap Accuracy=”,”\n”,b.auc,”\n”) 
cat(“Bootstrap Standard Error=”,”\n”, b.se.auc) 
lcl<-(b.se.auc-(1.96*b.se.auc)); ucl<-(b.se.auc+(1.96*b.se.auc)) 

Appendix F. R code for Sensitivity and Specificity Analysis 
s<-sort(c(h,d)); n<-length(d); m<-length(h); X<-array(dim=m+n-1) 
k<-m+n-1; 
for(i in 1:k) 
 { 
X[i]<-(s[i]+s[i+1])/2; 
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 } 
t<-c(s[1]-1,X,s[m+n]+1); print(t); a<-2.705492 ; b0<-6.538623 ;  
b1<-245.026947; # Estimated by MLE from data 
Sen<-exp((-t^a)/b1); Sp<-1-exp((-t^a)/b0); dt<-data.frame(t, Sen, Sp); 

 

Appendix G. R code for Non-Parametric Method 
NP.ROC<-function(h,d) # Creating a function named NP.ROC() 
{ 
s<-sort(c(h,d)); n<-length(d); m0<-mean(h);m1<-mean(d);m<-length(h) 
X<-array(dim=m+n-1);k<-m+n-1; 
for(i in 1:k) 
 { 
X[i]<-(s[i]+s[i+1])/2; 
 } 
t<-c(s[1]-1,X,s[m+n]+1); print(t); 
TPR<-array(dim=length(t)) # Defining empty array to save calculations 
FPR<-array(dim=length(t)); TP<-array(dim=length(t)); TN<-array(dim=length(t));  
FN<-array(dim=length(t)); FP<-array(dim=length(t)); AUC<-array(dim=length(t)); 
SP<-array(dim=length(t)); TNR<-array(dim=length(t)); SplusS<-
array(dim=length(t)); 
se<-array(dim=length(t));q1<-array(dim=length(t));q2<-array(dim=length(t));v<-
array(dim=length(t)); 
 for(i in 1:length(t)) 
 { 
A<-d[d>=t[i]]# observations greater than or equal to t among diseased i.e. True 
Positives 
B<-d[d<t[i]] # observations less than t among diseased i.e. False Negatives 
C<-h[h>=t[i]]# observations greater than or equal to t among healthy i.e. False 
Positives 
D<-h[h<t[i]] # observations less than t among healthy i.e. True Negatives 
TP[i]<-length(A) # No. of TPs 
FP[i]<-length(C) # No. of FPs 
FN[i]<-length(B) # No. of FNs 
TN[i]<-length(D) # No. of TNs 
TPR[i]<-(TP[i]/n)  
FPR[i]<-(FP[i]/m) 
TNR[i]<-1-FPR[i] # or TN[i]/m 
AUC[i]<-(TP[i]+TN[i])/(TP[i]+TN[i]+FN[i]+FP[i]) 
SplusS[i]<-TPR[i]+TNR[i] # TNR+TPR  
q1[i]<-AUC[i]/(2-AUC[i]); q2[i]<-(2*AUC[i]^2)/(1+AUC[i]) 
v[i]<-(AUC[i]*(1-AUC[i])+(n-1)*(q1[i]-AUC[i]^2)+(m-1)*(q2[i]-AUC[i]^2))/(m*n) 
se[i]<-sqrt(v[i]); 
 } 
library(utils) 
write.csv(dt,"msanalysis.csv") # writing the data frame in CSV format for usage 
 m<-length(h); n<-length(d); l<-m*n; 
 sum=0; 
  for(i in 1 : m) 
  { 
  s<-c(0); 
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   for(j in 1 : n) 
   { 
    if(d[j]>h[i]) 
    { 
    s[j]=1; 
    } 
     else if (d[j]==h[i]) 
     { 
     s[j]=0.5; 
     } 
    else 
    s[j]=0 
   } 
  output=data.frame(s) 
  sum=sum+sum(output) 
  } 
value= sum/(m*n) 
print(value) 
dt<-data.frame (t, FPR, TPR, TP, TN, FP, FN, AUC, se) 
print(dt); Q1<-value/(2-value); Q2<-(2*value^2)/(1+value) 
V<-(value*(1-value)+(n-1)*(Q1-value^2)+(m-1)*(Q2-value^2))/(m*n) 
SE<-sqrt(V); # Standard Error of AUC 
lc<-value-(SE*1.96) # Lower Confidence Limit of AUC 
uc<-value+(SE*1.96) # Upper Confidence Limit of AUC 
if(uc>1){ # Sometimes if the standard error is high, the upper CI may go greater 
that one in which case approximating it to one. 
uc<-1.0 
} 
cat("---------------------------------------", 
"\n", "Healthy Mean","\t",":","\t",m0, 
"\n", "Diseased Mean","\t",":","\t",m1, 
"\n", "AUC","\t","\t",":","\t", value, 
"\n", "SE","\t","\t",":","\t", SE, 
"\n", "CI","\t","\t",":","\t","[", lc,",","\t",uc,"]", 
"\n","---------------------------------------","\n") 
plot(TPR~FPR,type="b",main="",xlab="FPR",ylab="TPR",xlim=c(0,1),ylim=c(0,1)) 
abline(lm(c(0:1)~c(0,1))) 
} 
NP.ROC(h,d); 
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Conventional clustering algorithms are restricted for use with data containing ratio or 
interval scale variables; hence, distances are used. As social studies require merely 
categorical data, the literature is enriched with more complicated clustering techniques 
and algorithms of categorical data. These techniques are based on similarity or 
dissimilarity matrices. The algorithms are using density based or pattern based 
approaches. A probabilistic nature to similarity structure is proposed. The entropy 
dissimilarity measure has comparable results with simple matching dissimilarity at 
hierarchical clustering. It overcomes dimension increase through binarization of the 
categorical data. This approach is also functional with the clustering methods, where a-
priori cluster number information is available. 
 
Keywords: Categorical data, clustering, dissimilarity, entropy  
 

Introduction 

Clustering analysis is a process used for classifying objects so that homogeneous 
subsets are built in heterogeneous groups. A variety of distance/similarity criteria 
are used when classifying objects in groups according to their similarity. One 
important criterion for choosing the distance or similarity measure, when 
classifying objects into groups, is the type of the data. In the literature it can be 
seen that most studies examine the clustering of continuous data. If the data set 
consists of continuous data, Euclid and Manhattan are the distance measures most 
widely used in applications. However, in a data set with categorical data it is not 
possible to use this type of distance measures. These variables are first 
transformed into binary data and then the analysis is applied, which increases the 
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number of dimensions when there are multinomial variables in the data. This 
procedure increases memory allocation. 

There are different techniques and approaches for finding clusters with 
categorical data. One includes transformation of categorical variable into dummy 
variable, independently from calculation of distances. Applications of such 
hierarchical method algorithms are single linkage, complete linkage, average 
linkage, etc. (Chaturvedi et al., 2001). 

Another approach uses the k-means algorithm for clustering of categorical 
data developed by Ralambondrainy (1995). In this approach multiple category 
attributes are turned into binary variables, which are assumed to be numeric 
variables and thus, the k-means algorithm is applied. The drawback of this 
approach is the increase in the number of binary variables when there are too 
many categories in variables. Further, cluster centres, given as 0 and 1, do not 
reflect the real characteristics of clusters (Huang, 1998). The basics of K-medoids 
algorithm is founded on finding k number of objects representative of several 
structural features of data. A Medoid is the most central point of the cluster with 
minimum average distance to other objects that are located in the same cluster 
(Kaufman and Rousseeuw, 2005; Xu and Wunsch, 2009). Due to the distance 
measure used in K-means algorithm, this method is not used in clustering 
categorical data. As the data set consists of categorical data, k-modes method, 
which is an extension of k-means model, is used for clustering categorical data, 
which was developed by Huang (1998). In this algorithm,  

 
1. simple matching dissimilarity measure for categorical objects, 
2. mod is used for clusters instead of mean, 
3. frequency-based method is used for updating modes (Huang, 1998). 
 
An extended–modes algorithm was proposed by Aranganayagi and 

Thangwell (2010), which uses a probability weighted single matching 
dissimilarity function. 

Initially, expectation maximization algorithm assigns randomly different 
possibilities to each class or category. These probabilities are determined with 
consecutive iterations so as to maximize the similarity value of the data, which 
will also fit a pre-set number of clusters. The EM algorithm assumes that the 
model is suitable for a non-observable latent variable and that the stochastic 
model performs maximum likelihood estimations of the parameters (Agarwal et 
al., 2010). The optimization algorithm determines the convergence of the 
parameters. 



ÇILINGIRTÜRK & ERGÜT 

331 

ROCK (RObust Clustering using linKs) is an adaptation of the hierarchical 
clustering algorithm developed for clustering of categorical data. In this algorithm 
similarity value between two objects is calculated using Jaccard coefficient, then 
the threshold value ( ), defined between 0 and 1 by the researcher, is compared 
to decide adjacent points. In order that a given point qi is adjacent to a point qj for 
an ith object in an m-dimensional space, similarity value has to exceed threshold 
value (θ) (Guha et al., 1999). 

 
( , )i jsim q q    

 
If this condition is met, it can be said that the points are neighbours. This 

algorithm classifies the objects into clusters according to their link ability. The 
link ability between two clusters gives the number of common adjacent points 
between qi and qj. The higher the linkability of qi and qj, the higher is the 
possibility of qi and qj being in the same cluster.  

COOLCAT is proposed for categorical clustering analysis as an entropy-
based algorithm (Barbara et al., 2002). The entropy-based algorithm consists of 
two steps, namely initialization and incremental steps. In the initialization step K 
most dissimilar records are selected from the sample. In the next step remaining 
records in the data set are assigned to appropriate clusters. The algorithm groups 
objects in the data set trying to minimize the expected entropy of the clusters. 
Similarly, He et al. (2005) maximized Ensemble algorithms with the average 
normalized mutual information [0,1] function based on entropy in separating of 
units with the purpose of categorical clustering. 

Definitions and Notations 

X and Y are two categorical objects defined by n and m attributes, the dissimilarity 
measure between X and Y is the sum of mismatches in relevant variable attributes 
of the two objects. The smaller the number of mismatches, the more similar are 
two objects. This measure is also a kind of generalized Hamming distance (Ng et 
al., 2007). 
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As statistics is applied to physics, the development of statistical physics 
earned entropy new meanings with entropy, which is an indicator of the 
irregularity and uncertainty in a physical system. The increase in irregularity in 
the system is proportionate to the increase in entropy. The uncertainty of 
occurrence of xi situation in system X, which is the entropy of xi situation, is 
shown as    logi ic p p x  , while the entropy of the system is expressed as 
(Roy, 2002; Müller, 2003) 
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  .  (3) 

 
As the logarithmic operations are performed, the entropy becomes an 

additive quantity for independent systems (Georgii, 2003). 

For a given n, when      1
1

n np x p x p x
n
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   (4) 

 
is obtained. This means that H reaches its maximum value when it is equal to 
log(n). When a two-dimensional (X, Y) random variable is in question, P joint 
probability matrix becomes    ,ij i jP p P X x Y y     and thus the entropy 

becomes  
 

  
1 1

l g, o
n m

ij ij
i j

H i j p p
 

  .  (5) 

 
The uncertainty coefficient calculated asymmetrically and symmetrically 

based on entropy in cross-tables is more appropriate for use. The uncertainty 
coefficient for symmetric structures is calculated as 
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.  (6) 

 

Proposed Method 

Taking observation units as variables, the proposed method ensures that 
calculation of combined entropy values remains on the same constant (log m) for 
m number of categorical attributes. 

The S matrix, which shows that n number of objects take identical values, 
provides the basis of entropy dissimilarity measure approach, unlike the simple 
matching dissimilarity measures matrix. Each row/column in this matrix shows 
the number of similar objects for each m variables. Therefore each row/column of 
the matrix is the frequency distribution of its similarity with another observation. 
The uncertainty coefficient given in equation (6) aims that a single value is 
generated for a cross-table; thus, the formula has been organized with the help of 
the following equations with the purpose of measuring uncertainty based on 
entropy.  
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If X and Y are independent random variables, combined entropy is equal to 

the sum of the entropies of these two random variables  
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.  (8) 

  
Equation (8) displays a symmetric dissimilarity matrix which does not 

consist of constant values: the reason for this is that the entropy of an object with 
itself depends on the frequency of encountering the characteristics in the total 
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distribution. The uncertainty of an object with frequently observable 
characteristics will be proportionately low. If two objects have no common 
features, pij = 0 and as logarithm is non-defined, maximum entropy dissimilarity 
value of −2 is used. However, as algorithm software used for clustering will 
accept a symmetric dissimilarity matrix with constant diagonal (0), U(i,j) values 
are proportioned and corrected in 0-1 interval.  

 

  
   

 
* , diag ,

,
2 diag ,

U i j U i j
U i j

U i j





  (9) 

 
The numerator of fraction brings the diagonal values, which are the smallest 

values of each row and column, to zero, whereas denominator proportions the 
dissimilarity of other values according to the maximum value and earns the value 
1 for maximum dissimilarity. 

Empirical Results 

Dissimilarity matrices were formed based on simple matching dissimilarity 
measure and entropy in this article. The results obtained by using hierarchical 
methods in both dissimilarity matrices were compared with each other. The data 
used in the study was Teaching Assistant data obtained from UCI database (Loh, 
W. -Y. & Lim, T. -S., 1997). It was collected for evaluation of the performances 
of 151 research assistants at statistics department of Wisconsin-Madison 
University during three semesters and two summer schools. The scores were 
divided into 3 roughly equal-sized categories (low, medium, high) to form the 
class variable. The four variables chosen for determining the performance of 151 
research assistants is:  
 

1. Whether of not the TA is a native English speaker? (2 categories) 
2. Course instructor (25 categories) 
3. Course (26 categories) 
4. Summer or regular semester (2 categories) 
 
Within the scope of the study, Stata 11.0 program was used for application 

of hierarchical methods for entropy and simple matching dissimilarity measures. 
The results obtained from simple matching dissimilarity measure and hierarchical 
methods using single linkage, complete linkage and average linkage methods 
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were interpreted. In single linkage method, the two closest objects or clusters 
(minimum distance or biggest similarity) using distance/similarity values are 
combined. In complete linkage, the maximum of the distance between the new 
cluster formed after combining two clusters (objects) and the other cluster is taken. 
In the average linkage method, which is suggested as an alternative as it provides 
results between these two extreme techniques, the distance between two clusters 
is equal to the average values of the distances between observed couples located 
in two clusters. 

One of the measures used in evaluating the success and quality of clustering 
results is F measure. This measure consists of a combination of precision and 
recall measures. F measure is basically the harmonic mean of precision and recall 
(Işık and Çamurcu, 2007). F measure, which is one of the measures that ensures 
(i) comparison of the classification which is known in advance and the clusters 
obtained as a result of clustering analysis (Loh and Shin, 1997) and (ii) evaluation 
of clustering, is calculated as follows for j.cluster and i.class.  
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where r means recall and p means precision. 
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In nij, the number of observations in j.cluster and i.class, namely nj and ni, 

are respectively the magnitudes of j.cluster and i.class. Total F measure for a data 
set consisting of n number of observations is calculated as follows (Dalli, 2003):  

 

 ,i

i

nF max F i j
n

     

 
If single linkage is used with simple matching dissimilarity measure, as 

there are considerable number of connections, observations are not classified into 
clusters and combined in a single cluster. In complete linkage method while 
observations are assigned to maximum three clusters; however, if average linkage 
method is preferred, observations can form maximum 34 clusters but the F 
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measure obtained in the case that there are three clusters is as, F = 0,360 with 
simple matching dissimilarity and F = 0,387 with entropy dissimilarity. 

In single linkage, which is one of the three hierarchical methods, 
observations are classified into four clusters in the case that entropy dissimilarity 
is used. In the case that there are three clusters, 146 of the observations are 
assigned to the first cluster, four are assigned to the second cluster and one is 
assigned to the third cluster. In simple matching, dissimilarity observations cannot 
be classified into clusters, whereas clusters consisting of small number of 
observations occur in entropy dissimilarity. If the same measure is used in 
complete linkage method, as there are considerable number of connections, 
observations are not classified into clusters and combined in a single cluster. In 
average linkage method, however, observations are concentrated in the first 
cluster if there are three clusters.  

Performance in the data set was evaluated in three categories namely good, 
mediocre and poor. The results obtained according to both dissimilarity measures 
and two were compared with these three categories, the level of concordance were 
determined. Accordingly,  

 
In the average linkage method, 49 observations were correctly assigned (33 
percent) if entropy dissimilarity measure was used.  
 
In the average linkage method, 47 observations were correctly assigned (31 
percent) if simple matching dissimilarity measure was used.  
 
In the average linkage method, the F measure value obtained using simple 
matching dissimilarity, entropy measure were 0.36 and 0.38, respectively.  

Conclusion 

In categorical data, with the exception of data mining algorithms, clustering 
algorithms are applied with two-step clustering method and simple matching 
measure is used. Two-step clustering first digitalizes the categorical variables and 
then performs distance calculations. Parameter estimations require optimized 
solutions with iterations. The simple matching method however does not take the 
frequency of observing a certain characteristic in categorical variables and the 
possibility of a unit for having this unique characteristic into the consideration. 

The selection of distance and/or similarity measure lies in the foundation of 
all clustering methods. The findings are based on the selection of both clustering 
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methods and distance measure. Therefore, this study offers an estimation of 
entropy matrix based on dissimilarity of categorical variables. The method also 
provides a solution to the problem of increase in the number of variables by using 
dummy variable in the case of existence of categorical variables. The study can 
also be used for developing a different clustering algorithm with a non-constant 
diagonal, which therefore will take into consideration the low level of uncertainty 
that is caused by having frequently encountered characteristics.  
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Some Bayes estimators of the change point for the Pareto Type-II model under right item 
failure-censoring scheme are proposed. The Bayes estimators are obtained here in two 
cases, the first is when one parameter is known and second when both parameters are 
considered as the random variable. The performances of the procedures are illustrated by 
simulation technique. 
 
Keywords: Change point, Pareto Type-II model, Bayes estimation  
 

Introduction 

The Pareto distribution and its close relatives provide a flexible family of fat-
tailed distributions, which may be used as a model for income distribution of 
higher income group and in socio-economic studies. This distribution has played 
important role in variety of other problems such as size of cities and firms, 
business mortality, service time in queuing system. It is often used as a model for 
analyzing areas including city population distribution, stock price fluctuation, oil 
field locations and military areas.  

It has been found to be suitable for approximating the right tails of 
distribution with positive skewness. Pareto distribution has a decreasing failure 
rate, so it has often been used for model survival after some medical procedures 
(the ability to survive for a longer time appears to increase, the longer one 
survives after certain medical procedures). 

Harries (1968) used this distribution in determining times of maintenance 
service while Dyer (1981) found that two-parameter Pareto distribution 
transformation is equivalent to the two-parameter exponential distribution. Madi 
& Raqab (2004) discussed about the forecasting of the temperatures records by 
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Pareto distribution. Singh et al (2007) discussed about different types of test-
estimation for the Pareto Model. The length of Bayes prediction limits have been 
obtained recently by Prakash & Singh (2013) for the Pareto model. Panahi & 
Asadi (2011) presented stress-Strength model for a Lomax distribution. Some 
inferences regarding the Lomax distribution under the generalized order statistics 
has discussed by Moghadam et al. (2012). Nasiri & Hosseini (2012) presented 
Bayesian and classical statistical inferences for Lomax model based on record 
values. Recently, Al-Zahrani & Al-Sobhi (2013) presents some parameter 
estimation for Lomax distribution under general progressive censoring criterion. 

The probability density function of the considered Pareto Type-II model is 
given as 

 
 ( 1)( ; , )  ( )  ;  0,  0,  0f x x x               (1) 
 
Here,    is the shape parameter and    is the scale parameter. The proposed 
Pareto Type-II model is the result of mixture of the Exponential distribution with 
the parameter α, and the exponential scale parameter α is distributed as a Gamma 
with parameters   and  . 

This article discusses the Bayes estimation of change point for Pareto Type-
II model. The Bayes estimator has been obtained under the right item failure 
censoring criteria in two cases: the first is when the scale parameter is known and 
second when both parameters are considered as the random variable. A numerical 
study was carried out for illustration of the procedures in next section by MCMC 
technique. 

The Change Point 

In order to obtain information on their endurance, manufactured items such as 
mechanical or electronic components are often put to life tests and life times are 
observed periodically. Physical systems manufacturing the items are often subject 
to random fluctuations. It may happen that at some point of time, there is a change 
in the parameter. The objective of study is to find out when and where this change 
has started occurring, which is called the change point inference problem.  

Bayesian model may play an important role in the study of such change 
point estimation problem and have been studied by Broemeling & Tsurumi (1987), 
Jani & Pandya (1999), Ebrahimi & Ghose (2001), Goldenshluger, et al. (2006). 
Pandya & Jadav (2010) presents Bayesian estimation of change point in mixture 
of left truncated exponential and degenerate distribution. Some Bayes estimation 
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of shift point in Poisson model was presented by Srivastava (2012). Recently, 
Pandya (2013) presented Bayes estimation of auto regressive model with change 
point. 

Consider a sequence of independent random sample of size  3n   such as 

1 2 1 1,  ,..., ,  ,  ,...,m m m nx x x x x x   from the considered model with survival function 

1  ( )t  at time   ( 0)t   but later it is found that there is a change in the system at 
some point of time  m  and it is reflected in the sequence after the observation  mx  
by the change in the survival function. The probability density function and 
survival function of the first m observations 1 2,  ,...,  mx x x  are given from model 
(1) as: 
 
 1 1( 1)

1 1 1( ; , ) ( ) ;  0,  0,  0,  1,2, ,i i if x x x i ... m       
        (2) 

 
and 

 1  1 
1  1( ) ( )  ;  t 0,  0,  0 .t t     

      
 
Similarly, the probability density function and survival function of 

remaining ( )n m  components 1 2 ,  ,m mx x  ..., nx  are  
 

 
2 2( 1)

2 2
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  (3) 

and 
 

2 2
2 2( ) ( ) ; t 0, 0, 0t t     

     . 
 
In life testing, the observations usually occur in ordered manner such that 

the weakest items fail first and then second one and so on. Suppose that  n  items 
are put to test under the considered model without replacement and only k ( ) n

items are fully measured, while the remaining ( )n k  items are censored. These 
( )n k  censored items will be ordered separately. This censoring scheme is 
known as the right item failure-censoring criteria. 

The change point criteria was introduced inside the right item-censoring 
scheme; assume a sequence of ordered independent random sample of size  n  
such as (1) (2) ( 1),  ,..., ,kx x x  ( ) ( 1) ( ),  ,...,k k nx x x  from the model (1), with the 
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parameters  1   and   .  All  n  items are tested without replacement and first  k  
ordered items are fully measured while remaining ( )n k  items are censored. 
From the first fully measured  k (1) (2) ( 1) ( )( ,  ,..., ,  )k kx x x x  items, it is found that 
there is a change in the system at some point of time m  and it is reflected in the 
sequence after ( ) ( )mx m k  by the change in the survival function.  

The probability density function of first  ( , )m m  k n   random samples

(1) (2) ( ), , , mx  x ... x  with parameters 1  and ,  are  
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The first remaining group of random samples ( 1) ( 2) ( ), , ,m m k x x ... x   with size

( )k m  using a considered Pareto model has a probability density function with 
parameters  2   and     
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The last remaining group of random samples ( 1) ( 2) ( ), , ,k k n x x ... x   of size 

( )n k  distributed again a Pareto model with parameters  1   and    – has the 
probability density function 
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Under the above scenario the likelihood function for the random sample 

(1) (2) ( ) ( , , , )nx x x ... x  is defined as  
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  1  2  1  1  2  2( )  ( )     
 1  2 0  1  2 ( | , , , )      ;n k m k m T Tm k mL x m T e e                  (7) 
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Remark 
1. Substitute 1 2      in (7) 
 

 3   
0 ( | , )     ;Tk nL x T e     

   3 ( )
  1

 log  ( ) .
n

i
i

T x 


   

 
Here,  ( | , )L x    shows the likelihood function under the right item-
failure censoring criterion without consideration of change point.  

 
2. Substitute 1 2      and  k n  in (7) to obtain the likelihood 

function for complete sample case without consideration of change 
point. 

 
 3   *  

 0 ( | , )    ;Tn nL x T e     


 *  1
 0 ( )

  1

( ) .
n

i
i

T x  



 
 

Change Point Estimation (Scale Parameter Is Known) 
From a Bayesian viewpoint; there is clearly no way in which one can say that one 
prior is better than other. It is more frequently the case that, that a prior is selected 
to restrict attention to a given natural family of priors, and one is chosen from that 
family, which seems to match best with one’s personal beliefs. A natural family 
of conjugate prior for shape parameter  θ  is considered here as a Gamma 
distribution (when scale parameter is known) with probability density function 
 
 1( ; 0, 0, 0 a   g | ) e     a  .            (8) 
 
Based on change point criterion the prior density (8) is re-parameterized as  
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    1(  ; 0, 0, 0,  1,  2 j j ja
j j j j j jg  | ) e     a  j . 
    

 
       (9) 

 
A discrete uniform over the set (1,  2,..., 1), k   is considered as the prior 

distribution of change point  m  and defined as  
 

 3
1(  

1
g  m) .

k



  (10) 

 
The joint prior distribution when scale parameter is considered to be known, is 
defined as 

 
 1 1 2 1 1 2 2 3( , , ( | ( | (  h  m) g  ) g  ) g  m) .         

 
The joint posterior density function is now obtained as 
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Hence, the marginal posterior density for change point  m  is 

 
    

1 2

*
1 1 1 2 1| , , |   m x m x d d  .

 

            (12) 

 
The choice of the loss function may be crucial in Bayesian analysis. It has 

always been recognized that the most commonly used loss function, squared error 
loss function (SELF), is inappropriate in many situations. The Bayes estimator of 
a parameter under SELF is the posterior mean. If SELF is taken as a measure of 
inaccuracy then the resulting risk is often too sensitive to the assumptions about 
the behavior of the tail of the probability distribution. To overcome this difficulty, 
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a useful asymmetric loss function based on the squared error loss function 
(ISELF) is defined for any estimate ̂  corresponding to the parameter    as 

 

 
 21ˆ ˆ( , ) ; .L           

 
The Bayes estimator of the change point  m  under ISELF is obtained as  

 

 

1 2

1 1
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1 1
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  (13) 

 
Here, the suffix P  indicates the expectation taken under the posterior density. 

When positive and negative errors have different consequences, the use of 
squared error loss function (SELF) in Bayesian estimation may not be appropriate. 
In addition, in some estimation problems overestimation is more serious than the 
underestimation, or vice-versa. To deal with such cases, a useful and flexible class 
of asymmetric loss function (LINEX loss function (LLF)) is given as 

 
( ) 1a L e a  .      

 
The shape parameter of LLF is denoted by ' 'a . Negative (positive) value of shape 
parameter ' ',a  gives more weight to overestimation (underestimation) and its 
magnitude reflect the degree of asymmetry. It is also observed that, for 1,a   the 
function is very asymmetric with overestimation being more costly than 
underestimation. For small values of ,| a |  the LLF is almost symmetric and is not 
far from the SELF. 

Bayes estimator of  m  under the LLF is obtained as 
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  (14) 

 
A close form of both the estimators does not exist. A numerical method is applied 
for obtaining the values of their estimates. 
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Change Point Estimation (Both Parameter Unknown) 
In the case of when both the parameters   and   are unknown for the considered 
Pareto model, there does not exists any joint conjugate prior. Assume that the 
prior beliefs about the parameters   and   are independent. The natural family 
of conjugate priors for parameters   and non-informative prior for parameter   
are considered independently here. The non-informative prior of the parameter  
is the limiting form of the appropriate natural conjugate prior. The joint prior 
distribution when both parameters are unknown is defined as 

 

  
1, ( | ) ( ) ; ( ) , 0g g  h   h   .      


      (15) 

 
The prior distribution ( | )g    is given in equation (8). The likelihood 

function in present case is redefined as  
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The joint prior density for the parameters 1 2, ,         and  m  is written as  

 
 2 1 2 1 1 2 2 3( , , , ( | ( |  ( ) (  .h  m) g  ) g  ) h g  m)            

 
Hence, the joint posterior density is obtained as 
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where 
 11
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Hence, the marginal posterior density for the change point  m  is 
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               (18) 

 
and, the Bayes estimator under ISELF and LLF for the change point  m  are 
obtained as  
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Numerical Analysis 

One Parameter Known Case 
To assess and study the properties of the Bayes estimator for the change point , m  
a simulation study was performed. The random samples were generated as: 

Generate  ; 1,  2;i i   through prior density   ; 1,  2;i ig i   for the given 

values of prior parameters  , ; 1,  2 ;i i i   as  , (0.25, 0.50),  (4, 2),i i    

(9,3); 1,  2i  . The selections of prior parametric values meet the criterion that the 
prior variance should be unity. 

Using generated values of  ; 1,  2;i i   and  0.50, 1.00, 1.50, 3.00;   
generate 10,000 random samples of size 15n   by using the model (2) and (3). 

The values of the Bayes estimate ˆ I m  under the ISELF have been obtained 
and presented them in the Table 1, for selected set of censored sample size

= 04, 06, 08, 10.k  
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Table 1. Bayes Estimate of m under ISELF (Scale Parameter Known)   

n=15  k   

  ( , )     4 6 8 10 15 

0.50 0.25, 0.50  3.7066 3.7177 3.7251 3.7326 3.7400 
0.50 04, 02  3.6908 3.7019 3.7092 3.7166 3.7239 
0.50 09, 03  3.3381 3.3481 3.3549 3.3615 3.3681 

  
1.00 0.25, 0.50  3.7336 3.7447 3.7522 3.7597 3.7672 
1.00 04, 02  3.7052 3.7163 3.7236 3.7311 3.7385 
1.00 09, 03  3.6519 3.6627 3.6700 3.6773 3.6846 

  
1.50 0.25, 0.50  3.7371 3.7483 3.7558 3.7633 3.7707 
1.50 04, 02  3.7177 3.7289 3.7363 3.7436 3.7510 
1.50 09, 03  3.6906 3.7016 3.7091 3.7164 3.7238 

  
3.00 0.25, 0.50  3.4849 3.4953 3.5024 3.5094 3.5165 
3.00 04, 02  3.4701 3.4806 3.4875 3.4944 3.5012 
3.00 09, 03  3.4088 3.4189 3.4257 3.4325 3.4393 

 
 

Table 1 shows that when censored sample size  k  increases, the magnitude 
of the estimate increases, but increment in magnitude is nominal (robust). A 
similar trend also noted when scale parameter    increases, however for large 
value of   ( 1.5)  the magnitude of the estimate decreases. The opposite trend 
has been seen when set of prior parameter increases.  

