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Chapter 1: 
Introduction and Motivation 

1.1 Robotics and Sensor Technology 

The ability to indirectly or remotely manipulate objects within an environment can be 

extremely useful.  For example, a surgeon may need to operate on portions of patient’s body that 

are difficult or unsafe to reach with hand-held tools.  A soldier could be commanded to search 

for explosive devices in a hostile environment, or an astronaut may be required to repair a 

module on the outside of a spacecraft or even collect specimens on a different planet.  In all of 

these cases, indirect manipulation is either desired or required for both the success of the 

operation and the safety of those involved. 

Increasingly, robotic technology is being used to meet the demands of these kinds of 

challenging applications.  A robot can perform precise operations with manipulators or end-

effectors that replace a person’s hands or tools.  The movements of a robot can be fully under the 

control of a human, or it can act partially or completely autonomously.  Moreover, modern 

communication technology can be exploited to remotely execute desired operations from the 

next room, a different country, or even another planet.  These properties can be very beneficial in 

many applications, such as the previously stated examples.  For instance, a soldier can control a 

robotic vehicle from a safe distance to search for explosives, or an astronaut can direct a robotic 

arm to work on the exterior of a spacecraft without being exposed to the hazards of outer space. 

In addition to indirect manipulation, the ability to sense properties of the environment can be 

very valuable.  For example, a surgeon may desire a way to distinguish healthy and cancerous 

tissue during a tumor removal operation.  A solder could use a device that detects trace amounts 

of explosive materials, or an astronaut may need the ability to analyze the composition of 
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extraterrestrial soil samples.  In many cases, like those above, the properties being detected often 

fall outside the capabilities of human senses. 

The answer to these diverse needs can be found in the advancing field of sensor technology.  

Sensors are tools that detect specific physical properties and produce an output that can be 

interpreted by another device (such as a computer) or a person.  There are many types of sensors 

based on various technologies that provide valuable information for particular applications.  For 

instance, one sensor could be designed to identify biochemical markers associated with cancer, 

and another could be built to detect chemical compounds found in common explosives. 

Finally, robotics and sensor technology can be combined to form an extremely powerful 

solution to difficult problems.  Sensors are an ideal complement to robotics for several reasons.  

Most commonly, they supply the feedback necessary for robot joint control.  In addition, they 

can provide information that would otherwise be unavailable due to indirect manipulation.  For 

example, they can enable force feedback or visual imaging of a remote environment.  The 

combination of the technologies is also beneficial for sensors.  Analytical sensors generally need 

to be positioned very accurately to obtain good performance and ensure the correct location is 

sensed, and robots are typically adept at precise placement. 

Sensor-integrated robotic systems are currently being used or developed for many 

applications, such as the following three examples.  First, the recent Mars Science Laboratory 

mission (as well as the upcoming ExoMars mission) is employing a rover with robotics and 

numerous sensors to remotely study the planet Mars [1].  Second, research on the detection of 

land mines involves single- and multi-robot systems equipped with various sensing technologies 

[2].  Third, work is being done to add force and tactile sensing to surgical robots [3].  Although 

 



3 

many of these kinds of integrated systems are still under development, they have the potential to 

provide significant benefits in many different fields. 

1.1.1 Surgical Robotics 

One field that exemplifies the use of indirect manipulation is surgical robotics.  In a typical 

surgical procedure, the doctor has to navigate a patient’s body and manipulate structures with 

great care and precision.  A surgical robot helps the doctor by manipulating the surgical tools 

and/or holding an optical instrument known as an endoscope.  The doctor generally directs the 

robot via hand controllers.  The main surgical robot in use today is the da Vinci (Intuitive 

Surgical, Sunnyvale, CA), which has four arms for controlling the tools and endoscope. 

A surgical robot leverages the strengths of robotics to aid the doctor performing the 

procedure.  A robot can move a tool with high accuracy or tirelessly hold an instrument in a 

fixed location.  By processing the doctor’s controller inputs, the robot’s control system can 

remove tremors in the doctor’s hands or translate large movements by the doctor into much 

smaller movements inside the patient.  In addition, the robot’s arms can enter the patient through 

tiny incisions, minimizing the damage to the patient. 

Although not commonly done today, surgical robots are excellent candidates for advanced 

sensor integration.  The use of force or tactile sensors promises to restore the haptic feedback 

that is lost due to indirect manipulation.  There are also a number of tissue properties that could 

be analyzed to help the doctor treat the patient.  For example, an ultrasound sensor could be used 

to locate masses, and some type of biochemical sensor could be used to identify abnormal tissue. 

1.1.2 Raman Spectroscopy 

Raman spectroscopy is a good example of a powerful sensing technique.  It is an optical 

technique that utilizes the inelastic scattering of light by a substance.  Essentially, a device 
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known as a Raman spectrometer shines a laser beam at a specimen and records the light that 

comes back.  Based on the amount of light that is collected a various wavelengths, a Raman 

spectrum is constructed.  This spectrum acts like a fingerprint that provides information about 

the molecular or chemical composition of the specimen.  (Section 2.2 has more detailed 

information on Raman spectroscopy.) 

The amount of information contained in a Raman spectrum and its relative ease of 

acquisition make Raman spectroscopy an excellent choice for many applications.  For instance, it 

can distinguish healthy tissue from cancerous tissue [4-6], and it can be used to detect explosive 

materials [7].  Raman spectroscopy is even planned for use on Mars (as part of the European 

Space Agency’s ExoMars mission) to analyze the geology and look for evidence of 

microorganisms [8]. 

A Raman spectrometer is suitable for integration with a robotic system.  The emission and 

collection of light can occur through a fiber optic probe, which can be routed to the end of a 

mobile robotic arm.  Typically, the diameter of the device’s sampling region is less than 1 mm, 

and the probe must be held in position for many seconds while the light is collected.  A robot 

would be able to accurately reach the desired region and keep the device steady for as long as 

needed.  This is similar to existing Raman microscopes, which use a motorized platform to 

position an acquired sample underneath the emitted laser light.  By placing a Raman probe at the 

end of a surgical robot or other sampling arm, it becomes possible to analyze many different 

kinds of specimens in their native environments. 

1.1.3 Image Guidance 

The usage of sensors and/or robotic systems can be augmented with image guidance.  Image 

guidance involves a combination of imaging and tracking sensors that are used to indicate the 
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positions of objects of interest (tools, etc.) on images of an environment.  The imaging 

techniques can be very advanced (e.g., magnetic resonance imaging) or relatively simple (e.g., a 

camera).  Computer visualization techniques such as virtual and augmented reality can be used to 

display the sensed data as well as any other relevant information.  Image guidance is most 

frequently discussed in the context of surgical procedures (called image-guided surgery), but it is 

also employed in other fields, such as military [9] and outer space [10] applications. 

Image guidance can aid in the navigation of an environment.  For example, when trying to 

maneuver a robotic manipulator with respect to a structure of interest, it may be helpful to see the 

position of the robot in a 3D model of the environment derived from imaging data.  Similarly, a 

sensor could be more easily moved to a specimen of interest using the same 3D information. 

The visualization techniques associated with image guidance can also assist in the 

understanding of data collected with a sensor.  Any time new data is collected, the source of the 

data can be displayed in the model of the environment.  Moreover, any information derived from 

the sensor data can be integrated with the imaging data.  For example, the imaging data could be 

color-coded to reflect the classification of the sensor data. 

1.2 Problems in Sensor-Integrated Robotics 

Multiple capabilities are needed to have an effective sensor-integrated robotic system.  These 

capabilities are in the areas of sensors, robotics, and techniques for robot/sensor integration.  For 

example, the capabilities may involve processing sensor signals or accurately positioning a 

sensor.  For many types of applications, there are shortcomings in the current technologies 

employed to provide the capabilities.  These issues make it harder to take advantage of sensor-

integrated robots and possibly constrain their adoption.  In the following sections, some problem 

areas are discussed in which improvements would be highly valuable. 
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1.2.1 Sensor Signal Analysis Problems 

Sensor technology has become more sophisticated over the years.  Sensors are now used to 

measure quantities or identify differences that occur at a very small scale.  For instance, one may 

wish to examine trace amounts of dangerous chemicals or find disparities between normal and 

abnormal skin cells.  When the properties of interest are so subtle, it often becomes difficult to 

obtain clear data from a sensor.  There may be noise and other undesirable quantities mixed into 

the data.  For example, a Raman spectrum typically has background fluorescence, shot noise, 

cosmic ray spikes, and more. 

To help overcome this problem, computer algorithms based on mathematical/statistical 

techniques are typically employed to reduce noise/distortions and find meaningful patterns in the 

collected data.  There is even an entire field (called chemometrics) devoted to the use of such 

methods to extract information from chemical data.  The algorithms for processing and analyzing 

sensor data are generally very complex, and they are not guaranteed to work under all 

circumstances.  Thus, there is always a need for improved algorithms.  In addition, researchers 

and organizations often develop custom software systems for their algorithms, leading to 

standard procedures being repeatedly implemented and novel techniques being harder to share.  

The development of more open and accessible software platforms would help prevent these 

issues. 

1.2.2 Integrated Robot/Sensor Problems 

Simply placing a sensor on the end-effector of a robot may not be sufficient for many 

applications.  There are a number of issues that remain, including some that relate to the user 

interface.  One issue is that a system may be required to help position the robot arm and attached 

sensor in order to collect the desired data.  For example, a surgical robot equipped with a Raman 
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sensor would need to be positioned very carefully in order to collect data from the tissue of 

interest without disturbing or damaging structures inside the patient.  Another issue is that it may 

be difficult for the user to visualize the relationship between collected sensor data and the 

environment from which it was collected. 

Image guidance can be used to help solve these problems.  In the past, image-guided systems 

have been used to track manipulators within an environment.  However, these systems have not 

typically incorporated analytical sensors (such as a Raman probe) and the information they 

provide.  The development of image guidance systems that support advanced analytical sensors 

could greatly enhance the usage of sensor-integrated robotic systems. 

