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CHAPTER 1 

INTRODUCTION 

Reduced integrity of cerebral white matter (WM) and elevations in vascular risk (VR) 

factors are implicated in age-related cognitive decline (Burgmans et al., 2010; 

Gunning-Dixon & Raz, 2000; Kennedy & Raz, 2009a; Madden et al., 2009, 2011). In the past 

decade, numerous studies investigating the neuroanatomical correlates of cognitive aging 

have employed diffusion tensor imaging (DTI) for in vivo quantitation of cerebral WM. 

However, few of the studies investigating associations between age-related cognitive decline 

and reduced WM integrity using DTI have evaluated change in cerebral WM. Although 

cross-sectional data can provide an informative snapshot of age-related differences, only 

longitudinal studies can elucidate individual differences in change over time or modifying 

factors (Lindenberger et al., 2011; Maxwell & Cole, 2007).  

The limited reports comparing longitudinal change in WM with concomitant change 

in cognitive performance (Barrick, Charlton, Clark, & Markus, 2010; Charlton, Schiavone, 

Barrick, Morris, & Markus, 2010; Teipel et al., 2010) have several limitations: none have 

accounted for the effects of VR factors, all have used linear models that do not do assess 

heterogeneity in age-related change (see Raz et al., 2005, 2008), and all offer only limited 

anatomical specificity of DTI-cognition associations. In addition, these studies have included 

samples of middle-aged and older adults with mixed or unclear vascular pathology or 

dementia, rather than a well-controlled and characterized sample of healthy adults.  

The present study addresses these questions in the context of existing data from a well 

characterized cohort of healthy participants covering the adult lifespan sample, measured on 
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two occasions, roughly two years apart. Such a project imposes numerous challenges, 

particularly regarding DTI image processing and data analysis. Specific concerns include 

registration and sampling of longitudinal DTI data, treatment of white matter hyperintensities 

(WMH), treatment of vascular risk factors, and statistical framework suitable for modeling 

heterogeneity in change for DTI, VR, and cognitive factors and their interrelationships.  

Measurement of WM integrity 

Volumetric assessments of normal appearing and lesioned WM have provided gross 

measures of WM integrity (Gunning-Dixon & Raz, 2000; Gunning-Dixon et al., 2009; Raz et 

al., 2005, 2010). Also referred to as leukoaraiosis, WMH are believed to reflect chronic 

vascular pathology (Brown & Thore, 2011; Burgmans et al., 2010; Dufouil et al., 2001; Gons 

et al., 2010; Kennedy & Raz, 2009b; Pantoni & Garcia, 1997; Raz et al., 2007; Raz et al., 

2011b; Raz et al., 2012). However, WM volumetry provides a macroscopic index that is less 

sensitive to the effects of age and pathology than measures that take advantage of the 

microscopic properties of WM, such as the diffusion of water (Fjell et al., 2008; 

Hugenschmidt et al., 2008; Basser & Pierpaoli, 1998; Pierpaoli et al., 2001; Pierpaoli & 

Basser, 1996). These neuroimaging methods developed over the past two decades allow in 

vivo characterization and quantitation of microstructural properties of cerebral WM. DTI 

indices have been shown to be both more sensitive than WM volume to child and adolescent 

development (Westlye et al., 2009) and more strongly associated with adult aging (Burgmans 

et al., 2010; Fjell et al., 2008; Giorgio et al., 2010).  

DTI  

DTI quantifies the directionality and magnitude of the tissue-specific constraint of 
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molecular (Brownian) motion of water. In principle, whereas unconstrained water diffuses 

isotropically, hydrophobic myelin and axonal membranes in WM restrict water to diffuse 

preferentially along the length of myelinated axonal white matter fiber tracts (Beaulieu, 2002; 

Beaulieu & Allen, 1994; Concha, Livy, Beaulieu, Wheatley, & Gross, 2010). Thus, 

differential measures of diffusion and anisotropy, or the constrained non-random movement 

of water, can provide useful information about WM microstructure.  

DTI studies most commonly utilize axial, diffusion-weighted, echo-planar imaging 

(EPI) sequences (Chen & Hindmarsh, 2001; Turner, Le Bihan, & Chesnicks, 1991). In order 

to calculate the tensor, diffusion must be independently sampled in at least six non-collinear 

directions (Moseley, Bammer, & Illes, 2002). Acquisition of these diffusion-weighted images 

requires a diffusion gradient with sufficient strength and pulse duration to sample diffusion in 

WM. The diffusion gradient is frequently reported as a high “b-value,” commonly 1000 

s/mm2, on two to three axes; an image with no gradient weighting applied, or b0 image is also 

required. From these separate images, the diffusion tensor, a geometric expression that 

describes a three-dimensional ellipsoid (Basser, Mattiello, & LeBihan, 1994) is calculated 

using a 3×3 matrix constructed from the different diffusion-sensitized directional images. 

Using matrix diagonalization, three eigenvectors are calculated which describe the 

directionality of diffusion along the three principal axes (x, y, z), and corresponding 

eigenvalues which provide indices of magnitude of diffusion (see Kingsley, 2006 for a 

complete description of DTI mathematics). Together, the three eigenvalues λ1, λ2, and λ3, (λ1 

≥ λ2 ≥ λ3) describe the shape of the ellipsoid. Mean diffusivity (MD) is calculated as the 

average of the three eigenvalues, and is mathematically equivalent to the apparent diffusion 
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coefficient (ADC) reported in diffusion-weighted imaging (DWI).  

 The first eigenvalue λ1 provides the principal diffusional direction and is also used as 

an index of axial diffusivity (DA). Similarly, averaging λ2 and λ3 yields a mean estimate of 

diffusion perpendicular to λ1, or radial diffusivity (DR or λ⊥). Unconstrained diffusion is 

isotropic, whereas myelin, cellular membranes, and fiber packing density restrict diffusion 

(Beaulieu, 2002; Beaulieu et al., 1996; Concha et al., 2010). This is also reflected in the shape 

of the tensor ellipsoid with cigar-shaped, prolate ellipsoid reflecting highly constrained 

diffusion, and uniform or oblate spheroids indicative of more isotropic diffusion. Thus, 

indices of anisotropy provide information about the restricted movement of water, which 

corresponds to microstructural properties of WM, particularly the directional coherence of 

WM fibers within a voxel. Fractional anisotropy (FA) is a scalar index that describes the 

eccentricity, or deviations from sphericity in the diffusion ellipsoid (Basser & Jones, 2002); 

in other words, FA provides an index of the magnitude of constraint or non-randomness in 

diffusion. FA has been used as a marker of intra-voxel coherence or fiber alignment 

consistency. As an index of intra-voxel coherence, FA is reduced in many regions that 

include an admixture of multiple, differentially oriented WM fiber tracts (e.g., centrum 

semiovale, occipital forceps, posterior cingulate, precuneus, arcuate fasciculus). Conversely, 

FA is maximal in regions where fibers share a common alignment, such as the splenium of 

the CC. Thus, in voxels with crossing fibers and reduced FA, the tensor shape may not 

simply be oblate or prolate, but vary along other dimensions.  

DTI in aging 

The most commonly reported DTI indices in studies of aging and cognition include 
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MD, FA, DA, and DR, which appear to reflect different tissue properties (Beaulieu, 2002); 

however, most published DTI studies of cognitive aging do not report all such indices. In 

addition, different patterns of these values are associated with different markers of pathology. 

Increased DR, accompanied by reduced DA may be indicative of Wallerian degeneration 

(Ford & Hackney, 1997; Ford, Hackney, Lavi, Phillips, & Patel, 1998; Pierpaoli et al., 2001; 

Sun et al., 2008). More specifically, ex vivo animal studies have shown myelin breakdown is 

associated with increased DR, whereas reduced DA appears to reflect axonal damage (Song 

et al., 2003; Song et al., 2002; Sun et al., 2008; Sun et al., 2006). Thus, Wallerian 

degeneration in isolated fiber bundles is associated with reduced DA and increased DR 

(Pierpaoli et al., 2001). In addition, FA appears influenced by myelin, but is largely 

dependent on fiber packing density, axon diameter, axonal membranes and intercellular space 

(Beaulieu, 2002). Findings from ex vivo DTI and histology of spinal cords from patients with 

multiple sclerosis (MS) also supported increased DR as reflecting demyelination and axonal 

loss, except in lesioned areas with marked alterations in WM architecture (Klawiter et al., 

2011). Moreover, the two diffusivity measures may differently reflect timing of insult, with 

reductions in DA following acute injury, whereas DR increases are manifest over a longer 

period of time (Klawiter et al., 2011; Naismith et al., 2009; Pitkonen et al., 2012; Song et al., 

2003; Song et al., 2002; Sun et al., 2008; Sun et al., 2006; Zhang et al., 2009). However, 

findings from ex vivo studies should be interpreted with some caution as formalin fixation 

reduces diffusivity measures, but not anisotropy in both human and animal models 

(Schmierer et al., 2008; Sun, Neil, & Song, 2003). Moreover, all of these reports are 

inherently cross-sectional and do not inform about change over time within the individual. An 
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additional limitation is these findings are predominantly restricted to WM tracts with high 

coherence, and not in regions in which DTI signal may be complicated by the presence of 

differential directions in the fiber populations. 

Aging in healthy adults is associated with reduced FA and increased MD, possibly 

due to increased DR (Bhagat & Beaulieu, 2004) associated with myelin and fiber loss. 

However, patterns differ across studies and tasks and much speculation has been made 

regarding the underlying neuroanatomical interpretation of such effects (see Madden et al., 

2011 for a review). More accurate interpretation of different combinations of DR, and DA 

requires better understanding of other key influences on λ1, λ2, and λ3 within a voxel, such as 

the presence of crossing fibers (Vos, Jones, Jeurissen, Viergever, & Leemans, 2011a). 

Madden et al. (2011) evaluated reports of correspondence between cognition and FA because 

that is the most commonly reported DTI metric. However, any claims regarding specific 

anatomical attributes underlying the DTI metrics require more than a single tensor model. 

That is, suggestions that DR and DA specifically reflect myelination or axonal integrity 

require additional WM measures more specific to myelination or greater geometric 

specificity (Wheeler-Kingshott & Cercignani, 2009; Jones et al., 2013). Thus, controlling for 

such influences (Douaud et al., 2011) may bolster inferential speculation about spatial 

patterns of DR and DA, and the correspondence with underlying cellular or pathological 

processes associated with aging (Bennett, Madden, Vaidya, Howard, & Howard, 2010a; 

Burzynska et al., 2010; Lebel et al., 2012) or learning (Engvig et al., 2011). 

Aging and WM tracts  

Cross-sectional evidence points to heterochronous patterns of WM development and 
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decline across fiber tracts (Lebel & Beaulieu, 2011). For association tracts, however, there is 

a general pattern of marked increases in myelinated fibers and WM integrity throughout 

childhood (Taki et al., 2012), followed by a more shallow, positive slope or plateau from the 

third decade into middle age, and subsequent accelerated decline from the fifth or sixth 

decade on (Hasan et al., 2009a; Hasan et al., 2009b; Kochunov et al., 2012; Lebel & Beaulieu, 

2011; Lebel et al., 2012). However, this does vary with some tracts such as the cingulum 

bundle exhibiting a far shallower negative slope in adulthood in comparison to inferior 

frontal-occipital fasciculus, which has a far steeper trajectory after the fourth decade (Lebel et 

al., 2012). In addition, findings from longitudinal DTI studies in healthy adults are very 

limited. To date, only a handful of studies have looked at the natural course of change over 

time in DTI metrics in adults (Barrick, Charlton, Clark, & Markus, 2010; Charlton, 

Schiavone, Barrick, Morris, & Markus, 2010; Sullivan, Rohlfing, & Pfefferbaum, 2010a; 

Teipel et al., 2010). Fiber tracking data from healthy adults showed greater FA reductions in 

CC body and genu than the splenium (Teipel et al., 2010). Using a tract-based approach to 

evaluate longitudinal DTI data, Barrick et al. (2010) reported that despite a lack of 

accelerated WM decline in older age and inconsistent longitudinal changes within a tract, that 

cross-sectional analysis of baseline data underestimated longitudinal decline. Moreover, the 

only study to evaluate associations between longitudinal changes in WM integrity and 

cognition due to normal aging (Charlton et al., 2009) employed whole brain histograms of FA 

and MD and sheds little light on anatomically specific WM correlates of cognitive aging.  

DTI & cognitive aging 

The literature investigating relationships between WM integrity and variability in 
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cognitive performance using DTI is predominantly cross-sectional. Moreover, comparison of 

cross-sectional findings reveals a lack of stability of such associations across studies (see 

Madden et al., 2009, 2011 for reviews). However, the extant literature does show strong 

correspondence between cerebral WM integrity and cognitive processing speed. For example, 

numerous reports suggest lower WM integrity is associated with slower processing speed in 

healthy adults (Burgmans et al., 2011; Correia et al., 2008; de Groot et al., 2000; Gold, 

Powell, Xuan, Jiang, & Hardy, 2007; Kennedy & Raz, 2009a; Kochunov et al., 2012; Liston 

et al., 2006; Liu et al., 2011; Madden et al., 2004; Penke et al., 2010b; Stebbins et al., 2001b; 

Tuch et al., 2005; Turken et al., 2008). Thus, evaluation of DTI metrics of WM integrity can 

provide important insights into the neurobiological bases of age-related slowing and 

associated decrements in other cognitive, perceptual, and motoric abilities (Eckert, 2011).  

Connectivity and anatomical association between prefrontal cortices and medial 

temporal and parietal cortices are implicated in performance on measures of episodic memory 

(Buckner et al., 1999; Bucur et al., 2008; Grady, McIntosh, & Craik, 2003; Iidaka, 

Matsumoto, Nogawa, Yamamoto, & Sadato, 2006; Kramer et al., 2005; Metzler-Baddeley, 

Jones, Belaroussi, Aggleton, & O'Sullivan, 2011; Swick & Knight, 1999) as well as executive 

functioning and working memory (Della-Maggiore et al., 2000; Kane & Engle, 2002; 

Kennedy & Raz, 2009a; Madden et al., 2007; Miller & Cohen, 2001; Ziegler et al., 2010). 

Age-related cognitive decrements are associated with reduced structural and functional 

connectivity between prefrontal cortices and other regions (Andrews-Hanna et al., 2007; 

Clapp, Rubens, Sabharwal, & Gazzaley, 2011; Grady et al., 2003). Early DTI studies of 

cognitive aging reported reduced anterior FA in older adults (Pfefferbaum et al., 2005; Salat 
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et al., 2005) was associated with reduced performance on measures of episodic memory, 

working memory, speed of processing, and reasoning (Madden et al., 2004; Stebbins et al., 

2001a; Stebbins et al., 2001b).  

Findings from functional and anatomical studies of cognitive aging have supported 

disconnection hypotheses in explaining age-related decrements in cognitive function 

(Geschwind, 1965). However, the regions and their connective substrates vary by cognitive 

domain. More specifically, anterior-posterior dysconnection may be implicated in reduced 

working memory (Davis et al., 2009), whereas impairments in frontal WM may be associated 

with reduced executive functioning (Buckner et al., 1999; Bucur et al., 2008; Grady et al., 

2003). Other cross-sectional findings from studies of healthy adults and patients with lesions 

have shown frontal-temporal disconnection may underlie episodic memory impairments by 

way of uncinate fasciculus (Papagno et al., 2010), cingulum bundle and fornix 

(Metzler-Baddeley, 2011; Sasson et al., 2010, 2011). 