Using above considered set of parametric values with 
 0.25, 0.50, 1.00, 2.00;a   (shape parameter of LLF) the magnitude of the Bayes 

estimate under LLF have been obtained and present in the Table 2, only for
  0.25, 1.00. a   
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Table 2. Bayes Estimate of m  under LLF (Scale Parameter Known)  
 

15, 0.25n a   k   

  ( , )    4 6 8 10 15 

0.50 0.25, 0.50 3.3060 3.3159 3.3226 3.3292 3.3358 
0.50 04, 02 3.2778 3.2877 3.2942 3.3007 3.3073 
0.50 09, 03 2.9531 2.9620 2.9678 2.9737 2.9797 

 
1.00 0.25, 0.50 3.2839 3.2937 3.3002 3.3069 3.3135 
1.00 04, 02 3.2699 3.2798 3.2863 3.2927 3.2992 
1.00 09, 03 3.2698 3.2795 3.2860 3.2926 3.2991 

 
1.50 0.25, 0.50 3.2331 3.2426 3.2491 3.2556 3.2621 
1.50 04, 02 3.2192 3.2289 3.2353 3.2417 3.2480 
1.50 09, 03 3.1623 3.1717 3.1780 3.1842 3.1906 

 
3.00 0.25, 0.50 2.9560 2.9648 2.9708 2.9768 2.9827 
3.00 04, 02 2.9433 2.9522 2.9581 2.9639 2.9699 
3.00 09, 03 2.8913 2.8999 2.9057 2.9115 2.9173 

  

15, 1.00n a   k   

  ( , )    4 6 8 10 15 

0.50 0.25, 0.50 4.0109 4.0228 4.0309 4.0390 4.0470 
0.50 04, 02 3.9937 4.0058 4.0137 4.0216 4.0295 
0.50 09, 03 3.9231 3.9348 3.9425 3.9504 3.9583 

 
1.00 0.25, 0.50 3.7329 3.7440 3.7515 3.7590 3.7665 
1.00 04, 02 3.7010 3.7121 3.7194 3.7269 3.7343 
1.00 09, 03 3.3344 3.3444 3.3510 3.3577 3.3644 

 
1.50 0.25, 0.50 3.7030 3.7140 3.7214 3.7289 3.7363 
1.50 04, 02 3.6871 3.6982 3.7056 3.7129 3.7202 
1.50 09, 03 3.6869 3.6980 3.7054 3.7127 3.7201 

 
3.00 0.25, 0.50 2.7579 2.7661 2.7716 2.7772 2.7828 
3.00 04, 02 2.7460 2.7544 2.7598 2.7652 2.7707 
3.00 09, 03 2.6975 2.7055 2.7109 2.7163 2.7217 
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Table 2 shows that when shape parameter    increases, the magnitude of 
the estimator decreases (except for large prior parametric value). An increasing 
trend in the magnitude of the estimate also is also noted when ' ' a  increases but 
the increment in magnitude is robust. Others properties are similar to ISELF. 

When Both Parameters Unknown 
When both parameters are considered as a random variable, a simulation study 
was carried out to study the properties of Bayes estimators of change point. 

Similarly, a 10,000 random sample of size 15 n   was generated. The Bayes 
estimate of m  under the ISELF and LLF were obtained and are presented in 
Tables 3-4 respectively for different selected set of values. 
 
Table 3. Bayes Estimate of m  under ISELF (Both Parameter Unknown) 

 
15n   k   

  ( , )    4 6 8 10 15 

0.50 0.25, 0.50 3.3640 3.3741 3.3808 3.3877 3.3944 
0.50 04, 02 3.3497 3.3599 3.3664 3.3731 3.3798 
0.50 09, 03 3.2223 3.2320 3.2384 3.2448 3.2513 

 
1.00 0.25, 0.50 3.6074 3.6183 3.6254 3.6327 3.6399 
1.00 04, 02 3.5766 3.5873 3.5945 3.6017 3.6088 
1.00 09, 03 3.2905 3.3003 3.3068 3.3134 3.3200 

 
1.50 0.25, 0.50 3.6150 3.6258 3.6331 3.6403 3.6477 
1.50 04, 02 3.5996 3.6105 3.6176 3.6248 3.6319 
1.50 09, 03 3.5982 3.6090 3.6161 3.6233 3.6304 

 
3.00 0.25, 0.50 3.6787 3.6896 3.6971 3.7045 3.7118 
3.00 04, 02 3.6630 3.6740 3.6813 3.6886 3.6959 
3.00 09, 03 3.5995 3.6103 3.6174 3.6246 3.6318 
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Table 4. Bayes Estimate of m  under LLF (Both Parameter Known)  
 

15, 0.25n a   k   

  ( , )    4 6 8 10 15 

0.50 0.25, 0.50 3.4309 3.4411 3.4480 3.4550 3.4617 
0.50 04, 02 3.4162 3.4265 3.4333 3.4401 3.4469 
0.50 09, 03 3.3558 3.3658 3.3725 3.3792 3.3859 

 
1.00 0.25, 0.50 3.2678 3.2775 3.2841 3.2907 3.2972 
1.00 04, 02 3.2398 3.2496 3.2560 3.2624 3.2689 
1.00 09, 03 3.1907 3.2002 3.2066 3.2130 3.2194 

 
1.50 0.25, 0.50 3.2046 3.2141 3.2205 3.2269 3.2334 
1.50 04, 02 3.1907 3.2002 3.2066 3.2130 3.2194 
1.50 09, 03 2.9189 2.9277 2.9335 2.9392 2.9452 

 
3.00 0.25, 0.50 2.4142 2.4214 2.4262 2.4312 2.4361 
3.00 04, 02 2.4039 2.4112 2.4159 2.4207 2.4255 
3.00 09, 03 2.3614 2.3684 2.3732 2.3779 2.3826 

  

15, 1.00n a   k   

  ( , )    4 6 8 10 15 

0.50 0.25, 0.50 3.7918 3.8031 3.8108 3.8183 3.8260 
0.50 04, 02 3.7756 3.7871 3.7946 3.8020 3.8095 
0.50 09, 03 3.7088 3.7199 3.7272 3.7347 3.7421 

 
1.00 0.25, 0.50 3.5352 3.5458 3.5528 3.5599 3.5671 
1.00 04, 02 3.5201 3.5308 3.5378 3.5448 3.5517 
1.00 09, 03 3.5199 3.5305 3.5375 3.5446 3.5516 

 
1.50 0.25, 0.50 3.2398 3.2496 3.2560 3.2624 3.2689 
1.50 04, 02 3.1908 3.2005 3.2068 3.2131 3.2195 
1.50 09, 03 3.0107 3.0194 3.0207 3.0328 3.0475 

 
3.00 0.25, 0.50 2.6585 2.6665 2.6717 2.6772 2.6826 
3.00 04, 02 2.6472 2.6552 2.6603 2.6657 2.6710 
3.00 09, 03 2.6003 2.6080 2.6133 2.6185 2.6237 
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The behavior of ˆ̂
Im  was shown to be similar as compare to ˆ Im  under ISELF. 

It is also noted that the magnitude of the estimator ˆ̂
Im  increases as    increases 

for all selected parametric set of values. Further, the magnitude of the estimate of 
ˆ̂

Im  is closer than the estimate of ˆ Im  except for large value of   .  

All properties of estimator ˆ̂
Lm  were similar as compared to ˆ Lm  under LLF. 

For small values of ' ', a  the magnitude of estimate of ˆ Lm  is wider than ˆ̂
Lm  for all 

considered values of   (except for 0.50  ). For large values of ' ', a  the 

magnitude of estimate of ˆ̂
Lm  becomes narrower than ˆ Lm  for all considered values 

of   (except for 1.00  ). Other properties are the same, as in the case of a 
known shape parameter. 

Remark 
In the case when the censored sample size 15, r   the censoring criterion reduces 
to the complete sample size criterion and, hence, all results are valid for the 
complete sample case. 
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Distance Correlation Coefficient: An 
Application with Bayesian Approach in 
Clinical Data Analysis 
Atanu Bhattacharjee 
Malabar Cancer Centre 
Kerala, India 
 
 
The distance correlation coefficient – based on the product-moment approach – is one 
method by which to explore the relationship between variables. The Bayesian approach is 
a powerful tool to determine statistical inferences with credible intervals. Prior 
information about the relationship between BP and Serum cholesterol was applied to 
formulate the distance correlation between the two variables. The conjugate prior is 
considered to formulate the posterior estimates of the distance correlations. The 
illustrated method is simple and is suitable for other experimental studies. 
 
Keywords: Conjugate prior, credible interval, distance covariance, canonical 
correlation 
 

Introduction 

The correlation coefficient is a widely used tool to observe the association 
between two random variables in experimental research. The assessment of 
relation between two variables (X, Y) is a common problem. The Pearson and 
Spearman correlation coefficients are wonderful tools to explore the relationship 
between two variables. Canonical, rank and Renyi correlations are the most 
widely used tools to investigate the strength of relation between random vectors 
(Bickel & Xu, 2009). The Renyi (1959) correlation becomes zero if X and Y are 
independent, thus, the Renyi (1959) is examined on maximal correlation. The 
Pearson correlation coefficient computation is simpler than the Renyi correlation 
coefficient. It is well-known that Pearson’s product correlation coefficient ρ 
becomes zero for bivariate normal independence. In the multivariate case, the 
diagonal matrix Σ becomes independent, but it is unable to specify dependence 
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for general case. It may be concluded the ρ and Σ are not able to characterize 
independence in general.  

The joint independence of random variables can be explored through 
distance correlation and is measured with product moment correlation ρ. It is the 
measures of correlation with multivariate dependence coefficients through 
arbitrary random vectors. Basically, the distance correlation is a product-moment 
correlation and a generalized form of bivariate measures of dependency. It is a 
very useful and unexplored area for statistical inference.  

A new type of coefficient applicable to measure the dependence between 
random vectors of equal or unequal distance is useful for complicated dependence 
structures in multivariate data. The introduction of distance correlation is well 
detailed (Szekely, et al., 2007) and it can be computed with a simple formula of 
sample size 2n  . It is free with matrix inversion and estimation of parameters. 
The distance correlation has the advantage over there. The literature on testing 
measures of dependence is rich (Anderson, 2003; Blomqvist, 1950; Hollander & 
Wolfe, 1999; Blum, et al., 1961). The Likelihood Ratio Test (LRT) and Wilks 
Lambda are applicable for multivariate data but fail if dimension exceeds the 
sample size. The proposed method distance correlation with Bayesian approach is 
completely new.  

In another aspect, it is general practice to ignore prior information about the 
relation between variables and establish the new correlation. As an alternative, the 
Bayesian approach takes the opportunity to incorporate the prior information of 
the variables to establish the inference about correlation. The posterior estimate of 
the correlation coefficient is applied to explore the relation between maternal 
weight and infant birth-weight (Bashir, 1997). The Bayesian approach is an 
attractive method for estimating tools because it incorporates previous studies’ 
observations into its calculation. The aim of this article is to elaborate the 
application of a Bayesian approach in distance correlation. The work is illustrated 
with the estimation of distance correlation between serum cholesterol and BP. The 
data are captured from two different studies detailed below. 

Distance Covariance and Distance Correlation 

Distance covariance between the random variables X and Y can be defined with 
the marginal characteristic function fX (t) and fY (s) by: 
 

          
2

2
,, , .x YX YV X Y f t s f t f s  

 
  (1) 
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The function  ,X Yf  is a joint characteristic function of X and Y. The terms s 

and t are vectors and the product of t and s is < t, s >. The distance covariance 
measures the distance 

       ,|| , ||x YX Yf t s f t f s  between the joint characteristic 

and marginal characteristics functions. The random vectors X and Y are in pR  and 
qR  respectively. The hypotheses are 0 ,: X Y X YH f f f  and 1 ,: X Y X YH f f f . The 

distance variance is: 
 

          , , X XX XV X f t s f t f s  
 

.  (2) 

 
The distance correlation between X and Y is defined with finite first 

moments R(X, Y) by 
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The distance covariance Vn (X, Y) is defined with 
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Similarly it can be defined with  
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klB  is defined similarly. 
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Properties of Distance Correlation Coefficient 
The distance correlation provides the scope to generalize the correlation between 
variables (X and Y) by R is defined on arbitrary dimensions 0R   independent of 
X and Y. The range of the distance correlation is 0 1R  . R can be defined as 
the function of Pearson correlation coefficient   with    , ,R X Y X Y  with 
equality when 1   . 

Importance of Distance Covariance 
The random variables X and Y are expressed as i i iA X    and j j jB Y    
respectively. The error terms εi and εj are independent with the variables Xi and 
Yj. The relation between random functions Ai and Bj is irrelevant, but the relation 
between Xi and Yj is important and a matter of concern. The strength of relation 
between X and Y can be measured through distance correlation in this scenario. 

Distance Correlation in One-sided Test  

The frequency approach tests the problem through  p X value of the null 
hypothesis 0H . By contrast, Bayesian measures through posterior probability 

 0 /p H X . Let the data follow a normal distribution  2,   with null hypothesis 

0 : 0H    and alternate 1 : 0H   . The frequency and robust Bayesian often 
coincide (Casella & Berger, 2002). Let the marginal distance correlation   be 
applied between p(X) = 1  X /   and  0 /p H X . The distance correlation 

should be greater than or equal to zero. Because  p X  and  0 /p H X  both 
decrease with respect to X. 
 

Distance Correlation between Parameter and Unbiased 
Estimator 

Suppose,  , X  are random variables with joint characteristics function 

   , ,X Yf t s  and the marginal distribution of   is  . The estimator of   is  X  

and square error loss is    
2

,r E X        and risk is    /X E X  . 

The distance correlation between θ and δ(X) is 
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         2

var cov ,
,

var var ,

b
X

E b

  
  

      




  
.  (6) 

Statistical Methods 

The Bayes’ Theorem provides prior information about the relevant parameter for 
a specific statistical analysis. It is helpful to test the hypothesis in presence of 
posterior probability of the parameter of interest. The parameter of interest R(X,Y) 
can be computed with posterior probability through Bayes’ theorem: 
 

   
      

  

/ , ,
, /

P Information R X Y P R X Y
P R X Y Information

P Information
 .  (7) 

 
The term P (R(X, Y)) is the prior probability of R(X, Y) observed from the 

previous study. The term P (information/R(X, Y)) is the likelihood of R(X, Y) that 
occurred in a previous study or is in data collected by an investigator. The sum of 
the function 1/(P (Information)) should be equal to 1 as the theory of total Bayes 
theorem. The relation between posterior and prior is: 

 
  PosteriorProbability LikelihoodX PriorProbability .  (8) 
 
The posterior density of R(X, Y) is generated with 
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1 /221 ,
, / , , .
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n

R X Y
P R X Y x y P R X Y

R X Y r









  (9) 

 
The mean and variance of X and Y are 1 , 2  , 2

1  and 2
2  respectively. The mean 

(z) is derived from 

 1 2

2 1

ze 

 
 .  (10) 

 

The term  ,R X Y  is defined by tanh  and is assumed  1~ , nN z . The 
mathematical formulations are detailed in Fisher (1915). The hyperbolic 
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transformation plays a role in considering the conjugate prior with normal 
distributions. The posterior mean can be represented with 
 
    2 1 1tanh , tanh ,Posterior Posterior Prior LikelihoodPrior Likelihood

R X Y R X Y          (11) 
 

 2 1
Posterior

Prior Likelihood


 




  (12) 

 
and the prior with the form 
  

      2, 1 ,
c

P R X Y R X Y  .  (13) 

 
The prior is dependent on the choice of c; c = 0 gives P (R(X,Y) ∝ 1. 

Illustrated Example 

Among different types of risk factors hypertension and abnormalities of lipid 
profiles are established reasons for coronary artery disease as observed through 
epidemiological and genetics studies (for details see Williams, et al., 1988). 
Serum cholesterol is related with blood pressure (BP) values (Ferrannini, et al., 
1987; Hunt, et al., 1986, Floras, et al., 1987; Simone, et al., 1992; Sung, et al., 
1997). The present work is undertaken to check whether serum cholesterol is an 
influencing factor of BP. The BP measurement was taken in 24 hours close 
observation. Study 1 was conducted to observe two drug treatment effects among 
liver cirrhosis patients in St. Stephen hospital during 2009 to 2011. The data on 
serum cholesterol and BP were observed during the study of 179 patients with 
follow up observations. In this article, data is considered to illustrate the 
application of a distance correlation coefficient between serum cholesterol and BP. 
In Study 2, a total of 100 patients of type 2 diabetes were observed with two types 
of drug treatments in Madurai Menakshi Mission Hospital in 2009. The different 
biochemical parameters through follow up periods were observed as an effect of 
drug treatment. The measurements of serum cholesterol and BP were observed 
through the follow up periods. The work is explored on the data to illustrate the 
distance correlation coefficient among the patients. 
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Frequentist Test for Distance Correlation 
To check the distance correlation between BP and serum cholesterol, the variables 
were defined. For every ith person the BP is denoted with ix  and serum 
cholesterol by  iy . In Study 1, the null hypothesis to test the distance correlation 
coefficient is assumed as zero, i.e. R(X, Y) = 0. The dcor.ttest(x,y) function in the 
energy package of R i386 3.0.1 is applied to test the null hypothesis. Results show 
that the distance correlation rejects the null hypothesis that p = 0.01. 
Consequently, researchers may feel that it is possible to reject the null hypothesis 
of no correlation between BP and serum cholesterol. 

Bayesian test for Distance Correlation  
The measure of evidence of 
 
  0 /p H x   
 
is the probability of 
 
H0 is true with X = x is 

 

    
   

   

0
0 / 0 /

f x
P H x P x

f x

  


  








  






.  (14) 

 
In both studies, it was assumed that the BP and serum cholesterol are correlated to 
each of the others. The relation with distance covariance was examined using a 
Bayesian approach. The relation between BP and serum cholesterol during 
surgery in patients was observed from anesthesia data. The estimated distance 
correlation between serum cholesterol and BP may be measured with error. The 
error arises due to the presence of small sample size. The fluctuation of observed 
correlation in different studies may be due to different sample sizes. Using several 
studies, a meta-analysis can be conducted to estimate the real correlation between 
BP and cholesterol. However, if lacking several studies, the Bayesian posterior 
estimate is applied to estimate the robust distance correlation between BP and 
serum cholesterol. 
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179 100posterior

Prior Likelihood


 

  
 

  (15) 

 

 1 10.035(179tanh 0.58 100tanh 0.43)Posterior      (16) 
 

  0.0035 179*0.67 100*0.47posterior     (17) 
The confidence interval is 

 

  
1

2 21.96 0.58 1.96(0.0035)Posterior post      (18) 

 
i.e. (0.69, 0.47). This shows the posterior estimate of distance correlation R(X, Y ) 
is 0.58 with credible interval (0.69, 0.47). The estimate observed at the 95 
confidence interval is 0.23 (0.28, 0.18). The values can be compared and a 
conclusion can be drawn. The simple approach for distance correlation can be 
extended to other experimental research. 
 

 
 

Figure 1. Relationship between BP and serum cholesterol. A positive correlation 
suggests that serum cholesterol is the influencing factor for high BP. 
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Discussion 

The risk of coronary artery disease is depends on different risk factors (Levy et al., 
1988; Assmann, et al., 1988). Different risk factors can be classified into global 
and individual risk factors; however, global risk factors are more important than 
individual risk factors for cardiovascular disease (Ferrara, 2002). Distance 
correlation is applied to explore the relation between BP and cholesterol. Distance 
correlation is applicable to all types of metric spaces. The idea is to apply the 
distance correlation by replace the Euclidean distance into metric distance. 
Distance covariance is also applicable to test the linear model Y X   ; where 
(x,  ) are i.i.d. Distance covariance is defined on arbitrary dimension and it can 
be extended for multivariate responses. It is simple like the Pearson product 
moment covariance. If X and Y are sample from different metric space, then 
distance covariance can be measured. The Pearson correlation is the best choice to 
explore the relation between variables. However, it is not feasible to apply it to 
non-normal data. Distance covariance can also be applied to non-normal data.  

The correlation coefficient for the sample average was examined with 
uniform prior by Daniels (1999). Extensions of the work were carried with 
shrinkage priors by Daniels Kass (2001). The measurements of correlation tested 
through logarithmic transformation of the eigenvalue (Leonard et al., 1992). 
Barnard et al. (2000) proposed a normal prior for a transformation of correlation 
coefficients. Wong, et al., (2003) give a prior probability model for graphical 
models and partial correlations through the sparseness of the precision matrix. 
Gabor et al., (2007) discussed the advantage of distance correlation over Pearson 
correlation: It is the generalized form of the Pearson correlation in two ways (1) 
its ability to measure the linear relation with consideration of all types of 
dependency, and (2) exposure to measure the dependency through random vectors 
in the arbitrary dimension. Tracz, et al., (1992) showed that the distance 
correlation is more suitable as a dependent index than the product moment 
correlation coefficient.  

The Affine invariance property is important for the transformation of data 
in statistical inference. The Affine invariance with a group is detailed by Eaton 
(1989) and Giri (1996). Gabor (2007) proved distance correlation is free from 
Affine invariance. Correlation analysis is strong a filler to draw statistical 
inference in any medical research. Distance correlation is another useful tool to 
explore the relation between variables. Distance correlation with confidence 
interval is a statistical tool to sketch the inference about the relation between 
variables. In this study, the confidence interval between serum cholesterol and BP 
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was observed. The Bayesian approach was applied with credible intervals and 
observed with less interval estimates. Small sample sizes tend to be a problem in 
clinical trials due to cost and time. The Bayesian approach gives a practical 
concession. It is also useful choice to deal with random measurement error in 
weight gain relation. It is simple and accurate. The approach is helpful to explore 
the relation between variables more intuitively. 

Conclusion 

Distance correlation with a Bayesian approach is not the only choice of 
correlation analysis, but can be considered in many cases as an alternative of 
Pearson’s covariance. An example with clinical trials illustrated where distance 
correlation can give more information not captured by traditional correlation 
analysis. In exploratory analysis with small sample size data, the Bayesian 
distance correlation is an alternative choice for the low dimensional marginal 
distribution of two variables. The Bayesian distance correlation can be useful to 
test the linear relation between variables and it can be a first choice to explore the 
relation between variables to made decisions about specific tools for further data 
analysis. Distance correlation having high value of one (or near to one) shows a 
strong relation between variables. The Bayesian approach is suitable tool for 
calculating distance correlation coefficient among variables. The work can be 
extended to explore the relation between bivariate observations in different 
experimental research. Like the correlation coefficient, distance correlation can be 
applied to understand the relation between variables by clinician. It can serve 
clinicians to know the real strength of variables and, as a result, interpretation of 
the results in the real life practice. In any experimental research relations between 
variables is unavoidable. Distance correlation can be considered as easily 
interpretable tool to discover the relations. 
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Estimation of Reliability in Multicomponent 
Stress-Strength Based on Generalized 
Rayleigh Distribution 
Gadde Srinivasa Rao 
University of Dodoma 
Dodoma, Tanzania 
 
 
A multicomponent system of k components having strengths following k- independently 
and identically distributed random variables x1, x2,…, xk and each component 
experiencing a random stress Y is considered. The system is regarded as alive only if at 
least s out of k (s < k) strengths exceed the stress. The reliability of such a system is 
obtained when strength and stress variates are given by a generalized Rayleigh 
distribution with different shape parameters. Reliability is estimated using the maximum 
likelihood (ML) method of estimation in samples drawn from strength and stress 
distributions; the reliability estimators are compared asymptotically. Monte-Carlo 
simulation is used to compare reliability estimates for the small samples and real data sets 
illustrate the procedure. 
 
Keywords: Generalized Rayleigh distribution, reliability estimation, stress-strength, 
ML estimation, confidence intervals  
 

Introduction 

Surles and Padgett (1998, 2001) introduced the two-parameter Burr Type X 
distribution and named it the generalized Rayleigh distribution. Note that the two-
parameter generalized Rayleigh distribution is a particular member of the 
generalized Weibull distribution, originally proposed by Mudholkar and 
Srivastava (1993). The two-parameter Burr Type X distribution is referred to as 
the generalized Rayleigh distribution (GRD). For  > 0 and  > 0, the two-
parameter GRD has the density function;  
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and the distribution function is given by 
 

 
2( )( ; , ) 1 for 0.xF x e x




 

 
   
 

  (2) 

 
Here   and   are the shape and scale parameters respectively. The GRD 

has been studied extensively by Kundu and Raqab (2005) and Raqab and Kundu 
(2005). The two-parameter GRD is denoted by GR( ,  ). Surles and Padgett 
(2001) showed that the two-parameter GR distribution can be used effectively in 
modeling strength as well as general lifetime data. 

This article studies reliability in a multicomponent stress-strength based on 
X, Y, two independent random variables, where X and Y fallow generalized 
Rayleigh distributions with shape parameters  and   respectively and with 
common scale parameter  . 

 Let the random samples 1 2, , ,... ky x x x  be independent, G(y) be the 
continuous distribution function of Y and F(x) be the common continuous 
distribution function of 1 2, ,... kx x x . The reliability in a multicomponent stress-
strength model developed by Bhattacharyya and Johnson (1974) is 
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where 1 2, ,... kx x x are independently and identically distributed (iid) with common 
distribution function F(x), this system is subjected to common random stress Y. 
The probability in (3) is called reliability in a multicomponent stress-strength 
model (Bhattacharyya & Johnson, 1974). The survival probability of single 
component stress-strength versions have been considered by several authors 
assuming various lifetime distributions for the stress-strength random variates 
(Enis & Geisser, 1971; Downtown, 1973; Awad & Gharraf, 1986; McCool, 1991; 
Nandi & Aich, 1994; Surles & Padgett, 1998; Raqab & Kundu, 2005; Kundu & 
Gupta, 2005, 2006; Raqab, et al., 2008; Kundu & Raqab, 2009). Reliability in a 
multicomponent stress-strength was developed by Bhattacharyya and Johnson 
(1974) and Pandey and Borhan Uddin (1985) and the references therein cover the 
study of estimating ( )P Y X  in many standard distributions assigned to one or 
both of stress, strength variates. Recently Srinivasa Rao and Kantam (2010) 
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studied estimation of reliability in multicomponent stress-strength for log-logistic 
distribution.  

Suppose a system, with k identical components, functions if (1 )s s k   or 
more of the components simultaneously operate. In its operating environment, the 
system is subjected to a stress Y which is a random variable with distribution 
function G(.). The strengths of the components, that is the minimum stresses to 
cause failure, are independent and identically distributed random variables with 
distribution function F(.). Then the system reliability, which is the probability that 
the system does not fail, is the function ,s kR  given in (3). The estimation of 
survival probability in a multicomponent stress-strength system when the stress, 
strength variates are following Rayleigh distribution is not paid much attention. 
Therefore, this article studies the estimation of reliability in multicomponent 
stress-strength model with reference to Rayleigh distribution.  

Maximum Likelihood Estimator of ,s kR  

Let ~ ( , )X GR    and ~ ( , )Y GR    with unknown shape parameters ,   
and common scale parameter  , where X and Y are independently distributed. 
The reliability in multicomponent stress- strength for generalized Rayleigh 
distribution using (3) results in: 
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After simplification this reduces to 
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because k and i are integers. The probability in (4) is called reliability in a 
multicomponent stress-strength model. If and   are not known, it is necessary 
to estimate and   to estimate ,s kR . In this article and   are estimated using 
the ML method. The estimates are substituted in   to obtain an estimate of ,s kR  
using equation (4).  

It is known that the method of Maximum Likelihood Estimation (MLE) has 
invariance property. In this direction, this article proposes the ML estimator for 
the reliability of a multicomponent stress-strength model by considering the 
estimators of the parameters of stress, strength distributions by ML method of 
estimation in a generalized Rayleigh distribution.  

 Let 1 2 1 2.... ;  ....n mx x x y y y       be two ordered random samples of 
size n, m respectively on strength, stress variates each following GRD with shape 
parameters and  , common scale parameter  . The log-likelihood function of 
the observed sample is  
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The MLEs of ˆ ˆˆ,  and ,  for example, ,  and       , respectively can be obtained 
as the iterative solution of  
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and then from (6), (7) and (8) 
 

 
 

2ˆ( )

1

ˆ
ln 1 i

n
x

i

n

e 










  (9) 

 

 
 

2ˆ( )

1

ˆ
ln 1 j

m
y

j

m

e 










  (10) 

 
 
where ̂  can be obtained as the solution of  non-linear equation  
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Therefore, ̂  is simple iterative solution of non-linear equation ( ) 0g   . Once ̂  
is known, ˆˆ  and    can be obtained from (9) and (10) respectively. Therefore, the 
MLE of ,s kR  becomes  
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The asymptotic confidence interval for ,s kR , is calculated as: First, the asymptotic 
variance of the MLE is given by 

 

 
1 12 2 2 2

2 2
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n m
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The asymptotic variance (AV) of an estimate of ,s kR  which a function of two 
independent statistics, for example, ,   is given by Rao (1973). 
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From the asymptotic optimum properties of MLEs (Kendall & Stuart, 1979) 

and of linear unbiased estimators (David, 1981), it is known that MLEs are 
asymptotically equally efficient having the Cramer-Rao lower bound as their 
asymptotic variance as given in (13). Thus, from Equation (14), the asymptotic 
variance of ,

ˆ
s kR can be obtained. 

To avoid the difficulty of derivation of ,s kR , the derivatives of ,s kR  are 
obtained for (s,k)=(1,3) and (2,4) separately, they are given by  
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and the asymptotic 100(1 )%  confidence interval for ,s kR  is given by 
 

, (1 2) ,
ˆ ˆAV( )s k s kR Z R . 

 
The asymptotic 100(1 )%  confidence interval for 1,3R  is given by 
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The asymptotic 100(1 )%  confidence interval for 2,4R  is given by 
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where (1 /2)Z  is the th(1 / 2)  percentile of the standard normal distribution. 

