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The autocorrelation function (ACF) plays an important role in the context of ARMA 
modeling, especially for their identification and estimation. This study considers the 
robust estimation of the ACF of the AR(1) model if the white noise (WN) process is non-
Gaussian. Three estimators including the ordinary moment estimator and two other 
(robust) estimators are considered. The impacts of the deviation from normality of the 
WN process on those estimators in terms of bias, MSE and distribution via Monte-Carlo 
simulation are examined. The empirical distribution of those estimators when the errors 
are normal, t, Cauchy and exponential are studied. Results show that the moment 
estimator is more affected by the change of the white noise distribution than other 
considered estimators. 
 
Keywords: autocorrelation function, robust estimation, Monte-Carlo simulation, 
kernel density estimation  
 

Introduction 

A time series (TS) can be defined as a sequence of observations taken 
sequentially in time. Time series can be observed in different fields; for example, 
in agriculture, business, engineering and medical studies. The list of areas in 
which time series is observed, studied and analyzed is endless. A major feature in 
the development of time series is an assumption of some form of statistical 
equilibrium, or known as stationarity. There are two types of stationarity; the first 
is called strict stationarity, and the other type is called weak stationarity. In 
practice, it is very difficult to examine time series being strictly stationary. Further, 
a stochastic process { }tX  is weak stationary if its mean is constant and the auto-
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covariance function (ACVF) depends on the time lag only, i.e., 
( , )t t k kCov X X    as well as its 0ACF / .k k    For more details on the ACVF 

and ACF of stationary time series and their properties, see Wei (2006, p. 12). 
The class of autoregressive moving average (ARMA) models is widely 

known for modeling stationary time series (Wei, 2006, p. 5664). The stochastic 
process { }tX  is said to follow the ARMA(p,q) model if: 
 
 1 1 1 1t t p t p t t q t qX X X u u u               
 
where 1, , p   and 1, , q   are the AR and MA parameters, respectively, and 

tu  is the white noise (WN) process, assumed iid (0, 2
u ) and usually assumed 

normal. A detailed account on ARMA models, their autocorrelation functions and 
building methodology is found in Box, et al. (1994). 

Beside the mixed ARMA model, the ARMA(p,q) models also include as 
special cases the pure AR and pure MA models when q = 0 and p = 0, 
respectively. In particular, the pure AR(1) model is given by: 
 
 1t t tX c X u      (1) 
 
which is stationary if 1   (Wei, 2006). 
 

The ACF plays an important role in the Box and Jenkins methodology for 
building ARMA models, especially for the identification and estimation of those 
models (Wei, 2006). In fact, there are other identification tools for the ARMA 
models, including the inverse ACF method (Cleveland, 1972); Akaike 
information criterion (AIC) (Akaike, 1974); the R and S array method (Gray, et 
al., 1978) and the corner method (Beguin, et al., 1980). 

Consider the robust estimation of the ACF of AR(1) model if the WN 
process  tu  is non-Gaussian. Berkoun, et al. (2003) investigated robust inference 
for serial correlation in AR(1) process in the presence of a single additive outlier. 
Assuming that  1, , nX X  is a time series following the zero-mean AR(1) model 
contaminated with a single additive outlier, they investigated three estimators of 

1 , namely: 
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where t tZ X X   are the mean-subtracted data, Med(.) stands for the median, 1r  
is the ordinary moment estimator of 1  whereas *

1  and 1  are two robust 
estimators of 1  originally proposed by Hurwicz (1950) and Haddad (2000), 
respectively. Berkoun, et al. (2003) showed that the inference of 1  based on 1r  is 
highly sensitive to a single additive outlier. 

Smadi, et al. (2009) generalized these estimators for the periodic AR(1) 
model. They again observed that the counterpart of 1r  is more sensitive to additive 
outliers than other estimators. 

For higher time lags k = 1, 2, … the estimators in (2) – (4) generalize to 
estimate k  as follows: 
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In this research, the main objective is to study the statistical properties; 

namely the mean, variance as well as the distribution of various estimators of k . 
This study is restricted to the AR(1) model as (1) along various distributions for 
the WN process. Therefore, it focuses on the robustness of estimators above 
subject to the distribution of the WN process. 