Dearth of relevant prior findings 

 Given the dearth of longitudinal studies of DTI and aging, forming specific 

hypotheses regarding relationships between change in DTI indices (e.g., FA and MD) and 

change in cognition over a two-year delay is challenging. Moreover, the extant longitudinal 

DTI aging studies limited their analyses to either specific fiber tracts estimated with various 

tractography methods (Sullivan et al., 2010), or used both voxel-wise and region of interest 

(ROI)-based repeated measures analysis without accounting for additional continuous 

covariates such as age (Teipel et al., 2010). Similarly, other longitudinal approaches for 

evaluating age-related changes in DTI-based indices and cognition limited analyses to whole 
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brain or slice-by-slice histograms of FA and MD (Barrick et al., 2010; Charlton et al., 2010). 

Most of those studies employed suboptimal statistical techniques for assessing change, such 

as difference scores, paired t-tests or repeated measures ANOVA (Bereiter, 1963; Francis, 

Fletcher, Stuebing, Davidson, & Thompson, 1991; Overall & Woodward, 1975). As DTI has 

unclear test-retest reliability, the consequence of inclusion of measurement error in 

longitudinal assessment using difference images is uncertain. Furthermore, as cross-sectional 

findings cannot inform about intraindividual change or variability therein (Lindenberger et al., 

2011), even comparison of two occasions provides a better index of change.  

Need for longitudinal data 

 Unfortunately, it is possible that the increasing number of cross-sectional findings 

may be altogether missing the mark regarding individual differences in change of WM 

(Lindenberger et al., 2011). One reason may be that heterogeneously manifest VR factors 

may yield longitudinal effects that cannot be characterized by cross-sectional data. Although 

diagnosed hypertension may be associated with a steeper 5-year decline in volumes of some 

brain regions (Raz et al., 2005), preliminary evidence shows an altogether different pattern 

for DTI indices. Bender, Daugherty, & Raz (2012) evaluated the effects of age and 

hypertension on change in FA and MD over 15 months. They reported that in normotensive 

healthy adults, MD increased and FA decreased across multiple regions, including cingulum 

bundle, CC, and fornix. In contrast, individuals who are medically treated for essential 

hypertension showed the opposite pattern. That is, rather than showing exacerbated declines 

in WM integrity over two occasions, hypertensive participants who reported receiving 

medical treatment showed improvements. One possible interpretation suggests that the effects 
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of sub-clinical hypertension and other nascent VR factors may damage WM integrity in 

healthy persons. Thus, longitudinal analysis is essential to elucidating the real patterns and 

modifiers of change, even over a short delay.  

Statistical concerns 

Although more easily implemented in DTI analysis software, standard linear 

statistical models such as paired t-tests and repeated measures variance partitioning methods 

are problematic for evaluation of ongoing processes (see Raz et al., 2005, 2008). In particular, 

such methods are unable to model individual differences or the impact of factors contributing 

to heterogeneity in change. This limitation may be especially pronounced when assessing 

change over a short period where error variance may be larger than longitudinal effects. That 

is, decline or improvement between two closely spaced measurement occasions may be more 

suspect as it is unclear whether observed change may be due to sampling variation. This 

demonstrates a clear need for latent modeling approaches, although this imposes other 

concerns regarding sample size and statistical power which is often lower in prospective than 

cross-sectional studies due to attrition. 

 In addition to measurement of change in DTI, there are also concerns regarding 

relating change in WM with change in cognition over a limited period. Specifically, in order 

model the influence of other factors on longitudinal change, such change must demonstrate 

significant variance. Conversely, if no such significant individual differences are present, 

then there is no variability in change to predict. Because individual differences in change may 

be attenuated in latent modeling approaches, it is possible that some cognitive domains may 

not show significant variance in change in a healthy sample. Furthermore, if latent changes 
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are observed in cognitive measures, it is possible that they reflect retest effects, or 

performance improvements following repeated administration of testing materials. Such 

retest effects are particularly pronounced for mnestic measures and may obscure age-related 

decline (Ferrer, Salthouse, Stewart, & Schwartz, 2004; Salthouse, Schroeder, & Ferrer, 2004). 

Thus, mean improvement on cognitive measures as assessed with latent modeling approaches 

likely reflects retest effects, rather than age-related change or decline.  

Challenges of longitudinal DTI 

In addition to concerns regarding statistical modeling of change between two 

measurement occasions, there are issues specific to longitudinal measurement of DTI indices.  

First, greater slice thickness and variability between MRI measurements in slice placement 

may reduce measurement reliability between occasions. However, spatial normalization of 

DTI maps may result in increased interpolation and altered signals (Chao, Chou, Yang, 

Chung, & Wu, 2009). Thus, particular care must be taken to both maximize spatial 

correspondence between measurements and minimize interpolation of the DTI signal. 

Diffeomorphic registration methods can be used to register images between measurements, 

and thereby minimize these issues as long as data from all measurements is treated identically 

(Engvig et al., 2011; Huang et al., 2012; Reuter et al., 2012). 

 Longitudinal DTI data may have been originally collected using imaging standards 

that are no longer considered optimal. Thus, one concern is how to make the most of the data 

in light of such limitations. Although acquisition of six gradient directions is minimally 

sufficient for calculation of the diffusion tensor, it is neither optimal for improving 

signal-to-noise ratio for FA or MD nor sufficient for DTI tractography (Jones & Cercignani, 
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2010; Mukherjee, 2008). Increasing the number of gradient directions would improve SNR 

more than increasing the number of averages. However, Danielian and colleagues (2010) 

showed that increasing the number of averaged scans improves longitudinal reliability for 

tractography. With multiple averages concatenated at the scanner console, this could be 

viewed as problematic given the lack of specific registration across averages, particularly for 

voxel-wise comparison. However, it might also be seen positively as similar to applying a 

smoothing function to ameliorate the effects of minor movement or differences between 

averages or occasions (Engvig et al., 2011) resulting in a more generalizable signal. 

Regardless, even when the original DTI sequence parameters are suboptimal in comparison 

to more modern standards (e.g., six gradient directions vs. 32), longitudinal data can provide 

information that even the most optimal cross-sectional measures cannot, particularly when all 

possible measures are taken to maximize spatial correspondence and minimize any undue or 

differential interpolation between measurements.   

Vascular Risk 

In general, the influence of vascular risk on the relationship between DTI measures of 

WM integrity and cognitive abilities has not been addressed in a well controlled and 

characterized sample using statistical methods best suited to such analysis. Few studies have 

investigated the influences of aging and VR on the associations between DTI indices and 

cognitive abilities. In some cases, this was limited to ad hoc comparisons between 

hypertensives and normotensives on cognitive measures (Kennedy & Raz, 2009a) or DTI 

metrics (Sasson, Doniger, Pasternak, & Assaf, 2010). Others modeled BP, HTN or other VR 

indices as specific variables of interest (Hannesdottir et al., 2009; Leritz et al., 2010; Vernooij 
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et al., 2009). Unfortunately, the growing acceptance that a vascular and inflammatory 

etiology underlies, at least in part, neurocognitive aging and dementia (Franceschi et al., 2007; 

Fung, Vizcaychipi, Lloyd, Wan, & Ma, 2012; Piccinin, Muniz, Sparks, & Bontempo, 2011; 

Schneider & Bennett, 2010; Ungvari et al., 2010; Wright & Sacco, 2010) appears largely 

unacknowledged by cognitive aging studies using DTI that are not specifically investigating 

the modifying roles of VR.  

Most studies neither exclude nor account for the presence of individuals with common 

VR factors (Sasson et al., 2011). Although numerous studies estimate age-related variance in 

DTI indices (Charlton et al 2006; see Madden et al 2011 for a review), accounting for 

individual differences in VR factors may be at least as informative (Vernooij et al., 2008; 

Vernooij et al., 2009). Furthermore, in light of age-related increases in prevalence for such 

factors (Ervin, 2009), some proportion of the negative effects of age on WM integrity 

reported by many studies may instead reflect an admixture of age and unidentified VR factors. 

Conversely, those studies that control for the effects of age may also be partialing out some 

proportion of variance conveyed by VR that may be either dissociable from or collinear with 

age. In addition, VR-associated variance in DTI metrics in HTN and pathology may be 

qualitatively different from that of healthy aging, due in part to differences in underlying 

vascular pathology. 

Significance of the study 

 The present study is intended to address prescribed gaps in the extant literature 

relating age, DTI indices of cerebral WM, and cognition while controlling for the effects of 

hypertension. Moreover, use of latent difference score modeling (LDM; McArdle & 
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Nesselroade, 1994) permits estimation of longitudinal effects on the level of latent variables 

(LVs), free of measurement error. Importantly, this approach allows separate modeling of 

variance in LVs, and thereby permits examination of influences among individual differences 

in both individual LVs and in change between occasions of measurement. In addition, this 

study represents the first longitudinal DTI study of healthy participants covering the adult 

lifespan representing a ‘best case scenario’ of optimal aging. Given the greater theoretical 

value of longitudinal data in elucidating change, we sought to demonstrate the utility of 

sampling change over a relatively short period, even using suboptimal methods for DTI 

acquisition.  

 We expected that the LDM framework is a feasible approach for assessing change in 

DTI data, and that meaningful changes in DTI indices are observable over 2 years. In 

addition, we hypothesized these latent differences vary across brain regions; moreover, we 

expected that the extant cross-sectional findings would not provide an a priori basis for where 

to look for change, and even the nature of the longitudinal differences. However, we expected 

that different DTI indices should be differentially representative of underlying of 

microstructural properties of cerebral WM, although exactly which properties, we could not 

be sure of. We did expect that variance in change in DTI measures would be associated with 

variance in cognition.  
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CHAPTER 2  

METHODS 

Participants 

 The sample was drawn from data collected as part of the ongoing longitudinal study 

of brain and cognitive aging conducted by Dr. Naftali Raz and the Cognitive Neuroscience of 

Aging Laboratory at Wayne State University. A total of 104 participants were scanned on the 

Bruker Biospin 4T MRI scanner during the first two waves of the cohort whose initial 

measurement was collected from June 2005 to February 2009. All participants completed a 

thorough self-report health questionnaire    

 All participants were screened via self-report questionnaire to rule out depressed state 

(CES-D; Radloff, 1977; cut-off = 15), and an experimenter administered the Mini Mental 

Status Examination (MMSE; Folstein, Folstein, & McHugh, 1975; cut-off = 26) to screen for 

cognitive impairment. The experimenters screened all participants for near, far, and color 

vision problems (Optec 2000 Vision Tester, Stereo Optical Co., Inc., Chicago, IL) and 

speech-range hearing deficits (MA27 Screening Audiometer, Maico Diagnostics, Eden 

Prairie, MN).  

 Eight out of the 104 participants who underwent MRI at both occasions on the 4T 

magnet were subsequently excluded from analysis. These included: a 41-year 

old normotensive, Caucasian female for incidental finding of arteriovenus malformation; a 

71-year old, hypertensive, Caucasian female for MMSE score of 25 at follow up assessment; 

a 64-year old, normotensive, Caucasian female who was missing part of baseline DTI data; a 

39-year old, normotensive, Caucasian female, excluded for prior surgical repair of a cerebral 
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aneurism not reported until follow up assessment; a 52-year old, normotensive, black female, 

for high fasting blood glucose at both baseline and follow up (165 mg/dL & 192 mg/dL, 

respectively). In addition, we excluded three participants for depressed state as indicated by 

CES-D scores over cut-off at follow up assessment. These included a 55-year old, 

normotensive, Caucasian female (CES-D = 18), a 63-year old, hypertensive, black 

male (CES-D = 25), and a 31-year old, normotensive, Caucasian female.  

 The final sample consisted of 96 participants including 66 women and 30 men, 

ranging in age from 17 to 78 years at baseline assessment (Table 1). Men and women did not 

differ with regard to mean age, MMSE scores, self-reported years of education, self-reported 

engagement in regular exercise and frequency of exercise, or body mass index (BMI). 

However, men had significantly higher diastolic blood pressure and proportion of treated 

hypertensives, and marginally higher systolic blood pressure than women. In addition, 

women had one month longer delay on average between MRI scans than men. 

 In addition to both occasions of DTI data, all participants had at least one occasion of 

each cognitive and VR measurement. Assessment of blood pressure and hypertension is 

described below under Measures of vascular risk. 

 

   Table 1. Participant characteristics 
 

  Women Men     
Variable Mean (SD) Mean (SD) t or χ2 p 
Age (years) 54.59 (13.44) 55.3 (14.12) -0.236 .814 
Delay (months) 25.44 (2.13) 24.54 (2.12) 1.932 .056 
MMSE 29.03 (0.99) 28.87 (0.97) 0.754 .453 
Education 15.73 (2.23) 15.47 (2.58) 0.505 .615 
Systolic BP 120.24 (12.75) 125.41 (11.2) -1.912 .059 
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Diastolic BP 73.86 (6.64) 77.81 (8.56) -2.461 .016 
% Exercise 78.8% 83.3% 0.268 .604 
Days Exercise 3.17 (2.14) 3.83 (2.19) -1.406 .163 
BMI 3.26 (0.21) 3.33 (0.16) -1.689 .095 
% HBP Dx 15.15% 30.00% 4.134 .042 

Notes: BP=blood pressure; BMI=body mass index; Dx=diagnosis. 

 ‘Missingness’ in longitudinal data 

 A total of 219 participants (67.6% women) completed baseline assessments. Of those, 

134 completed follow up assessments. The 134 participants who completed both waves of the 

study, did not differ from the 85 who did not return with regard to proportion of men and 

women (χ2 = 2.600, p = 0.107), frequency of physician-diagnosed and treated 

hypertension (χ2 = 1.204, p = 0.273), number of years education (t[217] = 0.275, p = 0.784), 

systolic (t[216] = 0.329, p = 0.743) and diastolic blood pressure (t[216] = 1.28, p = 

0.204), self-reported exercise  (χ2 = 0.881, p = 0.348), and frequency thereof (t[217] = 

1.651, p = 0.100 ), smoking (χ2 = 1.003, p = 0.317).  However, the mean age and MMSE 

scores were significantly lower among those who did not return (mean age = 48.49, SD = 

17.32 years; mean MMSE = 28.60, SD = 1.18) in comparison to participants completing both 

waves (mean age = 53.37, SD = 13.82 years; mean MMSE = 28.98, SD = 0.99; t[217] = 

-2.304, p < .05, and t[217] = -2.551, p < .05, respectively).  

 Moreover, of the 134 participants who completed follow up testing, 104 were scanned 

on the Bruker 4T scanner, but due to hardware upgrades, the remaining 30 were scanned on a 

Siemens Verio 3T magnet. Differences in magnet strength precluded comparison with 

baseline measurements. The 96 participants included in analysis (mean age = 54.698, SD = 

13.719 years) with MRI data at both measurement occasions, were older than the 30 
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participants subsequently scanned on the 3T (mean age = 48.774, SD = 13.987 years; t[125] 

= 2.080, p = 0.040), but did not differ with regard to proportion of men and 

women, self-reported years education, presence or frequency of exercise, smoking, frequency 

of hypertension, MMSE score, or systolic and diastolic blood pressures (p > .100 for all). 

MRI imaging 

 MRI images were originally acquired as part of a longer protocol, using a Bruker 

MedSpec 4T scanner equipped with an 8-channel head coil. A 1 slice 2D localizer was 

initially acquired in the sagittal plane using the following parameters: Voxel size: 2.2 mm × 

2.2 mm; 10 mm slice thickness; FOV = 280 mm; TR = 20 ms; TE = 5 ms. A 2-D echo planar 

diffusion-weighted sequence acquired images with the following parameters: TR = 4900 ms; 

TE = 79 ms; 41 slices; slice thickness = 3 mm; distance factor = 0; FOV = 256 mm; matrix = 

128 × 128; voxel size = 2.0 mm × 2.0 mm × 3.0 mm; GRAPPA acceleration factor = 2. 