Simulation Study and Data Analysis 

Simulation Study 

Results based on Monte Carlo simulations to compare the performance of the ,s kR  
using different sample sizes are presented. 3,000 random sample of size 10(5)35 
each from stress population, strength population were generated for ( , )  = 
(3.0,1.0), (2.5,1.0), (2.0,1.0), (1.5,1.0), (1.0,1.0), (1.5,2.0),(1.5,2.5) and (1.5,3.0) 
on lines of Bhattacharyya and Johnson (1974). The ML estimators of and   
were then substituted in   to obtain the reliability in a multicomponent stress-
strength for (s, k) = (1, 3), (2, 4). The average bias and average mean square error 
(MSE) of the reliability estimates over the 3,000 replications are given in Tables 1 
and 2. Average confidence length and coverage probability of the simulated 95% 
confidence intervals of ,s kR  are given in Tables 3 and 4. The true value of 
reliability in multicomponent stress- strength with the given combinations of 
( , )   for (s, k) = (1, 3) are 0.563, 0.600, 0.643, 0.692, 0.750, 0.800, 0.833, 0.857, 
0.875 and for (s, k) = (2, 4) are 0.355, 0.400, 0.454, 0.519, 0.600, 0.674, 0.725, 
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0.762, 0.790. Thus the true value of reliability in multicomponent stress- strength 
increases as   increases for a fixed   whereas reliability in multicomponent 
stress- strength decreases as  increases for a fixed   in both the cases of (s, k). 
Therefore, the true value of reliability is increases as   decreases and vice-versa. 
The average bias and average MSE are decreases as sample size increases for 
both (s, k). It verifies the consistency property of the MLE of ,s kR . Also the bias is 
negative in both situations of (s, k). Whereas, among the parameters the absolute 
bias and MSE are increases as   increases for a fixed   in both the cases of (s, 
k) and the absolute bias and MSE are decreases as   increases for a fixed   in 
both the cases of (s, k). The average length of the confidence interval also 
decreases as the sample size increases. The coverage probability is close to the 
nominal value in all cases but slightly less than 0.95 in most of the combinations. 
Overall, the performance of the confidence interval is good for all combinations 
of parameters. Whereas, among the parameters observed, the same phenomenon 
for average length and average coverage probability were observed in the case of 
average bias and MSE.  
 
Table 1. Average bias of the simulated estimates of ,s kR  
 

   
( , )   

(s,k) (n,m)  (3.5,1.5) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0) (1.5,3.5) 

(1,3) 

(10,10)  -0.02036 -0.01872 -0.01650 -0.01357 -0.00984 -0.00649 -0.00429 -0.00360 -0.00249 

(15,15)  -0.01517 -0.01412 -0.01268 -0.01075 -0.00825 -0.00592 -0.00428 -0.00311 -0.00227 

(20,20)  -0.00860 -0.00773 -0.00669 -0.00548 -0.00367 -0.00277 -0.00179 -0.00114 -0.00101 

(25,25)  -0.00851 -0.00766 -0.00657 -0.00521 -0.00357 -0.00215 -0.00122 -0.00060 -0.00017 

(30,30)  -0.00679 -0.00613 -0.00528 -0.00421 -0.00290 -0.00175 -0.00098 -0.00046 -0.00010 

(35,35)  -0.00655 -0.00610 -0.00517 -0.00413 -0.00255 -0.00147 -0.00073 -0.00021 -0.00008 

(2,4) 

(10,10)  -0.01113 -0.01143 -0.01124 -0.01027 -0.00819 -0.00657 -0.00539 -0.00472 -0.00348 

(15,15)  -0.00908 -0.00945 -0.00950 -0.00903 -0.00776 -0.00601 -0.00447 -0.00324 -0.00229 

(20,20)  -0.00601 -0.00599 -0.00571 -0.00508 -0.00400 -0.00176 -0.00120 -0.00089 -0.00138 

(25,25)  -0.00512 -0.00505 -0.00473 -0.00405 -0.00293 -0.00168 -0.00073 -0.00054 -0.00045 

(30,30)  -0.00420 -0.00416 -0.00391 -0.00338 -0.00247 -0.00144 -0.00063 -0.00043 -0.00040 

(35,35)  -0.00386 -0.00390 -0.00377 -0.00237 -0.00160 -0.00125 -0.00058 -0.00019 -0.00035 
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Table 2. Average MSE of the simulated estimates of ,s kR  
 

   
( , )   

(s,k) (n,m)  (3.5,1.5) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0) (1.5,3.5) 

(1,3) 

(10,10)  0.01529 0.01437 0.01300 0.01109 0.00854 0.00627 0.00477 0.00375 0.00303 

(15,15)  0.01052 0.00988 0.00894 0.00764 0.00590 0.00436 0.00334 0.00264 0.00214 

(20,20)  0.00713 0.00666 0.00599 0.00509 0.00392 0.00289 0.00221 0.00175 0.00143 

(25,25)  0.00592 0.00551 0.00494 0.00418 0.00322 0.00236 0.00181 0.00144 0.00117 

(30,30)  0.00460 0.00428 0.00383 0.00323 0.00248 0.00182 0.00139 0.00110 0.00090 

(35,35)  0.00402 0.00374 0.00337 0.00286 0.00220 0.00162 0.00125 0.00099 0.00081 

(2,4) 

(10,10)  0.01801 0.01877 0.01900 0.01831 0.01611 0.01320 0.01077 0.00889 0.00744 

(15,15)  0.01285 0.01337 0.01351 0.01298 0.01140 0.00932 0.00762 0.00630 0.00529 

(20,20)  0.00906 0.00936 0.00938 0.00895 0.00781 0.00635 0.00518 0.00429 0.00361 

(25,25)  0.00754 0.00778 0.00778 0.00740 0.00643 0.00522 0.00426 0.00352 0.00296 

(30,30)  0.00594 0.00612 0.00610 0.00578 0.00500 0.00404 0.00328 0.00271 0.00228 

(35,35)  0.00522 0.00538 0.00538 0.00512 0.00445 0.00361 0.00295 0.00244 0.00205 

 
 
Table 3. Average confidence length of the simulated 95% confidence intervals of ,s kR  
 

   
( , )   

(s,k) (n,m)  (3.5,1.5) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0) (1.5,3.5) 

(1,3) 

(10,10)  0.4091 0.4021 0.3880 0.3632 0.3224 0.2763 0.2400 0.2113 0.1884 

(15,15)  0.3399 0.3334 0.3210 0.2999 0.2658 0.2279 0.1981 0.1747 0.1559 

(20,20)  0.2975 0.2911 0.2794 0.2601 0.2296 0.1961 0.1701 0.1497 0.1335 

(25,25)  0.2675 0.2617 0.2512 0.2338 0.2063 0.1762 0.1529 0.1346 0.1201 

(30,30)  0.2453 0.2398 0.2300 0.2140 0.1887 0.1612 0.1398 0.1232 0.1099 

(35,35)  0.2277 0.2226 0.2135 0.1986 0.1753 0.1498 0.1301 0.1146 0.1023 

(2,4) 

(10,10)  0.4569 0.4719 0.4802 0.4760 0.4498 0.4055 0.3637 0.3274 0.2966 

(15,15)  0.3834 0.3953 0.4012 0.3968 0.3739 0.3366 0.3019 0.2719 0.2466 

(20,20)  0.3396 0.3492 0.3533 0.3479 0.3260 0.2920 0.2610 0.2346 0.2123 

(25,25)  0.3056 0.3143 0.3180 0.3131 0.2934 0.2628 0.2350 0.2112 0.1912 

(30,30)  0.2813 0.2891 0.2923 0.2875 0.2691 0.2409 0.2153 0.1935 0.1752 

(35,35)  0.2611 0.2684 0.2714 0.2670 0.2500 0.2240 0.2003 0.1801 0.1631 
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Table 4. Average coverage probability of the simulated 95% confidence intervals of ,s kR  
 

   
( , )   

(s,k) (n,m)  (3.5,1.5) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0) (1.5,3.5) 

(1,3) 

(10,10)  0.9090 0.9140 0.9193 0.9280 0.9317 0.9303 0.9267 0.9260 0.9267 

(15,15)  0.9120 0.9150 0.9187 0.9213 0.9250 0.9273 0.9290 0.9287 0.9253 

(20,20)  0.9303 0.9347 0.9370 0.9390 0.9390 0.9377 0.9380 0.9347 0.9303 

(25,25)  0.9227 0.9267 0.9317 0.9360 0.9383 0.9373 0.9357 0.9333 0.9277 

(30,30)  0.9353 0.9403 0.9423 0.9463 0.9490 0.9463 0.9433 0.9400 0.9390 

(35,35)  0.9317 0.9330 0.9353 0.9387 0.9387 0.9400 0.9363 0.9337 0.9297 

(2,4) 

(10,10)  0.9113 0.9153 0.9203 0.9243 0.9273 0.9277 0.9257 0.9250 0.9243 

(15,15)  0.9103 0.9160 0.9190 0.9193 0.9233 0.9263 0.9297 0.9260 0.9223 

(20,20)  0.9310 0.9340 0.9370 0.9380 0.9367 0.9367 0.9360 0.9323 0.9287 

(25,25)  0.9237 0.9287 0.9313 0.9353 0.9370 0.9350 0.9323 0.9307 0.9257 

(30,30)  0.9357 0.9397 0.9437 0.9437 0.9477 0.9457 0.9420 0.9403 0.9397 

(35,35)  0.9297 0.9317 0.9367 0.9360 0.9407 0.9393 0.9367 0.9327 0.9300 

Data Analysis 
Strength data, which was originally reported by Badar and Priest (1982), 
represents the strength measured in GPA for single carbon fibers and impregnated 
1,000-carbon fiber tows. Single fibers were tested under tension at gauge lengths 
of 20 mm (Data Set I) and 10 mm (Data Set II), with sample sizes n = 69 and m = 
63 respectively (see Data sets I and II). 
 
Data Set I (gauge lengths of 20 mm). 
 

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 
2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 
2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 
2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 
2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 
3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585. 

 
Data Set II (gauge lengths of 10 mm). 
 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 
2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 
2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 
3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 
3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 
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Surles and Padgett (1998, 2001) observed that generalized Rayleigh works well 
for strength data. Raqab and Kundu (2005) analyzed the data by subtracting 1.0 
and 1.8 from the first and second data set respectively. The transformed data sets 
correspond to 20 mm and 10 mm gauge lengths are assumed to follow ( , )GR    
and ( , )GR    respectively. The obtained final estimates for these two data sets 
are ̂  = 2.4421, ̂ = 1.4216, and ̂ = 0.8598. Also they checked the validity of 
the models using the Kolmogorov-Smirnov (K-S) tests for each data set. It was 
observed that for Data Sets I and II, the K-S distances are 0.09 and 0.12 with the 
corresponding p values of 0.6069 and 0.2845 respectively. It indicates that the GR 
model provides reasonable fit to the transformed data sets.  

Based on estimates of and   the MLE of ,s kR  become 1,3R̂ = 0.63588 and 

2,4R̂ = 0.44484. The 95% confidence intervals for 1,3R  become (0.55680, 0.71496) 
and for 2,4R  become (0.34387, 0.54581). 

Conclusions 

This article used real data sets to investigate multicomponent stress-strength 
reliability for a generalized Rayleigh distribution when both stress, strength 
variates follow the same population. Asymptotic confidence intervals for 
multicomponent stress-strength reliability were estimated using the ML method. 
Simulation results indicate that the average bias and average MSE decreases as 
sample size increases in both cases of (s, k). Among the parameters the absolute 
bias and MSE are increases (decreases) as   increases (   increases) in both the 
cases of (s, k). The length of the confidence interval also decreases as the sample 
size increases and coverage probability is close to the nominal value in all sets of 
parameters considered. 
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A new stochastic randomized response model is introduced that is useful for estimating 
the population mean of a sensitive quantitative variable. The proposed stochastic 
randomized response model is an extension of the stochastic randomized response model 
from a qualitative sensitive variable to a quantitative variable found in Singh (2002). The 
stochastic nature of a randomized response device helps increase a respondent’s 
cooperation while collecting information on sensitive variables in a society. The Bar-Lev, 
Bobovitch, and Boukai (2004) model is shown to be a special case of the proposed model. 
 
Keywords: Sensitive variable; estimation of population mean, stochastic randomized 
response device  
 

Introduction 

The collection of data through personal interview surveys on sensitive issues, 
such as induced abortion, drug abuse and family income, is a serious issue. For 
example, some questions are sensitive:  
 

 By how much did you underreport your income on your 2009 tax 
return?  

 Are you a Baath Party Member?  
 How many abortions have you had?  
 How many children have you molested?  
 Do you use illegal drugs?  

 
Randomized response techniques are one way to encourage people to 

answer truthfully. Warner (1965) considered the case where the respondents in a 
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population can be divided into two mutually exclusive groups: one group with 
stigmatizing or otherwise sensitive characteristic A, and the other group without it. 
For estimating π, the proportion of respondents in the population belonging to the 
sensitive group A, a simple random sample of n respondents is selected with 
replacement from the population. For collecting information on the sensitive 
characteristic, Warner (1965) made use of a randomization device. One such 
device could be a deck of cards. On each card is written one of the following two 
statements: “I belong to group A”, or “I do not belong to group A.” The 
statements occur with relative frequencies p0 and (1−p0) respectively in the deck 
of cards. Each respondent in the sample is asked to select a card at random from 
the well-shuffled deck. Without showing the card to the interviewer, the 
interviewee answers the question, “Is the statement true for you?” The number of 
people, n1, who answer yes is binomially distributed with parameters 
p0π + (1−p0) (1−π) and n. The maximum likelihood estimator of π exists for 
p0 ≠ 0.5 is given by 
 

    1 0
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The estimator is unbiased with variance: 
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In a randomized response procedure, the cooperation of respondents 

depends on the confidentiality of their responses – the greater the confidentiality, 
the greater the cooperation from the respondents. Conversely, if the magnitude of 
response confidentiality is increased, the efficiency of the estimator of population 
proportion π is adversely affected. It is necessary, therefore, to strike a balance 
between response confidentiality and estimator efficiency. Several researchers 
have tried to modify data collection procedures to increase the confidentiality of 
responses. Horvitz, et al. (1967) felt that by providing the respondent with the 
opportunity of replying to one of two questions in which one question is 
completely innocuous and unrelated to the sensitive attribute, the sense of 
confidentiality among the respondents could possibly be increased. The 
theoretical framework for their approach was developed by Greenberg, et al. 
(1969). 
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Singh (2002) considered another procedure that may result in a greater sense 
of response confidentiality among the sampled individuals. The procedure can be 
used in surveys where respondents selected in the sample assemble at common 
place for the conduction of the survey. This could be a situation of collecting data 
from a small town, community or organization. The procedure invokes K decks of 
cards (called a stochastic randomization device) with different proportions of 
cards carrying the statement, “I belong to group A.” After explaining to the 
respondents how the randomization device provides confidentiality to their 
responses, the investigator asks one of the assembled respondents to randomly 
select a deck of cards from the box containing K decks of cards. The deck is then 
used to collect information on the sensitive attribute from the respondents. Every 
sampled respondent draws one card from the selected deck of cards and reads the 
statement on it. In the proposed procedure every respondent is provided with two 
identical slips of paper with yes or no printed on them. According to his status in 
relation to the statement printed on the card drawn, each respondent is requested 
to put one of the two slips of paper into an empty box. After the survey is 
completed, the number of yes answers is counted from the box and the proportion, 
p*, for the deck used in the survey is noted. Random selection of one 
randomization device from several such devices may help in increasing the sense 
of confidentiality among the respondents. The choice of values of p for preparing 
K decks of cards for the survey is important in this procedure. These K values of p 
could either be purposively selected by an investigator, or they could be taken as a 
random sample from a known discrete or continuous density function. Let this 
density function be denoted by f (p). The value of p corresponding to the deck 
used in the survey will be selected from this random sample of p-values with 
equal probabilities. Thus, the value of p* used in the survey is a random variable 
with f (p) as its probability density function. When f (p) is a one-point distribution, 
the proposed procedure reduces to Warner (1965). Singh (2002) assumes let n1 
persons in the sample answered yes and (n−n1) answer no. Because the 
probability of a yes answer for a particular choice of p* is given by 

 
   * *1 1p p      . (3) 

 
Singh (2002) considers the unbiased estimator of π as 
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*

ˆ 1
ˆ
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where nn1
ˆ   is the proportion of yes answers in the sample, with variance 

 

  
   

 
 2

1 1
ˆ ,  0.5

2 1

b

R
a

p p
V f p dp a p b p

n n p
 


 

    


    (5) 

 
where f (p) denotes the probability density function (p.d.f.) of p. Singh (2002) 
showed that the stochastic version of the Warner (1965) model remains more 
efficient than the pioneer Warner (1965) model. In the same article, Singh (2002) 
also considers stochastic version of the Kuk (1990) model and showed its benefits 
over the original Kuk (1990) model. Recent work on randomized response 
techniques is found in Abdelfatah, et al. (2013). 

Quantitative Randomized Response Model 

In the randomized response model due to Bar-Lev, Bobovitch, and Boukai (2004), 
hereafter the BBB model, the distribution of responses is given by: 
 

 
      with probability (1 )

        with probability 
i

i
i

X S p
Y

X p


 


  (6) 

 
In other words, each respondent is requested to rotate a spinner unobserved 

by the interviewer and if the spinner stops in the shaded area then he/she is 
requested to report the real response on the sensitive variable, for example Xi; and 
if the spinner stops in the non-shaded area then he/she is requested to report the 
scrambled response, for example XiS, where S is any scrambling variable and its 
distribution is assumed to be known. In other words, E(S) = θ and V(S) = γ2 are 
assumed to be known. Let p be the proportion of the shaded area of the spinner 
and (1−p) be the non-shaded area of the spinner as shown in the Figure 1. 
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Figure 1. BBB Randomized Response Device. 
 
 
 
An unbiased estimator of population mean μx is given by 
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with the variance of the estimator  BBBX̂  given by 
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Proposed Stochastic Quantitative Randomized Response 
Model 

Let p* be the stochastic proportion of cards in a deck bearing the statement, 
“Please report the real response Xi” and (1−p*) be the stochastic proportion of 
cards in the same deck bearing the statement, “Please report the scrambled 
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response XiS*, where S* is also a stochastic scrambling variable. Let θ* be the 
mean value, between pre-decided limits a and b, of a scrambling variable S*. 
Again this procedure can be used in surveys where the respondents selected in the 
sample assemble at a common place to take a survey on a sensitive quantitative 
variable. This could be a situation of collecting data from a small town, 
community or organization, or a homogeneous stratum. 

In practice, it is suggested that, at the gathering place, there is a collection of 
K1 decks of pink cards in a box. Every pink deck of cards consists of two types of 
cards bearing the two statements (a) and (b) with stochastic proportions p* and 
(1−p*) respectively. In another box, there are K2 green decks of cards and each 
green deck can produce stochastic scrambling variable with different mean values 
of θ* in the range a < θ* < b. In the presence of all the respondents and the 
interviewer, a lottery method is used. A huge number of pink decks of cards are 
left in box I, and a huge number of green decks of cards are left in box II. One 
green deck is selected and another pink deck is selected by the lottery method. 
The values of p* and θ* remain unknown during and after the survey. Both decks 
are either returned back to the boxes or are destroyed without looking at the 
particular values of p* and θ* used in the survey. This ensures respondents 
cooperation and privacy. The decks selected by the lottery method are used in the 
entire survey. Also note that the values of a and b are assumed to be known to the 
interviewer and interviewees. Thus, in the proposed stochastic randomized 
response model the distribution of the responses is given by 
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      with probability (1 )
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The following theorems result. 

Theorem 1  
An unbiased estimator of the population mean μx is given by 
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where the values of p* and θ* remains unknown to both the interviewer and 
interviewees, unlike Warner (1965) model. These values p* and θ* are derived 
from the known joint density of p* and θ* to get an estimate from the observed 
responses. 
 
Proof.  Let E1 denote the expected value over all possible samples and E2 
denote the expected value over the randomization device for given values of θ* 
and p*. Taking expected value on both sides of (10), results in 
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thus proving the theorem. 

Theorem 2  

The variance of the unbiased estimator  BBBŜ  of the population mean x  is 
given by 
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   (11) 

 
where )( *2 SV  is constant and known. 
 
Proof.  Let 1V  be the variance over all possible samples and 2V  denote the 

variance for the given values of the randomization device *p  and * . By the 
definition of the variance,  
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Thus, plugging (13) into (12): 
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which proves the theorem. 

Theorem 3  
A joint probability density function of p  and   is given by 
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Substituting (16) into (15), proves the theorem. 
 

Theorem 4  
Under the joint probability density function ),( pf , the variance of the estimator 

)(ˆ BBBS  is given by 
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Proof. 
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Substituting the values of 1I  and 2I  into (18), proves theorem. 
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Simulation Study 

A numerical study was performed to investigate the various choices of parameters 
where the proposed stochastic randomized response model is more efficient than 
the non-stochastic BBB model. The percent relative efficiency of the proposed 
stochastic randomized response model estimator )(ˆ BBBS  with respect to the non-
stochastic BBB model estimator )(ˆ BBBx  is given by 
 

( )

( )

2
2 2 2

2

2 2

2 2

2

ˆ( )
100%

ˆ( )

(1 ) 1( 1, 1) 1 ( ) ( ) ( , 1)
31 1( 2, ) ( ) ( , 2) ( ) ( 1, 1)

3 100%
(1 ) ( )1

x BBB

S BBB

x

x

x s

x

V
RE

V

C a ab b b a
C

a ab b b a

C C p
C





    

     

 

   
            

  

           

 




 

Clearly the relative efficiency depends only on the value of ,P ,  a , b , xC , 

C ,   and  . Certain parameters were fixed as 7.0P , 15 , 5a , and 
25b . Note that here 5a , and 25b  are not the lower limit and upper limit of 

the scrambling variable, but these are the limits for the mean values *  of various 
scrambling variables used in a survey. The value of xC  was changed from 0.1 to 
0.9 with step of 0.2; the value of C  was also changed from 0.1 to 0.9 with a step 
of 0.2; the value of   was changed from 0.5 to 3.5 with a step of 1.5; and the 
value of   was changed between 0.5 to 5.0 with a step of 1.5. A box plot 
showing the magnitude of the RE is for each value of   between 0.1 to 0.9 with a 
step of 0.2 is given in Figure 2. 
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Figure 2. Relative efficiency plot. 
 
 
 

For each combination of parameters, the percent relative efficiency of the 
proposed estimator was computed. The percent relative efficiency results so 
obtained are presented in Table 1. 
 
 
Table 1. Percent relative efficiency of the proposed stochastic randomized response 
model. 
 

Cx
 Cγ α β RE  Cx

 Cγ α β RE  Cx
 Cγ α β RE 

0.1 0.1 0.5 0.5 164.9  0.3 0.7 2.0 3.5 149.9  0.7 0.3 2.0 5.0 153.1 

0.1 0.1 0.5 2.0 316.6  0.3 0.7 2.0 5.0 181.7  0.7 0.5 0.5 0.5 161.7 

0.1 0.1 0.5 3.5 463.2  0.3 0.7 3.5 5.0 123.6  0.7 0.5 0.5 2.0 235.8 

0.1 0.1 0.5 5.0 604.5  0.3 0.9 0.5 0.5 190.1  0.7 0.5 0.5 3.5 279.9 

0.1 0.1 2.0 3.5 125.5  0.3 0.9 0.5 2.0 266.4  0.7 0.5 0.5 5.0 309.1 

0.1 0.1 2.0 5.0 164.4  0.3 0.9 0.5 3.5 309.2  0.7 0.5 2.0 3.5 134.1 

0.1 0.3 0.5 0.5 170.0  0.3 0.9 0.5 5.0 336.5  0.7 0.5 2.0 5.0 161.3 

0.1 0.3 0.5 2.0 307.4  0.3 0.9 2.0 2.0 122.9  0.7 0.5 3.5 5.0 111.2 

0.1 0.3 0.5 3.5 425.8  0.3 0.9 2.0 3.5 159.8  0.7 0.7 0.5 0.5 171.0 

0.1 0.3 0.5 5.0 528.6  0.3 0.9 2.0 5.0 189.5  0.7 0.7 0.5 2.0 238.5 

0.1 0.3 2.0 3.5 131.5  0.3 0.9 3.5 3.5 110.5  0.7 0.7 0.5 3.5 276.1 

0.1 0.3 2.0 5.0 169.5  0.3 0.9 3.5 5.0 134.3  0.7 0.7 0.5 5.0 299.9 

0.1 0.5 0.5 0.5 178.0  0.3 0.9 5.0 5.0 105.3  0.7 0.7 2.0 2.0 111.1 

0.1 0.5 0.5 2.0 295.0  0.5 0.1 0.5 0.5 154.0  0.7 0.7 2.0 3.5 144.1 
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Cx
 Cγ α β RE  Cx

 Cγ α β RE  Cx
 Cγ α β RE 

0.1 0.5 0.5 3.5 381.3  0.5 0.1 0.5 2.0 256.2  0.7 0.7 2.0 5.0 170.6 

0.1 0.5 0.5 5.0 447.5  0.5 0.1 0.5 3.5 332.0  0.7 0.7 3.5 5.0 121.3 

0.1 0.5 2.0 3.5 141.2  0.5 0.1 0.5 5.0 390.3  0.7 0.9 0.5 0.5 179.8 

0.1 0.5 2.0 5.0 177.4  0.5 0.1 2.0 3.5 122.1  0.7 0.9 0.5 2.0 240.9 

0.1 0.5 3.5 5.0 113.1  0.5 0.1 2.0 5.0 153.6  0.7 0.9 0.5 3.5 272.9 

0.1 0.7 0.5 0.5 186.3  0.5 0.3 0.5 0.5 159.1  0.7 0.9 0.5 5.0 292.5 

0.1 0.7 0.5 2.0 284.0  0.5 0.3 0.5 2.0 255.6  0.7 0.9 2.0 2.0 121.2 

0.1 0.7 0.5 3.5 346.7  0.5 0.3 0.5 3.5 323.0  0.7 0.9 2.0 3.5 154.0 

0.1 0.7 0.5 5.0 390.2  0.5 0.3 0.5 5.0 372.7  0.7 0.9 2.0 5.0 179.3 

0.1 0.7 2.0 2.0 112.6  0.5 0.3 2.0 3.5 127.6  0.7 0.9 3.5 3.5 109.8 

0.1 0.7 2.0 3.5 151.9  0.5 0.3 2.0 5.0 158.7  0.7 0.9 3.5 5.0 131.4 

0.1 0.7 2.0 5.0 185.8  0.5 0.5 0.5 0.5 167.4  0.9 0.1 0.5 0.5 144.3 

0.1 0.7 3.5 5.0 124.3  0.5 0.5 0.5 2.0 254.8  0.9 0.1 0.5 2.0 214.6 

0.1 0.9 0.5 0.5 193.6  0.5 0.5 0.5 3.5 310.6  0.9 0.1 0.5 3.5 257.8 

0.1 0.9 0.5 2.0 275.8  0.5 0.5 0.5 5.0 349.2  0.9 0.1 0.5 5.0 286.9 

0.1 0.9 0.5 3.5 323.0  0.5 0.5 2.0 3.5 136.6  0.9 0.1 2.0 3.5 118.9 

0.1 0.9 0.5 5.0 353.6  0.5 0.5 2.0 5.0 167.0  0.9 0.1 2.0 5.0 144.1 

0.1 0.9 2.0 2.0 123.5  0.5 0.5 3.5 5.0 111.9  0.9 0.3 0.5 0.5 149.2 

0.1 0.9 2.0 3.5 161.8  0.5 0.7 0.5 0.5 176.5  0.9 0.3 0.5 2.0 217.5 

0.1 0.9 2.0 5.0 193.1  0.5 0.7 0.5 2.0 253.9  0.9 0.3 0.5 3.5 258.1 

0.1 0.9 3.5 3.5 110.8  0.5 0.7 0.5 3.5 299.1  0.9 0.3 0.5 5.0 285.0 

0.1 0.9 3.5 5.0 135.2  0.5 0.7 0.5 5.0 328.7  0.9 0.3 2.0 3.5 123.7 

0.1 0.9 5.0 5.0 105.4  0.5 0.7 2.0 2.0 111.6  0.9 0.3 2.0 5.0 148.9 

0.3 0.1 0.5 0.5 160.3  0.5 0.7 2.0 3.5 147.0  0.9 0.5 0.5 0.5 157.3 

0.3 0.1 0.5 2.0 288.7  0.5 0.7 2.0 5.0 176.0  0.9 0.5 0.5 2.0 222.0 

0.3 0.1 0.5 3.5 398.6  0.5 0.7 3.5 5.0 122.4  0.9 0.5 0.5 3.5 258.6 

0.3 0.1 0.5 5.0 493.5  0.5 0.9 0.5 0.5 184.9  0.9 0.5 0.5 5.0 282.1 

0.3 0.1 2.0 3.5 124.1  0.5 0.9 0.5 2.0 253.2  0.9 0.5 2.0 3.5 132.0 

0.3 0.1 2.0 5.0 159.8  0.5 0.9 0.5 3.5 290.1  0.9 0.5 2.0 5.0 156.9 

0.3 0.3 0.5 0.5 165.4  0.5 0.9 0.5 5.0 313.3  0.9 0.5 3.5 5.0 110.6 

0.3 0.3 0.5 2.0 284.0  0.5 0.9 2.0 2.0 122.1  0.9 0.7 0.5 0.5 166.6 

0.3 0.3 0.5 3.5 377.0  0.5 0.9 2.0 3.5 156.9  0.9 0.7 0.5 2.0 226.8 

0.3 0.3 0.5 5.0 451.7  0.5 0.9 2.0 5.0 184.4  0.9 0.7 0.5 3.5 259.1 

0.3 0.3 2.0 3.5 129.9  0.5 0.9 3.5 3.5 110.2  0.9 0.7 0.5 5.0 279.2 

0.3 0.3 2.0 5.0 164.9  0.5 0.9 3.5 5.0 132.8  0.9 0.7 2.0 2.0 110.6 
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Cx
 Cγ α β RE  Cx

 Cγ α β RE  Cx
 Cγ α β RE 

0.3 0.5 0.5 0.5 173.5  0.5 0.9 5.0 5.0 105.1  0.9 0.7 2.0 3.5 141.8 

0.3 0.5 0.5 2.0 277.4  0.7 0.1 0.5 0.5 148.5  0.9 0.7 2.0 5.0 166.2 

0.3 0.5 0.5 3.5 349.3  0.7 0.1 0.5 2.0 231.4  0.9 0.7 3.5 5.0 120.3 

0.3 0.5 0.5 5.0 402.0  0.7 0.1 0.5 3.5 286.4  0.9 0.9 0.5 0.5 175.6 

0.3 0.5 2.0 3.5 139.3  0.7 0.1 0.5 5.0 325.4  0.9 0.9 0.5 2.0 231.2 

0.3 0.5 2.0 5.0 173.1  0.7 0.1 2.0 3.5 120.3  0.9 0.9 0.5 3.5 259.5 

0.3 0.5 3.5 5.0 112.6  0.7 0.1 2.0 5.0 148.2  0.9 0.9 0.5 5.0 276.7 

0.3 0.7 0.5 0.5 182.3  0.7 0.3 0.5 0.5 153.5  0.9 0.9 2.0 2.0 120.4 

0.3 0.7 0.5 2.0 271.2  0.7 0.3 0.5 2.0 233.1  0.9 0.9 2.0 3.5 151.6 

0.3 0.7 0.5 3.5 326.0  0.7 0.3 0.5 3.5 283.7  0.9 0.9 2.0 5.0 175.2 

0.3 0.7 0.5 5.0 363.1  0.7 0.3 0.5 5.0 318.7  0.9 0.9 3.5 3.5 109.5 

0.3 0.7 2.0 2.0 112.2  0.7 0.3 2.0 3.5 125.4  0.9 0.9 3.5 5.0 130.2 

 
 

Table 2 gives the descriptive statistics for the percent relative efficiency 
values for different values of  . 
 