1.2.3 Robot Accuracy Problems 

Although robotic systems have the capability to position a manipulator or sensor with great 

precision, the accuracy depends upon the quality of the model used to control the robot (among 

other things).  This is because a robot is typically moved using a model of its kinematic 

properties.  For example, a model has to include the type of each joint, the lengths of the links 

connecting the joints, the changes in orientation between joints, etc.  In addition, any tools or 

sensors being handled by the robot must be incorporated into the model.  Any differences 

between the model and the actual robot lead to errors when positioning the robot. 

Even small differences can cause large problems because the effects of an error can be 

magnified as calculations progress from a robot’s base to its end-effector.  As a simple example, 

imagine a 1 m link with one end that rotates about a fixed point.  If the rotation is off by just 

0.01 rad, the position of the other end of the link will be off by approximately 1 cm. 

Due to errors/tolerances in a robot’s construction or possibly the wear of usage, a robot will 

vary from its manufacturer’s specifications.  Thus, a technique is needed to correct or 
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compensate for differences between the actual robot and its model.  For a robot’s kinematic 

properties, this process is known as kinematic calibration.  A properly executed kinematic 

calibration can greatly increase the accuracy of a robot if there are significant errors in its model. 

There are many techniques and algorithms for kinematic calibration.  Some techniques 

require external measurement devices (often expensive or complex), but some need only the 

internal joint feedback of the robot.  Although calibration is simpler without an external 

measurement device, several issues arise due to limitations of the collected data.  For example, it 

may not be possible to calibrate certain parameters, the model might have the wrong scale, and 

the position/orientation of the robot’s base may not be ascertainable.  The development of 

flexible calibration techniques that help overcome these problems (while retaining ease of 

execution) would be useful for improving the accuracy of robots. 

1.3 Aim and Scope of Research 

The overall aim of this research was to develop novel techniques and systems that facilitate 

the use of sensor-integrated robotic systems.  To accomplish this aim, solutions to the three sets 

of problems described under section 1.2 were developed.  Because the problems are somewhat 

abstract and can appear in many different kinds of applications, some specific 

technologies/systems were chosen for the developed solutions. 

Raman spectroscopy was selected for the sensor-related work in this dissertation, with a 

focus on chemometric analysis (extracting information from chemical data).  There are several 

reasons for this choice.  First, Raman spectroscopy is very powerful sensing technique with 

numerous applications, such as chemical composition analysis [11, 12] and cancer identification 

(both ex vivo and in vivo) [13-26].  Second, complex algorithms are required to process Raman 

spectra.  Moreover, there is a lack of an open, easy-to-use platform for analyzing Raman spectra.  
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Third, a Raman probe requires steady and accurate positioning, which makes it especially 

suitable for robotic manipulation and image guidance. 

An image-guided surgery system was chosen to serve as the prototype for a sensor-integrated 

robotic system.  The surgery system could allow either manual or robotic positioning of the 

sensor.  One reason for selecting this kind of system is that navigating the environment of a 

patient’s body is a difficult task that is well suited to the use of image guidance.  In addition, 

integrated sensors (such as a Raman probe) could provide an abundance of valuable information 

about tissues of interest. 

With respect to techniques to improve robot accuracy, a decision was made to work on serial 

manipulators.  This type of robot is very appropriate for positioning a sensor in an environment.  

Furthermore, a choice was made to focus on kinematic parameters (rather than dynamic/inertial 

parameters) and position accuracy (with less emphasis on orientation accuracy).  These things 

are very important concerns when it comes to accurately positioning a sensor, and it is easier to 

obtain measurements for them.  Lastly, it was decided to work with robot models expressed in 

the Denavit–Hartenberg convention [27, 28] because it is a very common way to represent a 

robot’s structure. 

1.4 Specific Research Objectives 

As discussed above, there were three sets of problems in sensor-integrated robotics that this 

work sought to overcome.  Thus, the research was divided into three specific objectives, one for 

each of the problem areas.  Figure 1.1 provides an overview of these objectives, and they are 

described in more detail below. 

 



10 

 
Figure 1.1:  Specific research objectives and the technologies to which they apply. 

The first research objective was to develop a software system that processes, analyzes, and 

classifies data from a specific kind of sensor (a Raman spectrometer).  The system had to be 

open, easily accessible, and extensible, which would enable interested parties to utilize and 

contribute to a common implementation of relevant algorithms.  In addition, it was desired to 

implement some novel techniques for processing and analyzing the data collected by the sensor. 

The second research objective was to develop an image guidance system for use with a 

sensor-integrated robotic system (a Raman probe attached to a surgical system).  The image 

guidance system needed to support tracking and displaying the sensor’s location using computer 

visualization with imaging data of the environment.  Furthermore, the system had to enable the 

acquisition and real-time analysis of sensor data (using techniques from the first objective), and 

it needed the ability to present the results within the visualized representation of the 

environment. 

The third research objective was to develop a kinematic calibration technique for serial 

manipulators.  The method had to be able to enhance the positional accuracy of a robot, which is 

important for sensor placement.  It was desired that the technique be relatively simple to apply 

and not require any external measurement devices for the calibration.  In addition, the work was 
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expected to identify and provide solutions for some limitations of existing techniques that utilize 

similar information. 

1.5 Novelty and Significance 

The purpose of this work was to advance the state of robotic systems and integrated sensors.  

To achieve this aim, a number of novel techniques and systems were developed.  These 

contributions were made in three different areas, corresponding to the three specific objectives of 

the research. 

1.5.1 Sensor Signal Analysis 

With respect to sensor signal analysis, a unique software system for processing, analyzing, 

and classifying Raman spectra was developed.  The system possesses a simple graphical 

interface that enables anyone to manage groups of spectra and apply powerful algorithms.  These 

algorithms include novel techniques for subtracting artifacts from spectra and automatically 

identifying important peaks/components in spectra.  Moreover, some of the algorithms are 

suitable for real-time classification of newly acquired spectra. 

The software was designed as a platform that can be easily extended.  In addition, its source 

code has been made freely available to the research community.  These properties will allow 

others to add new features and algorithms to the system and avoid redundant implementations of 

existing techniques.  In fact, the system is already being used by other researchers for the 

chemometric analysis of Raman spectra. 

The software system has numerous potential applications in the analysis and classification of 

various substances.  For example, the system is already being used to distinguish cancerous 

tissue from healthy tissue.  Cancer is a significant health issue, with an estimated 12.7 million 
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new cases and 7.6 million deaths occurring in 2008 [29].  By using the system to aid surgeons in 

the accurate removal of tumors, it is hoped that lives may be prolonged or saved. 

1.5.2 Robot/Sensor Integration 

Regarding robot/sensor integration, a system that provides image guidance for a Raman 

probe was created.  To the author’s knowledge, it was the first with this capability.  The system 

supports real-time tracking of the probe (or other tools) using virtual or augmented reality 

visualization that incorporates imaging data of the environment.  This enables accurate 

placement of the sensor using either a manual or a robotic positioning system. 

In addition, the system enables the near-real-time collection and analysis of Raman spectra as 

well as the presentation of the results.  A method was produced to integrate the results with the 

imaging data in the computer visualizations to aid the user in understanding the environment or 

specimens of interest.  The system is flexible enough to support different tracking/positioning 

devices, and it can produce visualizations on multiple displays. 

The system was conceived as a prototype for eventual use in image-guided surgery.  With 

further development and testing, it is hoped that the system will enable the in vivo use of a 

Raman probe.  The integrated software and hardware solution should empower a surgeon to 

quickly identify diseased tissue (e.g. cancer) and immediately provide the appropriate treatment.  

Such a system could save lives and ultimately reduce costs. 

1.5.3 Robot Accuracy 

Concerning robot accuracy, a technique for the kinematic calibration of serial manipulators 

was developed.  The technique is flexible and easy to execute.  Although the idea of using 

internal joint measurements from a fixed point is not new, there are some limitations in existing 

techniques.  These issues were identified, and methods that solved or mitigated them were 
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produced.  For instance, a registration process is used to overcome limitations that arise due to 

the lack of absolute end-effector measurements. 

The calibration technique was developed to help fulfill a need for accuracy in the robotic 

placement of a sensor.  The technique should make it easier to reduce the positional error of a 

robot, thus improving the quality of data obtained from a sensor.  For example, a tumor could be 

located with greater accuracy through improved sensor placement, and the treatment could be 

applied with better precision.  The technique can also be executed on robots without analytical 

sensors or on arms without active joints, which means it could provide benefits in numerous and 

diverse applications. 

1.5.4 Combined Impact 

Together, the contributions of this work provide important building blocks for an accurate 

robot with an integrated Raman probe.  This type of a system would be a powerful tool for many 

future applications.  For example, a surgical robot could automatically scan for diseased tissue 

and assist the surgeon in the necessary treatment.  A rover could provide fast sampling and a 

detailed analysis of extraterrestrial soil samples, or a military robot could be programmed to 

search a hostile environment or vehicle for explosives.  Although the work was developed using 

a Raman probe, much of it is generally applicable to different analytical sensors.  Thus, the work 

can serve as a model for the design of advanced sensor-equipped robotic systems in many other 

applications. 

1.6 Organization of the Dissertation 

The remainder of this dissertation is organized in the following manner.  Chapter 2 provides 

general background information on some topics that are found throughout the dissertation.  In 

Chapter 3, the developed Raman software system and its capabilities are described.  Chapter 4 
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presents the image guidance system that was produced for a Raman probe.  Next, Chapter 5 

details the developed kinematic calibration technique and the results of several experiments.  

Finally, Chapter 6 offers a discussion of the work and potential directions for future research. 

 



15 

Chapter 2: 
General Background 

2.1 Overview 

This chapter provides some general background material that serves as a foundation for other 

portions of the dissertation.  Specifically, the information on Raman spectroscopy (section 2.2) is 

relevant to Chapter 3 and Chapter 4, and the material on robot modeling (section 2.3) is used in 

Chapter 4 and Chapter 5. 

2.2 Raman Spectroscopy 

Raman spectroscopy is an optical sensing technique that relies on the inelastic scattering of 

light by a substance [30].  It provides information about the molecular or chemical composition 

of a specimen.  Its measurements are fast, simple, accurate, and nondestructive, making it a 

popular choice for the analysis of myriad substances. 