Diffusion weighted data were collected in six orthogonal gradient directions using a diffusion 

weighting of 800 s/mm2; an additional T2-weighted image was collected without diffusion 

weighting (b0 = 0 s/mm2).  

DTI processing.   

 Images were averaged across acquisitions on the console and written into DICOM 

format. We converted image data from DICOM format into NIFTI-1 (.nii) using MRIConvert 

2.0 (Jolinda Smith, University of Oregon, Lewis Center for 

Neuroimaging [http://lcni.uoregon.edu/~jolinda/mriconvert]). During conversion, the 

software extracted and rotated the b-vector matrix for each participant by multiplying the 

original b-vector gradient matrices by the inverse of the individual rotation matrices (i.e., the 
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patient image orientation matrix). This is preferable to using a global b-vector matrix based 

on scanner acquisition as it improves directional accuracy of the calculated tensor parameters. 

  We developed a custom DTI processing pipeline, written in a Bourne shell (bash) 

script, using tools freely available in the FMRIB Software Library (FSL) v5.0.2 (Analysis 

Group, FMRIB, Oxford, UK). The pipeline was written, tested and run on an Apple MacPro 

workstation running Mac OS 10.7 (Apple, Inc., Cupertino, CA). Pipeline functionality 

included DTI preprocessing, tensor fitting, segmentation of WMH and CSF, and optimized 

registration of longitudinal pairs, as well as nonlinear deprojection of a group-wise WM 

skeleton and atlas labels and data sampling. The pipeline was designed to optimize 

registration between measurements within each participant for generating the WM skeleton, 

while minimizing possible interpolation resulting from diffeomorphic transformation of DTI 

data. The pipeline combined traditional DTI pre-processing, diffeomorphic registration, 

tract-based spatial statistics (TBSS; Smith et al., 2006) procedures for skeletonisation, and 

probabilistic WM atlases to generate regions of interest (ROIs) on the WM skeleton. 

Registration procedures were adapted from several sources (Amlien et al., 2012; Engvig et al., 

2012; Huang et al., 2012) with the overarching goal of optimizing anatomical correspondence 

between each participant’s two measurements, prior to skeletonisation. The following section 

details specific steps and tools used in DTI processing. 

DTI pre-processing. We extracted copies of the first (b0) volume of each of the two 

paired (Time1, Time 2) 4D nii files. Next, the FMRIB's Linear Image Registration Tool 

(FLIRT) linearly registered the b0 images from each occasion using a 6-degrees of freedom 

(df) rigid registration with tri-linear interpolation, and the transformation matrices were saved 
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for subsequent use. Following registration, the script invoked the ‘avscale’ command to 

calculate the matrices needed to transform both images into the intermediate or ‘halfway’ 

space between them. In other words, although initial registration treated the baseline image as 

the target to which the Time 2 image was registered, this information could be used to 

determine secondary transformation matrices; these new transformation matrices could then 

be used to register each image to an intermediate space. The script called the ‘convert_xfm’ 

command to extract the halfway-forward and halfway-backward matrices and invert copies of 

the two matrices for later use.  

We used the brain extraction tool (BET; Smith, 2002) in FSL on both the paired, 

untransformed b0 images and the native 4D .nii file to produce brain masks and remove 

non-brain tissue; BET parameters included the –m and –R flags for binary mask creation and 

robust, repeated estimation of the brain center, respectively. The b0 images, stripped of 

non-brain tissue were then eroded by one voxel using the fslmaths –ero function. We then 

used the 4D brain masks to fit the tensor using the dtifit function, as well as participant 

specific b-vectors, a common b-value of 800 mm2/s, and the ‘save_tensor’ function to retain 

the DTI components for later use. The script called the fslmaths routine to average the second 

and third eigenvalues created by dtifit into radial diffusivity (DR) images for both occasions, 

and the first eigenvalue map was now designated as the axial diffusivity (DA) image.   

Next, the pipeline invoked the ‘vecreg’ command to rotate the saved tensor 

components using the halfway transformation matrices (i.e., T1 – halfway backward, Time 2 

– halfway forward). The fslmaths ‘tensor-decomp’ function refit the tensor data for both 

occasions in the transformed, halfway space between the two longitudinal images. We used 
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fslmaths to apply an upper threshold of 1.2 to the resulting, halfway-transformed FA maps to 

remove any noisy voxels. These thresholded FA maps were subsequently used in the TBSS 

processing approach for WM skeletonisation, (not voxel-wise analyses or sampling).  

Following tensor fitting and FA calculation, TBSS processing includes multiple steps.  

First, FA maps for the entire sample are non-linearly registered and individual FA maps are 

resampled to 1 mm3 voxels. In the present study we used the FMRIB58 standard space FA 

image as the registration target. Next, FA maps for the entire sample are merged, and a mean 

FA image is created from this merged 4D file. This mean FA image was then skeletonised, 

and a 0.3 threshold for FA was applied in the present study. Last the individual FA maps 

were projected onto the skeletonised mean FA image, using peak intensity FA values from 

innermost voxels within each tract as a guide. These maps form the basis for skeletonised FA 

data in a common space and provide the spatial transformations needed to inversely warp or 

‘deproject’ the data from standard to native space. 

Preprocessing – WMH/CSF Segmentation. Next, the pipeline used FMRIB’s 

Automated Segmentation Tool (FAST) to segment the eroded, skull-stripped b0 images into 6 

separate maps based on voxel intensity. These included two images representing primarily 

white matter (WM), in addition to images whose intensity reflects cerebrospinal fluid (CSF), 

areas of WM hyperintensities (WMH), or image noise at interfaces between CSF and other 

tissue types, GM, and hypointense voxels reflecting noise or near iron containing nuclei such 

as the basal ganglia. We then averaged and binarized the WM maps into a mask using 

fslmaths. Last, we refit the diffusion tensor using the same procedures as above, but using the 

binarized WM mask and re-calculated the radial and axial diffusion maps for the 
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WMH/CSF-masked data. 

 
Figure 1. Diagram depicting the procedure used for segmenting out cerebral spinal fluid (CSF) 
and white matter hyperintensities.  
 

TBSS-skeletonisation. We used the tract-based spatial statistics (TBSS; Smith et al., 2006) 

processing framework to create a group-wise WM skeleton in standard space, and then to 

nonlinearly deproject the skeleton and WM atlases back to halfway space. We ran standard 

TBSS processing on the FA images generated by refitting the tensor in halfway transformed 

space. The FMRIB58_FA standard space image was used as the target for non-linear 

registration, and the data were nonlinearly aligned into 1 mm × 1 mm × 1mm MNI 152 space. 

The TBSS pipeline then generated the mean, standard space FA image from both waves of 

the sample, and the corresponding WM skeleton. In the final step of TBSS processing (i.e., 
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tbss_4_prestats), we applied a threshold of 0.3 to the mean WM skeleton, to reduce areas 

with poor reliability. Last, we ran the tbss_deproject routine on the mean WM skeleton mask, 

as well as to the JHU-ICBM white matter atlas labels at 1mm, and the JHU-ICBM white 

matter tractography atlas (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases); the ‘2’ and ‘–n’ flags 

were used to nonlinearly warp the skeleton mask and atlases back to the space they were in at 

the first step of TBSS processing – here, the halfway space between measurements, while 

maintaining the integer values of the atlas regions. Furthermore, by using tbss_deproject on 

the atlases, the atlas values were only deprojected along the WM skeleton.  

Deprojection. We used FSL’s FLIRT process to transform the atlas-derived, skeletonised 

ROIs and the mean WM skeleton mask from individual halfway space to the original, native 

space from acquisition. Using fslmaths, we applied a lower threshold of 0.20 and an upper 

threshold of 1.001 to the native FA images from both occasions. The thresholded FA image 

was then binarized and used to mask the deprojected skeleton mask in native space, reducing 

noise from each skeleton from which we sampled values. We used the FSL ‘applywarp’ 

function to deproject the Harvard-Oxford subcortical atlas (Desikan et al., 2006) to native 

space, using the subject-specific inverse warp matrices generated by TBSS and the halfway 

transformation matrices created earlier; whereas tbss_deproject restricts deprojected values to 

the WM skeleton, this deprojection method does not.  

Mask creation.  In a separate bash-scripted process, we used fslmaths to extract separate 

masks from the atlases deprojected to native space, for each subject. For redundancy, we used 

the individual native space, FA-thresholded skeletons as a secondary mask on the ROI masks 

during extraction. If possible, we extracted separate masks for left and right and combined 
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hemispheres.  

In addition to mask extraction from the deprojected, skeletonised atlases, some 

additional manipulation of the masks was necessary. The atlases contained only individual 

masks for non-lateralized structures on the midline, such as corpus callosum (CC) and fornix. 

Therefore, we used fslmaths to extract separate hemispheric masks from the Harvard-Oxford 

atlas transformed to individual subject space. We used these to mask left and right sides of 

the CC including body (CC body), genu (CC genu) and splenium (CC splenium), to create 

separate lateralized masks. In addition, we sought to eliminate overlap between ROIs. The 

JHU-tractography atlas masks for forceps major (FMaj) and minor (FMin) were spatially 

redundant with the masks for CC genu and CC splenium. However, as we wished to model 

the variance from those regions separately we used fslmaths to create separate, 

non-overlapping masks by subtracting the masks for genu and splenium from those for 

forceps minor and major, respectively.  

In addition, visual inspection of the uncinate fasciculus (UF) masks revealed 

substantial overlap between the two atlases, in this rather small ROI. Therefore, we used 

fslmaths to sum the separate masks from the two atlases into a new UF mask with increased 

coverage.  

Data Sampling. Based on visual inspection of the resultant masks, we chose 14 WM 

atlas-derived ROIs for sampling and analysis. The WM masks included the following tracts 

and regions previously associated with cognitive abilities in studies of aging. These included 

CC genu, CC splenium and CC body, dorsal cingulum bundle (CBd), ventral cingulum 

bundle (CBv), superior longitudinal fasciculus (SLF), and three divisions of the internal 
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capsule, the anterior limb (ALIC), posterior limb (PLIC), and retrolenticular limb (RLIC) – 

all taken from the ICBM-DTI-81 white matter labels atlas (Mori et al., 2005; Wakana et al., 

2007). In addition we included ROI masks taken from the JHU WM tractography atlas, 

including the inferior longitudinal fasciculus (ILF), inferior frontal-occipital fasciculus 

(IFOF), FMaj and FMin. The UF mask was averaged from the two atlases. Care was taken to 

ensure masks did not overlap. We chose to exclude masks that demonstrated visually 

apparent inconsistencies in coverage across the sample. These included the masks for 

superior frontal-occipital fasciculus, corticospinal tract, and corona radiata.    

We then created a separate bash script to sample data from the atlas-derived masks. 

The script called the fslstats function to sample and output the mean values and standard 

deviations for non-zero voxels for masks from left, right, and combined hemispheres for all 

four DTI indices fractional anisotropy FA, mean diffusivity (MD), radial diffusivity (DR), 

and axial diffusivity (DA). The script sampled from both the non-masked data and from the 

data masked for WMH/CSF. We inspected standard deviations from the sampled FA values 

to help ensure no subject has excessive noise in a given ROI (e.g., standard deviations for all 

FA data were < .15). In addition, we evaluated the standard error of the mean values for each 

region sampled, for each participant. Standard error values were low (FA SE range = 0.0059 

to range 0.08), and varied according to the size of the region sampled.  

Measures of vascular risk (VR) 

 Diagnosis and treatment of hypertension. The number of years that participants with 

self-reported diagnosis of hypertension have been taking antihypertensive medication, as 

reported at follow up testing, served as a VR measure. This measure was chosen as a 
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covariate representing hypertension-related vascular risk for several reasons. First, whereas a 

dichotomous indicator of hypertension diagnosis contains little meaningful variance, duration 

of medication includes measurement variance that is likely indicative of the severity of 

effects. Moreover, it is also possible that those taking anti-hypertensive medications for 

longer may show reduced decline to DTI indices of WM (Bender, Daugherty & Raz, 2012). 

In addition, use of this variable would also include those participants who were newly 

diagnosed and treated at follow up, but not at baseline. 

 Blood pressure. Trained laboratory staff used an auscultatory method to measure 

blood pressure with diastole phase V for identification of diastolic pressure (Pickering et al., 

2005). Trained experimenters took measurements as participants sat in a quiet, 

climate-controlled room on three separate days, normally one to two weeks apart. The values 

were averaged across measurements to obtain the mean systolic and diastolic pressure. 

 The Detroit Medical Center hospital laboratory analyzed blood samples collected by a 

trained phlebotomist from participants following a 12-hour overnight fast. Assays were 

performed to measure C-reactive protein (CRP), and homocysteine levels.  

Lipid Panel. Hospital laboratory staff employed a direct cholesterol oxidase/cholesterol 

esterase method to measure triglyceride, high-density lipoprotein (HDL) and total cholesterol; 

reference ranges for total cholesterol and HDL were 100-199 mg/dl and >39 mg/dl, 

respectively. Hospital laboratory staff used direct measures to calculate low-density 

lipoprotein (LDL) cholesterol level (in mg/dl) as follows: LDL = Total cholesterol – HDL – 

(Triglycerides/5). 

Blood Glucose. Laboratory staff measured whole blood glucose levels by the standard 
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enzymatic glucose oxidase method. Blood glucose levels cut-offs were: 70 mg/dl (3.9 

mmol/L) > 126 mg/dl (_7.0 mmol/L). 

Waist-to-hip ratio (WHR): At the time of blood sampling a trained research staff member 

measured participant waist and hip circumference using a fabric measuring tape. These 

values were used to calculate the ratio between the two. 

Cognitive Tests 

Speed of Perceptual-Motor Processing (Speed) 

 An experimenter administered the Letter Comparison and Pattern Comparison tests 

(Salthouse, 1996) to gauge speed of perceptual processing. The experimenter instructed 

participants to determine whether pairs side-by-side of letter strings or line patterns were the 

same or different, as quickly and as accurately as possible. Both tests included two pages of 

items. Participants completed as many items as possible in 30 s provided per page. The 

performance index for each test is the total correct for both pages, divided by time for 

completion (# correct / 60 s). Reliabilities for letter and pattern comparison are estimated to 

be .77 and .87, respectively (Salthouse & Meinz, 1995). 

 In addition, the mean response times (RTs) from the 1-back verbal and non-verbal 

trials provide additional indices of speed of perceptual-motor processing.  

Executive function (EF) 

 EF – Inhibition. Participants completed a paper version of the Stroop task (Stroop, 

1935; Salthouse & Meinz, 1995). An experimenter first presented the participant with a sheet 

containing 20 items organized in two columns; each item was surrounded by a 13.5 × 19 mm 

rectangle. In each test, experimenter instructed the participant to respond as quickly as 
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possible, starting with the left column, before continuing with the right column. In the color 

neutral (CN) subtest participants named the color of the ink of strings of six Xs printed in red, 

green, yellow, and blue ink. In the color incompatible (CI) subtest, the words ‘red,’ ‘green,’ 

‘blue,’ and ‘yellow’ were presented but in incongruently colored ink; participants were 

instructed to name the color of the ink, rather than the word. Participants completed two 

versions of each subtest using alternate forms. Interference scores were calculated as the 

difference between mean response times for CI and CN subtests. This task has an estimated 

split-half reliability of .72 (Salthouse & Meinz, 1995). 

 EF – Working Memory: Size Judgment Span. In the task originally described by 

Cherry and Park (1993) participants are required to maintain representations in working 

memory, compare them based on semantic features, and re-order the items in ascending 

physical size for verbal report. In each trial, the experimenter reads a list of items, and there 

are three trials per set. First, two items are presented per trial with and the number of 

presented items increases by one upon successful completion of at least two trials per set. The 

task is concluded when the participant correctly answers fewer than two trials correctly. The 

task’s estimated reliability coefficient is .79 (Cherry & Park, 1993). 