 
Table 2. Descriptive statistics of the relative efficiency values.  
 

  Mean StDev Minimum Median Maximum 

0.1 244.9 131.9 105.4 185.8 604.5 

0.3 228.6 109.5 105.3 181.7 493.5 

0.5 210.0 87.5 105.1 176.0 390.3 

0.7 198.2 71.0 109.8 170.8 325.4 

0.9 188.0 61.3 109.5 166.4 286.9 

 
 

Table 1 shows that overall the minimum RE value is 105.1% and maximum 
RE value is 604.5%. The average value the RE is 214.2% with a standard 
deviation of 97.06%. The median value of the percent relative efficiency is 
175.61%. Thus, in conclusion, it is possible to make a stochastic randomization 
device which will remain more efficient than the BBB model and more 
cooperation could be expected from the respondents. 
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The statistical inference drawn from the difference between two independent Poisson 
parameters is often discussed in medical literature. Kawasaki and Miyaoka (2012) 
proposed an index θ = P(λ1,post < λ2,post), where λ1,post and λ2,post denote Poisson parameters 
following posterior density. A new calculation method is proposed using MCMC and an 
approximate expression and exact expression for θ are compared. 
 
Keywords: Poisson distribution, Bayesian inference, MCMC method, 
Hypergeometric series  
 

Introduction 

The statistical inference drawn from the difference between two independent 
Poisson parameters is often discussed in terms of the frequentist viewpoint rather 
than the Bayesian viewpoint. In this article, a Poisson parameter is assumed as the 
relapse rate of a wrong outcome and an adverse reaction rate. Therefore, a low 
value of the Poisson parameter is desirable. 

Classical statistical analysis of outcomes observed in a randomized 
controlled clinical trial is based on the frequentist approach. The frequentist 
approach to hypothesis testing is based on the p-value. The inconvenience of 
using the p-value is well-known and has been documented by Lindley (1957) and 
Hwang, et al. (1992) among others. 

A few different techniques for hypothesis testing have been developed under 
the Bayesian approach. Basu (1996) briefly showed the use of the Bayesian 
approach with respect to hypothesis testing. Let y be data from the probability 
density function; it is desired to test the null hypothesis against the alternative 
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hypothesis. One approach computes the posterior probability. Poisson parameters 
were applied to the posterior probability θ that shows the difference between the 
posterior densities of the two independent Poisson parameters, which are 
considered as random variables. This index can be used to determine the 
probability that the Poisson parameter of a study drug is superior to that of a 
control drug. 

Kawasaki and Miyaoka (2012) applied θ to a one-side hypothesis based on a 
two-sample situation. They derived an exact and an approximate expression to 
determine θ.  

There are some pending issues with the above-mentioned method. An 
approximate method and exact method of θ were adopted only while using a 
conjugate prior. The drawback of the approximate method is that it occasionally 
leads to a rough result in a small sample. The drawback of the exact method is 
that it is slightly complicated. In addition, the exact method requires extensive 
computing time with a large sample size. Hence, a Markov Chain Monte Carlo 
(MCMC) method for θ is proposed as a solution to these problems. 

Methodology 

If Xi is the number of events in a population of ni patients (or over ni units of time), 
and λi is the event rate, then the sampling distribution is 
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where i = 1, 2. The conjugate prior density of λi is the gamma distribution with 
parameters αi and βi : 
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where αi > 0 and βi > 0. The posterior density for λi is given as 
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where ai = αi + xi, bi = ni + βi and Γ(a) denotes the gamma function. Let λi,post 
denote the Poisson parameter in the posterior density. 

Approximate expression for θ 
θ can be calculated via an approximation using the standard normal table; assume 
that sample sizes, n1 and n2, are large. It is necessary to determine a Z-test statistic. 
The expected difference in the posterior density and the variance in this difference 
can be expressed as:  
 

 1, 2, 1, 2,( ) ,post post post postE         (4) 
 

 2 2
1, 2, 1 1 2 2( ) / /post postV a b a b      (5) 

 

where μi,post = ai / bi denote the posterior mean of λi,. The Zg-test statistic is 
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The Zg-test statistic is approximately distributed according to the standard normal 
distribution. Therefore, the approximate probability of the index θ is given as 
 

 1, 2,
1, 2, 2 2

1 1 2 2

( ) ( )
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  (7) 

 

where ( )   is the cumulative distribution function of the standard normal 
distribution. From this the approximate probability can be easily calculated. 

Exact method for θ 
Kawasaki and Miyaoka (2012) derived the exact expression for θ using the 
posterior density. The exact expression for θ is 
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is the hypergeometric series, and  t

k  is the Pochhammer symbol. 

MCMC Method for θ  

A computational procedure for θ can be described using the MCMC method. The 
MCMC method is a means of sampling from a posterior density. A random-walk 
Metropolis-Hasting algorithm was used as the MCMC Method. Given that the 
samples come from two independent populations, the posterior joint distribution 
of λ1 and λ2 is a product of its marginal distributions. For this reason, samples can 
be obtained from the posterior distribution of λ1 - λ2 by simulating k values from 
the posterior distribution of λ1 and λ2 using MCMC procedure of SAS, e.g., 

1 2
1, 1, 1,, ,..., k

post post post    and 1 2
2, 2, 2,, ,..., k

post post post   , respectively. By computing
1 1 2 2
1, 1, 1, 2, 1, 2,, ,..., k k

post post post post post post        , it is possible to obtain the simulated 
values from the posterior distribution of λ1 - λ2. The posterior samples obtained by 
the MCMC method after the burn-in period are 1 2, ,..., k   . Let 1 2, ,..., k    be 
independent identically distributed random variables with distribution function F. 
The posterior sample is the observed value of 1 2, ,..., k   . Note that 

1, 2,( )post postP     equals 1, 2,( 0)post postP     , thus,   can be expressed 
as 
 
 1, 2, 1, 2,

ˆ( ) ( 0) 1 (0)post post post post kP P F             (10) 
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and 
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is the empirical distribution function. 

Results 

Comparison of three methods 
To compare the probabilities of the three methods for θ , the difference between 
the sample rates (horizontal axis) where sample rate is calculated as Xi/ni, were 
plotted against the difference between the probabilities of the MCMC and exact 
methods (vertical axis), as shown in Figures 1, 3, and 5. Similarly, the difference 
between the sample rates (horizontal axis) were plotted against the difference 
between the probabilities of the approximate and exact methods (vertical axis), as 
shown in Figures 2, 4, and 6. Figures 1, and 2 show situations that considered 
small sample sizes, i.e., n1 = n2 = 10, 15, 20, and 25; Figures 3 and 4, show larger 
sample sizes, i.e., n1 = n2 = 60, 70, 90, and 100. Figures 5 and 6 consider groups 
of different sample sizes, that is, n1 = 5, n2 = 15; n1 = 5, n2 = 25; n1 = 15, n2 = 5 and 
n1 = 25, n2 = 5. 

Relationship between the difference in the probabilities and the 
difference in the sample rates. 
In Figures 1(d) and 3(d), the probability of the MCMC method is approximately 
equal to that of the exact method when the difference between the sample rates is 
1.0. Conversely, the difference between the probabilities of the MCMC and exact 
methods is around 0.01 when the difference between the sample rates is zero. 
Overall, when the difference between the sample rates is large, the probabilities of 
the MCMC and exact methods are roughly equal. By contrast, when the 
difference between the sample rates is small, the probability of the MCMC 
method is different from that of the exact method. This general pattern is similar 
for the difference in the probabilities of the approximation and exact methods. 
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Relationship between the sample size and the difference in the 
probabilities 
In Figure 2(a), the difference between the probabilities of the approximate and 
exact methods is around 0.15 when the difference between the sample rates is 
0.01. For a slightly larger sample size (see Figure 2(d)), the difference between 
the probabilities of the approximate and exact methods is around 0.05 for the 
same difference between the sample rates. In addition, there is virtually no 
difference between the probabilities of the approximate and exact methods when 
the sample size is further increased, as shown in Figure 4(d). Thus, the sample 
size influences the accuracy of the probability of the approximate method. Also 
shown is the difference in the probabilities of the MCMC and exact methods. In 
Figure 1(a), the difference between the probabilities of the MCMC and exact 
methods is around 0.01 when the difference between the sample rates is zero. For 
a slightly larger sample size (see Figure 3(d)), the difference between the 
probabilities of the MCMC and exact method is around 0.01 for the same 
difference between the sample rates. Thus, the accuracy of the probability of the 
MCMC method always remains high even when the sample sizes are small. 

Finally, the difference between the probabilities when groups of different 
sample sizes are considered was investigated. In Figure 2(a), the difference 
between the probabilities of the approximate and exact methods is around -0.01 
when the difference between the sample rates is 0.5. Conversely, in Figure 6(a), 
the difference between the probabilities of the approximate and exact methods is 
around -0.05 for the same difference between the sample rates. In both the cases, 
the total sample size (n1 + n2) is the same. However, the difference between the 
probabilities of the approximate and exact methods is slightly greater in the case 
of groups with different sample sizes; the case of the MCMC method is also 
shown. In Figure 1(d), the difference between the probabilities of the MCMC and 
exact methods is around 0.01 when the difference between the sample rates is 
zero. Conversely, in Figure 5(d), the difference between the probability of the 
MCMC and exact methods is around 0.01 for the same difference between the 
sample rates. Therefore, the difference between the probabilities of the MCMC 
and exact methods is the same regardless of whether the sample sizes are equal or 
different. 
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Figure 1. Comparison of the Exact and MCMC Method when sample sizes are small. 
(vertical axis：Differences of θ in Exact and MCMC method. Prior distribution is 
Gamma(0.01,0.01). horizontal axis : Differences of two sample rates. 
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Figure 2. Comparison of the Exact and Approximate method when sample sizes are 
small. (vertical axis：Differences of θ in Exact and Approximation method. horizontal 
axis : Differences of two sample rates. 
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Figure 3. Comparison of the Exact and MCMC Method when sample sizes are large. 
(vertical axis：Differences of θ in Exact and MCMC method. Prior distribution is 
Gamma(0.01,0.01). horizontal axis : Differences of two sample rates. 
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Figure 4. Comparison of the Exact and Approximate method when sample sizes are 
large. (vertical axis：Differences of θ in Exact and Approximation method. horizontal 
axis : Differences of two sample rates. 
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Figure 5: Comparison of the Exact and MCMC Method when sample sizes are 
unbalanced. (vertical axis：Differences of θ in Exact and MCMC method. Prior 
distribution is Gamma(0.01,0.01). horizontal axis : Differences of two sample rates. 
 
 



COMPARISON OF THREE CALCULATION METHODS 

408 

 
Figure 6: Comparison of the Exact and Approximate method when sample sizes are 
unbalanced. (vertical axis：Differences of θ in Exact and Approximation method. 
horizontal axis : Differences of two sample rates. 
 
 

Conclusion 

Three calculation methods were presented for the index 1, 2,P( )post post    . A 
new procedure was described based on the MCMC method. The probabilities of 
these three methods were compared in order to test the relative effectiveness of 
each. 

The expression for the exact method was presented, which includes a 
hypergeometric series, and it was speculated that this series causes the decrease in 
calculation efficiency when the sample size is very large. In addition, 
hypergeometric series are not built into SAS, which is a statistical software 
program frequently used in pharmaceutical development. Therefore, if SAS is 
used, a calculation program for hypergeometric series must be developed. 

It is easy to calculate the probability for using the approximation method. 
This is an advantage when the approximate probability is used. Conversely, when 
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the difference in the sample rates is small and the sample sizes are unbalanced, 
the accuracy the approximation method is poor. That is, the accuracy of the 
probability of the approximation method depends on the sample size.  

This study showed that the accuracy of the MCMC method was greater than 
that of the approximation method. Moreover, the probability of the MCMC 
method can be easily calculated using SAS. In addition, it is possible to use the 
non-conjugate prior for the prior distribution in the MCMC method. This is 
considered to be one of the advantages of the MCMC method. 

References  

Basu, S. (1996). Bayesian hypotheses testing using posterior density ratios. 
Statistics and Probability Letters, 30(1): 79-86. 

Hwang, J. T., Casella, G., Robert, C., Wells, M. T., & Farrell, R. H. (1992). 
Estimation of accuracy in testing. The Annals of Statistics, 20(1): 490-509. 

Lindley, D. V. (1957). A statistical paradox. Biometrika, 44(1/2): 187-192. 
Kawasaki, Y., & Miyaoka, E. (2012). A Bayesian inference of P (λ1 < λ2 ) 

for two Poisson parameters. Journal of Applied Statistics, 39(10): 2141-2152. 



Journal of Modern Applied Statistical Methods 
May 2014, Vol. 13, No. 1, 410-430. 

Copyright © 2014 JMASM, Inc. 
ISSN 1538 − 9472 

 

 
 
OlaOluwa S. Yaya is a Lecturer in the Department of Statistics.  Email at: 
os.yaya@mail.ui.edu.ng. Dr. Shittu is a Lecturer in the Department of Statistics. Email at 
oi.shittu@ui.edu.ng. 

 
 

410 

Specifying Asymmetric STAR models with 
Linear and Nonlinear GARCH Innovations: 
Monte Carlo Approach 
OlaOluwa S. Yaya 
University of Ibadan 
Ibadan, Nigeria 

Olanrewaju I. Shittu 
University of Ibadan 
Ibadan, Nigeria 

 
 
Economic and finance time series are typically asymmetric and are expected to be 
modeled using asymmetrical nonlinear time series models. Smooth Transition 
Autoregressive (STAR) models: Logistic (LSTAR) and Exponential (ESTAR) are known 
to be asymmetric and symmetric respectively. Under non-normal and heteroscedastic 
innovations, the residuals of these models are estimated using Generalized 
Autoregressive Conditionally Heteroscedastic (GARCH) models with variants which 
include linear and nonlinear forms.  The small sample properties of STAR-GARCH 
variants are yet to be established but these properties are investigated using Monte Carlo 
(MC) simulation. An MC investigation was conducted to investigate the performance of 
selections of STAR-GARCH models by classical nonlinear selection approaches. The 
ARCH(1) and GARCH(1,1) models were the linear GARCH specifications while the 
Logistic Smooth Transition-ARCH (LST-ARCH(1,1)), Logistic Smooth Transition-
GARCH (LST-GARCH(1,1)) and Asymmetric Nonlinear Smooth Transition-GARCH 
(ANST-GARCH(1,1)) models were the nonlinear GARCH specifications.  The 
nonlinearity parameter in the variance equations and Autoregressive (AR) parameters 
were varied along with different sample sizes. With the assumption of normality, the 
results showed that the selection of LSTAR models were actually affected by the 
structure of the innovations and this improved as sample size increased. Misspecification 
tests showed that these models cannot be misrepresented in the real sense. 
 
Keywords: Asymmetry, Monte Carlo simulations, nonlinear GARCH, Smooth 
transition autoregression, specification  
 

Introduction 

Smooth Transition Autoregressive (STAR) and Generalized Conditionally 
Heteroscedastic (GARCH) models are gaining their popularities in economics and 
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finance. STAR models of Granger and Teräsvirta (1993) classify market into two 
phases of contraction and expansion, whereas GARCH model of Bollerslev 
(1986) is often used to study the behavior of asset returns or innovations of the 
‘parent’ model. In that case, such a ‘parent’ model is the mean equation and the 
(GARCH) model is the variance equation. The innovations of the STAR model 
are expected follow normal distribution (homoscedasticity) but in case this is not 
true, the innovations are said to possess heteroscedasticity, which can be of 
various forms (Pavlidis, Paya and Peel, 2010). The mean and variance equations 
are then compounded as STAR-GARCH model. 

Maximum Likelihood Estimation (MLE) of STAR-GARCH model was 
examined in Chan and McAleer (2002). The structural and statistical properties of 
the model were also established in the paper, even though the asymptotic 
normality and finite sample properties are still examined using Monte Carlo 
simulation approach. Chan and McAleer (2002) also considered the effects of 
misspecifying the transition functions (logistic or exponential) in the STAR model 
and the results obtained showed that greater bias will be induced in the GARCH 
estimates for the STAR-GARCH model whenever STAR mode is misspecified. 
Their results further showed that Logistic STAR model can easily be substituted 
for Exponential STAR model. 

In the study of financial returns, negative returns tend to be followed by 
periods of higher volatility than positive returns of the same magnitude, that is 
negative and positive shocks exert different values for the leverage of a firm 
which on the long run realize different volatilities (Black, 1976). This property 
has therefore led to the development of GARCH variants that are robust to 
asymmetry. These variants are nonlinear in their structures due to the fact that the 
conditional variance is no longer specified as a linear function of lagged squared 
error and lagged variance. These common asymmetric variants are the 
Exponential GARCH (EGARCH) (Nelson, 1991), Asymmetric Power ARCH 
(APARCH) (Ding, et al., 1993) and Glosten Jaganathan and Runkle (GJR-
GARCH) (Glosten, et al., 1993) models, but in this work we investigate GARCH 
variants which display regime switching dynamics.  

This study is motivated by the work of Chan and McAleer (2002). We 
applied the linear GARCH and Smooth Transition specification of 
ARCH/GARCH models in a Monte Carlo simulation approach. Nonlinearities 
were first introduced in the ARCH functional form in Engle and Bollerslev (1986). 
They proposed in their model the dynamics of conditional variance, 2

t  as it 
changes with the squared residuals and the transition between different 
conditional variance determined by normal cumulative distribution function. A 
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few years later, Higgins and Bera (1992) developed a Nonlinear ARCH 
(NARCH) model which accommodated different functional forms to predict the 
conditional variance. Apart from the classical ARCH and GARCH models of 
Engle (1982) and Bollerslev (1986), Smooth Transition ARCH (STARCH), 
Smooth Transition GARCH (ST-GARCH) and Asymmetric Nonlinear Smooth 
Transition GARCH (ANST-GARCH) models of Hagerud (1996; 1997), 
González-Rivera (1998) and Anderson et al. (1999) respectively are also 
considered. The ST-ARCH model was applied on the Nordic and Stockholm 
stock returns and found the model better than the linear GARCH model. 
González-Rivera (1998) used MC simulation experiment to study the model and 
applied the models on stock returns and exchange-rate data.  

The STAR-GARCH and STAR-STGARCH Models 

This article presents compounded regime switching and volatility models, with 
the regime switching model as the mean equation and volatility models as the 
variance equation. For a time series , 1,...,ty t N  with  2,ty N    in the 

structural model, 
 
  ˆ .t ty f     (1) 
 
where  .f  is the function of ty  and t  is the innovation process, expected to be 
independently and identically distributed with mean 0 and variance 1 that is 
homoscedasticity case. In the case where this assumption of normal distribution 
fails, the innovations are estimated with volatility models. 

The Mean Equation: STAR model 
The Smooth Transition Autoregressive (STAR) model is introduced in Granger 
and Teräsvirta (1993) and the specification, estimation and evaluation of the 
model are itemized following standard procedures in Teräsvirta (1994). Since 
then, the model has been applied to study nonlinearity in business cycle 
(Teräsvirta and Anderson, 1992); Skalin and Teräsvirta 1996; 1998) and real 
exchange rates (Baum et al., 1998; Liew et al., 2002). The connection between 
business cycle-regimes and nonlinearity in the UK labour market is studied in 
Acemoglu and Scotts (1994). Öcal (2000) applied STAR model on the 
nonlinearities in growth rates of some selected UK macroeconomic time series 



YAYA & SHITTU 

413 

and suggest either two-regime or three-regime model for UK economy. Mourelle, 
Cuestas and Gil-Alana (2011), Shittu and Yaya (2011) and Yaya (2013) 
considered STAR model for Nigerian inflation series.  

Apart from real life time series data that have been considered for the STAR 
model, Escribano and Jordá (2001) and Yaya and Shittu (2011) investigated the 
selection of STAR model by varying some of the parameters and conditions in the 
models and obtained results that serve as guide for nonlinear time series modelers; 
then, there is need to study, and if possible develop the structural and small 
sample properties of the STAR model. 

The STAR model of order p is given as, 
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where 10 20,   are the constants and  1 2, 1,...,i i i p    are the autoregressive 
parameters of order p. The transition function,  ; ,t dF y c

 causes the nonlinear 
dynamics in the model, and this are of logistic and exponential forms as given as, 
 

  
 

1; ,
1 expt d

t d

F y c
y c









    

  (3) 

 
and  
 
    

2; , 1 expt d t dF y c y c  
    
 

  (4) 

 
respectively, with 0   in both cases. The logistic type is known to be 
asymmetric whereas the exponential type is symmetric. Economic and finance 
series often exhibit forms of asymmetries, and therefore Logistic STAR (LSTAR) 
model is often applied to model nonlinear dynamics in the series. In the transition 
functions, the transition variable is t dy   with d assuming values 1,2, …, p. the 
value of d is varied in order to improve nonlinearity in the system when it is not 
known prior to model estimation. The slope,   and intercept, c are parts of the 
nonlinearity parameters in the transition function. As   assumes values from 1 to 
say 100, the nonlinearity becomes sharper, and the dynamics shift from lower 
linear region to upper linear region at faster rate, after being in the nonlinear state 
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for some period. At 1  , depending on the variance of ty  and size of c, 
discrimination between the nonlinear and linear series may not be significant. 
(Yaya and Shittu, 2011). The transition functions in (3) and (4) are bounded 
between 0 and 1, and this makes the STAR modelling of interesting application. 
When the transition function is at zero state, the entire system in (2) becomes 
linear, and at unity state, it is also linear. Most of the time, the transition function 
is such that  0 ; , 1t dF y c  , which is a nonlinear state. 

Specification between the asymmetric and symmetric transition function is 
often carried out using the approach outlined in Teräsvirta (1994). Though there is 
a newer specification approach proposed in Escribano and Jordá (2001), the 
approach of Teräsvirta (1994) is not dominated by that of Escribano and Jordá 
(2001). Further readings on the specification of STAR models are referred to the 
two articles as well as Luukkonen, Saikkonnen and Teräsvirta (1988). 

The Variance Equation: GARCH and ST-GARCH models 

Apart from the issue of nonlinearity of the time series ty , the innovations of the 
estimated model (mean equation) is often heteroscedastic for economic and 
finance series to be specific. Engle (1982) proposed the Autoregressive 
Conditionally Heteroscedastic (ARCH) model of order q for UK inflation. 
 

 2 2

1

q

t i t i
i

w   



    (5) 

 
where 2

t  is the conditional variance, w is the constant and  1,...,i i q   are the 

parameters in the ARCH model. The t i   are the residuals from the mean 
equation which are assumed to be heteroscedastic. 

Bollerslev (1986) proposed the generalized version of Engle’s model which 
is named the Generalized Autoregressive Conditionally Heteroscedastic 
(GARCH) model of order (p, q) given as, 

 

 2 2 2

1 1

q r

t i t i j t j
i j

w     

 

      (6) 

 
where  1,...,j j r   are the parameters in the GARCH term. In the ARCH(q) 
and GARCH(q, r) models in (5) and (6), 0w  , 0i   and 0j   and the 
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existence of covariance-stationarity is 
1

1
q

i
i




  for ARCH(q) and 

1 1
1

q r

i j
i j
 

 

    for GARCH(q, r) model. 

Hagerud (1996; 1997) and González-Rivera (1998) considered introducing 
regime switching functional forms in the ARCH/GARCH systems. Their 
propositions are further developed in Lundbergh and Teräsvirta (1999). Hagerud 
(1996) proposed Smooth Transition-ARCH (q) (STARCH) model, 
 

    2 2 2

1 1
1

q q

t i t i t i i t i t i
i i

w F F         

 

         (7) 

 
where w and i  are as defined in ARCH model. The additional parameter, 
 1,..,i i q   defines the model in two-regimes. The transition function, with the 

transition variable t i   is of logistic and exponential as well. These are given as, 
 

  
 
1

1 expt i
t i

F 







 

  (8) 

 
and  
 
    21 expt i t iF        (9) 

 
for the two forms respectively with 0   in both cases. The two transition 
functions in (8) and (9) will generate different data dynamics for the conditional 
variance. The logistic form in (8) will produce a return process where the 
dynamics of the conditional variance differ depending on the signs of the 
innovations (Hagerud, 1997). As t j   , the logistic function equals to 1 2  
and as t j   , the function equals to 1 2 . The exponential function in (9) is 
symmetric with respect to the sign of the error term, hence it generates data for 
which the dynamics of the conditional variance depends only on the magnitude of 
the innovations. As t j   , the impact of 2

1t   on 2
t  changes smoothly from 

i  to i  in both logistic ST-ARCH(q) and ST-GARCH(q, r) when the function 
equals 1, and as 0t j   , the logistic function equals 0. Also, as the parameter   
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becomes larger, both the logistic ST-ARCH and ST-GARCH functions approach 
step functions which equal 0 for negative 1t   and 1 for positive 1t  , therefore, 
for logistic function,  1 2 . 1 2F    and for exponential function,  0 . 1F  .  

For positive conditional variance in the logistic ST-ARCH model, the 

condition 1
2i i   and for stationarity of the innovations t , 

 
1

1 max ,0 1
2

q

i i i
i

  


 
   

 
 . For the positive conditional mean in the 

exponential ST-ARCH, 0i i    and for stationarity of the innovations t , 

 
1

max ,0 1
q

i i
i

 


     (Hagerud, 1997).  

 The generalized form of the model called Smooth Transition-GARCH (q, r) 
(ST-GARCH) is proposed in Hagerud (1997) and González-Rivera (1998) as, 
 

    2 2 2 2

1 1 1
1

q q r

t i t i t i i t i t i j t j
i i j

w F F            

  

           (10) 

 
with the transition functions in (8) and (9) for the logistic and exponential cases 
respectively. The ST-GARCH model only included the GARCH term, 2

t j 
.  

For positive conditional variance in the logistic ST-GARCH model, all the 
covariance stationarity condition of GARCH(p, q) model hold here in ST-

GARCH, and apart from these,  1
2i i   for the logistic case and for the 

stationarity of the innovations t ,  
1 1

1 max ,0 1
2

q r

i i i j
i i

   
 

 
    

 
  . For the 

positive conditional mean in the exponential ST-GARCH, 0i i    and for 

stationarity of the innovations t ,  
1

max ,0 1
q

i i
i

 


     (Hagerud, 1997).  

A similar ST-GARCH (p, q) is proposed in Anderson, et al. (1999) and 
applied recently in Nam, et al. (2002). This is given as, 
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2 2 2
10 1 1

1 1

2 2
20 2 2

1 1

1
q r

t i t i j t j t i
i j

q r

i t i j t j t i
i j

w F

w F

     

    

  

 

  

 

 
       

 

 
   
 

 

 

  (11) 

 
This is a variant of GARCH model in regime switching functional form. The 

parameters and the conditions of existence of GARCH as defined for the GARCH 
specification in (6) holds for the ST-GARCH model. The model in (11) is defined 
only for the asymmetric function (8), and therefore, the ST-GARCH model is 
otherwise known as Asymmetric nonlinear Smooth Transition-GARCH (ANST-
GARCH) model (Nam, et al., 2002). Franses and van Dijk (2003) showed that 
there is similarity between the ST-GARCH (q, r) model of Hagerud (1997), even 
in the conditions of existence of conditional volatility and stationarity. Our 
selection of asymmetric variants of GARCH in this paper is based on similarity 
with STAR model and their abilities to realize smooth changing dynamics.  

Structure of the Data Generating Process and Nonlinearity 
Tests 

The structure of the Data Generating Process (DGP) model used in the simulation 
is first explained analytically using a particular STAR model used in Granger and 
Teräsvirta (1993), Teräsvirta, Lin and Granger (1993), Teräsvirta (1994), 
Escribano, Franses and van Dijk (1998), Escribano and Jordá (2001) and Lopes 
and Salazar (2006). The DGP is examined by varying the nonlinearity parameters 
in the models. From the results, nonlinearity tests are described. The DGP is, 
 
    1 2 20 1 21.8 1.06 0.9 0.795 ; ,t t t t t t d ty y y y y F y c              (12) 
 

where  0,0.1t tN   and  ; ,t dF y c
 is either the logistic or exponential 

transition function as given in (3) and (4) respectively. The 20  is the intercept in 
the nonlinear part of the Autoregressive model.  

Following Teräsvirta (1994), the LSTAR transition function in (3) is 
approximated by the third order Taylor’s series expansion as, 
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3 3

3 2 3 3

1 1 1; ,
4 48 4 16

1 1 .
16 48

t d t d

t d t d

cF y c c c y

c y y R


   

 

 

 

  
      

   

  

  (13) 

 
where R  is the remainder series. 