In Raman spectroscopy, a beam of intense monochromatic light (typically a laser) is shined 

upon a substance.  The light is then scattered by the substance in one of two ways.  Most of the 

photons of light have an elastic collision, resulting in scattered light that has the same energy as 

the incident light.  This is known as Rayleigh scattering.  However, approximately one photon in 

a million will exchange energy with the substance, resulting in scattered light with a different 

energy (frequency) than the incident photons.  This is called Raman scattering [30, 31].  If a 

photon loses energy to the substance, it is known as Stokes Raman scattering.  If the photon 

gains energy, which happens much less frequently, it is called anti-Stokes Raman scattering. 

The difference in energy between an incident and scattered photon is equal to the change in 

the vibrational energy of the struck molecule.  This vibrational energy depends on the bonds and 
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other properties of the molecule.  Thus, the shift in energy (and thus frequency) of a photon 

corresponds to the type of molecule being struck.  By measuring the energies of all the photons 

scattered from a substance, a great deal of information about the molecular (or chemical) makeup 

of the substance is obtained. 

A Raman spectrometer measures the Raman-scattered light over a range of frequencies to 

produce a Raman spectrum (Figure 2.1).  The x-axis indicates the shift in wavenumber from the 

monochromatic light source.  (A wavenumber is the inverse of the wavelength, which is 

proportional to the frequency and energy of the Raman shift.)  The y-axis shows the intensity of 

scattered light at each wavenumber.  A typical Raman spectrum consists of bands of intensity 

around various wavenumbers, which indicate the molecular makeup of the substance.  Thus, a 

Raman spectrum acts like a fingerprint for a specimen. 
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Figure 2.1:  Raman spectra from three different fruits. 

2.2.1 Raman Applications 

Raman spectroscopy is used in numerous applications, such as the analysis of nanomaterials 

[32, 33], viruses/microorganisms [34, 35], and industrial processes [36, 37].  It is frequently used 

to determine the composition of a mixture of chemicals [11, 12].  A Raman system can also be 

used to detect explosives at a distance [7].  In addition, Raman spectroscopy has started to be 

used for medical analysis [38, 39].  In particular, it holds great promise for cancer detection [40].  

It has already been shown to be able to identify cancers of the skin, breast, and other tissues [22-

26]. 

Raman spectroscopy is particularly suited for in vivo cancer diagnosis [41].  It is quick, 

precise, and non-destructive, and it requires no sample preparation.  Furthermore, fiber optic 
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probes enable measurements to be taken in a minimally invasive fashion.  Several research 

groups have been working towards in vivo Raman spectroscopy, including the Massachusetts 

Institute of Technology [13, 14], the Erasmus Medical Center [15, 16], the University of Texas at 

Austin [17, 18], and Wayne State University [19-21]. 

2.2.2 Analysis of Spectra 

As mentioned above, a Raman spectrum is a plot of the Raman-scattered light intensity 

against the wavenumber shift.  The intensity at each point along the range of wavenumbers can 

be representative of a molecular component of the specimen.  The wavenumber range often 

spans the “fingerprint” region, 500–1800 cm–1, because it contains most of the distinctive Raman 

scatter from organic molecules [42].  A typical Raman spectrometer has a resolution of a few 

wavenumbers, so it is common for a captured Raman spectrum to contain hundreds of data 

points.  Within those data points, a significant amount of components may be represented, some 

of which may overlap. 

The large number of data points and components in a Raman spectrum makes it difficult for a 

human or computer to analyze.  In addition, the analysis of a spectrum is complicated by the 

presence of noise, background fluorescence, non-ideal instrument responses, different 

environmental conditions, etc.  As a result, it can be difficult to determine exactly what each part 

of Raman spectrum represents.  For the same reasons, it is hard to establish the differences (and 

their causes) between two Raman spectra captured under distinct conditions. 

To aid in the analysis of such complicated data, the field of chemometrics was established 

[43].  Chemometrics involves the application of mathematics and statistics to the investigation of 

chemical information.  It actually includes a variety of techniques, such as signal processing, 
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calibration, factor analysis, and pattern recognition.  A few of the techniques relevant to the 

study of Raman signals will be presented in the following section. 

Chemometrics is already being applied to assist in the analysis and classification of Raman 

spectra.  Some of the most common techniques used in the literature are principal component 

analysis [25, 26, 44] and least squares analysis [14, 45].  These methods can be employed to 

determine important parts of a spectrum, represent a spectrum in a more compact form, or to 

model the components present in a spectrum. 

Modeling the components in a spectrum is one particularly useful subset of chemometrics.  A 

calibration model is used to establish the relationship between a substance’s components and its 

Raman spectra.  There are a large number of papers that discuss methods to apply when a 

calibration model needs to be transferred to different equipment [46, 47].  These methods often 

involve changing the calibration model or the Raman spectra to account for differences in the 

wavelengths or intensities.  More general changes in Raman spectra, such as those caused by 

different environments or transformations in the specimen itself, could benefit from similar 

methods.  With significant preparation, some calibration models have been made for specific 

tissues [39, 48]. 

Changes in Raman spectra can be expected to occur in three different circumstances [46].  

The situations are when the Raman equipment changes, when the environment changes, or when 

the specimen itself changes.  For example, spectral changes will occur as human tissue 

transforms from normal to cancerous.  All of these situations can result in additive intensity 

changes, multiplicative intensity changes, or wavelength shifts in the Raman spectra.  Careful 

analysis is needed to identify these changes because they are often obscured by noise or 

background fluorescence, and they may occur simultaneously. 
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2.2.2.1 Common Techniques 

Principal component analysis (PCA) is a statistical technique used to reduce the 

dimensionality (size) of complex data sets [49].  It is applied when the data variables have 

complex relationships to each other.  PCA transforms the data into new, uncorrelated variables 

(principal components) based on the variation in the data set.  Only a few principal components 

are needed to capture most of the variation.  Thus, PCA provides a compact representation of 

data that can be used as an input for other (e.g., classification) algorithms. 

Regression analysis is used to establish relationships between two or more variables [50].  

The goal is to determine how a dependent (response) variable varies as a function of one or more 

independent (predictor) variables.  For example, the response variable could be the concentration 

of a certain chemical, and the predictor variables could be a Raman spectrum.  If the response 

variable is a linear function of the predictor variables, it is called linear regression.  In simple 

linear regression, only one predictor variable is considered, whereas as in multiple linear 

regression (MLR), multiple predictor variables are taken into account. 

Principal component regression (PCR) is a form of MLR [49].  In ordinary MLR, correlated 

variables make it difficult to establish the dependent/independent variable relationships.  PCR 

uses PCA to remove the correlation (and maximize the covariance) in the predictor variables so 

that the regression can proceed more smoothly. 

Another common form of MLR is partial least squares regression, or PLSR [51].  It can be 

viewed as an improvement upon PCR.  Instead of simply maximizing the covariance of the 

predictor variables, PLSR tries to maximize the covariance between the response and predictor 

variables.  PLSR is more complicated than PCR, but it can produce a better model of the 

relationship between the response and predictor variables. 
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One popular algorithm used to transfer a calibration model to different equipment is called 

direct standardization (DS) [52].  It can transform a spectrum taken on one Raman spectrometer 

so it looks like it came from another.  It can correct for both multiplicative intensity changes and 

wavelength shifts.  An extended version of DS, called piecewise direct standardization (PDS), 

corrects the spectrum in smaller chunks of wavelengths to reduce the computational burden.  

Various improvements have been made to DS and PDS, such as a version that attempts to 

eliminate background differences (additive intensity changes) in the spectrum [53]. 

2.2.3 Classification of Spectra 

Classification algorithms are used to assign data (such as a Raman spectrum) to a particular 

class out of a set of two or more classes.  For instance, a classification algorithm can be used to 

distinguish the Raman spectra of healthy and cancerous tissues.  As another example, one could 

be used to associate a bacteria sample with one of multiple species or strains.  A classification 

algorithm is a key part of any system that is intended to identify a specimen. 

Classification algorithms fall under the umbrella of machine learning [54].  They use 

statistical classification techniques to place items into groups based on known information.  The 

process of teaching a classifier to recognize items is called learning or training.  Classifying new 

items based on the learned information is known as recall. 

There are two different types of learning.  In unsupervised learned, the items have no 

predefined membership in any classes.  Thus, the items are clustered into groups based on 

similarities.  In supervised learning, the classes of items are known ahead of time.  Therefore, the 

system is trained to recognize items as belonging to their pre-assigned classes. 

The data used to teach a supervised classification algorithm is known as a training set.  The 

training set consists of a large number of items (e.g., Raman spectra) from each class.  The items 
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assigned to each class should be representative of future items that one would like to assign to 

that class.  If they are not (perhaps due to incorrect initial classification), the classifier’s 

performance will be reduced. 

There are many different types of classification techniques.  Some come directly from the 

field of statistics, whereas others are from computer science.  They use a wide variety of 

techniques to learn from existing data and classify new data.  For example, some methods are 

deterministic, while others rely on randomization and iterative optimization.  Several commonly 

used classification methods will be described in the following section. 

Classification algorithms, particularly supervised ones, are often used to categorize Raman 

spectra.  Linear discriminant analysis is one of the most popular techniques, especially for cancer 

detection [55, 56].  Artificial neural networks and nearest neighbor techniques are also 

commonly used [20, 57].  More recently, support vector machines have been applied for Raman 

classification as well [57, 58]. 

2.2.3.1 Common Techniques 

Nearest neighbor classifiers represent one of the simplest classification techniques.  They 

work by comparing the distance between a new piece of data and already classified data.  The 

distance measure is often a Euclidean distance in a feature space derived from the data (e.g., 

through PCA).  In the k-nearest neighbor algorithm, the new data is assigned to the most 

represented class among the classes of its closest k neighbors [54].  This technique doesn’t really 

require training, and most computation is done when classifying a new item.  Due to the number 

of comparisons required, this technique is typically used with relatively small data sets. 

Linear discriminant analysis (LDA) is a statistical technique that is used to find the variables 

that best discriminate between two or more groups [59].  It attempts to find linear combinations 
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of the input variables that maximize the distances between groups while minimizing the 

differences within groups.  After calculating these combinations, the information can be used to 

produce a different classification function for each group.  Running an input through each 

function produces a classification score; the input is classified as belonging to the group 

corresponding to the highest score. 