 EF – Working Memory: Spatial Recall.  Working memory was also assessed with a 

modified, computerized version of the task described by Salthouse (1974, 1975; Salthouse, 

Kausler, & Saults, 1988). A series of 5 × 5 matrices were presented on a computer screen, 

each with seven darkened cells. Participants received response forms that included three 

pages of two columns of five blank matrices. An experimenter told participants that after 

seeing each matrix, they were to draw an X in each of the seven cells on corresponding blank 
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matrix on the paper response forms; the experimenter instructed participants to always make 

seven X marks, guessing if necessary. Participants first completed five practice trials, and 

then 25 test trials. The index of performance was the average number correct across the 25 

test trials. Cronbach’s alpha (α) was .89, as computed across the 25 test trials. 

 EF – Working Memory: Listening Span. In the Listening Span (LSPAN; Salthouse, 

Mitchell, Skovronek, & Babcock, 1989) task, participants are required to listen to the 

experimenter reading simple sentences out loud, answer a multiple choice question about the 

sentences, and freely recall the final word of each sentence, in order of presentation (see Raz, 

Gunning-Dixon, Head, Dupuis, & Acker, 1998 for a full description). The LSPAN contains 

seven blocks, each with three trials. Participants start with one sentence per trial in the first 

block, and the number of sentences increases by one for each successive block. After all 

items in a trial have been presented, the experimenter instructs participants to write down as 

many of the final words as possible, maintaining the original presentation order. In addition, 

for trials to be counted as correct participants must correctly answer the accompanying 

multiple-choice questions. Participants are awarded one point for each correctly recalled and 

ordered final word that is accompanied by a correct response. One performance index of the 

LSPAN is the absolute span (AS), calculated as the total number of correct trials from the 

where at least two out of three trials were correct, starting with the first block. The AS has 

been used previously (Raz, et al., 1998) as a measure of working memory capacity.  

 EF – Working Memory: n-Back Tests. Working memory storage and maintenance was 

assessed with two computerized n-back tests using verbal and non-verbal materials (modeled 

after Dobbs & Rule, 1989; Hultsch, Hertzog, & Dixon, 1990). Verbal and non-verbal tests 
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presented single-digit numbers and abstract shapes, respectively, on a 17-inch monitor. The 

1-, 2-, and 3-back subtests were separately presented, with subtest order counterbalanced in a 

Latin square across participants. Following presentation of all items in each trial, participants 

selected the item presented in the position specified by the given subtest. The performance 

index for both tasks is the number of correct responses (out of 20). The tasks’ estimated 

reliability coefficients are .91 for the verbal and .88 for the nonverbal tests (Salthouse, 

Hancock, Meinz, & Hambrick, 1996). Because performance is often at ceiling for 1- and 

2-back tasks, performance on the 3-back task provides greater meaningful variance. 

 EF – Task Switching. We used a computerized test (Salthouse, Fristoe, McGuthry, & 

Hambrick, 1998) to assess participants’ ability to switch between stimuli and between tasks. 

The program instructed participants to associate specific computer keys with different 

stimulus properties; the program serially presented participants with stimuli (digits), and 

participants made the appropriate keyboard response based on the changing stimulus property. 

In a single switch task, participants switched between indicating left or right stimulus 

presentation. The dual switch tasks required participants to switch between indicating if a 

number was more ore less than 5 and whether the digit was odd or even. For both right/left 

and more/odd tasks, the costs due to switching were calculated as the difference in accuracy 

(total errors) between switch and non-switch trials. 

 Episodic Memory (EM) – Free recall: Word list. Experimenters administered a task 

designed by laboratory staff in Visual Basic that presented lists of 16 nouns, for 3 seconds 

each, on a computer screen. After all words were presented, participants audibly counted 

backwards by threes from a random 900 number for one minute in order to prevent rehearsal. 



 32 
  

 

Next, the experimenter asked the participants to name out loud as many words as they could 

remember, in any order, while the experimenter recorded the responses. The process was 

repeated with the same list toward the end of the testing session, approximately 90 minutes 

after the first administration. Participants also completed the noun recall task using a new list 

of words on a separate testing occasion. 

 EM – Free Recall: Prose Recall. An experimenter administered the logical memory 

subtest of the Wechsler Memory Scale (WMS-R; Wechsler, 1987). Participants listened as 

the experimenter read two short narratives. The experimenter asked participants to freely 

recall all the information, verbatim, both immediately following each presentation and after a 

20-minute delay. This measure has an estimated split-half reliability of .74 (Elwood, 1991) 

 EM – Recognition: Picture-Name Associations. Participants completed the Memory 

for Names subtest of the Woodcock-Johnson Psychoeducational Battery-Revised (Woodcock 

& Johnson, 1989). Participants serially viewed novel visual stimuli, cartoons depicting ‘space 

creatures,’ and listened as the experimenter stated the creature’s name consisting of one- and 

two-syllable nonsense stimuli. Following each new item presentation, participants viewed a 

page containing multiple pictures and pointed to each previously studied item after the 

experimenter stated its name. The experimenter provided the correct answer for incorrect 

responses during the immediate testing phase. There were 72 possible correct responses. 

Following a 20-minute delay, the experimenter showed the participant 12 pages, each with 12 

space creatures; using its previously learned name, the experimenter asked the participant to 

point to each space creature. Unlike the immediate testing phase, only a single recognition 

judgment was requested for each presentation of a given page, and the experimenter provided 



 33 
  

 

no feedback on performance accuracy. The maximum score possible in the delayed testing 

phase was 36. The total number of correct responses for immediate and delayed cued 

associative memory tests formed the two performance indices for the task. Both immediate 

and delayed tests have estimated reliabilities of .91 (29).   

 EM – Recognition: Word pairs. An experimenter administered a recognition test for 

associative recognition using word pairs (see Bender, Naveh-Benjamin, & Raz, 2010 for 

details; Naveh-Benjamin, 2000). The task used an intentional encoding condition. All 

participants received instructions to study and remember both the individual words and the 

pairs, and an experimenter informed that both would be tested. The task used testing software 

designed in-lab using Visual Basic. Each participant viewed 26 pairs of unrelated words, 

presented at a rate of 5.5 s per pair with a 200 ms inter-stimulus interval. To minimize 

rehearsal following the study phase, the task presented participants with a randomly 

generated 900 number instructed them to count backwards by threes for 60 s. Participants 

then completed separate single item, yes/no recognition tests for items (individual words) and 

associations (word pairs); test order was counterbalanced across the sample. Both item and 

associative tests included 16 trials. Item test trials presented 16 individual words (8 targets, 8 

foils), and the associative test presented 16 pairs (8 intact pairs, 8 recombined pairs). For each 

trial, participants indicated via keyboard button press if a word had been presented at study or 

not or if pairs were intact or recombined. After completing both tests the process was 

repeated with a second list of 26 new word pairs. The lists for each participant were randomly 

assigned out of six possible lists. At the second wave of testing, roughly two years, one of the 

lists was repeated from the initial administration (repeated list) and the other was a new list 
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containing novel stimuli (non-repeated list).  

 Fluid reasoning (Gf). Participants completed two tests of fluid reasoning previously 

used in studies of aging and lifespan development (Raz et al., 1998, 2008; Rabbitt & Lowe 

2000; Schretlen et al., 2000), the Cattell Culture Fair Intelligence Test, form 3B (CFIT, 3B; 

Cattell & Cattell, 1973) and Letter Sets Test (parts 1 and 2) from the Educational Testing 

Service Factor--Referenced Test Kit (Ekstrom et al. 1976). A test of nonverbal reasoning, the 

CFIT comprises four subtests; each subtest includes 10 to 14 items of increasing difficulty 

(see Raz et al., 2008 for a complete description of the task). The total number correct and 

computed standardized IQ scores for the CFIT (Cattell & Cattell, 1973) are the performance 

indices for this task. The Letter Sets Test included two pages, each with 15 items. Each item 

consists of a row of five sets of 4-letter strings; the task instructed participants to identify the 

rule common to four out of the five sets, and mark the set that does not match the rule. The 

task provided participants seven minutes to complete each page. For each incorrect response, 

0.25 point is deducted from the total number correct to yield the performance index.  

Data conditioning  

 We used Microsoft Excel to calculate age in months by subtracting the date of birth 

from date of scan and dividing that value by the quotient of 365 (days) / 12 (months).  For 

the word pair tests, we used hit rate and false alarm rate data to compute A’, a nonparametric 

index of discriminability (Pollack & Norman, 1964; Stanislaw & Todorov, 1999; Stewart, 

2002). We applied an arcsine transformation to A’ scores to correct for significant skewness 

in their distributions. Similarly, we corrected skewness in the distributions of several 

cognitive variables by applying a log-transformation. These included the LSPAN-AS, letter 
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and pattern comparison speed, response times (RTs) from the 1-back verbal and non-verbal 

tasks, reading speed times from the Stroop task, and switch costs indices from the right/left 

and more/odd switching tasks. We similarly applied a log-transformation to vascular risk 

variables homocysteine, CRP, fasting blood glucose, and triglycerides to eliminate skewness 

in the distributions of those variables. In addition, we multiplied the three diffusivity indices 

by 1000 to bring those values closer to FA, and to reduce the number of decimal places that 

the software used for latent modeling must estimate, and thus reduce floating-point errors. 

We have found that in Mplus software (Muthén & Muthén, 2012), use of standardized 

data often results in superior model fit as the software does not appear to handle highly 

varying scales or variance across multiple variables. Therefore, all data were standardized to 

z-scores for analysis. Furthermore, in order to use standardized scores to calculate latent 

difference scores DTI, cognitive, and VR data from the second occasion of measurement 

were standardized to the first measurement occasion. That is, we calculated z-scores for the 

second measurement occasion using baseline means and standard deviations. 

 In select cases, WMH/CSF masking resulted in a relative dearth of coverage for six 

ROIs. Cases in which the number of voxels was < 3 standard deviations from the mean were 

excluded from analysis. Thus, one case was removed from analysis of RLIC, CCsplenium, 

and CBd, two cases were excluded from models of CBv and ILF, and three cases were 

removed from analyses of uncinate fasciculus (UF) using WMH/CSF-masked data.  

Data Analysis 

 The present study employed a structural equation modeling (SEM) framework to 

assess two-year change in cognitive abilities, VR factors, DTI indices, and relations thereof. 
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First, for each of the four DTI indices we fit a series of univariate, two-occasion latent 

difference score models (LDM; McArdle & Nesselroade, 1994) in Mplus 7 (Muthén & 

Muthén, 2012). The SEM-based LDM analyses used maximum likelihood (ML) estimation 

and treated missing data as missing completely at random (MCAR). Although brain 

volumetric measures appear stable over time in such models (Raz et al., 2005, 2008) this has 

not been previously established for DTI indices. We fit separate univariate LDMs for each of 

the 14 ROIs that sampled from left and right hemispheres. We fit separate models for 

non-masked and WMH/CSF-masked data. LDMs for each region used left and right 

hemisphere mean values as dual indicators for each occasion (Raz et al., 2005, 2008, 

2010).  Fornix was not included in the LDM analysis as its presence on the midline of the 

WM skeleton precluded division into multiple observed variables via hemispheric masking. 

Initially, to test for a significant mean difference between factors representing each 

measurement occasion or significant variance therein, we fit LDMs to the data without 

additional covariates.  

 We assessed model fit using several indices: the comparative fit index (CFI), and 

Tucker-Lewis Index (TLI) compare model fit to that of a null model, and values of .95 were 

cutoffs for both the CFI and TLI.  For chi-square (χ 2) tests of model fit, a nonsignificant 

(p > .05), smaller χ 2 value indicates acceptable fit in comparison to a null model. A related, 

more informative fit statistic, χ 2 divided by degrees of freedom (Jöreskog & Sörbom, 1993) 

used a fairly conservative cut-off value of ≤ 2.0 (Mueller, 1996). Additional goodness-of-fit 

indices included root mean square error of approximation (RMSEA), standardized root mean 

square residual (SRMR), measures of model misspecification and explained variance, 
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respectively; for both the RMSEA and SRMR, acceptable fit was indicated by values of .08 

and below. 

 In each LDM (Figure 1), a factor was specified for each measurement occasion with 

the factor loading for the right hemisphere fixed to zero. The factor loading for the left 

hemisphere was freely estimated, but an equality constraint was specified between left 

hemisphere factor loadings for both occasions of measurement. We fixed the intercepts for all 

four indicators at zero, although in a few select cases, individual paired indicator intercepts 

were freed if this improved model fit substantially. Model specification also estimated 

variance for the four observed indicators, and the auto-correlated residuals for each indicator 

between measurement occasions. The latent difference score factor was obtained by 

specifying a loading from the Time 2 factor, fixed to one and a regression path from the T1 

factor to the Time 2 factor, also fixed to one. The model specified free estimation of variance 

/ residual variance for the T1 factor and difference score factor, while constraining variance / 

residual variance for the Time 2 factor to zero. Similarly, model specification freely 

estimated the means for the Time 1 factor and the difference score factor while constraining 

the mean for the Time 2 factor to zero. In addition, model specification freely estimated the 

auto-correlated residuals between the Time 1 and latent difference score factors, but 

constrained the auto-correlated residuals between the Time 1 and Time 2 factors to zero. 
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Figure 2. Schematic diagram of a generic univariate LDM measurement model used in 
analysis of DTI and cognitive data. The squares symbolize observed variables and the larger 
circles represent latent variables; f1 and f2 represent the latent variable at Time 1 and Time 2, 
respectively. The triangle signifies means and intercepts for the latent difference factor. The 
observed indicators X and Y refer to right and left hemisphere measures from the same 
anatomical region. Auto-correlated residuals for observed variables are kept equivalent 
between occasions. The factor loading for the X observed variables is fixed at 0, and an 
equivalency statement is imposed the factor loadings for Y to maintain factorial invariance 
across occasions. For additional information on two-occasion latent difference models, see 
McArdle and Nesselroade (1994).   

 The paramount concern with this modeling approach is the need to establish metric 

invariance. Metric invariance (Meredith, 1964) refers to a statistical precept necessary for 

longitudinal modeling of LVs: that the relationship between manifest and latent variables 

must remain constant between measurements – necessary to confidently interpret differences 

at the latent level. Metric invariance can be tested in Mplus by simply constraining the factor 

loadings for the two occasions to be equivalent. If there is metric invariance over time, the 

model provides a good fit for the data. However, if model fit borders on acceptable, there are 

small steps that can be taken in an attempt to modify the models. These include freeing factor 
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covariances, factor means, or residual variances, fixing factor variances to 1, and fixing 

baseline factor means, individual paired indicator intercepts, and auto-correlated residuals 

between the baseline and difference score factors to zero. In cases in which it does not reduce 

model fit, degrees of freedom can also be gained by imposing additional equality constraints 

on observed indicator intercepts and variance/residual variance, as well as on auto-correlated 

residuals for a given indicator between measurement occasions. If model fit is still 

unacceptable and can only be improved by removal of the equality constraints on the Time 1 

and Time 2 factor loadings, then there is significant measurement variance over time and 

change in that cognitive domain cannot be modeled.  

 Next, a new series of LDMs was performed as before, but with the addition of three 

covariates: baseline age in months, delay between scans in months, and self-reported years 

taking hypertension medications at follow up; all three covariates were standardized to 

z-scores using their own respective means and standard deviations. Univariate LDMs with 

covariates were specified to include regression paths from all three covariates to the latent 

difference score factor, and correlations between the Time 1 factor and both age and years on 

HBP medications, while constraining residualized correlations between the Time 1 factor and 

delay to zero. We respecified each model to constrain to zero those covariate model 

parameters that produced non-significant (p > .4) parameter estimates close to zero. 