Substituting 100   and c = 0.2, then (13) becomes   
 
   2 3; , 20838.33 2525 12500 20833.33t d t d t d t dF y c y y y          (14) 
 
this is then substituted in (12) to obtain 
 

 

 

 

 

 

20 1 2

20 1 2

2
20 1 2

3 *
20 1 2

20838.3 18751.8 16567.5

2525 2272.5 2007.4

12500 11250 9937.5

20833.3 18750 16562.5

t t t

t t t d

t t t d

t t t d

y y y

y y y

y y y

y y y R









 

  

  

  

   

  

   

   

  (15) 

 
The expansion in (15) can be generalized as, 
 
        2 2 2 2' ' 2 ' 3

1 2 3t t t t d t t d t t d ty y y y y y y y      
       (16) 

 
where t  is some noise process and  2

ty  is the AR process of order 2 and 1 , 2  
and 3  are the parameters of the nonlinear regression model. From (16), the 
LSTAR model is specified if the parameter 2  is not significant at   level or if 
it is the least significant among the three betas. Otherwise, ESTAR is specified. 

Similar nonlinearity test to the above is developed in Escribano and Jordá 
(2001). Here there is suggestion to apply second order Taylor’s series expansion 
of the ESTAR function in (4) to approximate the transition function. The 
approximation is given as, 
 

 
   

 

2 2 4 3 2

2 2 2 2 3 2 4

1; , 2 2
2

13 2 .
2

t d t d

t d t d t d

F y c c c c c y

c y c y y R

    

   

 

  

 
    
 

    

  (17) 
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Substituting 100   and c = 0.2, then (17) becomes   
 
   2 3 4; , 12 120 1100 4000 5000t d t d t d t d t dF y c y y y y            (18) 
 
this is then substituted in (12) to obtain 
 

 

 

 

 

 

 

20 1 2

20 1 2

2
20 1 2

3
20 1 2

4 *
20 1 2

12 12.4 11.6

120 108 95.4

1100 990 874.5

4000 3600 3180

5000 4500 3975

t t t

t t t d

t t t d

t t t d

t t t d

y y y

y y y

y y y

y y y

y y y R











 

  

  

  

  

   

  

   

  

   

  (19) 

 
The expansion in (19) can be generalized as, 

 
          2 2 2 2 2' ' 2 ' 3 ' 4

1 2 3 4t t t t d t t d t t d t t d ty y y y y y y y y y        
        (20) 

 
Here, the parameters are of order 2 and LSTAR is specified once the odd 

parameters 1  and 3  are most significant. Otherwise, ESTAR is specified if the 
parameters  2  and 4  are most significant. 

Monte Carlo Simulation Experiment  

The Data Generating Process (DGP) defined as, 
 
    1 2 20 1 21.8 1.06 0.9 0.795 ; ,t t t t t t d ty y y y y F y c              (21) 
 

with the nonlinear transition functions   
 1

1; ,
1 exp 100 0.2t d

t

F y c
y






    

 

and    
2

1; , 1 exp 100 0.2t d tF y c y 
    
 

 for Logistic STAR and Exponential 

STAR respectively. In the DGP, the autoregressive parameter 20  is varied as 
 20 0,0.2,0.5   and the innovations are assumed to have non-constant variance, 

that is  0,0.1t tN  . The values of 20  are chosen such that the DGP will 
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realized stationary series. At  ; , 0tF s c  , the resulting linear model has 
complex roots that are less than unity in absolute term, hence the process becomes 
nonstationary and there is possibility of explosion. At  ; , 1tF s c  , the behavior 
of the process is influenced by the values of 20 . For example, when 20 {0,0.2}  , 
the resulting characteristic equation has complex roots that are less than unity in 
absolute terms, hence the system reverts back to stationary region. At 20 0.5  , 
the roots of the characteristic equations are real and the system realize 
nonstationary series.   

The variance equations used in the simulations are the ARCH (1), GARCH 
(1,1), STARCH (1), ST-GARCH (1,1) and ANST-GARCH (1,1) are: 

 
2 2

10.02 0.3t t      (22) 
 

2 2 2
1 10.02 0.3 0.6t t t        (23) 

 
 2 2 2

1 1 10.02 0.3 1 0.5t t t tF     
        (24) 

 
   2 2 2

1 1 1 10.02 0.3 1 0.5 0.6t t t t tF F       
         (25) 

 
 

 

2 2 2
1 1 1

2 2
1 1 1

0.05 0.5 0.3 1

(0.02 0.3 0.6 )
t t t t

t t t

F

F

   

  

  

  

     

  
  (26) 

 
The logistic and exponential functions for the innovations t  are 

 
 1

1

1
1 expt

t

F 







 

 and     2
1 11 expt tF       respectively. In each 

case, the nonlinear parameter in the variance equations in (14) to (18) is varied as 
 1,5,10  . The experiment is carried out over 1,000 replications with sample 

sizes  50,100,200,500,1000N  . Initialization problem is catered for by 
discarding the first 100 observations in each replication.  

 
The experiment was carried out in two scenarios: 
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1. When the LSTAR DGP was used to realize LSTAR series with the 
specifications of the variance equations (Tables 1-3).When ESTAR 
model was misspecified for LSTAR model (Tables 4-6). 

2. The relative frequencies of selecting an asymmetric STAR model 
with a particular variance equation are computed on every 1,000 
replications at 5% nominal significant level. 

 
The relative frequencies of selecting an asymmetric STAR model with a 
particular variance equation are computed on every 1,000 replications at 5% 
nominal significant level. 
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When the LSTAR DGP is used to realise LSTAR series. 

Table 1. Selection Frequencies of models at different 20  with fixed 1   
 

20 0, 1    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 0.522 0.934 0.692 0.879 0.551 0.918 0.683 0.875 0.697 0.875 
100 0.627 0.988 0.772 0.961 0.643 0.980 0.777 0.963 0.803 0.956 
200 0.707 0.999 0.903 0.996 0.741 0.998 0.902 0.996 0.917 0.994 
500 0.869 1.000 0.990 1.000 0.872 1.000 0.992 1.000 0.994 1.000 

1000 0.949 1.000 1.000 1.000 0.966 1.000 1.000 1.000 1.000 1.000 
 

20 0.2, 1    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - 0.598 0.500 - - 0.623 0.500 0.590 0.494 

1000 - - 0.672 0.554 - - 0.630 0.507 0.670 0.557 

 

20 0.5, 1    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - - - - - - - - - 

1000 - - - - - - - - - - 
 
Note: Table 1 presents the results of the selections of LSTAR models with forms of heteroscedastic innovation 

processes. EJP performed better than TP in selecting the LSTAR models at zero intercept, 20 0   of the 

DGP. Both LSTAR-GARCH and LSTAR-ANLSTGARCH models were detected at frequencies higher than that 

of other model variants. As 20  increased beyond 0, there was failure in model specifications as a result of 

matrix inversion problems encountered by the simulator. The results were worse when computed at the 

nonstationary region   20 0.2, 0.5   of the DGP.  
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Table 2. Selection Frequencies of models at different 20  with fixed 5   
 

20 0, 5    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 0.522 0.934 0.692 0.879 0.549 0.921 0.682 0.868 0.697 0.878 
100 0.627 0.988 0.772 0.961 0.647 0.979 0.789 0.963 0.811 0.954 
200 0.707 0.999 0.903 0.996 0.751 0.997 0.907 0.997 0.918 0.995 
500 0.869 1.000 0.990 1.000 0.878 1.000 0.993 1.000 0.992 1.000 

1000 0.949 1.000 1.000 1.000 0.962 1.000 1.000 1.000 1.000 1.000 

 

20 0.2, 5    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - 0.598 0.500 - - 0.620 0.496 0.605 0.488 

1000 - - 0.672 0.554 - - 0.631 0.483 0.687 0.556 

 

20 0.5, 5    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - - - - - - - - - 

1000 - - - - - - - - - - 
 
Note: Increasing   as 2 in Table 2, similar results to that of Table 2 were obtained. This implies that little 
increase in the nonlinearity of the residuals may not have significant effect on the specification of STAR models 
with Smooth Transition GARCH. The results were also worse at 5   
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Table 3. Selection Frequencies of models at different 20  with fixed 10 

 
20 0, 10    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 0.522 0.934 0.692 0.879 0.551 0.917 0.694 0.871 0.712 0.881 
100 0.627 0.988 0.772 0.961 0.641 0.780 0.790 0.962 0.823 0.958 
200 0.707 0.999 0.903 0.996 0.753 0.998 0.912 0.996 0.923 0.999 
500 0.869 1.000 0.990 1.000 0.888 1.000 0.991 1.000 0.988 1.000 

1000 0.949 1.000 1.000 1.000 0.961 1.000 0.999 1.000 1.000 1.000 
 

20 0.2, 10    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - 0.598 0.500 - - 0.616 0.496 0.605 0.477 

1000 - - 0.672 0.554 - - 0.644 0.450 0.690 0.530 
 

20 0.5, 10    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH 

LSTAR-
ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - - - - - - - - - 

1000 - - - - - - - - - - 
 
Note: Table 3 gives similar results to Tables 1 and 2. As we see in the previous results that correct model 

specifications were carried out at intercept 20 0   and at this point, the process realized stationary time 

series. 
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When ESTAR model is misspecified for LSTAR model 

Table 4. Selection Frequencies of models at different 20  with fixed 1   
 

20 0, 1    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - 0.750 0.569 - - 0.752 0.570 0.767 0.607 

1000 - - 0.784 0.638 - - 0.785 0.630 0.790 0.631 
 

20 0.2, 1    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - 0.614 0.470 - - 0.614 0.470 0.656 0.522 

1000 - - 0.673 0.554 - - 0.667 0.543 0.718 0.563 

 

20 0.5, 1    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - - - - - - - - - 

1000 - - - - - - - - - - 
 

Note: Tables 4-6 give the results of specifying ESTAR for LSTAR in the DGP in (12). At 20 0  , the simulator 
could not specify LSTAR and it reported matrix inversion problems. Also, TP performed better than EJP in 
selecting LSTAR from ESTAR DGP 
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Table 5. Selection Frequencies of models at different 20  with fixed 5   
 

20 0, 5    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - 0.750 0.569 - - 0.755 0.579 0.769 0.604 

1000 - - 0.784 0.638 - - 0.786 0.641 0.790 0.629 

 

20 0.2, 5    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - 0.614 0.470 - - 0.612 0.482 0.659 0.527 

1000 - - 0.673 0.554 - - 0.657 0.546 0.718 0.563 
 

20 0.5, 5    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - - - - - - - - - 

1000 - - - - - - - - - - 
 
Note: The results obtained here are similar to that of Table 4. 
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Table 6. Selection Frequencies of models at different 20  with fixed 10   
 

20 0, 10    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - 0.750 0.569 - - 0.760 0.578 0.768 0.609 

1000 - - 0.784 0.638 - - 0.789 0.644 0.788 0.625 
 

20 0.2, 10    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - 0.614 0.470 - - 0.612 0.482 0.656 0.527 

1000 - - 0.673 0.554 - - 0.655 0527 0.714 0.552 
 

20 0.5, 10    

N LSTAR-
ARCH 

LSTAR-
GARCH 

LSTAR-
LSTARCH 

LSTAR-
LSTGARCH LSTAR-ANLSTGARCH 

 TP EJP TP EJP TP EJP TP EJP TP EJP 

50 - - - - - - - - - - 
100 - - - - - - - - - - 
200 - - - - - - - - - - 
500 - - - - - - - - - - 

1000 - - - - - - - - - - 
 
Note: The results obtained here seem to improve insignificantly over that of Table 5. 

Conclusion 

This study considered the specification of asymmetric Smooth Transition 
Autoregressive (STAR) models with linear and nonlinear GARCH innovations. 
The GARCH error specifications are those proposed already in the literature. 
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Specifications of the Logistic STAR-GARCH (LSTAR-GARCH) variants were 
carried out using the usual STAR specification procedures. The empirical results 
showed strong support for modelling STAR models with different GARCH error 
specifications. The results further showed that STAR model in STAR-GARCH 
model cannot be misrepresented in the real sense.  
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One of the bases for assessment of wind energy potential for a specified region is the 
probability distribution of wind speed. Thus, appropriate and adequate specification of 
the probability distribution of wind speed becomes increasingly important. Several 
distributions have been proposed for describing wind distribution. Among the most 
popular distributions is the Weibull whose choice is due to its flexibility. An 
exponentiated Weibull distribution is proposed as an alternative to model wind speed data 
with a view to comparing it with the existing Weibull distribution. Results indicate that 
the proposed distribution outperforms the existing Weibull distribution for modeling 
wind speed data in terms of minimum Akaike information criterion (AIC) and likelihood 
function. Thus, the exponentiated Weibull can be used as an alternative distribution that 
adequately describe the wind speed and thereby provide better representation of the 
potentials of wind energy. 
 
Keywords: Wind power, Weibull, exponentiated Weibull, model selection criteria, 
maximum likelihood estimation 
 

Introduction 

Energy demand increases proportionally as world population grows rapidly. 
Governments and societies become interested to renewable energies. Wind energy 
is considered the most attractive as it ensures high output power compared to 
other renewable energies. Nevertheless, the assessment of the wind energy 
potential is complicated since the wind speed availability is probabilistic. Several 
statistical distributions have been used for the description of the wind speed 
distribution. The two-parameter Weibull distribution function has been commonly 
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used in many fields including wind energy assessment (Rehman et al., 1994; 
Bivona et al., 2003). 

Silva and Cordeiro (2012) were among the first among researchers to use 
compound distributions to model wind speed. They showed that Burr type XII 
distribution outperformed the commonly used Weibull distribution. Therefore, 
this article received its motivation from this and attempts to model wind speed 
using exponentiated Weibull distribution, which is a generalization of the Weibull 
distribution for increased and improved modeling potential.  

Weibull Distribution 

The Weibull distribution is characterized by two parameters K and S, the shape 
and scale respectively. A random variable V (wind speed) is distributed as 
Weibull if it satisfies the following probability density function. 
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exp
K K

V
K V Vf
C C C

     
     

     

.  (1) 

 
The corresponding distribution function is 
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.  (2) 

 
If V denotes the wind speed, then the average wind speed is expressed as 
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giving rise to 
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The variance of V is 
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which on simplification gives 
 

  2 2 22 11 1Var V C
K K
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from which 
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.  (7) 

 

Method of Estimating the Weibull Parameters 

Commonly used methods known as graphical and maximum likelihood methods 
are now considered. 

Graphical Method 
From (2) 
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Introducing In to both sides results in 
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and further introduction of In results in   
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Equation (10) can be expressed as Y a X b   where  
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Maximum Likelihood Method 
Harter and Moore (1965) were the earliest statisticians to use the maximum 
likelihood procedure because of its desirable characteristics. Given a random 
sample of size n wind speed drawn from a probability density function in (1), then 
the likelihood function will be 
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The logarithm of (11) becomes 
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by differentiating (12) with respect to K and C in turn and equating to zero, the 
following are obtained 
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Equations (13) and (14) are termed normal equations and can be solved 
numerically to obtain the maximum likelihood estimates of K and C. 

Exponentiated Weibull Distributions 

According to Mudhokar, et al., (1995), the exponentiated Weibull density 
function is defined as 
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  (15) 

 
where , 0 0iK C and d V  . 

This distribution is proposed to model wind speed for the first time. For 
adequate determination of wind speed, the parameters in equation (15) need to be 
estimated. For this, we adopt the use of maximum likelihood method. 

As before if 1 2, ,...; nV V V  is a random sample of size n wind speed drawn 
from the density function in (15), then the likelihood function is  
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The corresponding log-likelihood function is obtained by finding the logarithm of 
(16) is   
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Taking the derivative of (17) with respect to K, C and ,  results in 
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Equations (18), (19) and (20) are solved iteratively to obtain the maximum 
likelihood estimates of the parameters K, C and d. 

Moments of the Exponentiated Weibull Distribution 

Following the density function in (15), its rth moment can be obtained as: 
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which reduces to 
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Note from binomial series expansion that 
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thus, equation (21) becomes 
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therefore, the rth moment of the exponentiated Weibull distribution is 
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For simplicity let 
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If 1 1 1,jr and d w    then this reduces to the mean of the Weibull 
distribution and the moments, such as the Mean, Variance, Skewness and Kurtosis, 
can be obtained from (24). 

The mean and variance are respectively 
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Application 

The fitting of monthly wind data collected across regions in the south western part 
of Nigeria was considered using data from the period between 1992 and 2012. 
Using the R-Package, the following results were obtained. 

Estimates and Goodness-of-Fit for the Wind Speed Data 

January 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.2276 0.0002 1 19.3754 23.3754 
Exponentiated 

Weibull 0.6678 1 10.2721 0.9916 4.9916 

 

February 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.2168 0.0001 1 21.32016 25.32016 
Exponentiated 

Weibull 0.6598 1 13.5975 3.15927 7.15927 

March 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.20399 0.00006 1 23.75956 27.75956 
Exponentiated 

Weibull 0.641638 1 15.335852 6.31854 10.31854 
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April 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.19996 0.00005 1 24.55724 28.55724 
Exponentiated 

Weibull 0.6896499 1 41.4258026 15.38302 19.38302 

May 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.209261 0.000072 1 22.73786 26.73786 
Exponentiated 

Weibull 0.6710878 1 20.7852047 8.297559 12.297589 

June 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.2096060 0.000073 1 22.67258 26.67258 
Exponentiated 

Weibull 0.6915926 1 25.247869 10.20779 14.20779 

July 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.21815 0.000106 1 21.0735 25.0735 
Exponentiated 

Weibull 0.677590 1 15.3195704 5.094789 9.094789 

August 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.211048 0.0000782 1 22.39852 26.39852 
Exponentiated 

Weibull 0.692516 1 23.699390 9.502349 13.502349 
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September 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.2077786 0.00067 1 23.0227 27.0227 
Exponentiated 

Weibull 0.6699132 1 21.8338828 8.774993 12.774993 

October 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.222508 0.000127 1 20.28256 24.28256 
Exponentiated 

Weibull 0.6600494 1 11.9804517 2.943342 6.943342 

November 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.2262799 0.0001477 1 19.61016 23.61016 
Exponentiated 

Weibull 0.5949411 1 4.3888947 21.41094 25.41094 

December 

 MLE   
Distributions K C   –2log l AIC 

Weibull 0.2426764 0.0002682 1 16.81126 20.81126 
Exponentiated 

Weibull 0.6716818 1 7.055548 5.285842 9.285842 

Summary Statistics 
 

Min 1st Quarter Median Mean 3rd Quarter Mae 
1.54 2.94 4.06 4.578 5.88 9.81 

 

Note: Kurtosis = 2.502187, Skewness = 0.6333066 

Conclusion 

The performance of Exponentiated Weibull and Weibull distribution functions to 
model wind energy was systematically compared. It was observed that the log 
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likelihood values and the Akaike information criterion (AIC) for the 
Exponentiated Weibull was always smaller for the Weibull distribution for each 
month except the month of November. This indicates that the proposed 
Exponentiated Weibull distribution outperformed the existing Weibull 
distribution for wind speed data in terms of minimum AIC and likelihood function 
over the months of the years under review. Thus, the exponentiated Weibull can 
be used as an alternative distribution that adequately describes wind speed, and 
may provide better representation of the potentials of wind energy. 
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Histograms 
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Robust Regression Analysis for Non-Normal 
Situations under Symmetric Distributions 
Arising In Medical Research 
S. S. Ganguly 
Sultan Qaboos University 
Muscat, Oman
 
 
In medical research, while carrying out regression analysis, it is usually assumed that the 
independent (covariates) and dependent (response) variables follow a multivariate normal 
distribution. In some situations, the covariates may not have normal distribution and 
instead may have some symmetric distribution. In such a situation, the estimation of the 
regression parameters using Tiku’s Modified Maximum Likelihood (MML) method may 
be more appropriate. The method of estimating the parameters is discussed and the 
applications of the method are illustrated using real sets of data from the field of public 
health. 
 
Keywords: Maximum likelihood, modified maximum likelihood, student’s t- 
distribution, order statistics, delta method  
 

Introduction 

Often in medicine, a relationship is established between a response variable y, 
which depends on the r covariates x1, x2, …, xr,  which are independent of each 
other, so that, in total, there may be (r + 1) variables. In classical regression model, 
the response variable y is treated as a random variable whose mean depends upon 
fixed variables of the xi’s. The mean is assumed to be linear function of the 
regression coefficients α, β1, β2, … , βr. 

The linear regression model also arises in a different setting. Suppose all the 
variables y, x1, x2, …, xr are random and have a joint distribution 

 
1 2( , , ,..., )rf y x x x , 

which is not necessarily normal so that  
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 1 2 1 2 1( , , ,..., ) ( , ,..., ) ( ).r
r r iif y x x x g y x x x h x


    (1) 

 
It is assumed herein that the conditional distribution of y given , x1, x2, …, xr 

is normal and is given by 
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with mean 
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E y x x
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and variance 

 
    

22

1
1 r

o i oi
V y x  

  .  (4) 

 
The marginal density corresponding to the covariate xi is assumed to be 

symmetric about mean of the form: 
 

 1 i i

i i

xf 

 

 
 
 

  (5) 

  
Here 2( ), ( ) ( 1,2,..., )i i i oiiE x V x and i r     is the correlation 

coefficient between y and xi. Relation (2) provides for the measurement of 
dependency of the response random variable on the random covariates xi 
(i=1,2,…,r). 

The linear relationship may also be written in the form of classical 
regression model as 

 
   1

r
i ii

E y x x 


    (6) 
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where 
 

 
1

r o
oi iio

i


  


 

 
   

 
   (7) 

and 
 

 , 1,2,...,o
i oi

i

i r
 



 
  

 
  (8) 

 
are the regression coefficients. It may be noted that  E y x  is the best linear 

predictor of the response variable y where the population is 1( , )rN   . 
In medical epidemiology, one often encounters situations where some (if not 

all) covariates xi have non-normal symmetric distributions. This article is 
restricted to a situation where the covariates have non-normal symmetric 
distributions. The objective, therefore, is to estimate the parameters  ,

T
   from 

n sample values  , iiy x , 1 ≤ i ≤ n. For this, consider the family of student’s t- 
distributions. The method, which has been developed here, is, of course, general 
and can be used for other families of location-scale distributions of the type (5). 

Likelihood equations 

Suppose that the covariate xi (i=1,2,…,r) has the symmetric distribution with the 
density given by 
 

    
1 2

2 2
2

( )1 ,
ip

i i
i i ii

i i

xh x k x
k








   
    

  

  (9) 

 
where 2 3i ik p  , 2; ( )i i ip E x    and 2( )i iv x  . Assume that pi is known. 
For pi = 5, (9) is almost indistinguishable from logistic distribution, because the 
two distributions are both symmetric and have first four moments common 
(Pearson, 1963). If the two distributions are plotted, it will be seen that one sits 
almost on top of the other. It may be noted that 
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x
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has Student’s t – distribution with (2pi1) degrees of freedom. For 1 2ip  , k is 
equal to 1 in which case   in (9) is simply a scale parameter. 

Given the data matrix (n > r+1) of the form 
 
 1( ; ,...., ,.... ) , 1,2,...,j j ji jky x x x j n   (10) 
 
where y is the response variable and the x terms as explanatory variables or 
covariates. Then the likelihood function L based on relation (1) can be written as 
usual and is given by 
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  (11) 

 
where ( ) , ( 1,2,..., ; 1,2,..., )i jx i r j n   are the order statistics of xi observations, 
and   ( 1,.., )jy j n  are the corresponding concomitant y observations. The 

maximum likelihood estimators are the solutions of the likelihood equations, i.e, 
of the derivatives of nL . These equations are, however, intractable. Solving 
them by iterative procedures may be problematic, for example, one may 
encounter multiple roots, slow convergence, or convergence to wrong values (see 
specifically Barnett, 1966; Lee et al., 1980; Tiku and Suresh, 1992; Vaughan, 
1992). Instead the Tikus method of modified likelihood (MML) estimation was 
employed, which gives explicit estimators and involves replacing intractable 
terms by linear approximations. Because this method is already well established 
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and is known to produce estimators which are fully efficient for large n (Tiku, 
1970; Bhattacharyya, 1985) and almost fully efficient for small n (Tiku et al, 
1986; Tiku and Suresh, 1992; Vaughan, 1992, 1994). 

Modified Maximum Likelihood 

Consider the ith covariate of a random sample of size n denoted by x1i, x2i,…,xni 

from any location-scale distribution with density given by 
 

1 , 1,2,...,ji i

i i

x
f i r



 

 
 

 
. 

 
For simplicity of notation, suppress the suffix i and consider f to be a student 

t density. Then the likelihood equations for estimating   and   corresponding to 
each covariate are   
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  (12) 

 
Equations (12) do not provide explicit solutions. Following Tiku-Suresh 

(1992); Vaughan and Tiku (2000), the first step is to express these equations in 
terms of order statistics (1) (2) ( )... nx x x  . Because complete sums are invariant to 
ordering  
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Under appropriate regularity considerations which are very general in nature, 

( )( )jg z  can be replaced by linear approximations given by the first two terms of 
Taylor series expansions (Tiku, 1967, 1968; Tiku and Suresh, 1992; Tiku and 
Kambo, 1992, Vaughan, 1992; Vaughan and Tiku, 2000), so that 
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Thus, the modified equations are obtained, i.e. 
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  (15) 

Equations (15) have explicit solutions, which are called modified maximum 
likelihood (MML) estimators. Note that the ML and MML estimators are 
asymptotically equivalent. 

For distribution ( 2, 2 3)p k p    
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  (16) 

 
This method gives the following MML estimators (see Tiku and Suresh, 1992; 
Tiku and Kambo, 1992; Vaughan, 1992; Vaughan and Tiku, 2000; Tiku et al, 
2008) 
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The coefficients andj j   are obtained from the equations 
 

 
   

  

3 2
( ) ( )

2 22
2 ( )

( )

2 1 1
and , 1,2,...,

1 1 11

j j
j j

j
j

k t k t
j n

k tt
k

 


  
   
  
  

  (20) 

 
For p   (i.e. for normal distribution), 0j   and 1j  , because 

k=2p−3. Note that 1 1
1

, (1 ) 0
n

j n j j n j j
j

j n and       



      . Tables of 

the value of ( )jt  are available for p=2(.5) 10 and n ≤ 20 (Tiku and Kumra, 1985). 
For n > 20, ( )jt  are obtained from the equation 
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 ( ) ( ) (1 ).
1

jt jf z dz j n
n

  
   (21) 

 

In evaluating (21), it should be noted that  
1

2( / )k z  has student’s t- 
distribution with 2 1p    degrees of freedom. 

It may be of interest to note that in deriving the estimators   and   given 
by the equations (17)-(20), the method of MML estimation for p < 

automatically gives small weights to extreme order statistics close to the center. It 
is precisely due to this fact these estimators are robust to reasonable departures 
from the true value of p in (16). In most applications, therefore, it is not very 
important to pinpoint the true value of p and use it in all derivatives. Any 
reasonable value of p gives almost optimal results. 

A Q-Q plot can be employed to give a reasonable value closure (if not 
exactly) the true value of p corresponding to covariate x (Tiku et al, 1986, p.277). 
The order statistic ( )jx  is plotted against the values

( ) ( ) ( )( ), ( ) / , 1,2,...,j j j jt E z z x j n     , under the assumed model, i.e. for a 
particular value of p in (16). If the plot gives a straight line (or nearly so), the 
model is taken to be valid for the MML estimation. 

Following the above procedure, the parameters i  and ( 1,2,..., )i i r   are 
estimated. In order to estimate the remaining parameters viz., 

, , ( 1,2,..., )o o oi i r    , the likelihood function (11) is considered. Because 
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by replacing  ( )i jg z  with the linear approximations given by (14). The solutions 

of these equations are the following MML estimators: 
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Relation (22) provides for the measurement of dependency of the response 

random variable on the random covariates ( 1,2,..., ).ix i r  The linear relationship 
is also represented in the form of classical model (6). 

The asymptotic variances and covariances of the estimators 1, , ,o io   
   

 

and ( 1,2,..., )oi i r


 are obtained with the use of the second partial derivatives of 
the likelihood function (11). The matrix formed by the negative of the expected 
values of the second partial derivatives gives the information matrix, which may 
be expressed as the partitioned matrix 

 



S. S. GANGULY 

455 

 1

2

V O
V

O V
 

  
 

  (29) 

 
where the matrix is of the order (3r+2) × (3r+2) and 
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of order (r+1) × (r+1) and 
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of order (2r+1) × (2r+1) with 1 2 1 2 1( , ,..., )o r ok        . 

The inverse of 1V  and 2V  matrices provides the elements of the precision 
and covariance structure of the estimated coefficients. 

The estimated values of the parameters obtained above are used in relation 
(7) and (8) which give the estimated values of the regression coefficients α and 

( 1,2,..., )i i r   of the model (6). The asymptotic covariance structure of the 

estimated regression coefficients 


 and ( 1,2,.., )i i r


  are obtained using delta 
method (Serfling, 1980) as: 

Let  ,g    and  , ,    , then 
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of order (3r+2) × (r+1) and 
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of order (3r+2) × (3r+2). Note that when p   the distribution (16) reduces to 

the ideal normal distribution in which case x


  (sample mean) and 
2

2s


  
(sample variance), 2x and s  being optimal under the assumption of normality.     

Examples 

Example 1 
Consider the part of the data set pertaining to 20 male insulin-dependent diabetic 
patients as provided in Dobson (1990, p. 69), which is reproduced in Table 1. 
 
 
Table 1. Carbohydrate, age and weight for twenty insulin-dependent diabetics 
 

y = Carb. (gm) x1 = Age (yrs) x2 = Wgt (kg) 
 

y = Carb. (gm) x1 = Age (yrs) x2 = Wgt (kg) 

33 33 100 
 

50 31 108 
40 47 92 

 
51 61 85 

37 49 135 
 

30 63 130 
27 35 144 

 
36 40 127 

30 46 140 
 

41 50 109 
43 52 101 

 
42 64 107 

34 62 95 
 

46 56 117 
48 23 101 

 
24 61 100 

30 32 98 
 

35 48 118 
38 42 105   37 28 102 

 
 

In this sample, the goal is to establish the relationship between the response 
variable y (amount of carbohydrate) and the two covariates 1x  (age) and 2x (body 
weight, relative to “ideal” weight for height) using the linear regression model (6) 
which takes the form 

 
  1 2 1 1 2 2,E y x x x x       (31) 

 
Here, it is assumed that, in relation (1), the conditional distribution of the 

response random variable y is normal; however, the covariates follow 
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independently non-normal symmetric distribution. The model (31) is fitted using 
above described modified maximum likelihood method. 