Artificial neural networks (ANNs) are parallel computational models based on biological 

neural networks [60].  They consist of interconnected processing units called neurons that 

produce outputs based on a weighted function of their inputs.  There are multiple types of ANNs, 

including perceptrons, radial basis function networks, and recurrent networks.  Training is often 

accomplished through an iterative technique, such as a gradient descent of the network 

parameters.  ANNs can overcome a certain amount of noise and distortion, but care must be 

taken to ensure that the network is generalized enough to work on inputs not contained in the 

training set.  Once trained, a neural network is a relatively fast classifier. 

Support vector machines (SVMs) are a set of techniques for pattern identification that have 

recently become more popular [61].  They use hyperplanes to separate data in a high dimensional 

space.  SVMs were originally used as linear classifiers, but they are often adapted (using kernel 

functions) for nonlinear separation.  They are also inherently binary (two-class) classifiers, but 

multiple SVMs can be employed to support multiple classes.  A trained SVM has its separating 

hyperplane positioned to achieve the largest possible distance from both of the training classes.  

This makes it easier for an SVM to attain the generalization that is needed to perform well on 

new inputs. 
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2.3 Robot Modeling 

A serial robotic manipulator typically consists of a sequence of points of interest (the base of 

the robot, its joints, and the tip of the end-effector) that are connected by links.  To accurately 

position a robot, a mathematical model that represents this physical structure is needed.  The 

model must capture certain information, such as the position of each point of interest, the 

orientation of the object at each point of interest, the type of each joint (e.g., revolute or 

prismatic), and the value of each joint (e.g., its angle of rotation).   

A variety of conventions exists to model a robot’s physical structure.  For this work, two 

forms of the commonly used Denavit–Hartenberg (DH) convention were chosen [27, 28].  There 

is the original form introduced by Denavit and Hartenberg [27], and there is a modified form 

described by Craig [28].  Although the two forms are conceptually very similar, they are not 

directly compatible.  Therefore, this dissertation uses the terms “original” and “modified” to 

distinguish between the two forms. 

The following subsections describe some important concepts using the DH convention.  First, 

a more detailed explanation is given for the original form of the DH convention.  Then, a shorter 

summary is provided to highlight some important changes when using the modified form of the 

DH convention. 

2.3.1 The Original Denavit–Hartenberg Convention 

The DH convention provides a compact way to represent the structure of a robot.  Each point 

of interest is assigned a coordinate frame that defines the position and orientation (pose) of the 

object (e.g., joint/link or end-effector) at the point of interest.  This coordinate frame is fixed to 

the object at the point of interest, even during movements of the robot.  Therefore, as the object 

moves, so does the coordinate frame.  The DH convention uses a set of four parameters per 
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coordinate frame, called DH parameters, to describe the position and orientation of each 

coordinate frame relative to the previous coordinate frame.  Thus, the sets of DH parameters are 

the convention’s mechanism for expressing the structure of a robot. 

The four types of DH parameters are the link twist, link length, joint angle, and link offset.  

There is one set of these parameters for each coordinate frame (other than the base frame).  In the 

original DH convention, the parameters have the following definitions: 

• Link twist (αi) represents the angle from the zi−1 axis to the zi axis about the xi axis 

• Link length (ai) indicates the distance between the zi−1 and zi axes along the xi axis 

• Joint angle (θi) specifies the angle from the xi−1 axis to the xi axis about the zi−1 axis 

• Link offset (di) denotes the distance from the xi−1 axis to the xi axis along the zi−1 axis 

Note that in the original DH convention, the origin of coordinate frame i is actually located at 

joint i+1.  Figure 2.2 shows a model of the AESOP 1000 robot (Intuitive Surgical, Sunnyvale, 

CA) expressed using original DH parameters. 

 
Figure 2.2:  Model of the AESOP 1000 robot expressed in the original DH convention. 

 



26 

For revolute joints, the joint angle (θi) parameter is a variable that represents the joint’s angle 

of rotation.  For prismatic joints, the link offset (di) parameter is a variable that indicates the 

joint’s amount of extension.  For either type of joint, the variable parameter can be split into a 

variable portion (𝜃𝑖var or 𝑑𝑖var) and a fixed offset (𝜃𝑖off or 𝑑𝑖off) according to Equation 2.1 or 

Equation 2.2.  The fixed offset can be used to correct any discrepancy between the joint’s 

assumed zero position and the actual zero position.  Although the offset does not directly reflect 

the geometric structure of the robot, it does alter the meaning of any measured joint values. 

2.3.1.1 Transformations 

It is necessary to introduce a way to express a relative transformation from one coordinate 

frame to another.  In particular, the representation must be able to express both the change in 

orientation and the change in position.  For this purpose, a 4×4 homogeneous transformation 

matrix can be used [28, 62].  The following equations define the structure of a homogeneous 

transformation matrix and two of its subcomponents. 

 𝜃𝑖 = 𝜃𝑖var + 𝜃𝑖off Equation 2.1 
 𝑑𝑖 = 𝑑𝑖var + 𝑑𝑖off Equation 2.2 
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In Equation 2.3, 𝑻 A
B represents the relative transformation from some coordinate frame, A, 

to another coordinate frame, B.  The upper-left 3×3 submatrix of 𝑻 A
B is a rotation matrix, 𝑹 A

B, 

that defines the orientation of frame B with respect to frame A.  Specifically, the column vectors 

of 𝑹 A
B are unit vectors that represent the directions of the coordinate axes of frame B when 

expressed in the coordinate system of frame A.  The upper-right 3×1 submatrix of 𝑻 A
B is a 

vector, 𝒑 A
B, that provides the position of the origin of frame B in terms of the coordinate system 

of frame A.  In other words, the origin of frame B is located at coordinates (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) in the 

coordinate system of frame A. 

A 3×3 matrix representation of a rotation consists of nine values, which is more than 

necessary.  Sometimes, a more compact form is preferred.  Any change in orientation can be 

minimally represented by a set of three Euler angles (φ, θ, ψ).  There are multiple conventions 

for Euler angles, so this dissertation will use the z-y′-z″ convention [63]. 

In the z-y′-z″ convention, three steps are required to derive the change in orientation of a 

coordinate frame from the Euler angles.  First, the coordinate frame is rotated by φ about the z-

axis.  Next, the frame is rotated by θ about its new y-axis (y′).  Finally, the frame is rotated by ψ 

about its new z-axis (z″).  To convert the Euler angles to an equivalent 3×3 rotation matrix, 

Equation 2.6 can be used.  The conversion from a rotation matrix to Euler angles can be found in 

[63]. 

Equation 2.3 has a fourth row because the transformation matrix operates using 

homogeneous coordinates.  This representation, which adds an additional coordinate, allows 

transformation matrices to be easily combined.  Suppose that the matrices are known for a 
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transformation from frame A to frame B ( 𝑻 A
B) and a transformation from frame B to frame C 

( 𝑻 B
C).  To obtain the matrix for the transformation from frame A to frame C ( 𝑻 A

C), one can 

simply multiply the transformation matrices as shown in Equation 2.7.  In other words, this 

equation produces a transformation matrix that expresses frame C in the coordinate system of 

frame A.  As explained in the following section, this property provides an elegant solution for the 

calculation of forward kinematics. 

2.3.1.2 Forward Kinematics 

The set of four DH parameters for a specific coordinate frame only provides the position and 

orientation of the frame with respect to the previous frame.  Thus, the DH parameters correspond 

to a relative transformation.  However, it is often desired to know the position and orientation of 

any coordinate frame with respect to the base frame.  The procedure by which the position and 

orientation of any coordinate frame (especially the end-effector frame) is expressed in the base 

coordinate system is known as forward kinematics. 

A homogeneous transformation matrix can be formed for each set of four DH parameters.  

This matrix describes the change in position and orientation produced by the four parameters, 

including the effect of the variable joint value.  For parameters expressed in the original form of 

the DH convention, Equation 2.8 shows how to generate the transformation matrix [27]. 

 𝑻 A
C = 𝑻 A

B 𝑻 B
C Equation 2.7 
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Here, 𝑻 𝑖−1
𝑖 indicates the transformation from coordinate frame i−1 to frame i.  The change in 

orientation is determined by the values of the angular parameters, θi and αi.  The change in 

position is a function of the length parameters, ai and di, as well as θi. 

Homogeneous transformation matrices can be generated for every set of four DH parameters 

that describe a given robot.  These computations will produce { 𝑻 0 1, 𝑻 1 2, … , 𝑻 𝑛−1
𝑛}, assuming 

frame 0 is the base frame and frame n is the last (end-effector) frame.  Note that each of these 

transformations is relative to its previous transformation.  To express any frame in terms of the 

base coordinate system rather than the coordinate system of the previous frame, an additional 

calculation must be made. 

Equation 2.7 shows how to combine two adjacent, relative transformations, but it can be 

applied multiple times to combine multiple adjacent transformations.  By multiplying a series of 

relative transformation matrices, it is possible to determine a single transformation from the first 

frame to the last frame.  When applied to the transformation matrices of a robot, this enables the 

calculation of the pose of any coordinate frame in terms of the base coordinate system.  For 

example, Equation 2.9 shows how to calculate the position and orientation of the end-effector 

(frame n) in terms of the base coordinate system (frame 0). 

The position ( 𝒑 0 𝑛) and orientation ( 𝑹 0 𝑛) of the end-effector in the base coordinate system 

can be readily extracted from the computed transformation, 𝑻 0 𝑛.  In addition, the pose of any 

other frame can be found in terms of the base coordinate system by ending the multiplications 

when the desired frame is reached.  Thus, Equation 2.9 represents the computation of forward 

kinematics. 
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2.3.2 Craig’s Modified Denavit–Hartenberg Convention 

An alternative form of the DH convention was introduced by Craig in [28].  It is almost the 

same as the original convention, but it differs slightly in the frame assignments for the 

parameters.  Specifically, the origin of coordinate frame i is moved to the location of joint i 

(instead of joint i+1).  This results in the DH parameters having the following modified 

definitions: 

• Link twist (αi) represents the angle from the zi axis to the zi+1 axis about the xi axis 

• Link length (ai) indicates the distance between the zi and zi+1 axes along the xi axis 

• Joint angle (θi) specifies the angle from the xi−1 axis to the xi axis about the zi axis 

• Link offset (di) denotes the distance from the xi−1 axis to the xi axis along the zi axis 

For both the original and modified conventions, the joint angle (θi) and link offset (di) are 

measured from frame i−1 to frame i.  However, the link twist (αi) and link length (ai) in the 

modified convention are measured from frame i to frame i+1.  In order to group all the 

parameters with the same frames, DH parameters for the modified convention are usually 

reported in the following fashion:  {𝛼𝑖−1, a𝑖−1,𝜃𝑖 ,𝑑𝑖}.  This manner of grouping is used for the 

modified DH parameter tables in this dissertation. 