In the literature of time series analysis, the area of robust inference has 
found considerable attention. Denby and Martin (1979) proposed the generalized 
M-estimates for autoregressive processes and Bustos and Yohai (1986) took the 
auto-covariance structure of time series into consideration when robustifying the 
estimators. Zieliński (1999) investigated the median–unbiased estimation of the 
stationary AR(1) process. Molinares, et al. (2009) investigated robust estimation 
in long-memory processes when the data contains additive outliers.  

Besides, several articles focused on the estimation of ACF of stationary time 
series including the work of Berkoun, et al. (2003) mentioned above. Smadi, et al. 
(2009) and Smadi (2013) generalized the work of Berkoun, et al. (2003) to 
periodic AR models. Alternatively, Hassani (2010) found that the distributions of 
a set of sample autocorrelations are neither independent nor identically distributed. 
This finding implies that the result of diagnostic check and model building based 
on kr , especially in the presence of some suspect data can be quite misleading. 
Kan and Wang (2010) provide an algorithm for evaluating the exact distribution 
of the sample autocorrelations. 

Some properties of the ACF of AR(1) model 

Let { }tX  be a stationary time series, then the auto-covariance function (ACVF) 
and the autocorrelation function (ACF) depend on time lag only. Based on a 
realization  1, , nX X , the moment estimator of k  is given by kr  defined in (5) 
above (Wei, 2006). For large n, kr  is approximately normally distributed with 
mean k . Also, for a stationary Gaussian process, based on Bartlett (1946), 
Brockwell & Davis (2002) have shown that for k > 0 and k + j > 0, 
 

     
1

1( , ) 2 2k k j i k i k i k j k j k j k
i

Cov r r
n

       


    



        (8) 
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which in turn for j = 0 reduces to 
 

  
2

1

1( ) 2k i k i k i k
i

Var r
n

   


 



     (9) 

 
For more details on properties of kr  for stationary time series, see Wei (2006). 

Now, if { }tX  follows the zero-mean AR(1) Model, as (1) with c = 0 and 
1  , then k

k  , k =0, 1, 2, … and (8) reduces to 
 

                      ( )kVar r     
2 22 1 2

1 1

1 k
k i i k k

i i kn
     


 

  

      

 

     
12 2 2 21 1 1 1 2 .k kk

n
   



       (10) 

 
A further approximation of (10) gives for k = 1 (Cryer & Chan, 2008) 
 

 
21( ) .kVar r

n


   (11) 

 
So that the closer   is to 1  the more accurate the estimate of 1( )   becomes. 
For large values of k, the terms in (10) involving k  could be ignored so that 
 

 
2

2

1 1( ) .
1kVar r

n




 
  

 
  (12) 

 
In Figure 1, nVar(rk) is sketched based on (10) for some selected values of ϕ. 

Notice in this figure that for k = 1, as |ϕ| gets larger, Var(rk) is decreasing. 
Therefore, with stronger autocorrelation among the data, the moment estimator r1 
is more accurate. The opposite happens for k ≥ 1, that is as |ϕ| approaches one, 
Var(rk) becomes larger. 
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Figure 1. nVar(rk) for the AR(1) model for several values of ϕ and k. 
 
 
 

For the AR(1) model, (8) can also be simplified for general 0 < k < k + j as 
(Cryer & Chan, 2008) 
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In particular, 
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Figure 2 shows |Corr(r1,r2)| for some selected values of ϕ. This figure shows 

a stronger association between r1 and r2 when |ϕ| is closer to one. More precisely, 
for the AR(1) time series data, when ϕ ≈ 1(ϕ ≈ −1) a large positive (negative) r1 is 
expected to be followed by a relatively large positive (positive) r2. This agrees 
with the theoretical ACF of AR(1) model, ρk = ϕk, which is alternating for 
negative values of ϕ. 

Notice from the discussion above, that for stationary time series data, rk is 
asymptotically unbiased. The formulas for the variance and covariances among 
various sample autocorrelations depend mainly on the theoretical ACF of the 
model and they are again asymptotic. In the following example, using Monte-
Carlo simulation, the bias and MSE of rk for the AR(1) model are studied and the 
accuracy of the asymptotic variance of rk given by (11) and (12) is investigated. 
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Figure 2. Asymptotic Corr(r1,r2) for AR(1) model for several values of ϕ. 
 