First obtain the values of 1p  and 2p corresponding to the two covariates 1x  
and 2x  using Q-Q plots, where the order statistics 1( )jx  and 2( )jx  were plotted 
separately against 1( )jt and 2( )jt  respectively, j = 1,…,n for different values of p as 
given in Tiku and Kumra (1985). The values of 1 5p   and 2 7p   provided an 
approximate straight line patterns which determined the appropriate types of 
densities in (16). Once 1p  and 2p are known, then using the equations (17)-(20), 
the MML estimates of the parameters 1 1,   and 2 2,   are obtained. Using these 
values in equations (22)-(28) the rest of the parameters 1, ,o o o    and 2o are 
estimated. Solutions of the information matrix (29) provided the elements of the 
precision and covariance structure of the estimated parameters. The estimated 
values and their standard errors are presented in Table 2. 
 
 
Table 2. MML estimates of the 
parameters and their standard 
errors for the data set in Table 1 

 

Table 3. MML and ML estimates of the 
parameters and their standard errors  for 
the data set in Table 1 

 Param. Est. Std. Err.   Param. Est. Std. Err. W 
μo 37.732 1.848   Constant (α) 59.783 12.469  
μ1 46.437 3.008  MML Coefficient (β1) -0.035 0.124 -0.282 
μ2 109.936 3.776   Coefficient (β2) -0.186 0.099 -1.879 
σo 7.635 1.411       
σ1 13.989 1.789      

 σ2 17.265 2.351   Constant (α) 60.432 13.017 
ρo1 -0.064 0.228  ML Coefficient (β1) -0.046 0.131 -0.351 
ρo2 -0.420 0.243   Coefficient (β2) -0.187 0.101 -1.851 

 
 
Using the estimated values in Table 2 in relation (7) and (8), obtain MML 
estimates of the regression parameters 1,   and 2 . Use of delta method as 
described in (30) provided the asymptotic standard errors; also these parameters 
based on usual maximum likelihood method were estimated. The results, obtained 
under the two methods are summarized in Table 3. 

The analysis in Table 3 reveals that the MML estimates of the regression 
parameters for the data set in Table 1 are very close to the values obtained using 
maximum likelihood method, as expected. Moreover, the two methods gave 
approximately the same results for the Wald statistics W, which permits to test the 
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null hypothesis 1 2: 0 0oH and   . For large n, the null distribution of W is 
referred to a standard normal distribution. 

Example 2 
Consider another data set from Murray (1937), reproduced in El-Saidi (1995, p. 
214) as shown in Table 4. The data provides 11 observations on the number of 
male flies died after twenty minutes exposure to pyrethrum at various 
concentrations. 

The main objective is to describe the probability of success jp  as a function 
of dose jx . In literature, such type of analysis are carried out usually considering 
either probit or logit models (Cox, 1970). However, the logit model is preferred to 
a probit model due to two primary reasons (Hosmer and Lameshow, 1989): from 
mathematical point of view, it is an easily used function, and it leads to itself to a 
biological meaningful interpretation. 
 
Table 4. Mortality of male flies after twenty minutes exposure to pyrethrum 
 

Concentration 
(log10) 

Number of flies Proportions 
Died Exposed Died 

1.6020 462 109 0.2359 
1.7782 500 199 0.3980 
1.9031 467 298 0.6381 
2.0000 515 370 0.7185 
2.0792 561 459 0.8182 
2.1461 469 400 0.8529 
2.2041 550 495 0.9000 
2.2553 542 499 0.9207 
2.3010 479 450 0.9395 
2.3979 497 476 0.9577 
2.4771 453 442 0.9757 

 
 

The logit model is a family of Generalized Linear Models (GLMs) with link 

function ( )jg p  as 
1

j

j

p
n

p
 
   

(Nelder and Wedderburn, 1972; McCullagh and 

Nelder, 1989). The link function ( )jg p is continuous and maps the  0,1  range of 

probabilities onto  ,   and is represented by 
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so that 

 

 
exp( )

, 1,2,...,
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j
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  (33) 

 
The relation (33) is known as binary logistic model with probability of 

success pj, this belongs to the standardized logistic distribution which is 
symmetric in nature (Rao and Toutenburg, 1995, p. 263). 

In order to estimate the unknown parameters α and β in (32), usually ML 
method is used. The technique involves the solution of the likelihood equations, 
which have no explicit solutions and have to be solved by interactive procedures. 
Solving these equations is, therefore, tedious and time consuming. Therefore, 
these parameters are estimated using MML method. 

For this, consider the link function i.e. log odds as a response variable and 
jx  as a covariate. First estimate 1 1and   for p=5 in distribution (16). Using these 

values in equations (22)-(28), the rest of the parameters 1,o o oand    involved 
in the likelihood function (11) were obtained. The estimated values of the 
variances and co-variances were obtained using these values in second partial 
derivatives of the likelihood function (11) and solving for the inverse of the 
information matrix (29). The estimated values of the parameters and their 
standard errors involved in the likelihood function (11) with p =5 for the data set 
in Table 4 are shown in Table 5. 

Using these estimated values of the parameters in relation (7) and (8), obtain 
the MML estimates of the parameters ̂  and ̂  of the logistic model (33). The 
use of delta method (30) gave the asymptotic variances of ̂  and ̂ . The ML 
estimates of these parameters and their variances under the logit model (32) were 
also obtained using iterative procedures viz; Newton-Raphson method (Cox, 1970, 
Chapter 2). The results obtained under the two procedures are summarized in 
Table 6.  

These analyses also reveal that the MML estimates of the regression 
parameters α and β for the data set in Table 4 are very close to the values obtained 
using maximum likelihood method, as expected.  
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Table 5. MML estimates of the 
parameters and their standard 
errors for the data set in Table 4 

 

Table 6. MML and ML estimates of the 
parameters and their standard errors for logit 
model (32) 

Param. Est. Std. Err.   Param. Est. Std. Err. 
μo 1.642 0.459  MML Constant (α) -10.219 0.186 
μ1 2.115 0.082  Coefficient (β) 5.608 0.087 
σo 1.593 0.198      
σ1 0.284 0.035  ML 

Constant (α) -10.329 0.343 
ρo1 0.999 0.003  Coefficient (β) 5.661 0.172 

 
 

This study used Tiku’s modified maximum likelihood method for carrying 
out regression analysis when the underlying distributions of the data set have non-
normal symmetric distributions. The method yields estimators which are explicit 
functions of sample observations and are numerically very close to the maximum 
likelihood estimators and equally efficient. 
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A general approach for conducting power analysis in two- and three-level hierarchical 
linear models (HLMs) is described. The method can be used to perform power analysis to 
detect fixed effects at any level of a HLM with dichotomous or continuous covariates. It 
can easily be extended to perform power analysis for functions of parameters. Important 
steps in the derivation of this approach are illustrated and numerical examples are 
provided. Sample code implementing this approach is provided using the free program R.  
 
Keywords: power analysis, hierarchical linear model, mixed model, R, power 
analysis for hierarchical linear model 
 
 
Hierarchical linear modeling (HLM) is widely used in various areas of social 
science (Singer, 1998; Raudenbush & Bryk, 2002). As with any quantitative 
method, it is frequently important to perform power analysis in order to determine 
the necessary sample size to achieve a given level of power, to describe the 
minimum detectable effect size, or to describe the level of precision in the 
estimation of effects that is achievable by a given study design and sample size.  

Power analysis in the general linear model context is straightforward. Many 
empirical researchers are trained in the methods of performing power analysis for 
linear models and several excellent pieces of software, such as GPower and SAS 
PROC GLMPOWER, are widely available (Thomas & Krebs, 1997; Lewis, 2006). 
The penetration of HLM into the mainstream of a variety of social science 
disciplines has created a need for convenient tools to perform power analysis for 
HLMs. Several software applications are currently available for HLM power 
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analysis. Optimal Design (Raudenbush, et al., 2004) is a widely used HLM power 
analysis software in social sciences, and allows researchers conduct power 
analysis on difference between treatment and control group in a number of cluster 
data analysis scenarios. However, it lacks the functionality of conducting power 
analysis for continuous predictors. Power Analysis in Two-Level Designs (PinT; 
Snijders & Bosker, 1993; Bosker, Snijders, & Guldemond, 1999) accommodates 
power analysis for continuous variables, but is limited to 2-level HLM’s. 
Simulation-based power analysis software, like MLPowSim (Browne, Golalizadeh 
& Parker, 2009) and ML-Des (Cools, Van den Noortgate & Onghena, 2008), offer 
more flexibility, but it takes a much longer time to conduct simulation-based 
power analysis, and they do not allow unbalanced design. 

This article provides insights about how to conduct power analysis in HLM 
studies and introduce ways to increase flexibility in power analysis previously 
mentioned pre-packaged software are lacking. Some reader familiarity with the 
basics of power analysis in a linear models framework is assumed; readers are 
referred to Cohen (Cohen, 1988, 1992) for a review of the fundamentals. A 
general strategy is put forth for performing power analysis in HLMs and the 
calculation of the covariance matrix of parameter estimators for models of various 
complexities, which is the critical component to calculate power, is illustrated. 
Also illustrated is how to use the equations derived to perform power calculations 
using R, although they could be performed in any software that performs matrix 
calculations. The goal is to provide a flexible and general approach that can be 
used for different scenarios, many of which may not be implemented in existing 
software. 

Review of Power Analysis 

Performing a power analysis involves calculating standard errors for estimators of 
parameters of interest. Once armed with an effect size and a standard error, a 
researcher can produce a test statistic that may then be compared against a chi-
square, T, or F distribution (Cohen, 1998) to estimate approximate power. This 
paper focuses on the process of appropriately obtaining the standard error of a 
parameter estimator in HLM, which is the square root of the variance estimate of 
the parameter estimator. The actual power calculation using an assumed effect 
size and standard error is shown in numeric examples. 
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Statistical Power in HLM 

The process of power analysis for multilevel models differs depending on whether 
one wishes to calculate power for a continuous variable or a dichotomous variable. 
This article will show that the dichotomous case is much simpler. In fact, an 
explicit analytical result is derived; however, the starting point is the more general 
continuous case. In the continuous case, the variance of the parameter estimator of 
interest depends on the sample data which researchers may not have when they 
conduct their power analysis. Therefore, additional information about unknown 
sample data must be assumed. In addition, the inclusion of covariates as well as 
whether the model contains random slopes will impact the power analysis. 
Although analytical solutions could be derived for some special cases, slightly 
different models could end up with very different analytical forms. Therefore a 
general numerical approach that may be used with a variety of models will be 
illustrated. 

The goal is to calculate a test statistic, whose approximate distribution is 
known, that can be used to estimate the power of a statistical test of a parameter. 
Given certain assumptions regarding the model, parameter values, and sample 
data, the variance-covariance matrix of all the fixed effect parameters in the 
model can be approximated. This implies that the power to detect any fixed effect 
can be easily calculated. Furthermore, it will be demonstrated that the power to 
detect functions of parameters (e.g., contrasts) can also be calculated once the 
variance-covariance matrix is obtained. For maximum generality matrix notation 
is used to describe the model. 

Power Analysis for Two-Level Models with Continuous 
Variables 

According to the Gauss-Markov theorem, when errors are independently 
identically normally distributed with mean of zero and a constant variance in a 
simple linear regression model, the ordinary least squares estimator (OLSE) is the 
best linear unbiased estimator (BLUE; Hayashi, 2000). However, the assumption 
of independently identically distributed (i.i.d.) errors is not realistic for multilevel 
data. The variance-covariance matrix of random errors in response variables can 
be assumed to be 2    as opposed to 2  , where  is an identity matrix 
according to the conditions specified in the Gauss-Markov theorem. As a result, 
the OLSE can be generalized to obtain a generalized least squares estimator 
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(GLSE)  
11 1' 'X X X Y


    . Note that when I  , GLSE is OLSE. Under 

the assumption that 2   is specified correctly, the GLSE is also BLUE (Aitken, 
1935). Suppose a researcher conducts a study in which she enrolls J   groups of 
participants and each group consists of n  individuals. There are all together m   
level-one predictors. The level-one equation in matrix form is Y X e  , where  
Y  is a *1nJ  vector, X  is a *nJ mJ   diagonal block matrix,   is *1mJ  , and e   
is a *1nJ  vector. 

The level-one equation in matrix form is  
 

 
 

The elements of one column in each block in X  are all 1 if the level-one 
model has an intercept. The intercept can also be considered as a slope when x is 
always equal to 1; no further distinction will be given between intercepts and 
slopes in the remainder of this article. 

The level-two equation is 
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where ijkz   indicates the kth second level predictor that is for the jth group and has 
an effect on ith level-one variable.   

The size of the level-two predictor design matrix Z is *mJ mp . The size of 
the level-two parameter vector   is *1mp  , and the random slope U  is a *1mj  
vector. Note that the above equation assumes that all level two predictors have 
effects on all  ’s. In practice, the design matrix of level two predictors should be 
constructed according to the actual model of interest. Also, researchers may 
specify some level-one parameters to have random effects. A level-two HLM 
equation can also be written in the following fashion: 

 
  Y X Z U e     (1) 
 
By distributing X  : 

 
 Y XZ XU e     (2) 
 

Because   can be considered as a vector of fixed effects, only  XU e  is 
random in Y. 
 

 
   

2 2 2'k

V Var Y Var XU e

X X I  

  

   
  (3) 

 
As can be observed, the variance components are divided into multiple parts, 

and the number depends on how many level‐one predictors have random effects. 
Directly following generalized linear model theory, results in 

 

         
112ˆ 'Var XZ XZ 




    (4) 

 
(Snijders & Bosker, 1993). Using a conclusion from De Leeuw and Kreft (1986, p. 
25) that 
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  (5) 

 
As a result, if the 2 2, , , ,  and X Z V  matrices are known, the variance-

covariance matrix of ̂ can be calculated. If this information and the assumed 
effect size of ̂ are determined before conducting power analysis, power can be 
estimated using the 2  distribution. However, one problem remains: Prospective 
power analysis takes place before the study begins, so some of the needed 
information may be unavailable. In order to proceed with the power calculation, it 
is necessary to make some assumptions about the values of level one and level 
two covariates. One obvious option is to gather information on the distribution of 
the covariates, draw random variates from the distributions, and use that 
information in the calculations. 

A general strategy to estimate power for the effects of covariates in two-
level HLM is now presented; the procedure is as follows: First, assume values for 
the following: the effect size for the parameter of interest, the level one residual 
variance 2 , the level-two random effects' variance-covariance matrix 2 , means 
and variance-covariance matrix of the level-one covariates, X , and the means of 
the level-two covariates, Z . Second, write down their specific models in matrix 
form and get detailed expressions for , ,  and X Z  . Third, perform the matrix 
calculation and describe and obtain an estimation of the variance-covariance 
matrix of all the fixed effects' parameter estimators. Finally, the assumed effect 
size and the variance of the parameter estimator of interest can be used to 
construct a 2  statistic to obtain the estimated power. 

Example Power Analysis for Two-Level Model Where 
Covariate Values are Known 

Consider an example of a growth model with ten time points, a random intercept 
and a random slope for time. The model may be written as: 
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  (6) 

 
When considering the values of the covariates ijx  and jz , researchers may 

face two situations. One is that ijx  and jz are completely or partially unknown 
prior to data collection. In this case, to conduct power analysis, the researcher will 
have to assume the first and second moments of the covariates. The second 
situation is that ijx  and jz  are known. For example, if jz  represents different 
levels of treatment, the number of levels and the number of individuals assigned 
to each is known in advance of data collection. For this example, assume that ijx  
represents the coding of ten equally-spaced time points, jz represents five levels 
of treatment, and the model assumes linear effects of ijx  and jz . 

Step one: Assume necessary values.  

Assume that the effect size,   , of 01  is 1.0, The level-one error variance, 2  , is 
10. The variance-covariance matrix of the level-two random components ju  is 

5.0 1.0
1.0 4.0
 
 
 

. The number of clusters, j , is 50. The number of repeated measures 

per cluster, n , is 10. The total sample size is 500; input these values into R by 
creating variables to hold them. 
 
pisq <- 10 
tausq <- array(c(5,1,1,4), dim=c(2,2)) 
delta <- 1 
n <- 10 
j <- 50 

Step two: Write out matrix forms of X  and Z   
The matrix format of the reduced form equation is: 
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 (7) 
 

In this case, X is a block diagonal matrix. Each block contains a vector of 
ones to define the intercept and a second vector coding the time points according 
to the model. Z is stack of block diagonal matrices. Within each submatrix, the 
first row describes how the level-one intercept is a function of the level-two 
parameters, 00, 01, 10, 11 and      . The second row describes how the slope for the 
time parameters is a function of the same parameters. These matrices are specified 
in R by creating two operation matrices, A and B, and then their Kronecker 
product is calculated to obtain X.  A is a  by j j  identity matrix and B is an n by 2  
matrix containing a column vector of ones and column vector containing the 
coding of time. 

 
A <- diag(j) 
B <- array(c(1,1,1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,10), dim=c(10,2)) 
X <- kronecker(A,B) 
 

The Z matrix is created by the following code: 
 
Zmean1 <- 1 
Zmean2 <- 2 
Zmean3 <- 3 
Zmean4 <- 4 
Zmean5 <- 5 
B1 <- matrix(data=c(1,0,Zmean1,0,0,1,0,Zmean1), nrow=2, ncol=4) 
A1 <- array(1, dim=c(j/5,1)) 
Z1 <- kronecker(A1,B1) 
B2 <- matrix(data=c(1,0,Zmean2,0,0,1,0,Zmean2), nrow=2, ncol=4) 
A2 <- array(1, dim=c(j/5,1)) 
Z2 <- kronecker(A2,B2) 
B3 <- matrix(data=c(1,0,Zmean3,0,0,1,0,Zmean3), nrow=2, ncol=4) 
A3 <- array(1, dim=c(j/5,1)) 
Z3 <- kronecker(A3,B3) 
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B4 <- matrix(data=c(1,0,Zmean4,0,0,1,0,Zmean4), nrow=2, ncol=4) 
A4 <- array(1, dim=c(j/5,1)) 
Z4 <- kronecker(A4,B4) 
B5 <- matrix(data=c(1,0,Zmean5,0,0,1,0,Zmean5), nrow=2, ncol=4) 
A5 <- array(1, dim=c(j/5,1)) 
Z5 <- kronecker(A5,B5) 
Z <- rbind(Z1,Z2,Z3,Z4,Z5) 
 

In this example, a balanced design is assumed because there are equal 
numbers of time points assigned to each individual and equal number of 
individuals assigned to each level of treatment. However, researchers can conduct 
power analysis for unbalanced designs using this method by assigning varying 
numbers of time points to individuals or varying numbers of individuals across 
levels of treatment. 

Step three: Obtain the approximate variance-covariance matrix 

In order to simplify the syntax for calculating  
12 *


  , as shown in Equation 5, 
pre-define the identity matrix I  and perform a calculation to obtain  , the block-
diagonal matrix with J  blocks of the 22 by 2   matrix of variance components: 
 
I <- diag(n*j) 
I1 <- diag(j) 
psi <- kronecker(I1,tausq) 
 

Now  
12 *


   can be obtained using the following code. The a, b, c, and 

d matrices correspond with the components of Equation 5. Use the solve 
command to perform matrix inversion. 
 
a <- (pisq^-1)*I 
b <- (pisq^-1)*(X %*%solve(t(X) %*% X)%*% t(X)) 
c <- (pisq)*(solve(t(X)%*%X))+ psi 
d <- X%*%(solve(t(X)%*%X))%*%(solve(c))%*%(solve(t(X)%*%X))%*%t(X) 
OmegaInv <- (a-b+d) 
 

With this information, obtain the variance-covariance matrix of the parameter 
estimates using Equation 4. 
 
e <- t(Z) %*% t(X) %*% OmegaInv %*% X %*% Z 
Var_gamma <- solve(e) 
 

After the covariance matrix has been obtained, the power estimate may be 
calculated by using the chi-square approximation. In the following code, compute 
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the non-centrality parameter 1Z   by dividing the squared effect size by the 
relevant element from the covariance matrix and then obtaining the probability 
from the chi-square distribution with 1 degree of freedom. Interest lies in the 
power to detect the effect of 01 , the parameter describing the effect of jz on the 
outcome, which is the second of the four fixed effects. Its variance is represented 
by the (2, 2) entry of the variance-covariance matrix. It turns out the power to 
detect 01  for an effect size of 1.0 under all the above assumptions is about 0.9. 
The following R code produces the power estimate: 

 
Z1 <- (delta^2)/Var_gamma[2,2] 
pchisq(3.841459, 1, Z1, lower.tail=FALSE) 

Example Power Analysis for Two-Level Model where 
Covariate Values are Unknown 

In the previous example, the values of the level-one and level-two covariates were 
known prior to data collection. The level-one covariate in the growth model 
represented ten time points while the level-two covariate  represented five levels 
of treatment. Because the values were known, the X and Z design matrices could 
be constructed with the known values. However, in many cases the values of 
covariates are unknown prior to data collection. In this situation researchers will 
need to assume values for the means, variances, and covariances of the covariates 
in X and Z . The design matrices may then be constructed with values obtained 
from taking random draws from the appropriate univariate or multivariate 
distributions. In this section, power analysis for the model considered in the first 
example will be performed, but this time X and Z  will contain continuous 
covariates with unknown values. 

Step one: Assume necessary values. The assumed values for all model 
parameters will be the same as the previous example, except  0,1x N  and

 0,1z N . The effect size of 01  is 1.0, the level-one error variance, 2  , is 10. 
The variance-covariance matrix of the level-two random components  is 

5.0 1.0
1.0 4.0
 
 
 

 as before. The number of clusters, j , is 50. The number of repeated 

measures per cluster, n , is 10. The total sample size is 500. The R code is 
identical to that provided for the first example, with the exception of the creation 
of the X and Z  matrices. New variables, however, will be added to hold the 
means and standard deviations of the covariates. If the model included more than 
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one covariate in X or Z , additional variables would be needed to contain their 
pairwise covariances. 

 
meanx <- 0 
sdx <- 1 
meanz <- 0 
sdz <- 1 

Step two: Write out matrix forms of X and Z  
Readers are referred to Equations 6 and 7 for scalar and matrix representations of 
the model. The status of covariates as known or unknown does not affect the 
representation of the model. The issue is the creation of X and Z   with randomly 
drawn values. The following code will perform this task: 
 
library(Matrix) 
B <- list() 
set.seed(1234) 
for (i in 1:j) { 
Bx1 <- rep(1, times=n) 
Bx2 <- rnorm(n, mean=meanx, sd=sdx) 
B[[i]] <- cbind(Bx1, Bx2) 
} 

This code loads the Matrix library and defines the object B as a list. A loop 
creates a design matrix for each j  by creating a vector of ones to code the 
intercept and then making n  draws from the normal distribution to determine 
plausible values in X . These blocks are stored in objects named B[[1]] to B[[j]]. 
Now these must be assembled into the overall design matrix X  which has a 
block-diagonal structure as shown in Equation 7. The random number seed 
ensures that repeated runs of the code will produce identical pseudo-random 
draws for x . 

 
C <- list() 
for (i in 1:j) { 
if (i == 1) {C[[i]] <- B[[1]]} 
else {C[[i]] <- bdiag(C[[i-1]], B[[i]])} 
} 
X <- C[[j]] 
 

This code assembles the X  matrix by adding one block at a time using the 
bdiag command from the Matrix package. A similar procedure will be used to 
create the Z  matrix. 

 
D <- list() 
set.seed(4321) 
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for (i in 1:j) { 
zj <- rnorm(1, mean=meanz, sd=sdz) 
Dz1 <- c(1, zj, 0, 0) 
Dz2 <- c(0, 0, 1, zj) 
D[[i]] <- rbind(Dz1, Dz2) 
} 
E <- list() 
for (i in 1:j) { 
if (i == 1) {E[[i]] <- D[[1]]} 
else {E[[i]] <- rbind(E[[i-1]], D[[i]])} 
} 
Z <- E[[j]] 
 

The first loop creates j design matrices, stored in objects D[[1] to D[[j]]. 
Because the both the level-one intercept and slope are regressed on the same the 
same variable, a single draw for z is used in both rows of the “D” matrix. The 
second loop binds all j matrices together into the complete Z. A different random 
number seed should be specified here so the random draws that provide values for 
z  are not identical to the first j draws of x . 

Step three: Obtain the approximate variance-covariance matrix 
After X and Z  are specified the variance-covariance matrix of fixed effects 
parameter estimates may be obtained using the same code used in the previous 
example. The (2, 2) entry of this matrix provides the approximate variance of the 
fixed effect 01  . The following code performs this calculation: 
 
I <- diag(n*j) 
I1 <- diag(j) 
psi <- kronecker(I1,tausq) 
a <- (pisq^-1)*I 
b <- (pisq^-1)*(X %*%solve(t(X) %*% X)%*% t(X)) 
c <- (pisq)*(solve(t(X)%*%X))+ psi 
d <- X%*%(solve(t(X)%*%X))%*%(solve(c))%*%(solve(t(X)%*%X))%*%t(X) 
OmegaInv <- (a-b+d) 
e <- t(Z) %*% t(X) %*% OmegaInv %*% X %*% Z 
Var_gamma <- solve(e) 
 

If the assumed effect size is 1.0, then the power estimate is obtained by the 
following code: 

 
Z1 <- (delta^2)/Var_gamma[2,2] 
pchisq(3.841459, 1, Z1, lower.tail=FALSE) 

 
The power estimate is about 0.60. It is important to note that when this 

approach is used there may be considerable sampling variation across runs in the 
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draws of x  and z  . The amount of sampling variability in x is much smaller than 
in z because there are  nj x 's but only  j z 's. This may lead to some between-run 
variability in the power estimate. It is recommended that researchers run the 
program several times with different random number seeds and average the power 
estimates across runs. 

Power Analysis for Three-Level Models with Continuous 
Variables 

Next is an outline of how to perform power analysis for a three-level model 
using the same method. First a general matrix formulation of a three-level HLM is 
provided. 

 
  Y X Z W V U e        (8) 
 

 Y XZW XZV XU e      (9) 
 
Only  XZV XU e    is random in Y . 
 

 
   

2 2 2 2' ' '

Var Y Var XZV XU e

XZv Z X X X I  

  

    
  (10) 

 
In Equation 10, 2v  is the variance-covariance matrix of level-three random 

components; the remaining terms are defined as previously. The variance-
covariance matrix of ̂ can be calculated using: 
 

         
112ˆ 'Var XZW XZW 




    (11) 

 
Through simple derivation: 
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  (12) 
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As the following example will illustrate, the remainder of the procedure for 

the power analysis in a three-level HLM follows the same logic as that in a two-
level HLM. 

Example Power Analysis for Three-Level Model  

An example is provided to perform power analysis for a simple three-level model. 
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  (13) 

 
The model could represent students clustered within classrooms and 

classrooms clustered within schools. The model contains two fixed effects, a 
grand-mean intercept and a single level-three covariate, presumed to be 
continuous, 1kw . Like the previous example, assume that the levels of 1kw  are 
known prior to data collection. Sample code is provided only where there are 
marked differences from the previous example. 

Step one: Assume necessary values 
Assume that the effect size of 001 is .20. The outcome is standardized with a total 
variance, 2  , of 1.0. The within-cluster variance, 2  is .80. The level-two 
variance, 2

00  is .10. The level-three variance, 2
00v , is also .10. The number of 

level-two units per level-three unit, J  , is 5. The number of level-three units, K , 
is 30. The number of individuals per level-two unit, n , is 10, yielding a total 
sample size of 1,500. 
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Step two: X, Z, and W 
The structures of X, Z, and W, based on the model equations, follow similar logic 
to the previous example. They are structured as follows: 
 

(14) 

Step three: Obtain the approximate variance-covariance matrix 

In order to calculate  
12 *


  , as shown in Equation 12, use the code: 

 
I <- diag(n*j*k) 
a <- (pisq^-1)*I 
b <- (pisq^-1)*(X %*%solve(t(X) %*% X)%*% t(X)) 
c <- (pisq)*(solve(t(X)%*%X))+(Z%*%Tausqv%*%t(Z)+Tausqu) 
d <- X%*%(solve(t(X)%*%X))%*%(solve(c))%*%(solve(t(X)%*%X))%*%t(X) 
OmegaInv <- (sigmasq*(a-b+d)) 
 

The variance-covariance matrix of the parameter estimates is obtained using 
Equation 11. 
 
e <- t(W) %*% t(Z) %*% t(X) %*% OmegaInv %*% X %*% Z %*% W 
VarW <- solve(e) * sigmasq 

 
Now that the covariance matrix is obtained, the power estimate may be 

calculated by using the chi-square approximation. Interest lies in the power to 
detect the effect of 001 . The final power estimate result is 0.68; the power 
estimate is obtained using: 
 
Z1 <- (delta^2)/VarW[2,2] 
pchisq(3.841459, 1, Z1, lower.tail=FALSE) 
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Power Analysis for Models with Dichotomous Predictors 

Raudenbush & Liu (2000) described a simplified method of calculating the power 
to detect the effect of a dichotomous predictor. For example, this method would 
conveniently apply to intervention studies with two levels of treatment. Consider 
the following simple multilevel model with only one dichotomous fixed level-two 
variable and a random intercept to illustrate some of the issues involved in power 
calculation. Suppose a researcher is interested in whether an intervention helps 
participants improve their outcome scores ( ijy ). J  groups are randomly enrolled 
to have the intervention as the experimental group and J groups are randomly 
chosen to be the control group ( 0 1jz   if thj  group receive the intervention, 
otherwise the value is 0). There are n students from each group enrolled in the 
study. The researcher is interested in estimating the main effect of intervention 
( 01  ) on participants' outcome scores. The model is: 
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  (15) 

 
Because 0 jz  is dichotomous ( 0 0jz   for all participants in the control group 

and 0 jz =1 for the treatment group), all observations in treatment and control 
groups can be summed respectively to 
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Subtracting Equation 17 from Equation 16, it is possible to cancel out 00   

and get 
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If the expectation of   ij treat ij controly y is taken, all random intercepts and 

residuals drop out because their expectations are all 0 according to the assumption. 
Finally this results in 

 
      01 01ij treat ij controlE y y E       (19) 

 
The fact that 01z  is either 0 or 1, and ordinary assumptions about random 

slopes and residuals allow a simple unbiased estimator of 01 to be derived. 
Because observations from treatment and control group are independent of each 
other, the property: 

 

 
   

   
01   

  

ˆ ij treat ij control

ij treat ij control

Var Var y y

Var y Var y

  

 
  (20) 

 
is observed. Therefore, using Equations 18 and 20, results in 
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  (21) 

 
According to the assumptions,   2

0 00jVar u   for all 0 ju 's, and 

 2
ijVar    for all ij 's, Equation 21 can be expressed as: 
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Given the derivation in Equation 22, the non-centrality chi-square 

distribution parameter of random quantity  
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  can be estimated, where 

0  is the parameter under the null hypothesis. For A two-level HLM with only a 

random intercept, the intra-class correlation p   is defined as
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Where
 

 
2

01 02
2 2
00
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, which is the standardized effect size. The same 

result is provided in Raudenbush, et al. (2004). Because researchers will need to 
use results from similar previous studies to obtain an assumed effect size and 
measurements in various studies may be measured on different scales, it makes 
sense to consider a standardized response variable. After standardization, the 
variance of the response variable is 1, which means 

2 2
00 1   .  