Due to the change in parameter definitions, some equations used to calculate the kinematics 

of a robot must also be changed.  For this research, the changes with respect to forward 

kinematics are of concern.  To calculate the forward kinematics of a robot model expressed in 

Craig’s modified DH convention, Equation 2.8 is no longer valid.  Equation 2.10 provides the 

new formula to calculate the homogeneous transformation matrices that represent the changes in 

position/orientation between adjacent coordinate frames [28].  Note that Equation 2.9 is still 

valid for the final computation of the forward kinematics. 

 



31 

 

𝑻 𝑖−1
𝑖 = �

cos 𝜃𝑖 − sin𝜃𝑖 0 a𝑖−1
sin 𝜃𝑖 cos𝛼𝑖−1 cos 𝜃𝑖 cos𝛼𝑖−1 − sin𝛼𝑖−1 −𝑑𝑖 sin𝛼𝑖−1
sin𝜃𝑖 sin𝛼𝑖−1 cos 𝜃𝑖 sin𝛼𝑖−1 cos𝛼𝑖−1 𝑑𝑖 cos𝛼𝑖−1

0 0 0 1

� 

Equation 2.10 

 



32 

Chapter 3: 
Raman Software System 

3.1 Introduction 

To effectively utilize the data collected by an analytical sensor, significant signal processing 

is generally required.  This type of processing is typically performed using software that runs on 

a computer system.  The software helps to extract meaningful information from the data and use 

it to make conclusions about the sample being examined. 

As explained in Chapter 1, a Raman spectrometer was chosen to demonstrate the sensor-

related concepts of this dissertation.  Therefore, this chapter describes a sensor data processing 

system that is intended to work on Raman spectral data.  The system is an updated version of the 

one presented in [64]. 

Although the system was customized for Raman applications, it uses many techniques that 

are commonly applied to data from other types of analytical sensors.  For example, noise 

reduction algorithms are used to improve the quality of many kinds of signals, and classification 

algorithms can be applied to help categorize almost any data.  Thus, with sufficient work, the 

system presented in this chapter could be adapted for other types of analytical sensors. 

3.2 Overview 

Sensors can be powerful tools for analyzing various substances.  However, a significant 

amount of processing is often required to extract useful information from the raw data that is 

collected.  This is certainly the case for spectra that are collected via Raman spectroscopy.  Many 

research groups develop custom software systems to process spectra, which leads to standard 

algorithms being repeatedly implemented and novel techniques being difficult to share.  This 
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chapter presents an integrated software system that processes, analyzes, and classifies Raman 

spectra.  The system is freely available (http://cares.wayne.edu/rp/), open, cross-platform, and 

extensible, enabling interested parties to utilize and contribute to a common implementation of 

relevant algorithms. 

A wide variety of useful features are included, such as noise filtering, automated background 

fluorescence subtraction, principal component analysis, linear discriminant analysis, artificial 

neural network classification, and support vector machine classification.  The system supports 

customizable groupings of related spectra and is able to retrieve spectra using a searchable 

database.  Everything is executed through a simple graphical user interface. 

The developed system was used to process two data sets containing different types of spectra.  

The results demonstrate that the system is capable of fast, accurate processing of Raman spectra.  

The open system will become even more powerful if other developers are willing to add new and 

improved features.  In addition, it is intended that the freely available system will make Raman 

spectroscopy more accessible to all researchers and promote progress in the field. 

3.3 Acknowledgements 

The following individuals contributed to the implementation of the Raman software system:  

Samir Al-Stouhi, Alex Cao, Alan Fung, Rachel Kast, Bradley Martens, and Abhilash Pandya.  

Note that their contributions to the portions of the system described in this chapter were limited 

to implementations of already published techniques.  All the novel techniques that are discussed 

(2D morphological background subtraction, artifact removal, significant peak characterization, 

etc.) were implemented by the author. 
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3.4 Background and Motivation 

Raman spectroscopy is a powerful tool for the analysis of substances in a variety of fields.  

For example, it has been applied to the detection of pathogens [65], explosives [7], transplant 

rejection [66], and cancer [4-6].  Although Raman spectroscopy can produce useful results for 

many applications, there are certain challenges that must be met. 

One challenge is the translation of raw spectra into a final analysis or classification.  For each 

individual spectrum, a number of preprocessing algorithms must be applied to reduce the effects 

of shot noise, cosmic rays, background fluorescence, and other distortions.  Additional data 

reduction and feature extraction algorithms are often required to prepare the spectra for analysis 

and classification.  The analysis itself can involve a multitude of statistical techniques, and the 

development of a classification model typically entails the application of complex learning 

algorithms. 

Another challenge is the management of Raman spectra after they have been collected.  

Researchers at Wayne State University, like many others, have been collecting thousands of 

Raman spectra from hundreds of samples over a number of years.  To analyze and compare 

spectra from different samples, it is necessary to form groups from the collected spectra that 

represent the types of samples that need to be analyzed.  To accomplish this task, a procedure or 

tool for finding data that meets specified criteria in a spectral library must be utilized.  In 

addition, the different groups have to be maintained throughout the processing and analysis of 

the data. 

Currently, there appears to be little standardization among research groups with respect to 

how Raman spectra are treated.  In general, each group develops custom implementations of the 

algorithms used in Raman processing and analysis.  Many of the algorithms are very similar, so 
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having multiple implementations represents an unnecessary duplication of work.  Furthermore, 

for those algorithms that are unique, it is more difficult to share them when other groups have 

custom processing pipelines. 

3.4.1 Related Work 

There are a variety of commercial software applications that can handle different stages of 

Raman spectral processing, analysis, and classification.  Some commonly used applications that 

are customized for spectroscopic data include the GRAMS Suite (Thermo Scientific, Waltham, 

MA) and OPUS (Bruker Optics, Billerica, MA).  These programs contain features for the 

acquisition, management, processing, analysis, visualization, and identification of spectra.  In 

addition, more general statistical analysis packages are often used, such as SPSS (SPSS, 

Chicago, IL) or Origin (OriginLab, Northampton, MA).  While most commercial applications are 

mature and contain many features, they typically lack the latest algorithms for tasks such as 

processing and classification.  Their extensibility is also limited (or nonexistent), generally 

requiring the use of a proprietary programming language.  Furthermore, the purchase of any 

commercial application will entail additional monetary cost. 

If one wishes to develop his own Raman application, the use of a software development 

environment can greatly simplify the task.  For example, MATLAB (The MathWorks, Natick, 

MA) is one of the most popular environments for Raman algorithm implementation.  MATLAB 

provides a programming language with excellent support for numerical calculations and access 

to collections of functions for statistical analysis, signal processing, and other application areas.  

Another commonly used development environment is LabVIEW (National Instruments, Austin, 

TX).  It uses a more graphical approach to programming with libraries for signal analysis and 

instrument control. 
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Other research groups have written papers describing their Raman processing software, most 

recently for the real-time analysis of data from in vivo probes.  For instance, Bakker Schut et al. 

[15] described a real-time system that uses both GRAMS and MATLAB.  Their software 

supports spectral preprocessing, analysis via least squares fitting, and classification via principal 

component analysis and linear discriminant analysis.  In another paper, Motz et al. [14] presented 

a real-time system that utilizes LabVIEW and MATLAB.  Their software implements spectral 

preprocessing, analysis via least squares fitting, and classification via logistic regression of the fit 

coefficients. 

There are some related, free chemometrics software packages that aid in the analysis of 

spectroscopic data.  The Biodata toolbox [67] for MATLAB provides a programming structure 

for managing spectroscopic signals and supports a number of algorithms for processing, 

analyzing, and classifying samples.  It contains a few techniques (e.g., correlation analysis) that 

are not implemented in the system being presented, but it’s also missing some advanced 

techniques of the system in areas such as processing and classification.  Moreover, unlike the 

presented system, the Biodata toolbox is only useful for software developers because it requires a 

MATLAB installation and almost all functionality is accessed through programming commands. 

ParLeS [68] is an application developed in LabVIEW for the analysis of spectra.  It provides 

a variety of algorithms to process data and two classes of techniques for analyzing spectra and 

predicting variables.  All features are accessed through a graphical interface that provides 

statistics to help assess the performance.  Compared to the presented system, ParLeS is less 

capable in areas such as managing and classifying spectra.  Unfortunately, the program no longer 

appears to be available. 
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There is a combination of attributes that together differentiate the software system presented 

in this chapter.  First, the system is being released for free.  The development version requires a 

copy of MATLAB, but the standalone version only needs the MATLAB Compiler Runtime to be 

installed.  Second, the source code of the software is also being made available.  This makes it 

possible to modify the system or extend it with new features.  Moreover, any improvements can 

be shared with all users of the system. 

A third benefit of the presented system is that it was designed to be easy to extend.  It is 

based in the MATLAB environment, whose capabilities allow the implementation of almost any 

practicable feature.  No compilation is required when adding or modifying code, and graphical 

debugging mechanisms are provided.  This should also reduce the effort required to adopt new 

algorithms, which are often coded in MATLAB by their developers.  Furthermore, it is easier to 

design and test new algorithms when the developer has a working system (i.e., the presented 

system) in which to build them. 

A fourth benefit of the system is found in the diverse features that are included.  For 

example, the software has powerful preprocessing capabilities, such as an enhanced version of an 

automated background subtraction algorithm [69].  In addition, the system allows spectra to be 

organized into groups, and it has the ability to search for spectra in a database.  Moreover, the 

software enables the classification of spectra via techniques such as linear discriminant analysis, 

artificial neural networks, and support vector machines. 