 

Example 1 
The accuracy of the formulas for Var(rk) given in (11) and (12) are now studied. 
Assuming the zero-mean AR(1) model with ϕ = −0.8, −0.5, −0.1, 0.1, 0.5, 0.8, 
one thousand realizations each of length n = 30,100 are generated from this model 
assuming that the WN process is iid N(0,1), then the sample ACF for lags 

1, ,5k   is computed, then the sample MSE are computed (in terms of ρ1 and its 
estimates r1(1),…,r1(1000)) as 
 

 
  

1000 2

1 1
1

1 .
1000 i

i
MSE r



    

 
finally Rel−MSE = MSE/Var(rk) are computed, where (11) and (12) are used for 
Var(rk), which in turn are sketched in Figure 3. The simulations are carried out 
using the R-package through the R-command sim.ARIMA 

In view of Figure 3, it can be seen that Rel−MSE is close to one (which 
means that the asymptotic formulas in (11) and (12) become more accurate) when 
ϕ is close to zero and n is large. In addition, it seems that (11) underestimates the 
actual variance for r1. For k ≥ 2, the asymptotic variance is defined by (12). For r2 
with n = 100 this formula again underestimates the actual variance but, 
unexpectedly, not true for n = 30. For larger time lags, it is seen that Rel−MSE < 
1, so that (12) overestimates the actual variance of rk. Therefore, in practice, (11) 
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and (12) should be used with caution as they may produce poor results depending 
on the type and strength of autocorrelation among data and the realization length. 
 
 

 
 
Figure 3. The Rel−MSE of rk for the AR(1) model for various values of ϕ (n = 30: ~, 
n=100: ---) 
 
 

The empirical distributions of some robust estimators of ρ1 
for the AR(1) model 

An estimation procedure is said to be robust if it is little influenced by blatant 
departures from assumptions. Such procedures aim to minimize the influence of 
outliers or departure from model assumptions while performing at the same time 
as well as the optimum methods when assumptions hold (Sprent and Smeeton, 
2001).  

In (3) and (4), two robust estimators of ρ1 are defined due to Berkoun, et al. 
(2003) which have been generalized to higher time lags in (6) and (7). Recall that 
ρ1 is of particular importance specially in the AR(1) model for which ρ1 = ϕ. This 
value determines the strength and pattern of all remaining autocorrelations. Also, 
in many routine statistical analyses, as for instance in testing for autocorrelated 
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errors in regression analysis, only ρ1 is usually investigated. The following 
example investigates the distributions of various estimators of ρ1 for the AR(1) 
model. 

Example 2 
Assuming the zero-mean AR(1) model with WN following N(0,σ2), then using 
Monte-Carlo simulation the distributions of *

1 1,r   and 1p  for 
20.1,0.8, 100 and 1n     are compared. An r-code is written by the authors 

to accomplish this job. The empirical distributions of various estimators are 
obtained based on one thousand repetitions using the r-command (density). 
Results are presented graphically in Figure 4. This figure shows that the empirical 
distributions of various estimators are unimodal and nearly symmetric. The 
distribution of *

1  seems closer to normality than other distributions. As ϕ is 
increased from 0.1 to 0.8, the location of various distributions is shifted up 
towards 0.8. Also, the variability in the distributions of r1 and *

1  is decreased 
more than that of the second robust estimator, 1p . 
 
 

 
 
Figure 4. The empirical pdf of three estimators of ρ1 for AR(1) model; for ϕ = 0.1 (left) 
and ϕ = 0.8 (right), n = 100 and σ2 = 1 
 
 
 

In traditional time series analysis, it is usually assumed that the WN terms in 
the AR(1) model are iid N(0,σ2), as above. Therefore, it is crucial to explore the 
robustness of various estimators of the ACF if the WN terms are not normal. In 
the following example the empirical distributions of various estimators for ρ1 in 
the AR(1) model are investigated assuming that the WN terms follow the normal, 
student-t, Cauchy and exponential. The choice of the student-t and Cauchy 
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distributions was to study the effect of tail-heaviness of WN distribution whereas 
the exponential distribution is used to study the effect of skewness of WN 
distribution. 

Example 3 

 

 

 
 
Figure 5. Empirical distributions of *

1 1,r   and 1p of AR(1) model; for ϕ = 0.1, for various 
error distributions. 
 