Cognitive and VR CFAs & LDMs 

 We used a similar LDM framework to model latent change in different cognitive 

domains. However, we first specified confirmatory factor analyses (CFAs) on Time 1 (T1) 

data in order to identify the factor structure for each construct of interest, and to reduce the 
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number of manifest indicators required to form latent factors, and change therein. We fit 

separate CFAs for each domain of cognitive performance, as well as for VR factors.  

CFAs 

 In order to determine the underlying factor structure of cognitive tests for a given 

domain, we fit separate CFAs by cognitive domain, using performance indices from T1 tests 

of speed, EF, EM, and Gf. The factor structure then formed the basis of measurement models 

for subsequent LDM analysis. We removed from subsequent models those indicators that did 

not load well onto a given factor. The best factor structure was determined by proportion of 

variance accounted for in the LV, and by evaluating goodness-of-fit indices RMSEA, SRMR, 

Chi-square, and CFI/TLI.  

 The scores from the Letter Comparison and Pattern Comparison tests and the 1-back 

verbal and non-verbal RT scores served as observed indicators for the CFA on speed. A 

separate EF-working memory CFA included spatial recall score, LSPAN-AS score, and 

number of correct responses on the 3-back verbal and non-verbal tasks as observed indicators 

Observed indicators for the CFA on EF included the two switching cost indices and the 

interference score from the Stroop color word task. Manifest variables for the CFA on Gf 

included the four CFIT-3B subtest scores and the scores from the two forms of the Letter Sets 

Test. Observed indicators for the CFA on EM included the number of items recalled from the 

initial presentation and the non-repeated lists from the word list test, the WMS-R immediate 

and delayed recall scores, the scores on the WJ-R memory for names immediate and delayed 

subtests, and the A’ scores for items and associations from the two lists of the word pair 

recognition task. The A’ scores included performance on the lists repeated from baseline (i.e., 
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repeated list) and the lists containing novel stimuli at Time 2 (i.e., non-repeated list).  

 Once we established CFAs with acceptable fit for each domain, we specified LDMs 

using the matching variables from Time 2 (T2). From the domain-specific cognitive LDMs, 

we included those models with acceptable fit, metric invariance between measurement 

occasions, and significant variance in the latent mean difference score in multivariate models 

of DTI-cognition and VR-DTI-cognition change. For models that did not demonstrate metric 

invariance, problematic indicators were removed one at a time. For some domains or tasks, a 

univariate cognitive LDM was fit using a minimum of two indicators per measurement 

occasion.  

 A VR CFA using observed indicators systolic and diastolic blood pressure, WHR, and 

levels of triglycerides, LDL, HDL, CRP, and homocysteine. Unlike the cognitive measures 

chosen to assess defined cognitive constructs, VR is not inherently a unitary construct. Thus, 

the CFA on VR indicators may yield a 1-, 2-, or 3-factor structure as the best fit for the data, 

depending on the correspondence among these factors in this sample. We also fit a CFA for a 

metabolic syndrome factor using observed indicators systolic BP, triglycerides, WHR, and 

fasting blood glucose values.  

Crossover relations between DTI and Cognition and VR 

 Next, those univariate DTI models with covariates that showed significant residual 

variance in the change score factor formed the basis for subsequent multivariate LDM 

analyses. Our first goal was to test for models in which individual differences in change in 

DTI-derived WM measures were related to cognitive performance, and where variability in 

cognitive change predicted individual differences in DTI indices of WM integrity. These 
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bivariate LDMs included directional (i.e., regression) paths from T1 DTI measures to the 

cognitive change factor (i.e., the latent difference score for the cognitive factor), from change 

in DTI (i.e., the latent difference score for the DTI factor) to T2 cognition, from the T1 

cognition factor to change in DTI, and from change in cognition to T2 DTI. For DTI indices 

whose univariate LDMs revealed no significant variance in change, we excluded the two 

paths including change in DTI from and to T1 cognition and change in cognition, 

respectively.  

False discovery rate (FDR) correction. In light of the large number of models fit to 

the DTI data, we subjected significance values for latent difference factors and variance of 

mean difference from the univariate LDMs with and without covariates to correction for false 

discovery rate (FDR; Pike, 2010).   
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CHAPTER 3 

RESULTS 

Univariate LDMs – No Covariates.  

A total of 112 univariate LDMs were successfully fit to the data for all 14 ROIs 

containing bilateral indicators, for all four DTI indices, and for both non-masked and 

WMH/CSF masked data. We specified all models to converge free of errors, while 

maintaining factorial invariance. In addition, we calculated Cohen’s d measures of effect size 

for the mean difference parameter estimates by dividing the mean latent difference by the 

square root of variance for baseline DTI factor. The results are shown in Table 2. All 112 

models fit well according to multiple goodness of fit indices: χ2 range = 0.076 to 12.845, all 

p ≥ .117, CFI ≥ 0.947, TLI ≥ 0.960, RMSEA values ≤ 0.79. However, in five instances, 

acceptable model fit was only possible by freely estimating this indicator intercept: models 

on non-masked data for PLIC FA and UF MD, and models using WMH/CSF masked data for 

ALIC DR, and SLF DR and MD. Spaghetti plots detailing patterns of change in DTI over 

time are presented in Appendix A. 

Results from the univariate LDMs for DA are presented in Table 2. LDMs fitted to the 

non-masked data revealed significant mean difference in DA in all regions except for FMaj 

and CC body. Furthermore, only CC genu and FMin demonstrated significant mean increases 

in DA, whereas all other regions with significant change exhibited declines. In addition, there 

was significant variance in change in DA in ALIC, CC body, FMaj, FMin, RLIC, and SLF.  

LDMs performed on the data masked for WMH/CSF showed a similar pattern; however, 

following masking and FDR correction, change in CC splenium was no longer significant, 
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and variance in change was no longer significant in ALIC and FMAJ. In the models for 

non-masked CC genu and WMH/CSF-masked ILF we respecified models by constraining 

variance in change to zero to eliminate a psi matrix error resulting from negative parameter 

estimates close to zero.  

 

Table 2. Univariate model results without covariates - DA 
  

ROI Mean Δ p Cohen's D Δ Var. p 

Non-masked    
ALIC -3.995 .000* -0.315 2.221 .026*+ 
CBd -2.633 .008* -0.374 1.892 .059 
CBv -5.723 .000* -0.908 0.244 .807 
CC body 1.471 .141 0.164 3.839 .000* 
CC genu 3.070 .002* 0.415 − − 
CC splen. -2.196 .028*+ -0.228 0.585 .559 
FMaj 0.164 .870 0.023 3.073 .002*+ 
FMin 2.842 .004* 0.222 3.849 .000* 
IFOF -3.388 .001* -0.303 0.749 .454 
ILF -4.188 .000* -0.520 1.005 .315 
PLIC -7.318 .000* -0.723 1.431 .152 
RLIC -7.530 .000* -0.809 2.361 .018* 
SLF -5.374 .000* -0.340 3.796 .000* 
UF -3.387 .001* -0.337 1.321 .187 

WMH/CSF-Masked 
    ALIC -4.775 .000* -0.337 2.088 .037 

CBd -2.260 .024* -0.359 1.549 .121 
CBv -6.955 .000* -1.152 1.767 .077 
CC body 0.533 .594 0.058 4.117 .000* 
CC genu 3.304 .001* 0.496 1.395 .163 
CC splen. -1.960 .050 -0.217 0.922 .357 
FMaj 1.017 .309 0.160 1.910 .056 
FMin 2.221 .026* 0.171 3.734 .000* 
IFOF -3.725 .000* -0.359 1.346 .178 
ILF -4.138 .000* -0.428 − − 
PLIC -6.999 .000* -0.751 0.509 .611 
RLIC -8.341 .000* -0.890 2.263 .024* 
SLF -5.699 .000* -0.360 3.469 .001* 
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UF -3.676 .000* -0.377 1.795 .073 
Notes:  Mean Δ and Δ Var. values are 
estimates divided by standard error; − = 
parameter constrained to zero 

  * = significant following FDR correction 
  + = not significant in other masked|non-masked data 

 
 

Table 3. Univariate model results without covariates - DR 
  

ROI Mean Δ p Cohen's D Δ Var. p 

Non-masked 
   

ALIC 0.982 .326 0.057 2.758 .006* 
CBd -2.216 .027*+ -0.238 3.241 .001* 
CBv -3.064 .002* -0.402 − − 
CC body -2.278 .023* -0.119 3.997 .000* 
CC genu 5.136 .000* 0.329 − − 
CC splen. 1.734 .083 0.133 2.899 .004*+ 
FMaj 4.654 .000* 0.284 0.863 .388 
FMin 7.194 .000* 0.382 4.569 .000* 
IFOF 2.872 .004* 0.141 2.824 .005* 
ILF -1.004 .315 -0.082 1.287 .198 
PLIC -6.792 .000* -0.737 3.661 .000* 
RLIC -4.323 .000* -0.326 − − 
SLF 0.125 .901 0.024 2.39 .017* 
UF -1.302 .193 -0.123 2.293 .022* 

WMH/CSF-Masked 
    ALIC − − 0.000 2.882 .004* 

CBd -1.753 .080  -0.158 3.061 .002* 
CBv -2.862 .004* -0.374 0.527 .598 
CC body -4.707 .000* -0.297 5.773 .000* 
CC genu 4.926 .000* 0.220 0.359 .720 
CC splen. 2.350 .019*+ 0.153 2.106 .035 
FMaj 5.445 .000* 0.335 0.477 .634 
FMin 5.517 .000* 0.311 4.655 .000* 
IFOF 2.453 .014* 0.130 2.825 .005* 
ILF − − − 0.427 .670 
PLIC -7.988 .000* -0.746 3.581 .000* 
RLIC -4.222 .000* -0.331 − − 
SLF -0.138 .891 -0.006 2.487 .013* 
UF -1.478 .139 -0.128 2.219 .026* 
Notes: Mean Δ and Δ Var. values are 
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estimates divided by standard error; − = 
parameter constrained to zero 
* = significant following FDR correction 

  + = not significant in other masked|non-masked data 
 

 

The results from univariate LDMs on DR are presented in Table 3. Analyses of 

non-masked data showed significant mean change in nine out of 14 regions. There was no 

significant mean change in DR in ALIC, CC splenium, ILF, SLF, or UF. There was 

significant variance in change in 10 regions. However, FMaj and ILF showed no significant 

variance in change. To improve fit or eliminate errors arising from negative variance we 

constrained the variance in change parameter to zero in DR models for CBv, CC genu, and 

RLIC. A similar pattern was found in models of WMH/CSF-masked data. Only change in 

CBd was significant in non-masked but not masked data, whereas change in splenium was 

significant in masked but not non-masked data. Similarly, variance in change in DR was 

significant in the LDM for non-masked CC splenium, but not after masking. As with DA, the 

direction of mean DR change varied by region. We found that mean DR increased in CC 

genu and splenium, FMaj, FMin, and IFOF, but decreased over time in CBd, CBv, CC body, 

PLIC, and RLIC. There were psi matrix errors in models for non-masked data in CBv, and 

CC genu, and both masked and non-masked RLIC models, resulting from negative variance 

in change parameter estimates. If those estimates were close to zero, we addressed the error 

by respecifying model syntax to constrain the parameters to zero. Similarly, we addressed psi 

matrix errors for WMH/CSF-masked data ROIs ALIC and ILF by constraining the mean 

difference parameter to zero. 

Table 4 presents results from univariate models without covariates on non-masked 
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and WMH/CSF-masked FA data. LDMs for half of the ROIs showed significant two-year 

mean change in FA, including ALIC, CC body and genu, FMaj, FMin, IFOF, and PLIC. In 

addition, we found significant variance in change in FA in ALIC, CBd, CC body, FMin, 

IFOF, PLIC, and UF. The LDMs on the WMH/CSF-masked FA data showed the same 

pattern, with a few exceptions. Following masking, there was no longer significant mean 

change in FA in ALIC, and variance in change was also non-significant in ALIC and PLIC.  

 

Table 4. Univariate model results without covariates - FA 
  
ROI Mean Δ p Cohen's D Δ Var. p 

Non-masked    
ALIC -3.027 .002*+ -0.212 2.301 .021*+ 
CBd 0.928 .354 0.112 3.584 .000* 
CBv − − 0.000 0.100 .920 
CC body 3.139 .002* 0.261 4.924 .000* 
CC genu -5.024 .000* -0.266 1.673 .094 
CC splen. -1.984 .047 -0.144 2.063 .039 
FMaj -4.089 .000* -0.256 1.252 .210 
FMin -5.059 .000* -0.315 4.164 .000* 
IFOF -4.080 .000* -0.274 3.122 .002* 
ILF -1.156 .248 -0.139 0.967 .334 
PLIC 2.916 .004* 0.267 3.132 .002*+ 
RLIC -0.945 .345 -0.107 − − 
SLF − − − 2.146 .032 
UF -0.301 .763 -0.025 2.446 .014* 

WMH/CSF-Masked 
    ALIC 0.458 .647 0.041 2.121 .034 

CBd 0.405 .685 0.048 3.438 .001* 
CBv -0.404 .686 -0.058 0.098 .922 
CC body 3.620 .000* 0.326 4.876 .000* 
CC genu -3.291 .001* -0.158 0.493 .622 
CC splen. -1.338 .181 -0.115 1.578 .115 
FMaj -4.024 .000* -0.287 1.084 .278 
FMin -4.214 .000* -0.262 4.126 .000* 
IFOF -3.568 .000* -0.262 2.959 .003* 
ILF -1.495 .135 -0.183 1.158 .247 
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PLIC 3.276 .001* 0.321 2.040 .041 
RLIC -1.420 .155 -0.154 − − 
SLF -1.265 .206 -0.070 2.166 .030 
UF -0.489 .625 -0.042 2.301 .021* 
Notes: Mean Δ and Δ Var. values are estimates divided by 
standard error; − = parameter constrained to zero 
* = significant following FDR correction 
+ = not significant in other masked|non-masked data 

There was a significant mean increase in FA in CC body and PLIC, and significant mean 

decrease in ALIC (non-masked only), CC genu, FMaj, FMin, and IFOF. We corrected psi 

matrix errors in the models for non-masked CBv and SLF by constraining the mean change 

parameter to zero. We addressed similar errors in non-masked and WMH/CSF-masked 

models of RLIC by fixing the variance in change parameter to zero. 

 The results of the univariate LDMs for MD showed widespread mean change (Table 

5). In analyses of the non-masked data, there was no significant mean change in ALIC, CC 

body and splenium, IFOF or UF. We observed significant mean change in ALIC, CC body, 

and UF only in WMH/CSF-masked data. We found significant variance of change in ALIC, 

CC body, FMin, and PLIC in non-masked data, and also in SLF in WMH/CSF-masked MD 

data only. There were significant mean increases in MD in CC genu, FMaj and FMin. In 

contrast, MD showed mean decreases over two years in ALIC (WMH/CSF-masked only), 

CBd, CBv, CC body (WMH/CSF-masked only), ILF, RLIC, PLIC, SLF, and UF 

(WMH/CSF-masked only). We eliminated psi matrix errors in models on non-masked data 

for CBv, ILF, and RLIC, and in WMH/CSF-masked data in CBd, and ILF by constraining the 

variance in change parameter to zero. By constraining the difference score to zero, we 

addressed on error in the LDM for WMH/CSF-masked CC splenium. 

Univariate LDMs – Covariate Models  
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 The addition of the covariates age (in months), years taking HBP medications, and 

delay (in months) between scans to the LDMs allowed us to control and account for these 

influences on variance in change between measurement occasions. In addition, this permitted 

comparison of mean change effects from the initial univariate LDMs with cross-sectional age 

differences in the DTI data. However, if any covariate effect was close to zero, that parameter 

was constrained to zero to improve model fit. As with the initial univariate models, following 

final specification, all models converged free of errors, and without violating factorial 

invariance assumptions.  