Lastly, despite its powerful techniques, the system is still relatively easy to use.  All 

functionality is accessible through simple graphical interfaces; no programming ability is 

required.  Furthermore, an effort has been made to automate the selection of algorithm 

parameters so that little adjustment is required from the user. 
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3.5 System Architecture 

The presented system was built in the MATLAB environment for Windows (Microsoft, 

Redmond, WA), but it also works in MATLAB for Linux.  MATLAB was chosen due to its 

inherent computational capabilities, suitability for mathematical algorithm development, and 

ease of extensibility.  Moreover, MATLAB is a well-known program, and many algorithms for 

Raman spectra have already been written in its environment.  For ease of distribution, the system 

can be compiled to run on computers without MATLAB. 

The system is implemented in the form of a menu-based graphical user interface (GUI), 

which is shown in Figure 3.1.  Each menu item executes a function that operates upon data 

loaded in the system (e.g., Raman spectra).  This type of GUI was chosen because it is familiar to 

most users.  In addition, it is easy to add new functions to the system by adding new menu items. 

 



39 

 
Figure 3.1:  The primary graphical user interface of the developed Raman processing system.  The file list 
(top left) shows the files contained in the currently selected group (top right). 

The system’s menu items and thus its primary features are organized into a series of 

categories.  The categories include file loading/saving, preprocessing, analysis, graphing, and 

classification.  Significant features that are implemented under each of these categories will be 

described in later sections of this chapter.  The typical flow of data through the features of the 

system is shown in Figure 3.2. 
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Figure 3.2:  Diagram of the flow of data through the system. 

The remainder of the GUI is divided into several sections (Figure 3.1).  In the top left area, 

the list of files in the currently selected group of spectra is shown.  In the bottom left corner, 

status messages are displayed when executing various functions.  In the top right area, the user is 

allowed to select and manipulate the groups of spectra.  Finally, in the bottom right corner, there 

is a box in which the user can enter any notes. 

3.5.1 Data Structure and Extensibility 

The system’s current data is stored in the fields of a single structure (a type of computer 

programming variable).  The fields are numerous and contain the complete state and parameters 

of the system.  For example, some of the fields are used to hold groups of spectra, including the 

list of files associated with each group.  Other fields store the information necessary for various 

analysis and classification models, such as the weights for a trained artificial neural network.  

The main data structure and its fields are accessible to any function in the system. 
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The primary features of the system are accessed through the menu of the GUI.  When the 

user clicks on a menu item, an associated function is passed a copy of the main data structure and 

executed.  The function is then free to access the data, run calculations, display an output, or 

perform any other necessary task. 

The system was designed to make it as simple as possible to add a new feature, such as a new 

classification algorithm or analysis technique.  One only has to create a new menu item and write 

an associated callback function.  The challenging steps are writing the custom algorithm for the 

desired task and linking it with the internal structure of the system.  To ease the burden on the 

developer, a large number of utility functions are included with the system.  For example, there 

are utility functions for loading spectral data from files, displaying figures, training classifiers, 

and more.  If a new feature requires additional fields in the main data structure, they can be 

added easily. 

3.5.2 Data Input and Management 

The system presumes that all spectral data has been previously collected and calibrated for 

typical wavenumber and intensity variations caused by the equipment.  In addition, the spectral 

data needs to be stored in simple text files (with one column of wavenumbers and another 

column of corresponding intensities).  For better compatibility with existing data sets, the system 

can convert files from the commonly used Thermo Scientific SPC file format (Thermo Scientific, 

Waltham, MA).  Once the data is available, the system allows the user to input text files by 

selecting them individually, by filtering the files in a folder, or by using the files stored in 

multiple folders. 

One of the key uses of Raman spectroscopy is to collect data from various sets or groups of 

samples to determine the similarities or differences among them.  For this reason, the system has 
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been structured around the notion of groups of spectra.  The user creates groups that represent 

different types of samples, such as “healthy” or “cancerous”.  Each spectrum that is inputted into 

the system must be assigned to one of the groups.  In addition, if the spectrum files are organized 

into separate folders, groups can be created automatically from the folder structure. 

This organization of data enables streamlined processing and analysis of spectra.  For 

example, it allows similar spectra (those within a group) to be processed with the same 

parameters.  The organization also makes it easy to compare different groups of spectra by 

plotting their mean spectra or performing statistical analyses on them.  To help classify new 

spectra, learning algorithms can be trained to distinguish among groups of known spectra. 

Once groups have been formed, it may be useful to create new groups based on the existing 

groups.  For instance, one might wish to combine two similar groups or split a diverse group into 

multiple groups.  To enable this kind of task, the system supports set operations (union, 

intersection, and difference) that generate new groups from existing ones.  A simple interface 

allows the user to repeatedly perform these operations and preview the results before committing 

them to a new group. 

After the desired groups have been made, the system allows the group information to be 

stored in a file for later retrieval.  This “group file” includes the path of each spectrum file and 

the wavenumber range for each group.  In addition, the system saves any notes the user has 

entered for each group. 

3.5.2.1 Database Access 

A database can be very useful in the management of a large collection of Raman spectra.  It 

enables one to store any kind of information about the spectra, such as the date of collection, 

type of specimen, and collection parameters.  Later, the database can be queried to return spectra 
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that match some desired parameters.  For example, one could search for spectra of healthy and 

cancerous tissues from the same organ in order to help develop a model for diagnosis. 

The system has the ability to connect to SQL Server or an Access database (Microsoft, 

Redmond, WA) when running in Windows.  With simple modifications, it should also be 

possible to communicate with other database systems that have an OLE DB (Microsoft, 

Redmond, WA) provider for Windows.  Once a connection is made, the database can be queried 

or updated using Structured Query Language (SQL) commands. 

Since there are countless ways to set up a database and types of information to store, each 

research group will have to develop a custom interface for their particular configuration.  A 

simple example using an Access database is provided.  The MATLAB GUI design environment 

(GUIDE) can be used to develop a user interface, and SQL commands must be written to access 

a particular database structure.  Once spectra have been located through a database query, they 

can be automatically copied to a local drive and added to a group.  From that point, the spectra 

can be processed and analyzed like any other spectra in the system. 

3.5.3 Spectral Processing 

The raw data is initially processed by a median filter to remove spikes due to cosmic rays and 

reduce noise in each spectrum.  Next, a technique based on wavelet (Symlet) transformation and 

coefficient thresholding [70] is used to further reduce shot noise in each spectrum.  The system 

then employs the “adaptive minmax” method [69] to estimate and subtract the background 

fluorescence from each spectrum.  This method uses several modified polynomial fits to 

automatically approximate the background fluorescence without any user interaction. 

Some new features have been added by Alex Cao to enhance the background fluorescence 

subtraction.  First, the algorithm weights certain points of the spectrum to reduce the likelihood 
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of the estimated background having a higher intensity than the spectrum.  Second, the user is 

given the option to perform additional background subtraction if he is not satisfied with the 

original approximation.  Using a plot of the mean spectrum of a group of processed spectra, he 

can select a range where the background subtraction will be performed again.  For example, this 

could correspond to a region where the estimated background had a significantly lower intensity 

than the spectrum.  The algorithm will then process each spectrum within the selected range and 

return a new spectrum with the revised background subtracted. 

Next, each spectrum’s intensities are normalized to the range of 0–1 arbitrary units by 

subtracting the minimum value and dividing by the maximum value.  This reduces differences in 

overall intensity among spectra that can occur due to changes during the collection process (in 

probe orientation, power level, magnification, etc.).  However, the transformation preserves the 

relative intensities of peaks within each spectrum.  Having the intensity values normalized to a 

common range can provide better performance with some algorithms, such as a neural network 

classifier. 

Optionally, an artifact removal algorithm can be executed while processing the spectra.  

Some hardware configurations may result in an unwanted signal being added to each spectrum as 

the light travels through the optical paths from and to the spectrometer.  For example, a sapphire 

lens may introduce sapphire-related peaks into a spectrum.  To remove them, the user must first 

obtain a spectrum containing only the unwanted artifacts.  One way to acquire this is by scanning 

aluminum [14], whose low response is often insignificant compared to the artifacts of the optical 

paths.  The artifact spectrum is scaled to best fit each spectrum being processed and subtracted.  

Figure 3.3 shows the results of applying the artifact removal algorithm to remove peaks 

associated with a sapphire ball lens. 
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Figure 3.3:  Example of the artifact removal algorithm.  The top spectrum represents the artifacts from a 
sapphire balls lens.  The left plot shows an initial spectrum with artifacts, and the right plot displays the 
spectrum after artifact removal. 

3.5.3.1 2D Morphological Background Subtraction 

Preliminary work was done on a new technique to remove background fluorescence from 

Raman spectra.  It uses mathematical morphology to detect the background fluorescence that 

should be removed.  This is an extension of the work described in [71] and [72], which used 1-

dimensional (1D) morphological operations.  Here, 2-dimensional (2D) operations were used to 

attempt better removal of curved backgrounds. 

First, the plot of a Raman spectrum is divided into a 2D grid.  Then the morphological 

operation known as “closing” [73] is used to fill in the spaces under the peaks of the Raman 

spectrum.  It does this by moving an entity known as a structuring element through the grid and 

performing simple morphological operations.  For this work, the structuring element was a circle 

whose size can vary according to the spectra being analyzed.  For example, the size of the circle 

can be set according to the fluorescence-to-signal ratio of [69]. 
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A similar technique called the “rolling-circle filter” developed in [74].  However, it is not 

based on mathematical morphology.  Morphology allows the shape of the structuring element to 

be easily modified, which may allow it work better on different types of spectra.  For more 

details on the subject of mathematical morphology, the reader may consult [73]. 

The following figure shows the difference between the adaptive minmax technique and the 

developed 2D morphological technique for a spectrum from a pear.  The new technique follows 

the spectrum closely and avoids cutting into the spectrum.  It also does a reasonable job of 

following the spectrum at its ends.  The decision of which technique is better is the subject of 

future research. 