 
Assuming the zero-mean AR(1) model with WN following N(0,1), t5, Cauchy 
(0,1), and (the zero-mean) Exp*(1) (that is, the ordinary exponential distribution 
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with mean 1 but shifted left by one unit). Again, using Monte-Carlo simulation 
the distribution of *

1 1,r   and 1p  for ϕ = 0.1,0.8, n = 30,100 are compared. The 
empirical distributions of various estimators is obtained based on 1,000 
repetitions using the r-command (density). The results are summarized in Figure 5. 
Also, the p-values of two tests of normality for the empirical distributions, namely 
the Shapiro-Wilk test (SWT) and the Anderson-Darling test (ADT), are presented 
in Table 1. To perform these tests, the R-commands shapiro.test(X) and ad.test(x) 
were used which belong, respectively to the stats and nortest R-packages. A 
detailed account of these tests and other tests of normality is found in Thode 
(2002). 
 
 
Table 1. Normality tests of the distributions of r1, *

1  and 1  of AR(1) model; for 
ϕ=0.1,0.8, n=30,100, along various error distributions. 
 

 N  T 

 ϕ  n    1r   *
1    1       1r   *

1    1    

0.1 
30  0.0700 0.0458 2.50E-11  0.5264 0.9339 5.61E-12 

 0.0076 0.0259 2.20E-16  0.5338 0.9008 2.20E-16 

100  0.4270 0.7529 7.76E-11  0.3117 0.7291 2.20E-16 

 0.2414 0.7529 1.39E-15  0.6098 0.9912 2.20E-16 

0.8 
30  2.20E-16 2.20E-16 2.20E-16  2.20E-16 2.20E-16 2.20E-16 

 2.20E-16 2.20E-16 2.20E-16  2.20E-16 2.20E-16 2.20E-16 

100  9.23E-12 5.63E-09 1.96E-07  1.28E-11 1.19E-08 7.80E-07 
  6.05E-14 5.12E-07 2.00E-03   1.06E-13 3.48E-11 2.44E-03 

          
  C  E 

 ϕ  n    1r   *
1    1       1r   *

1    1    

0.1 
30  9.54E-16 2.20E-16 2.20E-16  0.01542 1.21E-05 3.35E-07 

 2.20E-16 2.20E-16 2.20E-16  0.01491 3.02E-05 1.60E-11 

100  2.20E-16 3.41E-15 2.20E-16  6.92E-05 4.12E-05 9.54E-15 

 2.20E-16 2.20E-16 2.20E-16  6.42E-05 7.41E-05 1.43E-15 

0.8 
30  2.20E-16 2.20E-16 2.20E-16  2.20E-16 2.20E-16 2.20E-16 

 2.20E-16 2.20E-16 2.20E-16  2.20E-16 2.20E-16 2.20E-16 

100  2.20E-16 2.20E-16 2.20E-16  3.29E-10 1.74E-13 3.77E-09 
  2.20E-16 2.20E-16 6.57E-15   2.16E-08 3.61E-14 3.47E-06 

 
 

In view of Table 1, it can be seen that the majority of distributions are far 
from normality, especially when the WN distribution is far from normality. The 
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departure from normality is specifically seen for smaller n as well as larger ϕ. The 
normality assumption is validated only with ϕ = 0.1, for *

1 1 and r   along normal 
and t WN distributions. In summary, results indicated that the assumption of 
normality for any of the estimators of ρ1 considered here is mostly invalid. This 
result agrees with those of Hassani (2010). 

As far as Figure 5 is considered, it can be seen that the empirical distribution 
of r1 is not affected by the WN distribution, except the Cauchy case which 
showed a much higher kurtosis than other distributions. This is true for n = 30 and 
100. A nearly similar conclusion is seen for *

1 . For 1p , no significant differences 
are seen, especially for n = 30, among its empirical distributions in terms of WN 
distribution including the Cauchy distribution, whereas all distributions here show 
some positive skewness. In overall, it seems that 1p  is less affected by the change 
of WN distribution as compared to other estimators. 

Bias and MSE for various estimators of ACF of AR(1) with 
Gaussian errors 

Now, go back to the case of normal WN distribution and again the AR(1) 
model. The objective is to study the precision and accuracy of various estimators 
for ρk defined in (5) – (7). Example 1 defined the empirical MSE of r1. Similarly, 
the bias of r1 is defined as 
 

  
1000

1 1( )
1

1 .
1000 i

i
Bias r



    

 
Because interest is in determining the bias and MSE for various time lags and ϕ 
which in turn change the theoretical autocorrelations, the better comparable 
measures are computed, namely the relative bias (RB) and relative root MSE 
(RRMSE) defined as 
 

  
 ˆˆ

B
RB





   

 
and 
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 ˆˆ .