Table 5. Univariate model results without covariates - MD 

ROI Mean Δ p Cohen's D Δ Var. p 

Non-masked 
   

ALIC -1.736 .083 -0.115 3.266 .001* 
CBd -4.786 .000* -0.530 0.157 .875 
CBv -4.746 .000* -0.760 − − 
CC body -0.655 .512 -0.051 4.210 .000* 
CC genu 4.452 .000* 0.401 − − 
CC splen. 0.160 .873 0.015 2.013 .044 
FMaj 3.064 .002* 0.279 2.116 .034 
FMin 5.551 .000* 0.394 3.747 .000* 
IFOF -0.008 .994 0.000 0.398 .690 
ILF -3.756 .000* -0.298 − − 
PLIC -7.526 .000* -1.073 2.491 .013* 
RLIC -8.598 .000* -0.706 − − 
SLF -4.858 .000* -0.292 2.157 .031 
UF -1.163 .245 -0.122 2.088 .037 

WMH/CSF-Masked 
    ALIC -3.497 .000*+ -0.213 2.353 .019* 

CBd -4.867 .000* -0.492 − − 
CBv -4.858 .000* -0.902 1.277 .202 
CC body -3.738 .000*+ -0.228 4.989 .000* 
CC genu 5.381 .000* 0.388 0.976 .329 
CC splen. − − 0.000 1.421 .155 
FMaj 4.472 .000* 0.341 2.785 .005 
FMin 4.934 .000* 0.325 3.705 .000* 
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IFOF -1.182 .237 -0.062 1.088 .277 
ILF -2.956 .003* -0.209 − − 
PLIC -8.083 .000* -1.131 2.276 .023* 
RLIC -8.522 .000* -0.726 1.922 .055 
SLF -5.687 .000* -0.335 2.401 .016*+ 
UF -2.940 .003*+ -0.476 1.695 .090 
Notes: Mean Δ and Δ Var. values are 
estimates divided by standard error; − = 
parameter constrained to zero 

  * = significant following FDR correction 
  + = not significant in other masked|non-masked data 

 
 

These models revealed significant covariate effects (Table 6) for age on models of 

ALIC DA and MD (WMH/CSF-masked only in the latter). Although there was a mean 

two-year decrease in DA and MD across the sample, this effect was reduced with greater age. 

In contrast, the mean decrease in MD and DR for PLIC (non-masked only in the latter) was 

greater with old age. In addition, greater number of self-reported years with diagnosed 

hypertension was associated with greater two-year increases in both DA (non-masked only) 

and FA (WMH/CSF-masked only) in CC body. Although there was no mean two-year 

difference in DA in FMaj, more years with diagnosed hypertension was associated with 

longitudinal reductions in DA. Last, univariate LDMs with covariates showed that the mean 

decrease in MD, DR, and DA for PLIC (non-masked only in the latter two) and variance in 

change in MD in non-masked CC body were greater with longer delay between scans.  

 

Table 6.  Significant covariate effects on latent difference score factor  

ROI Index Age p HBP Yrs. p Delay p 
Non-masked 

  
  

  ALIC DA 2.261 .024* -1.396 .163 − − 
ALIC MD 1.99 .047 -0.956 .339 − − 
CC Body DA 0.632 .527 2.332 .020* -1.104 .270 
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CC Body DR -0.21 .833 -0.338 .735 -2.173 .030 
CC Body MD − − 1.919 .055 -2.742 .006* 
FMaj DA − − -2.684 .007* − − 
IFOF MD -2.082 .037 -0.560 .575 -0.628 .530 
PLIC DA -1.613 .107 − − -2.551 .011* 
PLIC DR -2.493 .013* − − -2.639 .008* 
PLIC MD -2.666 .008* − − -2.775 .006* 

WMH/CSF-masked       
ALIC DA 2.416 .016* − − − − 
ALIC MD 2.295 .022* -0.894 .371 -0.408 .683 
CC Body DA 0.411 .681 2.123 .034 -0.547 .584 
CC Body FA − − 2.224 .026* − − 
FMaj DA − − -2.585 .010* − − 
IFOF MD -1.974 .048 -0.928 .353 − − 
ILF DA − − -2.062 .039 0.311 .756 
ILF FA − − -2.035 .042 0.327 .744 
PLIC DA -1.447 .148 − − -2.148 .032 
PLIC MD -2.276 .023* -0.173 .862 -2.301 .021* 
*= Significant after FDR correction  

 

 In addition, the univariate LDMs with covariates also examined bidirectional 

associations, or auto-correlated residuals between baseline measures of both age and DTI 

indices. Greater age was associated with lower DA in FMin (both sets), FMaj 

(WMH/CSF-masked only), and CBd; a negative association of age with RLIC was no longer 

significant following FDR correction. In contrast, baseline age was positively associated with 

T1 measures both DR and MD, and negatively associated with FA in all regions except CBv 

and UF in non-masked data. In LDMs on WMH/CSF-masked data, greater age was 

significantly associated with DR and FA in all ROIs, and with MD in all but UF. Thus, in DA 

and DR, masking yielded correlations with age in CBv and UF not apparent in non-masked 

data. However, the patterns and direction of change did not mirror those of cross-sectional 

age effects (Table 7). 
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CFAs – Cognitive Data 

We fit a series of CFAs to the cognitive data grouped by domain. Using baseline 

cognitive data, we fit separate, domain-specific models for tests of executive function (EF), 

episodic memory (EM), fluid reasoning (Gf), speed of processing (SPEED), and working 

memory (WkM).  Initially, we specified a single factor solution, with all indicators loading 

onto a common factor. We addressed any issues with convergence by first changing which 

measure we specified as the first factor indicator, a factor loading that Mplus automatically 

fixes at 1. In addition, we first specified the models without auto-correlated residuals among 

the indicators. Next, we used the same approach to fit a two-factor CFA to the data, and 

specified different factors based on natural divisions among the indicators based on the tasks 

from which they were taken. 

 

   Table 7. Comparison of cross-sectional correlations with age and mean differences 
 

  DA DR FA MD 
  r-age Mean Δ r-age Mean Δ r-age Mean Δ r-age Mean Δ 

Masked         
ALIC o  − +  o −  o +  − 
CBd o  o +  o −  o +  − 
CBv o  − +  − −  o +  − 
CC body ne  o +  − −  + +  − 
CC genu ne  + +  + −  − +  + 
CC splen. o  o +  + −  o +  o 
FMaj −  o +  + −  − +  + 
FMin −  + +  + −  − +  + 
IFOF ne  − +  + −  − +  o 
ILF ne  − +  o −  o +  − 
PLIC o  − +  − −  + +  − 
RLIC o  − +  − −  o +  − 
SLF ne  − +  o −  o +  − 
UF o  − +  o −  o ne  − 
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Non-masked     
 

 
  ALIC o −  + o  − −  + −  

CBd − −  + −  − o  + −  
CBv o −  o −  o o  o −  
CC body ne o  + −  − +  + o  
CC genu ne +  + +  − −  + +  
CC splen. o −  + o  − o  + o  
FMaj o o  + +  − −  + +  
FMin − +  + +  − −  + +  
IFOF ne −  + +  − −  + o  
ILF ne −  + o  − o  + −  
PLIC o −  + −  − +  + −  
RLIC o −  + −  − o  + −  
SLF ne −  + o  − o  + −  
UF o −  o o  o o  o o  

Notes: o=nonsignificant effect; − = negative effect; + = positive effect; ne=not estimated 

 

We specified a CFA for EF using five observed indicators: log-transformed more-odd 

switching costs, Stroop interference costs, and number correct from the n-back nonverbal task, 

the size judgment span task, and the spatial recall task. We multiplied the indices from the 

Stroop and switching tasks by -1 to align those scales with the other three variables (i.e., 

higher values = better performance). We specified separate models to compare fit for 1- and 

2-factor solutions. The 2-factor solution specified one factor with Stroop interference, 

switching costs, and spatial recall performance as indicators; number correct from the size 

judgment span task and nonverbal 3-back tasks served as indicators in the second factor.  

Comparison of fit indices (Table 8) for the two EF CFAs shows good, albeit similar 

goodness-of-fit for both models.  
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Table 8. Goodness-of-fit for cognitive CFAs 
 
Domain Model χ2 df p χ2 / df CFI TLI RMSEA SRMR 

EF 1-Factor 4.260 5 .513 0.852 1.000 1.017 0.000 0.030 
EF 2-Factor 2.886 4 .577 0.722 1.000 1.032 0.000 0.024 
EM 1-Factor 17.530 14 .229 1.252 0.991 0.982 0.051 0.041 
EM 2-Factor 16.481 13 .224 1.268 0.991 0.981 0.053 0.032 
Gf 1-Factor 3.453 8 .903 0.432 1.000 1.056 0.000 0.021 
Gf 2-Factor 3.453 8 .903 0.432 1.000 1.056 0.000 0.021 
Speed 1-Factor 14.234 2 .001 7.117 0.919 0.758 0.252 0.049 
Speed 2-Factor 0.246 1 .620 0.246 1.000 1.030 0.000 0.005 
WkM 1-Factor 6.983 5 .222 1.397 0.984 0.968 0.064 0.035 
WkM 2-Factor 4.836 4 .305 1.209 0.993 0.983 0.047 0.029 

 

 CFAs for EM included a total of eight indicators, taken from four different tasks. In 

addition to A’ scores from the tests of item and associative recognition in the word pair task 

(using the lists repeated at follow up testing), remaining indicators included measures of 

immediate and delayed performance on the WMS-r logical memory task, the WJ-R memory 

for names task, and the noun list recall task. In addition, in order to produce a model with 

acceptable fit, we specified bidirectional associations between the two indicators from each 

task. The 2-factor model specified separate factors for recall using logical memory and noun 

list indicators, and recognition (word pair performance and memory for names indicators). As 

with the model for EF, both of the memory CFAs fit the data similarly well. 

 We specified a CFA for Gf using performance on the four subtasks of the Cattell’s 

Culture Fair test, and the number correct from each of the two Letter Sets tasks as indicators. 

The 2-factor CFA specified separate factors for CFIT and Letter Sets indicators. As shown in 

Table 8, both models fit the data equally well.  

 The CFAs for Speed included the performance indices from the Letter Comparison 
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and Pattern Comparison tasks, and the response times from the 1-back verbal and nonverbal 

asks. We multiplied the 1-back response times by -1 to align the performance scaling for all 

four tasks.  The 2-factor model specified one factor using the comparison tasks as indicators, 

and the response times as indicators for the second factor. Whereas, the 1-factor solution did 

not fit the data well, the 2-factor solution was an excellent fit.  

 We also specified a CFA for WkM, the indicators for which included the number 

correct from the verbal and nonverbal 3-back tasks, the size judgment span task, and the 

spatial recall task, as well as the AS score from the LSPAN task. The 2-factor CFA specified 

one factor using the two span tasks as indicators and the second factor was formed using the 

two 3-back tasks and spatial recall task as indicators. Both models provided a good fit for the 

data, although the 2-factor model was marginally better, based on slightly higher CFI/TLI 

values, and lower RMSEA and SRMR indices. 

Cognitive LDMs 

 Based on the results of the CFAs, we fit a series of univariate LDMs to the cognitive 

data, using the same approach as previously employed for the DTI data. With the exception 

of Speed, all cognitive LDMs used the 1-factor CFA model as the basis for the LDM, as the 

1-factor CFAs fit the data as well as the 2-factor models, but more parsimoniously. We fit 

separate LDMs for each of the two factors from the Speed CFA. It is important to note that 

although the CFAs for baseline cognitive performance fit the data well, this did not ensure 

that such a factor structure would be similarly identified in the T2 data, or that factorial 

invariance assumptions would be met. Thus, if the assumption of factorial invariance was not 

met for any univariate cognitive LDMs, we re-specified the model using only one of the 
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factors from the 2-factor CFAs.  

 We first used the CFA for EF to fit the LDM for that cognitive domain. Indicators for 

each of the two occasions included log-transformed more-odd switching costs, Stroop 

interference costs, and number correct from the n-back nonverbal task, the size judgment 

span task, and the spatial recall task. Model fit was acceptable (χ2[47] = 59.540, p = .104, 

CFI/TLI = 0.971/0.972, RMSEA = 0.053, SRMR = 0.090). However, Mplus initially 

estimated a negative value near zero for the variance in change parameter, resulting in a psi 

matrix error. The final model was produced after constraining the variance in change 

parameter to zero.  

 Although the 1-factor CFA for EM fit the data well using paired indicators from four 

different EM tasks (WMS-r logical memory, noun list recall, memory for names, word pair 

recognition), the LDM we specified with measurements from both occasions was a poor fit 

for the data (χ2 = 584.186, p < .000, CFI/TLI = 0.605/0.615, RMSEA = 0.198, SRMR = 

0.172). The poor model fit resulted from the nature of the LDM specification, which 

precluded specifying auto-correlated residuals among the indicators for each occasion. 

Therefore, we specified separate models for each task, using the dual indicator LDM 

approach employed in the univariate DTI models. The LDM using the two indicators from 

WJ-r Memory for Names (immediate, delayed) was a good fit for the data (χ2[6] = 7.483, p 

= .279, CFI/TLI = 0.996/0.996, RMSEA = 0.051, SRMR = 0.017) and showed significant 

variance in change (estimate/S.E. = 4.050, p < .000). The LDM using the immediate and 

delayed performance indices from the WMS-r logical memory subtest as paired indicators 

was a poor fit for the data (χ2[6] = 85.534, p < .000, CFI/TLI = 0.769/0.769, RMSEA = 0.372, 
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SRMR = 0.189), and we were unable to respecify the model to achieve an acceptable fit 

while maintaining factorial invariance.  

The univariate EM model using performance on the two noun list recall tasks as 

paired indicators was a good fit for the data (χ2[3] = 3.824, p = .281, CFI/TLI = 0.994/0.987, 

RMSEA = 0.056, SRMR = 0.036), but did not show significant variance in change  

(estimate/S.E. = 1.045, p = .296). Last, the LDM using the A’ scores from the item and 

associative recognition subtasks of the word pair task (repeated list) was also a good fit for 

the data (χ2[8] = 7.136, p = .522, CFI/TLI = 1.000/1.006, RMSEA = 0.000, SRMR = 0.062) 

and showed significant variance in latent change (estimate/S.E. = 2.106, p = .035). Although 

they were not included in the initial CFA on EM, we also modeled the A’ data generated in 

response to the stimulus lists from the word pair task that were not repeated from baseline 

(i.e., the non-repeated lists).  As with the univariate LDM on word pair recognition 

performance using the repeated lists, the model proved a good fit for the data (χ2[8] = 11.010, 

p = .201, CFI/TLI = 0.944/0.958, RMSEA = 0.064, SRMR = 0.084), but did not demonstrate 

significant variance in latent change (estimate/S.E. = 0.877, p = .380). 

 We fit an LDM for Gf using the results of the CFA on that construct with four 

indicators from the CFIT tasks and two from the Letter Sets task. Model fit was only 

marginally acceptable (χ2[75] = 104.089, p = .015, CFI/TLI = 0.941/0.948, RMSEA = 0.064, 

SRMR = 0.107). Therefore, we fit separate LDMs for the two tasks from which we took the 

indicators for the Gf LDM. A univariate LDM for CFIT 3b that included number correct on 

each of the four subtasks as observed variables was a good fit for the data (χ2[34] = 28.287, p 

= .743, CFI/TLI = 1.000/1.026, RMSEA = 0.000, SRMR = 0.067), but did not demonstrate 
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significant variance in latent change (estimate/S.E. = 0.088, p = .930). In contrast, the LDM 

using number correct from the two Letter Sets tasks as indicators was a good fit for the data 

(χ2[6] = 3.664, p = .722, CFI/TLI = 1.000/1.010, RMSEA = 0.000, SRMR = 0.023), and 

demonstrated significant variance in latent change (estimate/S.E. = 2.113, p = .035). 