 
Figure 3.4:  Comparison of the fitted backgrounds (green) for the adaptive minmax and 2D morphological 
background subtraction techniques on a pear spectrum (blue). 
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3.5.4 Spectral Analysis and Classification 

The presented system currently implements several analysis and classification techniques, 

such as principal component analysis and support vector machines.  For each of these techniques, 

a model is created by training the algorithm with selected groups of spectra.  The model can then 

be applied to other groups of spectra for the purpose of extracting features or assigning 

classifications.  The system allows models to be saved to and restored from a file so any results 

can be reproduced easily in the future.  To support diverse spectrum files, all spectra are 

automatically binned to a common wavenumber range and resolution when generating or 

applying a model. 

A Raman spectrum typically consists of hundreds of data points, many of which may be 

significantly correlated with each other when considering one or more groups of spectra.  To 

reduce this redundant information and highlight important features, the system implements a 

technique called principal component analysis (PCA).  PCA is a statistical technique that 

transforms the spectral data into new, uncorrelated variables (principal components) based on the 

variations in the data [49].  Because only a few principal components are necessary to represent 

the majority of the total variance in the data set, PCA is an excellent way to reduce the 

dimensionality of the data.  The system utilizes only the most significant components that 

account for at least 95% of the variance in the spectra being analyzed.  Consequently, each 

spectrum can be represented in terms of the principal component variables as a small set of 

values, called scores. 

The system currently supports three different algorithms for spectral classification.  The 

inputs to these algorithms can be either principal component scores (produced by applying a 

PCA model) or actual spectral intensity values.  As mentioned above, the algorithms are trained 
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with selected groups of spectra to produce models.  These models can be applied to assign a 

classification (e.g., healthy or cancerous) to groups of unknown spectra.  The results are 

displayed in the program’s “Messages” box and can be summarized in a pie chart or saved to a 

tab-delimited text file. 

Alternatively, a leave-one-out classification can be executed using any of the three 

implemented techniques.  A leave-one-out classification evaluates the system’s classification 

performance by estimating its ability to identify unknown spectra using all of the known spectra.  

For this process, the user selects two or more groups of spectra that the system should ideally be 

able to differentiate.  The system then computes PCA scores and trains a classification model 

using all of the spectra except one from the selected groups.  Next, the classification model is 

applied to the excluded spectrum to determine if the system is able to correctly associate it with 

its source group.  This process is repeated until every spectrum has had the opportunity to be the 

excluded one.  The results for each spectrum (and each group) are shown in the “Messages” box.  

The results can also be summarized in pie charts (Figure 3.5) or saved to a tab-delimited text file 

for further analysis. 
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Figure 3.5:  A pie chart generated by the system that shows the results of a leave-one-out (L-O-O) 
evaluation of a support vector machine classifier. 

3.5.4.1 Classification Algorithms 

The first implemented classification algorithm is based on linear discriminant analysis 

(LDA).  LDA is a statistical technique that is used to find the variables (e.g., points in a 

spectrum) that best discriminate between two or more groups [59].  It attempts to find linear 

combinations (called discriminant functions) of the input variables that maximize between-group 

variation while minimizing within-group variation.  Discriminant function scores are calculated 

by multiplying each discriminant function’s coefficients with the corresponding points in the 

spectrum.  After finding the discriminant functions, the information can be used produce a 

different classification function for each group.  For each spectrum, a classification score is 

calculated for each group, and the spectrum is assigned to the group with the highest score. 
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The second classification algorithm is implemented using an artificial neural network (ANN).  

ANNs are a class of learning techniques that are based on biological neural networks [60].  A 

typical ANN consists of interconnected layers of processing units (called neurons) that produce 

outputs based on a weighted function of their inputs.  Training an ANN model is an iterative 

process that can be relatively slow for large amounts of sample data.  On the other hand, a model 

can be applied to classify a new spectrum rather quickly.  An ANN classifier can be very 

accurate if the network is structured and trained properly and if the new data is sufficiently 

similar to the training data. 

The third classification algorithm employs support vector machines (SVMs).  SVMs are 

another class of learning techniques that use hyperplanes to separate data in a high-dimensional 

space [61].  By using a nonlinear transformation and multiple SVMs, it is possible to classify 

complex spectra into one of multiple groups.  Training a SVM model can be relatively slow, but 

applying the model to new spectra is much faster.  A SVM classifier can attain high accuracy and 

can be easier to train than an ANN. 

3.5.4.2 Peak Characterization 

Preliminary work was done on a peak characterization technique to fit a Gaussian–Lorentzian 

sum model to the peaks in a spectrum.  The choice of the model was motivated in part by [75], 

which discussed how the peaks in Raman spectra often have a shape that can be approximated by 

a Gaussian–Lorentzian sum model.  The following equation represents the model. 

In Equation 3.1, the following terms are used: 

 
𝑓(𝑥,𝑎, 𝑐,𝑤, 𝑟) = 𝑟𝑎e−(ln2)�𝑥−𝑐𝑤 �

2

+ (1 − 𝑟)
𝑎

1 + �𝑥 − 𝑐
𝑤 �

2   
Equation 3.1 
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• 𝑓(𝑥,𝑎, 𝑐,𝑤, 𝑟) is a function that generates the intensity values of the modeled peak 

• 𝑥 represents the current wavenumber, usually expressed in cm−1 

• 𝑎 represents the amplitude of the Gaussian–Lorentzian sum model 

• 𝑐 is the center wavenumber of the Gaussian–Lorentzian sum model 

• 𝑤 represents the width of the Gaussian–Lorentzian sum model 

• 𝑟 represents the ratio of the Gaussian model contribution to the Lorentzian model 

contribution for the combined (summed) model 

To begin, the general regions of the peaks in a spectrum must be identified.  This is 

accomplished via a simple algorithm.  First, a sliding window of a chosen width is moved across 

the spectrum.  For example, a width of 9 cm−1 was used in the following example.  The 

wavenumber of the highest intensity value within the window is recorded when the window is at 

a specific location. 

As the window moves, the location of the highest intensity will change to different 

wavenumbers.  Each time there is a change, the wavenumber is recorded.  This process continues 

until the window has gone through the entire spectrum.  The resulting list of wavenumbers 

represents the points that are highest among their neighbors, which are likely to be the peaks. 

Next, an approximate width for each peak must be obtained.  To determine this, the 

algorithm starts at each identified wavenumber (peak) and inspects the intensities of the points to 

the left side.  As the algorithm moves outwards from the starting point, it checks to ensure that 

each point is less intense than the last (representing a downward slope).  Once a point is reached 

where the intensity goes up, the algorithm stops and records this as the left end (edge) of the 

peak. 
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The process is repeated with the algorithm moving from the center towards the right side of 

the peak.  Thus, the algorithm stops when the slope changes from downwards to upwards and 

records the point as the right end of the peak.  Finally, the width of the left and right sides are 

clipped to the smaller of the two.  This helps ensure that the approximate peaks aren’t too wide. 

After that, the algorithm eliminates from consideration any peaks whose heights are too 

small.  The height is defined as the difference from the tip of the peak to the lowest point in the 

identified region of the peak.  For the following example, the any peaks with a height less than 

1% of the highest intensity in the spectrum were eliminated. 

At this point, a set of peaks (with roughly identified center points and widths) is available.  

Now each peak is fit to the Gaussian–Lorentzian sum model of Equation 3.1.  To accomplish 

this, a method is needed to find the model coefficients. 

An objective function was created that computes the coefficient of determination (R2) of the 

fitted model with respect to the original intensity values of a peak.  The model parameters that 

minimize this function are found via a standard optimization technique, the Nelder–Mead 

simplex method [76].  Thus, the parameters (𝑎, 𝑐,𝑤, 𝑟) that provide the best fit of the model to 

the actual intensity values of the peak are determined.  This process is repeated for all the 

identified peaks. 

An example of the output of running the peak characterization technique on a Raman 

spectrum is shown in Figure 3.6.  The models have reasonably good fits to the underlying Raman 

data.  There is some deviation where the peaks were skewed from a true Gaussian–Lorentzian 

shape.  A skew parameter and a more accurate method to detect the initial widths of the peaks 

would improve the output in some cases. 
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Figure 3.6:  Image showing the models (black lines) that were fit to the peaks of a Raman spectrum.  The 
red asterisks indicate the initial approximations of the peak centers, and the green circles denote the ends 
of regions initially considered to be peaks. 

3.5.4.3 Discriminating Peak Analysis 

Preliminary work was done on a technique to find peaks that best discriminate between two 

groups of spectra.  Using partial least squares regression (as described in section 2.2.2.1), the 

discriminating regions between two groups of spectra can be obtained.  To achieve this 

discrimination, a binary response variable is created with a value of ‘0’ for all the spectra from 

the first group and a value of ‘1’ for all the spectra from the second group.  The intensity values 

of the spectra are treated as predictor variables. 

Partial least squares regression is then used to find the coefficients of the relationship 

between the response and predictor variables.  The largest coefficients should be those 

corresponding to the most discriminating regions of the spectra.  Thus, the coefficients that 

exceed a chosen threshold are used to represent the most discriminating regions between the two 

groups of spectra. 
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By combining this with peak characterization (section 3.5.4.2), the most significant peaks in 

a spectrum can be found.  In addition, using a peak table like the one in [77], the peaks can be 

associated with specific chemical compounds.  This provides a basic tool for the assisted 

chemical analysis of Raman spectra.  The following figure shows the results of running the 

technique on a Raman spectrum. 

 
Figure 3.7:  Image showing the execution of the discriminating peak analysis technique.  The yellow areas 
indicate wavenumber regions that best discriminate between two groups of spectra, and the asterisks 
represent the identified peaks of chemical components in the discriminating regions. 

3.5.5 Spectral Graphing 

The system has a variety of features to enable the visualization of data.  Individual spectra 

can be plotted as well as the mean spectra of groups.  In addition, it is possible to plot the 

standard deviation or standard error of the mean spectra or the difference between mean spectra.  

Any of these plots can be shown alone or combined with other plots in a single figure (Figure 

3.8). 
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Figure 3.8:  A figure generated by the system that shows plots of the mean spectra and an interval of 
±1.96 standard deviations for two groups of spectra. 