MSE
RRMSE





   

 
 
Table 2. The RB and RRMSE for various estimators of the ACF of AR(1) model. 
 

 

n = 30 
ϕ Est 1 2 3 4 5 

-0.8 

kr   
0.079  0.172  0.232  0.313  0.355  

(0.168) (0.340) (0.485) (0.665) (0.827) 
*
kp  

0.038  0.056  0.078  0.111  0.153  
(0.235) (0.418) (0.626) (0.899) (1.197) 

kp  
0.127  0.176  0.199  0.218  0.244  

(0.331) (0.484) (0.651) (0.871) (1.136) 

-0.5 

kr   
0.062  0.240  0.234  0.565  (0.013) 

(0.301) (0.792) (1.528) (3.131) (5.987) 
*
kp  

0.028  0.081  0.188  0.203  0.013  
(0.494) (1.219) (2.520) (5.219) (11.136) 

kp  
0.201  0.282  0.355  0.394  0.262  

(0.561) (1.061) (2.043) (4.089) (8.723) 

-0.1 

kr   
(0.268) 2.610  (20.900) 287.000  (1960.000) 
(1.755) (17.020) (168.500) (1711.700) (16763.100) 

*
kp  

(0.040) (0.950) 9.000  137.000  1080.000  
(2.888) (27.530) (291.900) (3108.100) (31686.000) 

kp  
0.213  (0.130) 6.800  130.000  300.000  

(2.211) (22.270) (226.100) (2370.700) (25059.900) 

0.1 

kr   
0.442  4.180  47.100  295.000  3280.000  

(1.732) (17.970) (175.500) (1702.900) (17406.900) 
*
kp  

0.023  0.790  17.000  (147.000) (470.000) 
(2.827) (29.780) (302.700) (3028.200) (32542.300) 

kp  
0.247  0.450  11.400  (138.000) (920.000) 

(2.112) (22.270) (230.000) (2267.200) (24819.300) 

0.5 

kr   
0.209  0.526  0.966  1.634  2.906  

(0.388) (0.932) (1.787) (3.256) (6.336) 
*
kp  

0.060  0.076  0.198  0.195  0.221  
(0.507) (1.257) (2.747) (5.445) (11.250) 

kp  
0.218  0.270  0.289  0.350  0.346  

(0.562) (1.077) (2.172) (4.443) (9.230) 

0.8 

kr   
0.200  0.395  0.582  0.780  0.986  

(0.272) (0.508) (0.721) (0.945) (1.170) 
*
kp  

0.035  0.073  0.094  0.105  0.127  
(0.225) (0.428) (0.657) (0.891) (1.242) 

kp  
0.129  0.182  0.197  0.214  0.224  

(0.329) (0.497) (0.673) (0.863) (1.134) 
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Table 2, cont. 
 

 
 n = 100 

ϕ Est 1 2 3 4 5 

-0.8 

kr   
0.026  0.056  0.077  0.104  0.119  

(0.086) (0.176) (0.273) (0.387) (0.514) 
*
kp  

0.012  0.024  0.027  0.024  0.011  
(0.127) (0.243) (0.363) (0.504) (0.680) 

kp  
0.110  0.183  0.237  0.245  0.251  

(0.229) (0.357) (0.465) (0.555) (0.669) 

-0.5 

kr   
0.013  0.064  0.068  0.190  0.061  

(0.173) (0.458) (0.933) (1.986) (3.945) 
*
kp  

0.006  (0.001) 0.000  0.061  (0.125) 
(0.268) (0.655) (1.353) (2.889) (5.778) 

kp  
0.237  0.352  0.414  0.411  0.346  

(0.381) (0.632) (0.990) (1.893) (3.592) 

-0.1 

kr   
(0.037) 0.970  (10.800) 124.000  (720.000) 
(0.964) (10.200) (100.000) (1000.000) (10148.900) 