Therefore, 01 0ˆ    . Equation 23 can be used to generate the proposed 
test statistic for power calculation. 

Power Analysis for Functions of Parameters in HLM 

 Sometimes researchers are interested in the power to detect functions of 
parameters. For example, if a study considers three levels of treatment, detecting 
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differences between each pair of treatments may be the primary research question. 
Because the entire variance-covariance matrix will result for the parameter 
estimators, the power of detecting linear combinations of parameters can be easily 
calculated. For example, to calculate power of detecting the effect of 1 2a b    
for constant scalars a   and b  . It is easy calculate the standard error of the linear 
combination. 
 

        2 2
1 2 1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ. . 2 ,S E a b a Var b Var abCov           (24) 

 
Then the assumed effect size of the two parameters and the calculated 

standard error of the linear combination of interested parameter estimators can be 
used to estimate power. Unfortunately this procedure does not apply to the 
simplified analytical method for dichotomous predictors because the whole 
variance-covariance matrix is not obtained. Referring back to the first example of 
the two-level growth model, if it is desirable to conduct power analysis for  when 

00 01 jz   when 3jz   with additional assumption that the estimated effect size 
of 00  is 0.50, then by substituting each term in Equation 24 by its corresponding 
numeric value and results in the power to detect the effect of the linear 
combination is almost 1. The following code illustrates this calculation: 

 
Z2 <- (3.5*3.5)/(1.063333+9*.09666667-6*.29) 
pchisq(3.841459, 1, Z2, lower.tail=FALSE) 

 

In the cases where interest lies in power of detecting a nonlinear function of 
parameters, the Taylor expansion can be used to obtain an approximation of the 
variance of the nonlinear function of parameter estimators. 

Discussion 

This article outlined a method for approximating power for a wide variety of 
HLMs. A theoretical foundation for performing power analysis in two- and three-
level models was presented. Examples including R code were provided, though 
any software that can carry out matrix computations and generate random variates 
may be used. This approach is very flexible and can easily be carried out for 
models whose power cannot be estimated (or is inconvenient to estimate) using 
currently available software. The method outlined can perform power analysis for 
three-level models with many different types of covariates. 
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One limitation of the usability of this approach for applied researchers is the 
requirement of writing out their models in matrix form. This may be unfamiliar to 
many researchers and could prevent widespread adoption of this method. In the 
future, it is hoped that software will be created to automate this process to 
simplify the implementation of this method and to broaden its appeal. 

A second limitation of the approach is the sensitivity to sampling variation 
when covariate values are unknown. This approach may be thought of as a hybrid 
of numerical approximation and simulation. The sensitivity increases as the 
projected sample sizes decrease, which becomes more severe at higher levels of 
the model. To obtain power estimates robust to sampling variability, it will 
perhaps be necessary to perform many repetitions of the procedure and obtain a 
power estimate averaged across repetitions. In most software it is easy to 
automate multiple repetitions of the procedure to produce the desired stability in 
the power estimate. 

A final limitation is that this method calculates power assuming values for 
all relevant parameters, such as sample sizes and effect sizes. However, when 
planning studies, researchers are often interested in determining either the sample 
size required to reach a given level of power or in the minimum detectable effect 
size given required power and a fixed sample size. In this case it would be set 
power equal to some value and solve for the parameter of interest (i.e., sample 
size or minimum detectable effect size). This article did not directly address these 
scenarios, as focus was placed on the calculation of power given all other 
parameter values. However, it is easy to repeat the procedure described in this 
paper multiple times, specifying a range of values for the parameter of interest in 
order to find the value of the parameter leading to the desired power. 
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Hipp and Bauer (2006) investigated the issues of singularities and local maximum 
solutions within growth mixture models (GMMs) and made recommendations regarding 
the use of multiple starting values. Building on their work, this simulation study 
investigates the feasibility of estimating GMMs within Mplus as measured by 
convergence to proper, but local solutions. 
 
Keywords: Local maximum solution, convergence, growth mixture modeling, EM 
algorithm  
 

Introduction 

There continues to be growing interest in applying finite mixture models to 
established statistical methods with the primary goal of accounting for population 
heterogeneity in model parameters where group membership is latent. One such 
hybrid is growth mixture modeling (GMM; Muthén, 2001; Muthén & Shedden, 
1999) which combines latent growth modeling for the analysis of repeated 
measures data and latent class analysis (Muthén, 2004). Though GMMs have the 
advantage of determining possible presence of latent subpopulations with 
qualitatively distinct patterns of development over time, like many other mixture 
model applications, GMMs present particular estimation difficulties such as 
reaching local rather than global optima and, in the case of mixtures of normal 
distributions, singularities on the likelihood surface (see, e.g., Bӧhning, 1999). 
Estimation algorithms for GMMs will impact the convergence rate to proper, 
global solutions as alternative strategies will likely interact differently with the 
likelihood surface. Direct maximization of the loglikelihood using gradient 

mailto:liming@umd.edu
mailto:harring@umd.edu
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methods like Newton-Raphson although cumbersome, can be very efficient 
especially if the intermediate solution is near the maximum (Hsu, 2011). The 
expectation-maximization (EM) algorithm (Dempster, Laird & Rubin, 1977), on 
the other hand, provides an indirect approach to obtain maximum likelihood (ML) 
estimates and is well-suited for estimating GMMs (Muthén & Shedden, 1999).  
The EM algorithm is an iterative optimization strategy motivated by configuring 
the statistical model or method as a missing data problem by considering the 
conditional distribution of what is missing given what has been observed. 
However, a known deficit of the algorithm is its relatively slow speed to converge 
(or lack thereof). Yet, the popularity and usefulness of the EM algorithm for 
GMM applications stems from its seemingly simple implementation and how 
reliably it can ascertain global optima through stable, uphill steps. This is the 
primary estimation strategy used in Mplus.  

The preponderance of methodological studies investigating GMMs has 
focused on correct class enumeration and parameter recovery across a variety 
conditions thought to directly influence the hypothesized mixture of latent growth 
models. To discriminate between local and global solutions and, in general, to 
avoid likelihood surface irregularities it has been recommended that multiple sets 
of starting values be used when estimating parameters for finite mixture models 
(McLachlan & Peel, 2000; Muthén, 2001). The question arises then of how these 
starting values should be chosen so that they satisfactorily span the parameter 
space (Hipp & Bauer, 2006) and at the same time do not skirt too close to its 
space boundaries where divergence is more likely to occur (McLachlan & 
Basford, 1988). The default in Mplus is to generate 10 random sets of starting 
values although a number of recent studies have encouraged increasing this 
number in the face of greater model complexity and minimal class separation 
(Hamilton, 2009; Kohli, 2010; Tolvanen, 2008). In general, these studies have 
utilized maximum likelihood estimation vis-à-vis the EM algorithm to fit a 
particular growth mixture model using the mixture modeling module in Mplus. 
However, only the study by Hipp and Bauer (2006) has attempted to qualify the 
conditions under which estimation of GMMs fails in terms of computational 
machinery in this modeling and software context.  

Building on this work, the primary objectives of this research project are: (1) 
to empirically investigate the feasibility of the estimation of GMMs within Mplus 
as measured by convergence to a proper, global solution under increasing model 
complexity and realistic data analytic conditions; and (2) to provide 
recommendations to practitioners as to what can be expected from the algorithm 
when applying these models in practical research settings. Issues are examined 
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related to combating local solutions and nonconvergence including quality of 
starting values, random perturbations of those values, the number of sets of those 
starting values, and manipulated arguments in the mixture module related to the 
EM algorithm on the fitting of GMMs under increased model complexity.  

Methodology 

GMM Specification 
The standard latent growth model can be written as 
 
 i i i y Λη ε   (1) 
 
where iy  is a p × 1 vector of observed continuous repeated measures for 
individual i, where p denotes the number of waves of data, iη  is a q × 1 vector of 
latent growth factors defining the trajectory where q is the number of latent 
growth factors (q = 2 for a linear trajectory with intercept and slope), and where 

iε  is a p × 1 vector of time-specific residuals for individual i, and is typically 
assumed to be distributed normally, ~ ( , )i p iN ε 0 . The functional form of the 
individual trajectories is defined by basis functions (columns of Λ ) whose 
elements may be constants or parameters to be estimated. For a linear trajectory 
with latent intercept and slope factors for p equally spaced repeated measures, Λ
would be set to ( , )Λ 1 t , where 1 is a p-dimension vector of ones and 

'(0,1,..., 1) .p t   
The joint density of iε  and iη  is assumed to be multivariate normally 

distributed as  
 

~ ,i i

i

MVN
     
     
     

ε Θ 00
η α 0 Ψ

, 

 
where α is a q × 1 vector of growth factor means, Ψ  is the q × q variance-
covariance matrix of the growth factors. When coupled with random effects, the 
time-specific residuals often follow a simple structure like a mutually independent 
homogenous error structure (i.e., 2

p  I - used throughout the remainder of the 
study), although any number of other structures could be specified (see, e.g., 
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Jennrich & Schluchter, 1986). Because of the normality assumption for the 
residuals and growth factors the probability density of iy  is also multivariate 
normal  

 
( ) [ | ( ), ( )]i if y y μ θ Σ θ , 

 
where the mean vector and covariance structure follow the latent growth model 
such that,  
 

kμ(θ) Λα  and  ( )k k k k Σ θ ΛΨ Λ Θ , 
 

and  is the vector of parameters from all model matrices.  
Muthén (2001) extended the traditional latent growth model to include finite 

mixtures by permitting the estimation of K classes each having its own latent 
growth model with class-specific parameters. The density of iy  would then 
follow a finite mixture of normal distributions of the form  

 
   ( ) | ,i k k i k k k kf      y y μ θ Σ θ , 

 
where k  is the proportion of observations arising from latent class k. The model-
implied mean vector and covariance matrix of a latent growth model again govern 
each class distribution (Bauer, 2007):  

 
( )k k kμ θ Λα  and  ( )k k k k Σ θ ΛΨ Λ Θ . 

 
The growth factor covariance matrices and residual covariance matrices are 

often presumed to be invariant over classes (i.e., k Ψ Ψ  and k Θ Θ  for all k). 
Thus, the only differences between classes are in the model-implied means of the 
repeated measures as determined by the class-varying growth factor means, kα . 
As Hipp and Bauer (2006) pointed out, an advantage of making the within-class 
covariance matrices invariant is that ensures the absence of singularities, and 
ensures the existence of a global solution.  
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The EM Algorithm 
The EM algorithm is an iterative optimization strategy for finding ML parameter 
estimates by reformulating the given incomplete data or missing data problem as a 
complete-data problem (McLachlan & Krishnan, 2008). The algorithm iterates 
between two steps – an expectation (E) step and a maximization (M) step and then 
iteratively repeats this sequence until some convergence criteria is met (see, e.g., 
Harring, 2012; Liu, 2012; Muthén & Shedden, 1999 for a complete description of 
the algorithm).  

Simulation Design 
In this study two Monte Carlo simulations were conducted to help understand the 
boundaries under which GMM parameters might be successfully estimated within 
Mplus. The conditions manipulated under Simulation 1, which are displayed in 
Table 1, include: starting value quality (SVQ), number of random starts (RS), 
number of final optimizations (FO), perturbation level of the starting values (PL), 
convergence criterion for the EM algorithm (MCONV), and model complexity 
(MC). A second smaller simulation study was conducted where the data 
generation model and the estimation model were identical and only the population 
values for model parameters were used as starting values. Also, only a three-class 
model (the correct model) was fitted under Simulation 2. Therefore, the main 
differences between Simulations 1 and 2 are the model complexities considered 
and the starting values that were used. Although this second simulation design 
was thought to be unrealistic in practice (because the true number of mixing 
distributions is unknown nor are the parameter values), it provided a “best case 
scenario” from which to compare all other non-optimal conditions. 
 
 
Table 1. Conditions and Levels of Manipulated Factors for Simulation 1 
 

Conditions Levels 
Starting value quality (SVQ) Mplus default values, LGMa and LCGMb output values 
Number of random starts (RS) 25, 50, 100, 200 
Number of final optimizations (FO) 5, 10, 25 
Perturbation level (PL) 1, 3, 5, 7, 9 
Convergence criterion (MCONV) 1E-5, 1E-8 
Model complexity (MC) 2, 3, and 4-class models 

 
Note: aRefers to latent growth modeling (LGM; Meredith & Tisak, 1990). bRefers to latent class growth modeling 
(LCGM; Nagin, 1999) 
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The population model follows a three-class linear model following 
conditions outlined by Tolvanen (2008) and detailed in the Appendix to this paper. 
Data were generated in R software following the two-step procedure outlined by 
Hipp and Bauer (2006) and all models were fitted using Mplus 6.2 (Muthén & 
Muthén, 2010). Two hundred and fifty replications were run for each of the 2 × 4 
× 3 × 5 × 2 × 3 = 720 cells in Simulation 1 as well as each of the 4 × 3 × 5 × 2 = 
120 cells in Simulation 2 in a full factorial design.  

Starting value quality is defined as initial parameter estimates that were 
thought to be in the neighborhood of the solution found via ML. Good starting 
values for the means of the growth parameters are defined coming from a latent 
class growth analysis (Jones & Nagin, 2007) and covariance parameters coming 
from fitting a one-class model, or LGM. This is aligned with what is believed as a 
reasonable approach to fitting GMMs in practice. Poor starting value quality is 
defined as the Mplus default values with no actual values given in the input file. 
Model complexity is measured by fitting a number of classes differing from the 3-
class population model. Thus for each replicate data set 2, 3, and 4-class models 
were fitted. 

Using multiple starting values has been recommended as a method to 
combat convergence to a local solution prevalent when estimating GMMs. Mplus 
allows the number of initial stage random sets of starting values to vary and 4 
levels were examined which are 25, 50, 100, and 200 (the Mplus default value is 
20 with recommendations for greater number of initial random starts). It was 
expected that there would be an interaction between model complexity and the 
necessity to increase multiple starting values. Mplus also allows starting values to 
be perturbed randomly with the magnitude of perturbation controlled by the 
analyst using the STSCALE command. Five perturbation levels ranging from 1 
(small perturbation) to 9 (large perturbation) with the default of 5 were examined. 
If local solutions are present in the analysis, changing the number of final initial 
solutions to analyze may impact the ability of the program to conclude that a 
global maximization had been reached. In terms of the convergence criteria used 
for the EM algorithm, pilot simulations were run using convergence criteria of 
1E-5 (the Mplus default criterion), 1E-8, and 1E-10, and results showed no 
significant mean outcome differences between using 1E-8 and 1E-10. So, two 
levels of convergence criterion were used: 1E-5 and 1E-8. Equal proportions were 
assumed across classes and held constant (i.e., 3-class 0.33/0.33/0.33). The 
sample size was fixed at n = 900, which is in the range of past GMM simulation 
studies (Hamilton, 2009). 
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Outcomes 

A factorial ANOVA was used to examine the influence of the manipulated factors 
and their combinations on 4 outcome measures averaged over the 250 replications 
for the two simulations. Outcome 1 (Dlog), the proportion of number of different 
loglikelihood values to the total number of loglikelihood values, is expected to be 
low for convergence to a proper solution. Outcome 2 (Logmatch) is the 
percentage of replications where the highest loglikelihood solution is also the 
most frequently occurring solution, and is expected to be high for good model 
convergence. Outcome 3 is measured as the percentage of non-converged 
solutions defined by negative variances (Negvariance) and/or nonconvergence 
(Nonconverge), and Outcome 4 (Localmax) is the percentage of local maximum 
likelihood solutions. Both Outcomes 3 and 4 are expected to be low for 
convergence to a proper solution.  

Results 

To better understand which factors and/or combination of factors impacted model 
convergence and global optima, a factorial ANOVA was utilized where the four 
outcome variables were modeled as functions of the manipulated simulation 
conditions. Results for up to 5-way interactions for Simulation 1 and up to 3-way 
interactions for Simulation 2 were assessed and are reported separately for each of 
the outcomes. Only the effects of the manipulated factors were interpreted if they 
were identified to be both statistically significant (p-value  0.05) and have an 
effect size of 2   0.06 (see, e.g., Cohen, 1988, p. 283; Kohli, 2010).  

Table 2 below summarizes the significant main and interaction effects for 
both simulation studies. Obviously, SVQ did not significantly affect the outcome 
variables under Simulation 1. This result was different from the findings of Jones 
and Nagin (2007) that using good starting values from the means of the growth 
parameters coming from a latent class growth analysis helps avoid the local 
maxima issue. Under Simulation 1, MC had the largest effect on Logmatch ( 2̂  
= .39), Negvariance ( 2̂  = .91) and Localmax ( 2̂ = .26). For both simulation 
studies, Dlog, Logmatch and Localmax were all impacted by the main effects of 
RS and PL. FO had significant main effects on Dlog ( 2̂  = .30), Logmatch ( 2̂  
= .10) and Localmax ( 2̂  = .12) under Simulation 1 but did not show significant 
effect on Logmatch in Simulation 2. Because population parameters were used as 
starting values to fit the generated model, it is not surprising that no cases of 
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nonconvergence were identified in Simulation 2.  Finally, MCONV was not a 
significant factor for either of the two simulation studies. In terms of the 
interaction effects, only 2 and 3-way interaction effects were recognized for both 
studies. Significant 2-way interaction effect (PL × MC) on Dlog and Localmax 
and 3-way interaction effect (MC × PL × RS) on Nonconverge were found in 
Simulation 1. For Simulation 2, significant two-way interaction effects were 
found for PL × FO on Dlog, Logmatch and Localmax, for PL × RS on Logmatch 
and Localmax, and for RS × FO on Localmax. Significant 3-way interaction 
effect was obtained on Localmax for RS × FO × PL.  
 
 
Table 2. Proportion of Variance Explained by the Outcome Variables 
 

Reported 
Effects 

Simulation 1 Reported 
Effects 

Simulation 2 

Dlog Log- 
match 

Neg- 
variance 

Non- 
convergence Localmax Dlog Log- 

match 
Local- 
max 

RS 8.9% 7.3%   6.6% RS 18.9% 8.2% 14.1% 

FO 29.5% 9.9%   12.3% FO 25.2%  6.3% 

PL 19.0% 11.9%   10.7% PL 40.3% 59.7% 10.4% 

MC 23.7% 39.2% 90.6%  26.5%     
PL×MC 6.2%    9.3% PL×FO 6.7% 11.4% 10.0% 

MC×PL×RS    6.4%  PL×RS  8.8% 23.1% 

      RS×FO   13.8% 

      FO×PL×RS   22.2% 

Results for the Main Effects  

Tukey’s HSD procedure was used for comparing pairs of means for the main 
effects for both simulation studies. Means for groups in homogeneous subsets are 
displayed below in Tables 3 through 6. The results presented in Table 3 show that 
the two simulation studies had the exact same change of directions in Dlog, 
Logmatch and Localmax values when the level of RS was changed. As RS 
increased, Dlog values decreased from .329 to .241 (for Simulation 1) and 
from .299 to .153 (for Simulation 2). Localmax values also decreased from .137 
to .051 (for Simulation 1) and from .086 to .002 (for Simulation 2). The values of 
Logmatch increased from .592 to .786 for Simulation 1 and from .696 to .914 for 
Simulation 2. In Table 4, for both simulation studies, it was found that as FO 
increased, the Dlog values also increased in magnitude whereas Localmax values 
decreased in magnitude. Logmatch values decreased from .779 to .572 as FO 
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increased in Simulation 2. The main effect of PL on Dlog, Logmatch, and 
Localmax is a little more complex. Table 5 shows that for both simulation studies, 
as PL increased, the Dlog values also increased. The lowest Dlog values of .194 
(Simulation 1) and .110 (Simulation 2) were found at level 1 of PL. In terms of 
the effect of PL on Logmatch and Localmax values, Simulation 1 showed the 
highest value of .755 at level 2 and 3 of PL and the lowest value of .505 at level 5 
of PL. Simulation 1 also had the lowest Localmax value of .052 at level 3 of PL 
and the highest value of .171 at level 5 of PL. For Simulation 2, increasing PL 
lead to decreased Logmatch values from .985 to .418 and increased Localmax 
values from .003 to .081. Comparing pairs of means for the main effect of MC on 
Dlog, Logmatch, Negvariance, and Localmax for Simulation 1 (see Table 6) 
suggests that as MC increased, Dlog value also increased from .209 to .370. The 
highest Localmax value (.177) and the lowest Logmatch value (.548) were both 
found at the highest level of MC. Intuitively, it seems reasonable to expect that 
the highest Logmatch value of .923 and the lowest Localmax value of .017 were 
reached for level 2 of MC (i.e., the 3-class model) because it was the model used 
for data generation. Results in Table 6 also indicated that Negvariance was greater 
for the highest MC level than for the other MC levels. 
 
 
Table 3. Pairwise Comparisons among levels of RS for dependent variables: Dlog, 
Logmatch and Localmax 
 

N RS 
Subset(Dlog) Subset(Logmatch) Subset(Localmax) 

1 2 3 4 1 2 3 4 1 2 3 4 

Simulation 1 
            

180 1 
   

.329 .592 
      

.137 

180 2 
  

.294 
  

.644 
    

.102 
 

180 3 
 

.256 
    

.713 
  

.069 
  

180 4 .241 
      

.786 .051 
   

Simulation 2 
            

30 1 
   

.299 .696 
      

.086 

30 2 
  

.249 
  

.805 
    

.008 
 

30 3 
 

.195 . 
   

.856 
  

.004 
  

30 4 .153 
      

.914 .002 
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Table 4. Pairwise Comparisons among levels of FO for dependent variables: Dlog, 
Logmatch and Localmax 
 

N FO 
Subset(Dlog) Subset(Logmatch) Subset(Localmax) 

1 2 3 1 2 3 1 2 3 

Simulation 1          
180 1 .188     .779   .146 

180 2  .256   .700   .088  
180 3   .376 .572   .035   

Simulation 2          
40 1 .155   – – –   .058 

40 2  .208  – – –  .015  
40 3   .309 – – – .002   

 
Note: No subset (Logmatch) values under Simulation 2 were provided because no significant main effect on 
Logmatch was found.  
 
 
Table 5. Pairwise Comparisons among levels of PL for dependent variables:  Dlog, 
Logmatch, and Localmax 
 

  Subset(Dlog) Subset(Logmatch) Subset(Localmax) 

N PL 1 2 3 4 5 1 2 3 4 1 2 3 4 5 

Simulation 1              
144 1 .194       .725     .083  
144 2  .220       .755  .065    
144 3   .266      .755 .052     
144 4    .326   .679     .079   
144 5     .360 .505        .171 

Simulation 2              
24 1 .110        .985 .003    - 

24 2  .156       .982 .002    - 

24 3   .237     .950   .006   - 

24 4    .295   .753     .031  - 

24 5         .322 .418             .081 - 

 
Note: No fifth subset of Localmax was provided because only 4 subsets were identified.   
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Table 6. Pairwise Comparisons among levels of MC for dependent variables:  Dlog, 
Logmatch, Negvariance, and Localmax for Simulation 1 
 

  
Subset 
(Dlog) 

Subset 
(Logmatch) 

Subset 
(Negvariance) 

Subset 
(Localmax) 

N MC 1 2 3 1 2 3 1 2 1 2 3 
180 1 .209    .581  .000   .074  
180 2  .240    .923 .000  .017   
180 3   .370 .548    .029   .177 

 

Results for the Interaction Effects  

Simple main effect pairwise comparisons were conducted to investigate the nature 
of significant two and three-way interaction effects for each of the simulation 
studies. For those significant interaction effects with a clear pattern, graphics were 
provided.  

The only significant two-way interaction effect found in Simulation 1 was 
PL × MC for dependent variables: Dlog and Localmax. Three significant two-way 
interaction effects in Simulation 2 were PL × FO (for dependent variables: Dlog, 
Logmatch and Localmax), PL × RS (for dependent variables: Logmatch and 
Localmax), and RS × FO (for dependent variable:  Localmax). Tables 7 and 8 
present simple main effect results related to the PL × MC interaction on Dlog and 
Localmax respectively under Simulation 1. 

For Dlog, no significant mean differences were found between levels of 
MC at level 1 of PL. Significant mean differences were found between level 3 and 
level 1 and between level 3 and level 2 of MC at level 2, 3 and 4 of PL.  
Significant mean differences were also found for all pairs of MC levels at level 5 
of PL. Further, level 3 of MC always had the highest Dlog values 
(.238, .296, .357, .460, and .501) across all PL levels compared with the other two 
MC levels, and Dlog values showed the slowest increase for level 1 of MC 
starting from level 3 of PL (0.207, 0.217, and 0.233). Clearly, MC is an important 
factor affecting Dlog measures at all PL levels.  

Another important observation is that as PL increased in magnitude, Dlog 
increased for level 2 and 3 of MC. Dlog started to increase for level 1 of MC from 
level 3 of PL. Therefore, a high PL level might not be a good choice for a low 
Dlog solution for any of the models that were considered. In terms of the PL   
MC interaction effect on Localmax, it may be observed from the results reported 



LI ET AL 

495 

in Table 8 that the lowest Localmax mean values (.008, .004, .005, and .020) were 
always associated with level 2 of MC for each of the levels of PL, which seems 
reasonable because level 2 of MC is the 3-class model used for data generation. 
The lowest Localmax values were found with level 1 and 2 of MC at PL level 3 
and level 3 of MC at PL level 2. It may also be noted that Localmax values started 
to increase markedly in magnitude at and above PL level 4 for each of the levels 
of MC, particularly with level 3 of MC (.186 at PL level 4 and .349 at PL level 5).     
 
 
Table 7. Simple Main Effect Pairwise Comparisons Corresponding to PL × MC 
Interaction for Dlog (Simulation 1) 
 
Mean 1  Mean 2  

Mean Difference 
(Mean 1 – Mean 2) 

Factor Level  Factor Level  

PL      MC ,PL j MC kX     PL      MC ', 'PL j MC kX     

1         1 0.196  1         2 0.149  0.047 
1         1 0.196  1         3 0.238  -0.042 
1         2 0.149  1         3 0.238  -0.089 

       
2         1 0.193  2         2 0.170  0.023 
2         1 0.193  2         3 0.296  -0.103* 
2         2 0.170  2         3 0.296  -0.126* 

       
3         1 0.207  3         2 0.234  -0.027 
3         1 0.207  3         3 0.357  -0.150* 
3         2 0.234  3         3 0.357  -0.123* 

       
4         1 0.217  4         2 0.303  -0.086 
4         1 0.217  4         3 0.460  -0.243* 
4         2 0.303  4         3 0.460  -0.157* 

       
5         1 0.233  5         2 0.346  -0.113* 
5         1 0.233  5         3 0.501  -0.268* 
5         2 0.346  5         3 0.501  -0.155* 

 

Note: The increased Dlog values for level 1 of MC at level 3, 4, and 5 level of PL and the increased Dlog values 
for level 3 of  MC across levels of PL are in boldface. 
 

*significant at α = .05 level. Family-Wise Error (FWE) was separately controlled at each level of perturbation at 
which simple main effect tests were performed. 
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Table 8. Simple Main Effect Pairwise Comparisons Corresponding to PL × MC 
Interaction for Localmax (Simulation 1) 
 
Mean 1  Mean 2  

Mean Difference 
(Mean 1 – Mean 2) 

Factor Level  Factor Level  

PL      MC ,PL j MC kX     PL      MC ', 'PL j MC kX     

1         1 0.118  1         2 0.008  0.110* 
1         1 0.118  1         3 0.123  -0.005 
1         2 0.008  1         3 0.123  -0.115* 

       
2         1 0.083  2         2 0.004  0.079 
2         1 0.083  2         3 0.108  -0.025 
2         2 0.004  2         3 0.108  -0.104* 

       
3         1 0.028  3         2 0.005  0.023 
3         1 0.028  3         3 0.122  -0.094* 
3         2 0.005  3         3 0.122  -0.117* 

       
4         1 0.030  4         2 0.020  0.010 
4         1 0.030  4         3 0.186  -0.156* 
4         2 0.020  4         3 0.186  -0.166* 

       
5         1 0.112  5         2 0.052  0.060 
5         1 0.112  5         3 0.349  -0.237* 
5         2 0.052  5         3 0.349  -0.297* 

 

Note: The increased Localmax values for 3 levels of MC at level 4 and level 5 of PL are in boldface.  
 

*significant at α = .05 level. Family-Wise Error (FWE) was separately controlled at each level of perturbation at 
which simple main effect tests were performed. 
 
 

Graphic presentations of the interaction effect of PL × FO for dependent 
variables Dlog, Logmatch and Localmax (from Simulation 2) are provided in 
Figures 1 through 3. It may be observed that as PL increased, Dlog and Localmax 
both increased whereas Logmatch decreased for all FO levels. The highest Dlog, 
the lowest Logmatch and the lowest Localmax values were seen with level 3 of 
FO at higher PL levels. It also may be observed in Figures 2 and 3 that Logmatch 
and Localmax values were generally stable and similar in magnitude for pairs of 
FO levels at PL levels 1 and 3. However, starting from level 4 of PL, Logmatch 
and Localmax values both showed a sudden change, with Logmatch values 
dropping and Localmax rising sharply. The results reported in Tables 9 through 
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11 show the nature of the interaction between PL and FO on Dlog, Logmatch and 
Localmax. Significant Dlog mean differences were found between level 1 and 
level 3 of FO across PL levels 2-5 and there were no significant mean differences 
between level 1 and level 2 of FO at any PL levels (see Table 9). Tables 10 and 
11 both show most significant mean differences in Logmatch and Localmax 
occurred at level 5 of PL between pairs of FO levels. 