 Because the CFA for Speed revealed the 2-factor solution as superior to a single 

factor, we first fit a univariate LDM using the Letter Comparison and Pattern Comparison 

performance indices as observed indicators. Although the final model was a good fit for the 

data (χ2[6] = 10.410, p = .108, CFI/TLI = 0.979/0.979, RMSEA = 0.088, SRMR = 0.059), 

this was only possible by constraining the variance in change parameter to zero to eliminate a 

psi matrix error that arose due to a near-zero negative estimate in that parameter. Similarly, 

the LDM for Speed using the response times from the two 1-back tasks as indicators was also 

a good fit (χ2[7] = 3.478, p = .838, CFI/TLI = 1.000/1.011, RMSEA = 0.000, SRMR = 0.044), 

but that model also necessitated constraining the variance in change parameter to zero to 

mitigate a psi matrix error. 

 We successfully fit the univariate difference score model for WkM using the same 

five indicators as used in the CFA; that model provided a good fit for the data (χ2[48] = 

58.300, p = .147, CFI/TLI = 0.980/0.981, RMSEA = 0.047, SRMR = 0.086). However, the 

variance in latent change parameter was not significant (estimate/S.E. = 1.274, p = .203). 

Vascular Risk CFA & LDM 

 We fit a CFA to the T1 VR indicators of metabolic syndrome: log-transformed 

triglyceride level, HDL cholesterol level, systolic blood pressure, waist-to-hip ratio, and 

fasting blood glucose level. HDL was multiplied by -1 to align its scaling with the other 
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indicators. The CFA was an acceptable fit for the data only if bidirectional paths were 

specified between HDL and both triglycerides and waist-to-hip ratio (χ2[2] = 0.414, p = .813, 

CFI/TLI = 1.000/1.102, RMSEA = 0.000, SRMR = 0.011). Moreover, the univariate LDM 

for metabolic syndrome using the same indicators as those in the CFA and their longitudinal 

counterparts was also an acceptable fit for the data (χ2[47] = 56.773, p = .156, CFI/TLI = 

0.977/0.978, RMSEA = 0.047, SRMR = 0.078), even without the correlational paths 

specified for HDL. Furthermore, there was significant variance in the latent difference score 

(estimate/S.E. = 2.125, p = .034). However, when we subsequently included the metabolic 

syndrome LDM in multivariate models to evaluate the effects of change in VR on DTI 

indices, the models were a poor fit for the data. We found that model fit was only improved 

by again specifying correlational paths between HDL and triglycerides, which violated basic 

requirements of the LDM framework. Thus, we specified an alternative LDM for VR without 

HDL in the model. The new metabolic syndrome LDM without HDL was a good fit for the 

data (χ2[31] = 21.904, p = .886, CFI/TLI = 1.000/,1.031 RMSEA = 0.000, SRMR = 0.062), 

but the estimated variance in the latent difference score was no longer significant without 

HDL in the model (estimate/S.E. = 1.787, p = .074). 

Multivariate LDMs – DTI-cognition 

 Three models from the cognitive LDMs demonstrated both acceptable fit and 

significant variance in the latent difference score. These included the Gf model with two 

indicators from the Letter Sets task (Letter Sets), the EM model with two indicators from the 

WJ-R Memory for Names task (Names), and the EM model with two indicators from 

repeated lists on the word pair task (word pair). Next, for each of these models we specified a 
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series of multivariate LDMs that combined the cognitive LDM syntax and the syntax from 

each of the univariate LDMs on the DTI data that showed significant variance in change. 

These multivariate DTI-cognition models only used the WMH/CSF-masked DTI data. In 

addition to specifying the previously mentioned covariates of age, years of antihypertensive 

medication, and delay between scans, we also specified four directional paths between the 

DTI and cognitive factors in the model. These included a path from T1 DTI to cognitive 

change score, a path from T1 cognitive factor to the DTI change score, a path from the DTI 

change score to the T2 cognitive factor, and a path from the cognitive change score factor to 

the T2 DTI factor. In other words, we modeled the influence of baseline cognition on 

two-year change in WM and vice versa, and the influence of baseline DTI on cognitive 

change, as well as the effect of change in DTI and cognition on follow up measures of 

cognitive performance and DTI, respectively. In addition to these models, we also created 

multivariate models using those univariate DTI LDMs that did not show significant variance 

in change, but restricted specifying DTI-cognition relations to not include DTI change. Thus, 

those models included paths from baseline DTI to change in cognition and from cognitive 

change scores to T2 DTI.  

GF Letter Sets  

Higher baseline DA in CC splenium and all three internal capsule ROIs predicted 

longitudinal declines in Gf (Table 10). Similarly, lower baseline MD in CC splenium 

predicted greater two-year improvement on the Letter Sets task. In contrast, greater two-year 

increase in GF Letter Sets predicted lower DR in CC genu at T2. Individual differences in Gf 

at baseline also explained variance in DTI change scores: higher Gf at baseline predicted 
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steeper two-year declines in DA in IFOF, DR in ALIC, and MD in ALIC, CC body, and 

PLIC.  

In addition, cross-sectional associations between baseline DTI and cognitive data 

(Table 9) showed lower T1 Gf was related to higher baseline DR in multiple regions 

including dorsal and ventral CB, CC genu, FMaj, ILF, and SLF (Table 9). Similarly, greater 

T1 Gf was associated with higher FA in dorsal and ventral CB, forceps major and minor, and 

SLF. Higher MD in dorsal CB, CC genu, forceps major, ILF, and RLIC were associated with 

lower baseline GF. There were no significant associations between baseline Gf and DA in 

any ROI. 

 
Table 9. Significant baseline associations: 
DTI-Gf Letter Sets 
  

ROI Estimate / 
S.E. 

p 

DR     
CBd -3.116 .002 
CBv -2.390 .017 
CC Genu -2.140 .032 
CC Body -2.164 .030 
FMAJ -2.456 .014 
ILF -2.347 .019 
SLF -2.059 .040 

FA     
CBd 2.807 .005 
CBv 2.186 .029 
CC Body 2.296 .022 
FMAJ 2.265 .023 
FMIN 2.217 .027 
SLF 2.030 .042 

MD     
CBd -2.268 .023 
CC Genu -1.961 .050 
FMAJ -1.977 .048 
FMAJ -2.101 .036 
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ILF -2.124 .034 
RLIC -2.023 .043 

 

Table 10. Significant Paths in DTI-Gf Letter Sets Multivariate LDMs 
 

Notes: Values are parameter estimates divided by standard errors; T1=baseline; T2=follow up; 
ΔGf=latent difference score for Gf; ΔDTI=latent difference score for DTI indices. 
 

Memory for Names  

Higher baseline DA in ventral CB predicted greater positive change on memory for 

names (Names; Table 12). In contrast, higher baseline DA in CC body was associated with 

smaller rate of improvement in Names. Moreover, lower baseline DR in ventral and dorsal 

CB and in CC splenium predicted greater longitudinal increase in Names performance. 

Similarly, lower baseline FA in the ALIC and higher baseline FA in CB ventral and dorsal 

and forceps minor predicted greater longitudinal improvement on Names. Individual 

differences in baseline Names performance also explained significant variability in change in 

FA in the PLIC: higher baseline memory predicted smaller two-year increase in PLIC FA. 

ROI T1 DTI 
→ ΔGf 

p T1 Gf → 
ΔDTI 

p ΔDTI → 
T2 Gf 

p ΔGf → 
T2 DTI 

p 

DA   
 

 
 

 
 

 
ALIC -2.380 .017* − − − − 0.496 .620 
CC Spl. -2.612 .009* − − − − -1.103 .270 
IFOF − − -2.552 .011* − − − − 
PLIC -2.026 .043* − − − − 1.113 .266 
RLIC -2.255 .024* -1.663 .096 − − − − 

DR 
        ALIC − − -2.061 .039* − − − − 

CC Genu -0.220 0.826 − − − − -2.148 .032* 
MD 

        ALIC − − -2.679 .007* − − − − 
CC Body − − -2.225 .026* 0.719 .472 − − 
CC Spl. -2.216 .027* − − − − − − 
PLIC -1.252 0.211 -2.432 .015* − − − − 
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In addition, greater two-year decreases in DA in ALIC, and DA and MD CC body 

predicted better Names performance at follow up. In contrast, greater two-year increases in 

DR, and smaller increases in FA in CC body predicted better Names performance at follow 

up. Moreover, greater two-year increases in Names performance predicted higher MD at T2 

in CC body and higher DR in SLF, but lower DA in IFOF and lower FA in CBv and CC 

genu. 

 

Table 11. Significant baseline Associations: DTI-Names 

ROI Estimate / S.E. p 
DA     

ALIC -2.150 .032 
FMIN 2.047 .041 
RLIC -2.537 .011 
SLF -2.736 .006 

DR     
ALIC -2.732 .006 
CBd -2.605 .009 
CC Genu -2.116 .034 
CC Body -2.631 .009 
FMAJ -2.823 .005 
FMIN -2.974 .003 
IFOF -3.017 .003 
ILF -2.798 .005 
PLIC -3.499 .000 
RLIC -3.336 .001 
SLF -2.723 .006 

FA     
ALIC 2.291 .022 
CBd 2.477 .013 
CC Body 2.485 .013 
FMAJ 2.931 .003 
FMIN 3.705 .000 
ILF 1.971 .049 
PLIC 3.150 .002 
RLIC 2.069 .039 
SLF 1.952 .051 
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MD     
ALIC -3.162 .002 
CBd -2.478 .013 
CC Genu -2.138 .032 
CC Splenium -2.135 .033 
CC Body -2.265 .024 
IFOF -3.123 .002 
ILF -2.540 .011 
PLIC -2.079 .038 
RLIC -3.851 .000 
SLF -3.198 .001 

 

 

Table 12. Significant Paths in DTI-EM (Memory for Names) Multivariate LDMs 
 

ROI T1 DTI 
→ ΔEM 

p T1 EM 
→ ΔDTI 

p ΔDTI → 
T2 EM 

p ΔEM → 
T2 DTI 

p 

DA         
ALIC 0.922 .357 − − -2.078 .038* 0.987 .324 
CBv 2.361 .018* − − − − -1.336 .182 
CC Body -2.885 .004* − − -2.290 .022* 1.817 .069 
IFOF 0.967 .334 − − − − -2.805 .005* 

DR 
        CBd -1.959 .050 1.805 .071 − − 1.414 .157 

CBv -2.127 .033* − − − − 0.987 .324 
CC Body -0.951 .342 − − 2.920 .003* − − 
CC Spl. -2.172 .030* − − -1.285 .199 1.123 .261 
SLF -1.457 .145 1.478 .139 -1.569 .117 2.408 .016* 

FA 
        ALIC -2.361 .018* − − − − − − 

CBd 2.134 .033* -1.293 .196 − − − − 
CBv 3.387 .001* − − − − -2.259 .024* 
CC Body − − -0.906 .365 -2.848 .004* − − 
CC Genu 0.333 .739 − − − − -2.668 .008* 
FMin 2.093 .036* − − − − -1.349 .177 
PLIC − − -2.755 .006* − − − − 

MD 
        CC Body -2.669 .008* − − -2.031 .042* 2.492 .013* 

Notes: Values are parameter estimates divided by standard errors; T1=baseline; T2=follow up; 
ΔGf=latent difference score for Gf; ΔDTI=latent difference score for DTI indices. 
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Baseline Names performance was significantly associated with T1 DTI measures in 

numerous regions (Table 11). Higher DA in forceps minor was associated with better 

baseline Names performance. However, increased DA in ALIC, RLIC, SLF were all 

associated with reduced baseline Names performance. Similarly, higher baseline DR in CBd, 

ALIC, PLIC, RLIC, CC genu, CC body, forceps major and minor, IFOF, ILF, SLF were all 

associated with lower baseline memory for names. In contrast, higher FA in those same 

regions except for IFOF was related to superior Names performance. Higher baseline MD in 

all three internal capsule ROIs, all three CC ROIs, dorsal CB, IFOF, ILF, and SLF was 

associated with worse performance. 

Word pair task 

 The multivariate LDMs for the word pair task revealed numerous instances in which 

baseline DTI measures predicted two-year change in recognition memory performance (Table 

13). Higher baseline DA in CC body, DR in dorsal CB, CC genu and splenium, forceps major 

and minor, and IFOF, ILF, and SLF, and higher MD in all three CC ROIs and forceps minor 

were associated with two-year reductions in recognition memory. Similarly, lower baseline 

FA in dorsal CB, CC genu and splenium, forceps major and minor and PLIC were associated 

with reduced longitudinal performance on the word pair task. In addition, two-year increases 

in DA in ALIC and CC body, and MD in CC body were associated with reduced memory 

performance at follow up. There were no significant paths from baseline word pair 

performance to change in DTI or from change in word pair performance to T2 DTI.   

 There were significant bidirectional associations between baseline measures of DTI 

and word pair performance (Table 14). Higher T1 DA in forceps major and minor was 
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associated with better baseline memory. Similarly, higher baseline FA in dorsal CB, CC body, 

forceps minor, and PLIC was associated with superior recognition at T1. Elevated baseline 

DR and MD in dorsal CB and RLIC and higher PLIC MD were all associated with poorer 

concurrent recognition performance. 

 

Table 13. Significant Paths in DTI-EM (Word pair task) Multivariate LDMs 
 
ROI T1 DTI 

→ ΔEM 
p T1 EM 

→ ΔDTI 
p ΔDTI → 

T2 EM 
p ΔEM → 

T2 DTI 
p 

DA   
 

 
 

 
 

 
ALIC − − -0.474 .635 -2.479 .013* − − 
CC Body -3.069 .002* -1.296 .195 -3.572 .000* − − 

DR 
        CBd -2.482 .013* 1.469 .142 -1.468 .142 1.539 .124 

CC Genu -2.411 .016* − − − − − − 
CC Spl. -2.452 .014* -1.752 .080 − − − − 
FMAJ -2.394 .017* − − − − − − 
FMin -3.135 .002* − − − − − − 
IFOF -1.999 .046* − − − − − − 
ILF -2.246 .025* − − − − -0.601 .548 
SLF -1.948 .051 − − -1.649 .099 − − 

FA 
        CBd 2.530 .011* -1.275 .202 1.481 .139 -1.415 .157 

CC Genu 2.063 .039* − − − − − − 
CC Spl. 2.110 .035* − − − − -0.742 .458 
FMAJ 1.967 .049* − − − − − − 
FMin 2.878 .004* -0.907 .364 0.757 .449 − − 
PLIC 2.532 .011* -0.383 .702 0.867 .386 -1.172 .241 

MD 
        CC Body -2.511 .012* -1.011 .312 -1.967 .049* − − 

CC Genu -2.217 .027* − − − − -1.472 .141 
CC Spl. -2.780 .005* − − − − 0.313 .755 
FMin -2.336 .019* − − − − − − 
SLF -2.011 .044 − − -1.482 .138 − − 

Notes: Values are parameter estimates divided by standard errors; T1=baseline; T2=follow up; 
ΔGf=latent difference score for Gf; ΔDTI=latent difference score for DTI indices; 
 

Multivariate LDMs – DTI-VR 



 67 
  

 

We combined the syntax for the univariate DTI models of WMH/CSF-masked data 

that showed significant variance in change with the univariate model of metabolic syndrome 

without HDL cholesterol. Each model estimated a path from baseline VR to the DTI latent 

difference score, and a bidirectional pathway between baseline VR and DTI factors. Although 

all models had acceptable fit (for all, p > .15, CFI/TLI > 0.970/0.970, RMSEA < .04), none 

demonstrated a significant path from the T1 VR factor to change in DTI. However, several 

did show significant cross-sectional relationships between baseline factors for VR and DTI. 