*
kp  

0.029  0.680  (8.800) (17.000) 520.000  
(1.565) (15.750) (154.600) (1486.600) (16522.700) 

kp  
0.414  0.640  (4.700) (20.000) (10.000) 

(1.058) (9.327) (93.270) (866.000) (9434.000) 

0.1 

kr   
0.158  1.360  14.000  102.000  1460.000  

(0.990) (10.050) (97.470) (964.400) (10148.900) 
*
kp  

0.046  0.100  (2.700) 21.000  470.000  
(1.533) (16.210) (156.800) (1612.500) (16673.300) 

kp  
0.438  0.330  (3.700) (6.000) 80.000  

(1.058) (9.434) (96.950) (927.400) (9848.900) 

0.5 

kr   
0.053  0.141  0.278  0.549  0.986  

(0.183) (0.478) (1.002) (1.992) (3.880) 
*
kp  

0.008  0.009  (0.010) 0.122  0.064  
(0.271) (0.650) (1.415) (2.920) (5.831) 

kp  
0.242  0.352  0.397  0.406  0.480  

(0.381) (0.620) (1.024) (1.979) (3.677) 

0.8 

kr   
0.052  0.108  0.168  0.230  0.302  

(0.098) (0.200) (0.309) (0.431) (0.574) 
*
kp  

0.009  0.010  0.029  0.018  0.014  
(0.123) (0.228) (0.348) (0.473) (0.660) 

kp  
0.115  0.190  0.235  0.256  0.275  

(0.229) (0.347) (0.451) (0.530) (0.639) 
 

Therefore, assuming the same model and settings in Example 1, and based 
on one thousand realizations, the RB and RRMSE for *,  and k k kr    are computed 
and then summarized in Table 2. The main advantage of adopting RB and 
RRMSE is that they can be used to compare any two cases (cells) within Table 2, 
regarding the value of ϕ, n or estimator.  
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The first conclusion from Table 2 is that, for fixed ϕ and n the RB and 
RRMSE increase for all estimators as the time lag k is increasing. The RB and 
RRMSE also increase for all estimators as |ϕ| approaches zero. Thus, it may be 
concluded that with stronger autocorrelation among data, all estimators perform 
better than for weaker autocorrelation. It can also be seen that the RB and 
RRMSE for negative values of ϕ are slightly smaller than their corresponding 
positive values.  

As the sample size increases, it can be seen that the RB and RRMSE are 
decreasing for * and k kr  . For *

k , the RRMSE is decreasing along n, but the RB 
shows no clear pattern. 

When |ϕ| is large, no big differences are seen in RB and RRMSE for various 
estimators, while discrepancies appear as |ϕ| gets closer to zero. In overall, it 
seems that *

k  is better than other estimators in terms of RB and kr  is better than 
other estimators in terms of RRMSE.  

Conclusions 

This study considered the statistical properties of the ACF of the AR(1) model, 
beginning with instigating some asymptotic formulas for the variances and 
covariance for the sample ACF (rk) for AR(1) model. It was noticed that some 
asymptotic formulas for Var(rk) are not accurate, especially for strong 
autocorrelation (|ϕ| closer to one).  

Later, the empirical distributions for three estimators of the first lag 
autocorrelation, *

1 1 1,  and r   , were studied, where the later two estimators are two 
robust estimators of 1 . These distributions are investigated for various error 
distributions. It is noticed that the empirical distributions of *

1 1 and r   are only 
affected when the error distribution is Cauchy, while the third estimator 1  is 
found more robust in this regard. Conversely, it is seen that the majority of 
empirical distributions are far from normality for all estimators. 

Earlier the accuracy and precision of higher lags estimators of k  , were 
studied, namely *,  and k k kr    for the AR(1) model with normal errors. It is seen 
that, all estimators were more accurate and precision for |φ| closer to one and 
small time lags. Besides, the RB and RRMSE dramatically increase when ϕ is 
closer to zero and large time lags. In overall, kr  perform better than other 
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estimators in terms of RRMSE while *
k  is better than other estimators in terms of 

RB. 
Finally, this study indicates that the moment estimator of the ACF of AR(1) 

model is an important tool in the identification and estimation of such models. It 
seems that it behaved well when the error of distributions is non-normal. However, 
the accuracy and precision of the moment ACF may suffer for weaker 
autocorrelations among data and higher time lags. It seems that more effort is 
needed following the current work, either regarding the model type of data or 
improving the accuracy and precision of the sample ACF of data. 