 
 

 
Figure 1. PL × FO For Outcome 1 
(Dlog) 
 

 
Figure 2. PL × FO Outcome 2 
(Logmatch) 
 
 

 

 
Figure 3. PL × FO Outcome 4 (Localmax) 
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Table 9. Simple Main Effect Pairwise Comparisons Corresponding to PL × FO Interaction 
for Dlog (Simulation 2) 
 
Mean 1  Mean 2  

Mean Difference 
(Mean 1 – Mean 2) 

Factor Level  Factor Level  

PL      FO ,PL j MC kX     PL      FO ', 'PL j MC kX     

1         1 0.103  1         2 0.105  -0.002 
1         1 0.103  1         3 0.122  -0.019 
1         2 0.105  1         3 0.122  -0.017 

       
2         1 0.110  2         2 0.141  -0.031 
2         1 0.110  2         3 0.217  -0.107* 
2         2 0.141  2         3 0.217  -0.076 

       
3         1 0.154  3         2 0.211  -0.057 
3         1 0.154  3         3 0.347  -0.193* 
3         2 0.211  3         3 0.347  -0.136* 

       
4         1 0.191  4         2 0.273  -0.082 
4         1 0.191  4         3 0.420  -0.229* 
4         2 0.273  4         3 0.420  -0.147* 

       
5         1 0.219  5         2 0.310  -0.091 
5         1 0.219  5         3 0.437  -0.218* 
5         2 0.310  5         3 0.437  -0.127* 

 
Note: *significant at α = .05 level. Family-Wise Error (FWE) was separately controlled at each level of 
perturbation at which simple main effect tests were performed. 
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Table 10. Simple Main Effect Pairwise Comparisons Corresponding to PL   FO 
Interaction for Logmatch (Simulation 2) 
 
Mean 1  Mean 2  

Mean Difference 
(Mean 1 – Mean 2) 

Factor Level  Factor Level  

PL      FO ,PL j MC kX     PL      FO ', 'PL j MC kX     

1         1 0.991  1         2 0.987  0.004 
1         1 0.991  1         3 0.978  0.013 
1         2 0.987  1         3 0.978  0.009 

       
2         1 0.981  2         2 0.984  -0.003 
2         1 0.981  2         3 0.980  0.001 
2         2 0.984  2         3 0.980  0.004 

       
3         1 0.941  3         2 0.945  -0.004 
3         1 0.941  3         3 0.964  -0.023 
3         2 0.945  3         3 0.964  -0.019 

       
4         1 0.819  4         2 0.761  0.058 
4         1 0.819  4         3 0.680  0.139* 
4         2 0.761  4         3 0.680  0.081 

       
5         1 0.675  5         2 0.488  0.187* 
5         1 0.675  5         3 0.091  0.584* 
5         2 0.488  5         3 0.091  0.397* 

 
Note: *significant at α = .05 level. Family-Wise Error (FWE) was separately controlled at each level of 
perturbation at which simple main effect tests were performed. 
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Table 11. Simple Main Effect Pairwise Comparisons Corresponding to PL × FO 
Interaction for Localmax (Simuation 2) 
 
Mean 1  Mean 2  

Mean Difference 
(Mean 1 – Mean 2) 

Factor Level  Factor Level  

PL      FO ,PL j MC kX     PL      FO ', 'PL j MC kX     

1         1 0.004  1         2 0.002  0.002 
1         1 0.004  1         3 0.003  0.001 
1         2 0.002  1         3 0.003  -0.001 

       
2         1 0.004  2         2 0.002  0.002 
2         1 0.004  2         3 0.000  0.004 
2         2 0.002  2         3 0.000  0.002 

       
3         1 0.017  3         2 0.001  0.016 
3         1 0.017  3         3 0.001  0.016 
3         2 0.001  3         3 0.001  0.000 

       
4         1 0.072  4         2 0.023  0.049 
4         1 0.072  4         3 0.000  0.072 
4         2 0.023  4         3 0.000  0.023 

       
5         1 0.191  5         2 0.046  0.145* 
5         1 0.191  5         3 0.007  0.184* 
5         2 0.046  5         3 0.007  0.039 

 
Note: *significant at α = .05 level. Family-Wise Error (FWE) was separately controlled at each level of 
perturbation at which simple main effect tests were performed. 
 
 

Figures 4 and 5 graphically depict the interaction effect between PL and RS 
for the dependent variables: Logmatch and Localmax in Simulation 2. At level 1 
and level 2 of PL, both Logmatch and Localmax values were very similar across 
all RS levels. From level 3 of PL, discrepancies in Logmatch and Localmax 
values among the RS levels started to show up and grow even larger at level 4 and 
level 5 of PL. It may also be noticed that Logmatch values decreased markedly at 
PL level 4 for all RS levels, with the sharpest decline observed at level 1 of RS. In 
contrast, Localmax values increased dramatically at PL level 4 for level 1 of RS. 
Tables 12 and 13 were provided to confirm what had been observed.  For 
Logmatch, most significant mean differences were found between pairs of RS 
levels at level 4 and level 5 of PL (see Table 12). Significant Localmax mean 
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differences were found at levels 4 and 5 of PL between level 1 and level 2, level 1 
and level 3, and level 1 and level 4 of RS (see Table 13), with no significant mean 
differences found for pairs of levels 2, 3, and 4 of RS.  

 
 

 
Figure 4. PL × RS for Outcome 2 
(Logmatch) 
 

 
Figure 5. PL × RS for Outcome 4 
(Localmax) 
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Table 12. Simple Main Effect Pairwise Comparisons Corresponding to PL × RS 
Interaction for Logmatch (Simulation 2) 
 
Mean 1  Mean 2  

Mean Difference 
(Mean 1 – Mean 2) 

Factor Level  Factor Level  

PL      RS ,PL j RS kX     PL      RS ', 'PL j RS kX     

1         1 0.984  1         2 0.987  -0.003 
1         1 0.984  1         3 0.987  -0.003 
1         1 0.984  1         4 0.984  0.000 
1         2 0.987  1         3 0.987  0.000 
1         2 0.987  1         4 0.984  0.003 
1         3 0.987  1         4 0.984  0.003 

       
2         1 0.974  2         2 0.980  -0.006 
2         1 0.974  2         3 0.984  -0.010 
2         1 0.974  2         4 0.988  -0.014 
2         2 0.980  2         3 0.984  -0.004 
2         2 0.980  2         4 0.988  -0.008 
2         3 0.984  2         4 0.988  -0.004 

       
3         1 0.875  3         2 0.963  -0.088 
3         1 0.875  3         3 0.979  -0.104* 
3         1 0.875  3         4 0.984  -0.109* 
3         2 0.963  3         3 0.979  -0.016 
3         2 0.963  3         4 0.984  -0.021 
3         3 0.979  3         4 0.984  -0.005 

       
4         1 0.479  4         2 0.757  -0.278* 
4         1 0.479  4         3 0.839  -0.360* 
4         1 0.479  4         4 0.937  -0.458* 
4         2 0.757  4         3 0.839  -0.082 
4         2 0.757  4         4 0.937  -0.180* 
4         3 0.839  4         4 0.937  -0.098 

       
5         1 0.165  5         2 0.335  -0.170* 
5         1 0.165  5         3 0.493  -0.328* 
5         1 0.165  5         4 0.679  -0.514* 
5         2 0.335  5         3 0.493  -0.158* 
5         2 0.335  5         4 0.679  -0.344* 

 

Note: The decreased Logmatch values for level 1 of RS at PL levels 3, 4 and 5 are in boldface.  
 

*significant at α = .05 level. Family-Wise Error (FWE) was separately controlled at each level of perturbation at 
which simple main effect tests were performed. 
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Table 13. Simple Main Effect Pairwise Comparisons Corresponding to PL × RS 
Interaction for Localmax (Simulation 2) 
 
Mean 1  Mean 2  

Mean Difference 
(Mean 1 – Mean 2) 

Factor Level  Factor Level  

PL      RS ,PL j RS kX     PL      RS ', 'PL j RS kX     

1         1 0.003  1         2 0.001  0.002 
1         1 0.003  1         3 0.004  -0.001 
1         1 0.003  1         4 0.004  -0.001 
1         2 0.001  1         3 0.004  -0.003 
1         2 0.001  1         4 0.004  -0.003 
1         3 0.004  1         4 0.004  0.000 

       
2         1 0.003  2         2 0.003  0.000 
2         1 0.003  2         3 0.003  0.000 
2         1 0.003  2         4 0.000  0.003 
2         2 0.003  2         3 0.003  0.000 
2         2 0.003  2         4 0.000  0.003 
2         3 0.003  2         4 0.000  0.003 

       
3         1 0.023  3         2 0.001  0.022 
3         1 0.023  3         3 0.000  0.023 
3         1 0.023  3         4 0.000  0.023 
3         2 0.001  3         3 0.001  0.000 
3         2 0.001  3         4 0.000  0.001 
3         3 0  3         4 0.000  0.000 

       
4         1 0.115  4         2 0.008  0.107* 
4         1 0.115  4         3 0.003  0.112* 
4         1 0.115  4         4 0.000  0.115* 
4         2 0.008  4         3 0.003  0.005 
4         2 0.008  4         4 0.000  0.008 
4         3 0.003  4         4 0.000  0.003 

       
5         1 0.286  5         2 0.025  0.261* 
5         1 0.286  5         3 0.009  0.277* 
5         1 0.286  5         4 0.005  0.281* 
5         2 0.025  5         3 0.008  0.017 
5         2 0.025  5         4 0.005  0.020 

 

Note: The increased Localmax values for level 1 of RS at PL level 3, level 4 and level 5 are in boldface.  
 

*significant at α = .05 level. Family-Wise Error (FWE) was separately controlled at each level of perturbation at 
which simple main effect tests were performed. 
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Figure 6 shows how RS and FO interacted for the Dependent Variable:  
Localmax. Obviously, the Localmax mean values were very close in magnitude 
among levels of FO at level 2, 3 and 4 of RS, and as RS increased, the Localmax 
mean values became progressively closer in magnitude for all of the levels of FO. 
Localmax mean differences were clear only at level 1 of RS. Table 14 followed 
shows significant mean differences between level 1 and level 2 and between level 
1 and level 3 of FO at RS level 1. It should also be noted that from RS level 1 to 
RS level 2, Localmax mean values decreased in magnitude for all FO levels (with 
the sharpest decrease observed for level 1 of FO), suggesting a high RS is always 
preferred for a low Localmax for any level of FO. It also suggests that when RS is 
very low at level 1, a low FO level should be considered for low percentage of 
Localmax solutions. 

 
 

 
Figure 6. RS × FO for Outcome 4 (Localmax) 
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Table 14. Simple Main Effect Pairwise Comparisons Corresponding to RS × FO 
Interaction for Localmax (Simuation 2) 
 
Mean 1  Mean 2  

Mean Difference 
(Mean 1 – Mean 2) 

Factor Level  Factor Level  

RS      FO ,PL j FO kX     RS      FO ', 'PL j FO kX     

1         1 0.202  1         2 0.050  0.152* 
1         1 0.202  1         3 0.006  0.196* 
1         2 0.050  1         3 0.006  0.044 

       
2         1 0.019  2         2 0.004  0.015 
2         1 0.019  2         3 0.000  0.019 
2         2 0.004  2         3 0.000  0.004 

       
3         1 0.006  3         2 0.004  0.002 
3         1 0.006  3         3 0.001  0.005 
3         2 0.004  3         3 0.001  0.003 

       
4         1 0.003  4         2 0.002  0.001 
4         1 0.003  4         3 0.001  0.002 
4         2 0.002  4         3 0.001  0.001 

 
Note: *significant at α = .05 level. Family-Wise Error (FWE) was separately controlled at each level of number 
of random starts at which the simple main effect tests were performed. 
 
 

Two three-way interaction effects were found to be significant at α = 0.05. 
One of these significant outcomes was found for the dependent variable: 
Nonconverge (Simulation 1) and the other for the dependent variable: Localmax 
(Simulation 2). Simple main effect pairwise comparisons corresponding to the 
two-way interaction effects from PL × RS on Nonconverge were conducted at 
each of the levels of MC for Simulation 1. No significant mean differences were 
found for the two-way interaction under either level 1 or level 2 of MC. Therefore, 
results for the interaction effect of PL × RS on Nonconverge under level 1 and 2 
of MC are not reported. Table 15 shows only the interaction effect of PL × RS on 
Nonconverge under level 3 of MC. It can be seen that all significant mean 
outcome differences were found at level 5 of PL although there was no significant 
mean difference between level 3 and level 4 of RS. This findings would seems to 
suggest that with a complicated model (e.g., the 4-class model), if a high PL level 
is used, higher levels of RS (level 3 or level 4) should be considered to increase 
the number of converged solutions. 
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Table 15. Simple Main Effect Pairwise Comparisons Corresponding to PL × RS 
Interaction for Nonconverge under Level 3 of MC 
 
Mean 1  Mean 2  

Mean Difference 
(Mean 1 – Mean 2) 

Factor Level  Factor Level  

PL      RS ,PL j RS kX     PL      RS ', 'PL j RS kX     

1         1 0.000  1         2 0.000  0.000 
1         1 0.000  1         3 0.000  0.000 
1         1 0.000  1         4  0.001   0.000 
1         2 0.000  1         3 0.000  0.000 
1         2 0.000  1         4  0.001   0.000 
1         3 0.000  1         4  0.001   0.000 

       
2         1 0.000  2         2  0.001   0.000 
2         1 0.000  2         3  0.001   0.000 
2         1 0.000  2         4 0.000  0.000 
2         2 0.001  2         3 0.001  0.000 
2         2 0.001  2         4 0.000   0.001 
2         3 0.001  2         4 0.000   0.001 

       
3         1 0.000  3         2 0.000  0.000 
3         1 0.000  3         3 0.000  0.000 
3         1 0.000  3         4 0.000  0.000 
3         2 0.000  3         3 0.000  0.000 
3         2 0.000  3         4 0.000  0.000 
3         3 0.000  3         4 0.000  0.000 

       
4         1 0.000  4         2 0.000  0.000 
4         1 0.000  4         3 0.000  0.000 
4         1 0.000  4         4 0.000  0.000 
4         2 0.000  4         3 0.000  0.000 
4         2 0.000  4         4 0.000  0.000 
4         3 0.000  4         4 0.000  0.000 

       
5         1 0.001  5         2 0.002  -0.001* 
5         1 0.001  5         3 0.000  0.001* 
5         1 0.001  5         4 0.000  0.001* 
5         2 0.002  5         3 0.000  0.002* 
5         2 0.002  5         4 0.000  0.002* 

 
Note: *significant at α = .05 level. Family-Wise Error (FWE) was separately controlled at each level of 
perturbation at which simple main effect tests were performed. 
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For the three-way interaction effect between FO × PL × RS on the 
dependent variable: Localmax, the interaction effect of PL × RS was studied at 
each level of FO, and the results are presented only graphically in Figures 7 
through 9. The three figures show clearly that for all FO levels, Localmax values 
were close between RS levels 2, 3 and 4 across all PL levels. At level 1 of FO, 
level 1 of RS diverged from the other RS levels in Localmax values at and above 
level 3 of PL, at level 2 of FO clear discrepancy started to occur at level 4 of PL, 
and at level 3 of FO a very large difference was observed between level 1 of RS 
and the other RS levels at the highest PL level. 

 
 

 
Figure 7. PL × RS for Localmax at level 
1 of FO 
 

 
Figure 8. PL × RS for Localmax at level 
2 of FO 
 
 

 

 
Figure 9. PL × RS for LogMatch at level 3 of FO 
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Conclusions 

Results from the factorial ANOVA analyses showed that in both simulation 
studies MCONV was not a significant factor affecting convergent solutions in 
Mplus, nor was SVQ studied in Simulation 1. The results related to SVQ were 
different from those findings obtained by Jones and Nagin (2007) who found that 
using informed starting values from the means of the growth parameters coming 
from a latent class growth analysis helps avoid the occurrence of local maxima 
solutions.  

In terms of the main effects, RS and FO showed the same patterns of 
outcome means obtained under the two simulation studies. As was expected, low 
Dlog, high Logmatch, and low Localmax mean values were all associated with 
high levels of RS, indicating higher RS should be used to increase the likelihood 
of proper convergence of growth mixture model parameters. The story of the 
main effect for FO, though, was more complex and somewhat confusing. Both 
simulation studies showed that as levels of FO increased, the Dlog mean values 
became smaller (which is a desirable outcome) while the Localmax mean values 
increased (which is an undesirable outcome). Although Simulation 1 also showed 
an increased Logmatch mean value with increased levels of FO, the choice of FO 
still needs to be carefully considered. This is because the impacts of using various 
levels of FO are not consistent in terms of their impact on the four desirable 
properties of convergence that were considered in this study. 

In terms of the main effect for PL, both simulation studies indicated that the 
largest Localmax value and the lowest Logmatch were found with the highest PL 
level considered in the study, suggesting that a high PL would not be a desirable 
choice for obtaining proper convergence solutions. In fact, results from 
Simulation 1 showed that a moderate PL level (e.g., level 3) was favored for the 
lowest Localmax outcome. Among all the significant factors, MC was the only 
factor in Simulation 1 that affected all four outcome variables and explained most 
of the variance in Negvariance. As was expected, when the investigated model 
was very complex, proper convergence solutions were negatively impacted. At its 
highest level, the 4-class model had the highest Dlog mean value, the lowest 
Logmatch mean value, the largest Negvariance mean value, and the highest 
Localmax mean value, all of which suggest unstable convergence solutions. 

Though an assessment of main effects provides a general idea of the 
marginal effects of the manipulated factors, a more complete understanding of the 
influence of these factors on convergence to proper solutions may be obtained by 
assessing the presence and nature of interaction effects among these independent 
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variables. The only two-way interaction effect (PL × MC) identified in Simulation 
1 showed that the highest Dlog value was with the highest level of MC across all 
PL levels and that Dlog values showed the slowest increase for level 1 of MC 
starting from level 3 of PL.  

The interaction between PL and MC also affected Localmax. The highest 
Localmax mean values always occurred with the most complex model across 
levels of PL. The observation that the lowest Localmax mean values were found 
at (a) level 1 and 2 of MC at PL level 3 and (b) at level 3 of MC at PL level 2 
suggests that a high PL was not a desirable choice for obtaining a low Localmax 
outcome. The assessed interaction effect between PL and FO found in Simulation 
2 resulted in the following findings with respect to PL: (a) Dlog values increased 
for all levels of FO as PL increased, (b) Logmatch mean values started to decrease 
in magnitude for all levels of FO at level 4 of PL, and (c) Localmax values began 
to increase at or above level 4 of PL for all levels of FO. Either the increase or the 
decrease was wanted, which suggests that a high PL level (e.g., level 4 or 5) was 
not a desirable choice for obtaining effective convergence of parameter estimates.  

A similar complex and confusing story with respect to the choice of a 
desirable level of FO occurred as what was found for the main effect of FO. As 
FO increased, Dlog values increased for each PL level, Lower Logmatch values 
were always found with higher FO for higher levels of PL, but lower Localmax 
values were found with higher FO for higher levels of PL. These findings indicate 
a conflicting situation where the choice of FO was especially challenging when a 
higher PL level was used.  

Study of the two-way interaction effect of PL × RS on Logmatch and 
Localmax showed most substantial mean differences occurred at higher levels of 
PL (e.g., level 4 and 5 of PL) where level 4 of RS was found having the highest 
Logmatch value and the lowest Localmax value, suggesting that a high RS be 
considered when high PL has to be used. Also, considering the decrease of 
Logmatch value and the increase of Localmax value for all RS levels occurred 
obviously at and above level 4 of PL, it was also suggested that higher PL levels 
not be used. The interaction effect between RS and FO for the dependent variable 
Localmax showed no significant mean differences between levels of FO across 
RS levels 2 through 4. This finding suggests that the choice of FO should not be a 
big concern when RS is large.  

The three-way interaction effect (MC × PL × RS) for the dependent variable 
Nonconverge found in Simulation 1 showed no significant findings at level 1 and 
level 2 of MC, suggesting that with a less complex model (i.e., the 2 and 3-class 
models), the choice of levels of PL and RS would not significantly affect 
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convergence solutions. At level 3 of MC, significant Nonconverge mean 
differences were found only at level 5 of PL, with RS level 3 and 4 (having the 
lowest Nonconverge value) showing no significant mean difference. This finding 
shows with very complex models, high RS should be used, especially when the 
PL level is very high. The three-way interaction effect between FO, PL and RS 
obtained with Localmax showed somewhat similar patterns for the two-way 
interactions between PL and RS for each of the three FO conditions. At middle 
and lower levels of PL, Localmax values were similar in magnitude for all levels 
of RS and remained stable. When PL level was very high, Localmax values at 
level 1 of RS not only increased sharply but deviated dramatically from the 
Localmax values at the other RS levels.   

Recommendations 

Based on the findings and conclusions previously discussed, some 
recommendations that users of Mplus may wish to follow when fitting GMMs are 
as follows: 
 

 Use a large number of random start values, especially when the 
perturbation level is high.  

 Number of random starts should be at least at level 2 for lower 
number of local maxima when the perturbation level is high. 
However, the number of random starts does not greatly affect the 
number of non-converged solutions if moderate perturbation levels 
are used.          

 Choice of the number of final optimizations needs to be considered 
carefully. Usually, a high number of final optimizations is not 
recommended although the choice would not be a big concern when 
the number of random starts is high.  

 Do not use high perturbation levels (e.g., level 4 or level 5), 
especially with very complex growth mixture models which may 
show much higher rate of increase in number of local maximum 
solutions than less complex models. Instead, a moderate perturbation 
level (e.g., Mplus default perturbation level of 5) is recommended 
for obtaining better convergence solutions.  

 With less complex growth mixture models, the choice of number of 
random starts and perturbation levels may not be so important. 
However, when a model is very complex (e.g., the 4-class model), a 
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high number of random starts should be considered for obtaining 
better convergence solutions, especially when perturbation level is 
very high.   
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Appendix 

For the simulation, the number of occasions of measurement were fixed at p = 6. 
The covariance structures were constructed to be constant across groups and are 
defined as: 
 

 
1

cov
.224 2
 

    
 

η   2cov( ) , ε I  where 2 .75  . 

 
The mean vectors for the three-class model are specified as 
 

'
1
'
2
'
3

(4.5, .85)

(2.5, .05)

(1.4, .70)







 

 

 

 

 
Data were generated according to the two-stage approach outlined by Hipp and 
Bauer (2006). 
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An Excel Macro was created to provide researchers with an easy to use resource in order 
to calculate the two dependent samples maximum test as provided in Maggio and 
Sawilowsky (2014), which permits conducting both the two dependent samples t-test and 
Wilcoxon signed-ranks test on the same data while eliminating concerns related to Type I 
error inflation and choice of statistical tests.  
 
Keywords: Maximum test, Dependent samples t test, Wilcoxon signed-ranks test, 
Excel calculator, Experiment-wise Type I error inflation 
 

Introduction 

Inferential errors are easy to commit, and they are compounded when conducing 
multiple tests (either serially or in parallel) on the same data. In the case of the 
two dependent samples t-test and the Wilcoxon Signed-Ranks (WSR) test, in 
general the former should be used if data are known or expect to be normally 
distributed, otherwise the latter should be used, assuming the treatment alternative 
is a shift in means. (Blair & Higgins, 1985; Bridge & Sawilowsky, 1999; Gerke & 
Randles, 2010; Wiederman & Alexandrowicz, 2011). Researchers also cannot 
conduct both tests on the same data without increasing the Experiment-wise Type 
I error rate (Sawilowsky & Fahoome, 2003). 

A solution strategy is known as the maximum test, whereby the researcher 
puts “various score statistics together and takes the maximum of them” (Kossler, 
2010, p. 2), then the maximum of the two tests are compared to a critical value 
obtained on a joint sampling distribution for the two tests. This strategy eliminates 
two concerns; (1) Type I error inflation, and (2) choice of statistic (Algina, J. et al, 

mailto:bn4424@wayne.edu
mailto:shlomo@wayne.edu
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1995; Blair, 2002; Tarone, 1981; Willan, 1988; Fleming & Harrington, 1991; Lee, 
1996; Ryan et al., 1999; Blair, 2002; Weichert & Hothorn, 2002; Neuhauser et al., 
2004; Opdyke, 2005; Salmaso & Solari, 2005; Yang et al., 2005; Kossler, 2010; 
Maggio & Sawilowsky, 2014). 

Purpose 

The purpose of this article is to provide researchers with an easy to use Excel 
macro that calculates the two dependent samples maximum test. It is based on 
critical values provided in Maggio and Sawilowsky (2014). 

Methodology 

Download the Macro (http://digitalcommons.wayne.edu/jmasm/vol13/iss1/32) or 
contact the first author via e-mail. A screenshot of the Excel worksheet is located 
in Figure 1. 

Input 

The process of obtaining the maximum test p-values, critical values and a 
determination of whether or not to “reject” or “fail to reject” a null hypothesis is 
as follows: 
 

1. Obtain the t value (or p-value) for two samples dependent t test on 
data (e.g., via statistical software) and input that value in the 
appropriate cell of the worksheet. For example, the t value is placed 
in cell D80, or if the p value associated with the t test it is inputted in 
cell D81. 

 
2. Obtain the Z (or p value) for the Wilcoxon Signed-Ranks test and 

place it in cell D82. (or D83) 
  

3. Input or select the sample size in cell D84. (samples are limited to df 
= 8 to 30, 45, 60, 90, & 120) 

 
4. Input or select the desired alpha level for a two tailed test (0.05 or 

0.01) in cell D85. 
 

http://digitalcommons.wayne.edu/jmasm/vol13/iss1/32
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5. Input or select the number of tails (“2” for two-sided test; “1” for 
one-sided test) in cell D86.  

 
6. Left click on the button that reads “Click here→ Output”.  

Conclusion 

The macro reports the output in cells D90 through D95. If the p-value for t is 
inputted in cell D81 then D90 contains the corresponding t-value. The 
Max(t)/critical value, p(Max), and statistical decision appear in cells D93 D94, 
and D95, respectively. 
 
 

 
 
Figure 1. Screenshot of the Excel Worksheet 
 
 
 

The two dependent samples maximum test that can be used in lieu of choice 
between the two dependent samples t- test and Wilcoxon signed-ranks when the 
distribution from which samples were drawn is unknown. Both the classical 
parametric and non-parametric tests can be safely conducted on the same data, 
with the maximum of the two refereed to the new table of critical values that are 
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designed to maintain the Type I error rate to nominal α while guaranteeing the 
maximum power of the two tests (Maggio & Sawilowsky, 2014).   

The maximum test is easy to compute with or without an excel macro. 
Maggio and Sawilowsky (2014) provided the maximum test critical values for a 
two tailed test and a clear example to follow. Readers are encouraged to review 
that article. 
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Instructions for Authors 
 

Authors wishing to submit to JMASM may do so using the submission form at the journal’s 
website, http://digitalcommons.wayne.edu/jmasm. Three areas are appropriate for JMASM:  
 
1. Development or study of new statistical tests or procedures, or the comparison of existing 

statistical tests or procedures, using computer-intensive Monte Carlo, bootstrap, jackknife, 
or resampling methods; 

2. Development or study of nonparametric, robust, permutation, exact, and approximate 
randomization methods; and 

3. Applications of computer programming, preferably in Fortran (all other programming 
environments are welcome), related to statistical algorithms, pseudo-random number 
generators, simulation techniques, and self-contained executable code to carry out new or 
interesting statistical methods. 

 
Elegant derivations, as well as articles with no take-home message to practitioners, have low 
priority. Articles based on Monte Carlo (and other computer-intensive) methods designed to 
evaluate new or existing techniques or practices, particularly as they relate to novel applications of 
modern methods to everyday data analysis problems, have high priority. 
 
Work appearing in Regular Articles, Brief Reports, and Emerging Scholars is externally peer 
reviewed, with input from the Editorial Board; work appearing in Statistical Software Applications 
and Review and JMASM Algorithms and Code is internally reviewed by the Editorial Board. 
 
Please observe the following guidelines when preparing manuscripts: 
 
1. JMASM uses a modified American Psychological Association style guideline. 

2. Articles should be submitted without a title page or abstract. There should be no material 
identifying authorship except in the fields of the submission form. Include a statement in 
the cover letter indicating that proper human subjects protocols were followed where 
applicable, including informed consent. 

3. Manuscripts should be prepared in Microsoft Word (.doc or .docx) only (Wordperfect 
and .rtf formats may be acceptable − please inquire). Please note that Tex (in its various 
versions), Exp, and Adobe .pdf formats are designed to produce the final presentation of 
text. They are not amenable to the editing process, and are NOT acceptable for manuscript 
submission. 

4. The text maximum is 20 pages double spaced, not including tables, figures, graphs, and 
references. Use 11 point Times Roman font. 

5. Create tables without boxes or vertical lines. Place tables, figures, and graphs "in-line", not 
at the end of the manuscript. Figures may be in .jpg, .tif, .png, and other formats readable 
by Adobe Illustrator or Photoshop. 

6. The submission form requires an Abstract with a 50 word maximum, and a list of key 
words or phrases. Major headings are Introduction, Methodology, Results, Conclusion, and 
References. Center headings. Subheadings are left justified; capitalize only the first letter of 
each word. Sub-subheadings are left justified, indent optional. 
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7. Do not use underlining in the manuscript. Do not use bold, except for (a) matrices, or (b) 
emphasis within a table, figure, or graph. Do not number sections. Number all formulas, 
tables, figures, and graphs, but do not use italics, bold, or underline. Do not number 
references. Do not use footnotes or endnotes. 

8. In the References section, do not put quotation marks around titles of articles or books. 
Capitalize only the first letter of books. Italicize journal or book titles, and volume numbers. 
Use "&" instead of "and" in multiple author listings. 

9. Suggestions for style: Instead of "I drew a sample of 40" write "A sample of 40 was 
selected". Use "although" instead of "while," unless the meaning is "at the same time." Use 
"because" instead of "since," unless the meaning is "after." Instead of "Smith (1990) notes" 
write "Smith (1990) noted." Do not strike the spacebar twice after a period. 
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