Higher VR was associated with lower DA in forceps minor and higher DA in RLIC. In 

addition, higher levels of VR were also associated with greater DR in several regions 

including dorsal CB, CC body and splenium, forceps minor, IFOF, and SLF, and with greater 

MD only in CC body. Increased VR was negatively associated with FA in similar regions as 

DR: dorsal CB, CC body, forceps minor, IFOF, and SLF. 

 

Table 14. Significant baseline 
Associations: DTI-Word pair 

ROI Estimate / 
S.E. 

p 

DA     
FMAJ 1.959 .050 
FMIN 2.755 .006 

DR     
CBd -2.621 .009 
PLIC -2.357 .018 
RLIC -1.965 .049 

FA     
CBd 2.490 .013 
CC Body 2.277 .023 
FMIN 2.201 .028 
PLIC 2.214 .027 

MD     
CBd -2.126 .033 
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RLIC -2.219 .026 
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CHAPTER 4 

DISCUSSION 

 

Using the SEM-based LDM framework, we observed significant, reliable change over 

two years in all four DTI indices. Although the two-occasion LDM approach has been used 

successfully on brain volumetric data (Raz et al., 2005, 2008, 2010), these results show its 

utility with DTI data, and over a shorter longitudinal delay. Moreover, whereas 

cross-sectional associations between age and DTI indices of WM were consistent across brain 

regions, the direction of mean change varied by DTI index and ROI. Furthermore, numerous 

regions also demonstrated significant variance in change that permitted multivariate analysis 

comparing influences of WM change on cognitive performance, and vice versa. The present 

findings also demonstrate the utility of an atlas-based ROI approach for longitudinal 

assessment, and the importance of analyzing data without the influence of WMH/CSF.  

Comparison of cross-sectional and longitudinal effects in the univariate LDMs (Table 

7) supports the suggestion that not only do cross-sectional associations between age, 

cognitive performance, and their putative biological substrates provide a poor estimate of 

differences or change over time, but they cannot even constrain the search space for such 

effects (Lindenberger et al., 2011). For example, whereas age was negatively associated with 

individual differences in baseline DA in only three regions, change measures told a different 

story altogether. Although most regions showed mean decline, DA increased in anterior 

regions CC genu and forceps minor. Similarly, although DR was positively associated with 

age in almost all regions, only five regions showed a mean two-year increase in DR, while 

four regions showed a mean decrease. In addition, whereas FA was negatively correlated 
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with age in all regions using masked data, FA showed a mean increase over time in PLIC and 

CC body; in contrast, there was a mean decrease in FA only in CC genu, FMaj, FMin, and 

IFOF. Finally whereas baseline MD was positively associated with age in almost all regions, 

MD actually showed a mean decline in nine out of 14 ROIs, and only showed mean two-year 

increase in CC genu, and forceps major and minor. Clearly, cross-sectional associations 

between DTI measures of WM and age are uninformative regarding actual change.  

Moreover, covariate effects showed differential influence of age on WM change. For 

example, although we observed longitudinal declines in DA and MD in ALIC and PLIC, 

greater age attenuated declines in the former region but exacerbated declines in the latter. 

Similarly, DA in FMaj and CC body both showed no significant mean change, but did 

demonstrate significant variance in change. Greater number of years of treated hypertension 

was related to greater increase in DA and FA in CC body and attenuated DA increases in 

FMaj. Thus, both age and VR account differentially account for variance in change DTI 

indices, across regions. 

Effects of masking 

We performed the univariate LDMs using both whole brain data, and on WM images 

with WMH/CSF removed. In some regions, masking appears to have reduced variance in 

change. In addition, age was correlated with DR and FA in both ventral CB and UF only in 

models of WMH/CSF-masked data. DA in FMaj was also only significantly correlated with 

age in masked data. One possibility is smaller regions may contain more noise or less reliable 

signal than larger WM tracts. In contrast, DA in dorsal CB was only negatively related to age 

in non-masked data. Therefore, it is unclear whether and to what extent the presence of 
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WMH may have contributed to the present findings. Alternatively, it is possible that our DTI 

sampling methodology included the undue presence of fibers from other regions such as CC 

body, which contained age-related variance not necessarily present in cingulum.  

DTI-Cognition 

 The discrepancy between baseline cross-sectional associations of DTI measures and 

cognition and longitudinal effects is an important finding of the present study. Whereas 

cross-sectional associations demonstrated uniformity within each DTI index, the different 

influences of baseline DTI and cognitive measures on change in cognition DTI, respectively, 

show no such consistency. It is important to keep in mind that the multivariate models of 

interactive influence between DTI measures and cognition were based on cognitive models 

showing significant variance in change. Moreover, the two models of episodic memory both 

showed mean increases in performance. Therefore, these models are not evaluating the 

effects of change in DTI on age-related decline in cognitive performance, but rather 

individual differences in both change and the benefit of repeated testing, or retest effects, as 

indicated by the variability in the slope of the latent difference score.  

The models of latent change in Gf showed significant variance in change, but not 

mean change over two years. Furthermore, greater two-year increase in Gf was associated 

with lower DR in CC genu at follow up. More generally, the influence of baseline DA on 

change in Gf underscored the influence of diffusivity in the three internal capsule ROIs on 

variability cognitive change. Notably, despite the apparent influence of baseline DA on 

two-year change in Gf, there were no cross-sectional associations between Gf and DA in any 

ROI. Thus, the baseline individual differences in reasoning appear to be qualitatively 
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different from individual differences in change in that ability.  

In addition, both of the LDMs for episodic memory (Memory for Names and word 

pair recognition) demonstrated a negative influence of DA in CC body on two-year change in 

performance. Higher DA was associated with decreased longitudinal improvement. In 

addition, models for both memory tasks revealed the negative influence of change in DA in 

CC body and ALIC on memory performance at follow up, such that greater increase in DA 

predicted poorer memory at follow up. However, only Memory for Names showed 

relationships with DA, DR and FA in ventral cingulum, in which higher baseline FA and DA 

and lower baseline DR predicted longitudinal memory improvements. The models for the 

repeated stimulus list for the word pair task showed baseline involvement of a similar set of 

structures, for both DR and FA. These common regions included dorsal CB, CC genu and 

splenium, and forceps major and minor. Moreover, in the word pair LDMs greater baseline 

FA and lower baseline DR predicted larger two-year improvement in memory.  

In light of both the discrepancies between cross-sectional and longitudinal effects, and 

the contradictory nature of many of the longitudinal DTI-cognition relationships, unequivocal 

interpretation of the present findings poses a particular challenge. DTI findings from animal 

studies suggest DR serves as a proxy for myelin and DA as a measure of axonal integrity 

(Song et al., 2002, 2005; Sun et al., 2008). However, many of the present findings are 

inconsistent with this account. If DR is an inverse measure of myelination, why would 

two-year increases in DR or MD be associated with better performance? Similarly, why 

would reduced FA, a putative marker of fiber tract coherence, predict better memory 

performance? One possible answer is that individual differences in cross-sectional DTI 



 73 
  

 

measures may account for different variance in cognition than individual differences in 

two-year change in DTI. That is, greater age may indeed be associated with reduced FA, but 

over a two-year delay, smaller changes in FA appear to be wholly independent of age. 

Similarly, it is possible that intra-individual change in the DTI signal reflects different 

underlying biological processes than individual differences in the stable signal. 

More recently, some have begun to suggest greater caution in the interpretation of 

DTI data as indicative of underlying tissue properties (Jones et al., 2013; Wheeler-Kingshott 

& Cercignani, 2009) noting various possible influences on DTI indices beyond simply 

myelination. Jones et al. (2013) suggest that developmental differences in WM such as 

increased axonal diameter or reduced packing density could both result in reduced 

anisotropy. Moreover, estimates suggest that 30-90% of WM voxels contain multiple fibers 

of different orientation (Behrens et al., 2007; Jeurissen et al., 2013; see Jones et al., 2013 for 

a review). Therefore, one explanation suggests that the increase in axonal diameter or 

myelination of a secondary fiber population of different orientations than the principal 

eigenvector in a given ROI would result in increased DR and reduced FA. This seems more 

plausible than reductions in myelination driving increases in cognitive performance.  

This is not to suggest that over time, some change on the mean level may not occur to 

reflect cross-sectional age variance, but that such processes are poorly understood, and such 

differences may plausibly reflect cohort effects. Longitudinal studies must account for these 

discrepancies, but the timescale needed imposes a particular burden as methods and hardware 

advance over time and are replaced. Nonetheless, prospective and longitudinal designs should 

be a new standard for DTI studies of cognitive aging, in order to more clearly understand the 
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relationship between age-related change in WM and cognition. 

Study Limitations 

The single-tensor solution may not provide the best characterization of cerebral white 

matter, particularly in regions in which many voxels include crossing fibers (Jones & 

Cercignani, 2010; Mukherjee, 2008; Vos, Jones, Jeurissen, Viergever, & Leemans, 2011). 

Rather, techniques that utilize multiple b-values, or multi-pool methods that evaluate multiple 

rates of diffusion may provide a better method for disentangling extra-axonal, intra-axonal, 

and intra-myelin diffusion.  At best, DTI provides an imaging modality for quantification of 

important aspects of underlying white matter microstructure. At worst, DTI is an unreliable 

correlate of white matter anatomy, and poor interpretations can lead to drawing wrong 

conclusions and only add noise to the existing understanding of the effects of age on WM and 

the role of WM change in age-related cognitive decline. 

In addition, several factors in the present study may limit the reproducibility and 

generalizability of the findings. Similarly, although the data appear generally stable, there 

was no phantom used as a control for the signal as used by Teipel et al. (2010), which would 

have been preferable. However, overlap within the group between occasions may have 

mitigated the potentially confounding effects of scanner drift or software or hardware updates 

or upgrades. That is, participants at the end of the first wave of measurements were being 

scanned as the earliest participants were beginning to undergo the second measurement. 

Moreover, measurements made on the same scanner over time appear to be robust to 

longitudinal drift, even following software upgrades (Takao et al., 2012). 

In addition, although sampling from native space data may be preferable in 
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minimizing interpolation, the differences in standard and native space could create additional 

noise. That is, skeletonisation is done in 1 mm3 standard space, and the native DTI data are 

not. Therefore, the deprojected skeleton is inherently larger in native than in standard space 

due to differences in voxel size (e.g., in mm 2 × 2 × 3 mm vs. 1 mm3). However, this largely 

imposes issues only at the periphery of the skeleton before, which we addressed by applying 

a slightly more conservative threshold for the skeleton in the final stage of TBSS processing. 

Moreover, deprojection to native space permitted better evaluation of the correspondence of 

the deprojected skeleton and skeletonized atlas ROIs with the underlying anatomy in the b0 

and FA images.  

 Tractography might possibly provide more anatomically specific and less noisy DTI 

measures than our ROI approach. Despite the care that went into the DTI processing, the use 

of a probabilistic atlas-based system for anatomical designation is not as specific as 

tractography.  Although ROIs did not overlap, neighboring regions such as ILF and IFOF 

although containing different variance, may not have the anatomical validity as streamlines. 

However, as with many archival DTI data, tractography is not advisable with fewer than 32 

encoding gradient directions (Jones & Cercignani, 2010). In addition, we were unable to 

model change of non-lateralized structures like the fornix using the LDM framework as 

multiple indicators were not available, and all differences could only be evaluated on the 

manifest level. Moreover, our desire to use CSF/WMH-masked values for analyses made 

fornix particularly small. Future studies employing more current, optimized imaging 

standards might be able to better delineate such structures for more reliable longitudinal 

comparison.  
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In the present study we have taken great efforts to minimize noise in the data as much 

as possible. This was done through use of a highly controlled sample, in our DTI processing 

and sampling procedures, and in our statistical modeling approach. However, it is possible 

that such a conservative methodology may bias our findings away from some potential 

discovery of less robust effects that do not meet the same thresholds for latent difference 

modeling, bootstrapping, and FDR correction.  

In addition, we did not have uniform coverage of all age ranges in the sample. 

Although well screened, the sample was more heavily middle-aged and less representative of 

younger adults. Also, we did not analyze the sample by different genetic polymorphisms that 

might explain variability in change in the present sample. That is, even when mean 

differences were manifest, small effect sizes may reflect an admixture of genetically 

conveyed influences. For example, it is possible that BDNF val/val carriers may show greater 

increases in diffusivity over time, in comparison to carriers of the met allele (Chiang et al., 

2011). In the present sample, it is possible that modest or null effects may reflect such 

heterogeneity. Similarly, we did not evaluate differences due to sex, and the effects of 

post-menopausal hormone changes on DTI measures of cerebral WM have yet to be clearly 

elucidated. Similarly, the LDM framework precluded specific evaluation of lateralized 

change effects and their role in explaining variance in cognitive performance and change 

therein. That is, we did not examine how differential associations between left or right 

hemispheres may have shown greater associations with memory performance, or two-year 

improvements in memory. 

Future directions 
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Although we have already identified several ways in which the research could be 

improved, a whole brain, longitudinal tractography study using a similar sampling approach 

is a clear next step. Similarly, given the open question of interpretation of change in the DTI 

signal, a comparison with longitudinal using other WM measures like magnetization transfer 

imaging, R2*, relaxometry, and myelin water fraction imaging would also provide additional 

point for comparison that is more anatomically specific. Whereas we evaluated DTI measures 

with non-masked and WMH/CSF-masked data, a better approach would be to examine 

change in DTI indices within WMH (Vernooij et al., and model that as a multivariate change 

factor with change in normal appearing white matter. This would provide a more optimal 

method for understanding the influence of WMH on  

In addition, even though we have used the best statistical framework for assessing 

change between two occasions, this is inadequate to accurately describe development. Thus, 

three or ideally four waves or more would be needed to model nonlinear dynamics between 

age, WM and cognition. Moreover, inclusion of a larger sample of younger participants in the 

third and fourth decades and over 80 years of age would provide better representation of 

variance in those life periods as well. 
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APPENDIX A – Spaghetti Plots of change in DTI indices across regions 
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 Numerous studies over the past decade have used diffusion tensor imaging (DTI) to 

examine the associations between age, diffusion and anisotropy measures of cerebral white 

matter (WM), and cognitive performance. However, few have examined relationships 

between intra-individual change in DTI measures of WM and cognitive function. It is 

possible that the extant cross-sectional findings are a poor representation of age-related 

change in WM and cognition. The present study used latent difference-score modeling (LDM) 

to assess change over two years in DTI indices fractional anisotropy (FA), radial diffusivity 

(DR), axial diffusivity (DA) and mean diffusivity (MD). In addition, we examined the effects 

of WM change on concomitant change in age-sensitive cognitive domains, while controlling 

for individual differences in duration of hypertension treatment, a common marker of 

vascular risk. A sample of 96 healthy participants spanning the adult lifespan underwent DTI 

scanning and cognitive testing at baseline and following a two-year delay. Univariate latent 

difference score model (LDM) analyses showed cross-sectional associations between DTI 

measures and age did not accurately describe actual change in WM. Regions including the 
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genu of the corpus callosum, forceps major, and forceps minor showed reliable reductions in 

FA and increases in MD. In addition, change differed between DR and DA, suggesting the 

importance of evaluating these measures separately, rather than relying solely on MD as an 

index of diffusivity. Comparison of change in DTI measures and memory revealed baseline 

individual differences in FA, DA, and DR in dorsal and ventral cingulum bundle predicted  

two-year change in associative memory, while baseline DR and FA in multiple regions 

predicted change in recognition performance. The present findings demonstrate the necessity 

of longitudinal evaluation of change in WM and cognition.
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