References 

Akaike, H. (1974). Markovian representation of stochastic processes and its 
application to the analysis of autoregressive moving average processes. Annals of 
the Institute of Statistical Mathematics, 26: 363-387. 

Bartlett, M. S. (1946). On the theoretical specification of sampling 
properties of auto-correlated time series. Journal of the Royal Statistical Society, 
Series B, 8: 27-41. 

Beguin, J. M., Gourieroux, C., & Monfort, A. (1980). Identification of a 
mixed autoregressive moving average process: The corner method. In O. D. 
Anderson (Ed.). Time series (pp. 423-436). Amsterdam: North-Holland. 

Berkoun, Y., Fellag, H., & Zieliński, R. (2003). Robust Testing serial 
correlation in AR (1) processes in the presence of a single additive outlier. 
Communications in Statistics, Theory and Methods, 32(8): 1527-1540. 

Box, G., Jenkins, G., & Reinsel, G. (1994). Time series analysis, forecasting 
and control, 3rd Edition. New York, NY: Prentice-Hall.  

Brockwell, P., & Davis, R. (2002). Introduction of time series and 
forecasting, 2nd Edition. New York, NY: Springer-Verlag. 

Bustos, O. H., & Yohai, V. J. (1986). Robust estimates of ARMA models. 
Journal of the American Statistical Association, 81: 69-155. 

Cleveland, W. S. (1972). The inverse autocorrelations of a time series and 
their applications. Technometrics, 14: 277-293. 

Cryer, J., & Chan, K. (2008). Time series analysis with applications in R, 
2nd Edition. New York, NY: Springer. 



SMADI ET AL 

173 

Denby, L., & Martin, R. D. (1979). Robust estimation of the first-order 
autoregressive parameter. Journal of the American Statistical Association, 74: 
140-146. 

Gray, H. L., Kelley, G. D., & McIntire, D. D. (1978). A new approach to 
ARMA modeling, Communications in Statistics, 87: 1-77. 

Haddad, J. N. (2000). On robust estimation in the first-order autoregressive 
processes, Communications in Statistics, Theory and Methods, 29(11): 45-54. 

Hassani, H. (2010). A note on the sum of the sample autocorrelation 
function. Journal Physica A: 1601-1606. 

Huber, P. J. (1964). Robust estimation of a location parameter. The Annals 
of Mathematical Statistics, 35: 73-101. 

Hurwicz, L. (1950). Least-squares bias in time series. In T. C. Koopmans 
(Ed.). Statistical inference in dynamic economic models, (pp. 365-383). New 
York, NY: Wiley and Sons. 

Kan, R., & Wang, X. (2010). On the distribution of the sample 
autocorrelation coefficients. Econometrics, 154: 101-121. 

Molinares, F., Reisen, V., & Neto, F. (2009). Robust estimation in long-
memory processes under additive outliers. Journal of Statistical Planning and 
Inference, 139: 2511-2525. 

Smadi, A. A. (2013). A Comparison of Some Estimators of the Seasonal 
ACF for Various PAR Models. Accepted in the Journal of Applied Probability 
and Statistics, January, 2013. 

Smadi, A., Abu-Affouna, N., & Al-Quraan, A. (2009). Robust estimation of 
the seasonal autocorrelation of the PAR (1) model. Jordan Journal of 
Mathematics and Statistics, 2(2): 105-118. 

Sprent, P., & Smeeton, N. C. (2001). Applied nonparametric statistical 
methods, 3rd Edition. Boca Raton, FL: Chapman and Hall/CRC.  

Thode Jr., H. C. (2002). Testing for normality. New York, NY: Marcel 
Dekker. 

Wei, W. W. (2006). Time series analysis, univariate and multivariate 
methods, 2nd Edition. Boston, MA: Addison-Wesley. 

Zieliński, R. (1999). A median–unbiased estimator of the AR(1) coefficient. 
Journal of Time Series Analysis, 20(4): 477-481. 


	Journal of Modern Applied Statistical Methods
	5-1-2014

	Robustness of Several Estimators of the ACF of AR(1) Process With Non-Gaussian Errors
	A A. Smadi
	J J. Jaber
	A G. Al-Zu'bi
	Recommended Citation


	tmp.1408656917.pdf.Fpcn2