The system is also able to plot various parameters derived during spectral analyses.  The 

coefficients for each principal component of a PCA or for each classification function of a LDA 

can be graphed to provide a visual representation of the models.  In addition, the principal 

component scores or discriminant function scores of spectra can be plotted with customizable 

settings for which scores are displayed along which axes (Figure 3.9).  This enables the user to 

see how well the spectra are separated in principal component space or discriminant function 

space. 
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Figure 3.9:  A figure generated by the system that shows a plot of the discriminant function scores of 
three groups of spectra. 

Peak lookup is another useful feature that can be applied to the plot of any spectrum.  It 

places a cursor on the plot that can be manually positioned at peaks or other points of interest.  

Using a table, the system displays the name of any biological components (such as proteins or 

lipids) whose spectra have a significant peak at the cursor’s location.  This feature can aid in 

understanding the composition of a material based on its Raman spectrum.  The table of 

component peaks can be customized as needed to fit the desired application. 

3.6 System Evaluation 

To demonstrate its speed and effectiveness, the system was used to process an example data 

set on a computer with a 3.4 GHz Pentium D (Intel, Santa Clara, CA) processor.  The data set 

consisted of spectra collected from biological specimens with an inVia Raman microscope 
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(Renishaw, Wotton-under-Edge, UK) using a 785 nm laser and two different lenses.  The spectra 

represented three different groups of similar specimens.  Since the purpose of this chapter is to 

introduce the system rather than analyze a particular data set, the specifics of the specimens are 

not considered to be relevant.  Thus, the three groups of specimens will be referred to as Group 

A, Group B, and Group C.  The groups contained 30, 31, and 32 spectra, respectively. 

Figure 3.10 shows the mean spectra of the unprocessed data from Groups A, B, and C.  Since 

the background has not yet been subtracted, the relative heights of the lines in the figure are not 

significant.  Some common peaks can be seen among the groups, but it is hard to see the exact 

differences without further processing.  Figure 3.8 in the previous section shows a view of the 

processed spectra from groups B and C, which makes it much easier to identify the differences. 

 
Figure 3.10:  Mean spectra of the unprocessed data for the three groups of the first data set. 
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The system was first used to carry out the initial processing of the raw spectra.  It took 66.98 

seconds for the system to filter, subtract the background from, and normalize all 93 spectra (each 

consisting of 1310 data points).  Afterwards, the spectra were binned to a common wavenumber 

axis and used to generate a PCA model.  This process took 0.64 seconds and produced a model 

that used the seven most significant principal components. 

Next, a series of tasks involving classification were performed to evaluate the system’s 

performance.  The execution times for these tasks are summarized in Table 3.1.  The first task 

was to train classifier models (LDA, ANN, and SVM) using the PCA scores of the 93 

preprocessed spectra.  The second task was to process a single new spectrum (not one of the 

original 93 spectra) and apply each of the models to classify it.  All three models classified the 

spectrum correctly.  The final task was the leave-one-out evaluation of each classification 

algorithm using the 93 preprocessed spectra.  The final task’s time covers 93 iterations of PCA 

computation, model training, and spectrum classification. 

Classifier Model Training New Spectrum 
Classification 

Leave-one-out 
Classification 

Linear Discriminant Analysis 0.016 s 0.795 s 7.5 s 
Artificial Neural Network 0.805 s 0.797 s 85.8 s 
Support Vector Machine 1.350 s 0.787 s 134.7 s 

Table 3.1:  Execution times required by the system to train a classifier model (using precomputed 
principal component scores), classify a new spectrum (including processing time), and perform a 
complete leave-one-out evaluation (using preprocessed data).  A total of 93 spectra divided into three 
groups were used for the training and leave-one-out classification. 

The leave-one-out evaluation demonstrated that the system had relatively good classification 

performance on the example data set.  The classification accuracies are presented in Table 3.2, 

and one of the generated pie charts is shown in Figure 3.5.  All of the classifiers were over 90% 

accurate for each group, corresponding to misclassifications of at most three spectra per group. 
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Classifier Group A 
Accuracy 

Group B 
Accuracy 

Group C 
Accuracy 

Linear Discriminant Analysis 93.3% 90.3% 100% 
Artificial Neural Network 93.3% 100% 100% 
Support Vector Machine 93.3% 96.8% 93.8% 

Table 3.2:  Classification accuracies of the system for the three example groups determined through a 
leave-one-out evaluation of each classifier technique. 

A second data set consisting of fruit specimens (apple, mango, and pear) was collected with a 

VERAX spectrometer (InPhotonics, Norwood, MA) solely for the purpose of testing the system.  

This is a lower-resolution device that uses a fiber optic probe.  One hundred spectra were 

captured from each of the ripe fruit specimens.  To help classify the decay of the fruit, 100 

additional spectra were collected from the mango after a short period of time (2 days) and again 

after a longer duration (17 days).  The data set was captured quickly in a less controlled 

environment (in terms of lighting, temperature, etc.), increasing the variance and thus the 

challenge for the data analysis. 

Two more leave-one-out evaluations of the system’s classification algorithms were 

performed using the fruit data.  The first evaluation (Table 3.3) used the 100 spectra from each 

ripe fruit, and the second evaluation (Table 3.4) used the sets of 100 mango spectra from days 0, 

2, and 17.  The results show that the system’s classifiers were able to achieve high accuracies 

(94–100%) with the fruit data. 

Classifier Apple 
Accuracy 

Mango 
Accuracy 

Pear 
Accuracy 

Linear Discriminant Analysis 95% 100% 99% 
Artificial Neural Network 94% 100% 97% 
Support Vector Machine 96% 100% 96% 

Table 3.3:  Classification accuracies of the system for three fruits determined through a leave-one-out 
evaluation of each classifier technique. 
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Classifier Day 0 
Accuracy 

Day 2 
Accuracy 

Day 17 
Accuracy 

Linear Discriminant Analysis 100% 95% 95% 
Artificial Neural Network 100% 94% 96% 
Support Vector Machine 100% 95% 96% 

Table 3.4:  Classification accuracies of the system for a mango on three different days determined through 
a leave-one-out evaluation of each classifier technique. 

The system’s processing algorithms (noise filtering, background subtraction, and 

normalization) were previously used by Wayne State University researchers (before the GUI and 

other algorithms were developed) to help classify tissues.  Other software was used for feature 

extraction (PCA) and classification (LDA), but those techniques (and others) have since been 

implemented in the system.  High classification accuracies were attained for a number of tissue 

types.  For example, sensitivities of 91–100% and specificities of 88–100% were achieved when 

detecting pancreatic cancer [4], neural crest tumors [5], and kidney tumors [6].  These results 

provide further evidence of the efficacy of the system. 

3.7 Discussion 

The computational treatment of Raman spectra is a complex process with no standard 

implementation of commonly executed methods.  Therefore, a freely available system has been 

developed that handles the processing, analysis, and classification of Raman spectra.  The system 

includes many powerful algorithms that are easily accessible through a simple user interface.  In 

addition, the system is open source and extensible, allowing the community of Raman 

researchers to make continual improvements to the software.  The developed system was shown 

to be fast and accurate in the analysis of two test data sets. 

The claim that the system represents an optimal collection of algorithms is not being made.  

There are numerous areas that could be improved, such as the cosmic spike filter, spectral feature 

extraction, and the execution speed of some of the algorithms.  However, this is one of the 
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primary motivations for sharing the work.  If others contribute to the development, weaknesses 

can be eliminated more quickly, and everyone benefits from the work.  It is intended that the 

system will grow to become a powerful tool for any application of Raman spectroscopy. 

3.7.1 Future Work 

Work is continuing on various aspects of the system.  New algorithms are being developed 

for processing and analysis, and bugs found by users are being fixed.  Interoperability is going to 

be improved by supporting the import and export of data in formats compatible with other 

programs, such as SPSS.  Moreover, it is hoped that other researchers will contribute to the 

system so their enhancements can be integrated with the main distribution. 

One of the areas being worked on is better integration with the process of collecting Raman 

spectra.  Seamlessly reading the output of Raman acquisition software or communicating directly 

with a spectrometer is necessary for real-time analysis and classification of spectra.  An interface 

has already started being coded for a VERAX spectrometer with a probe suitable for use in vivo.  

To make this practical, additional calibration algorithms typically employed by Raman 

acquisition software will need to be implemented. 

Some preliminary work has also been done on automating the system.  This will allow a 

number of processing and analysis steps to be executed without user interaction.  Combined with 

the ability to collect spectra, this will enable a variety of real-time in vivo applications.  For 

example, the system may be used to help integrate Raman spectroscopy with image-guided [20] 

and minimally invasive [19] surgery.  This work is started in the following chapter. 
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Chapter 4: 
Image Guidance and Robotics for Sensors 

4.1 Introduction 

The usefulness of a sensor can be increased by combining it with supporting systems.  For 

example, Chapter 3 presented a software system that processes sensor data to extract meaningful 

information.  Another type of system that can aid in the use of an analytical sensor for real-time 

applications is an image guidance system.  An image guidance system can be used to accurately 

track the position of a sensor relative to its environment, and it provides an intuitive means 

through which collected and processed data can be presented to a user.  When such a system is 

used for surgical procedures, it is known as an image-guided surgery system. 

As explained in Chapter 1, a Raman spectrometer was chosen to demonstrate the sensor-

related concepts of this dissertation.  Therefore, this chapter describes an image-guided surgery 

system that is integrated with a Raman sensor.  The system is an updated version of the one 

presented in [20] and builds on work from [78]. 

The features of the presented system are not just applicable to Raman sensors or surgical 

procedures.  The ability to track a sensing device and display derived information on imaging 

data could be useful for many types of sensors in various environments.  Therefore, the work 

described here could be applied to other kinds of sensors and applications. 

4.2 Overview 

In this chapter, the integration of a Raman spectroscopy-based sensor with an image-guided 

surgery system is presented.  Such a system could provide a surgeon with both a diagnosis of 

tissue being analyzed (e.g., cancerous or normal) and location information displayed within an 
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imaging modality of choice.  This kind of rich information could lead to faster diagnoses and 

enable more accurate treatments. 

A test platform consisting of a portable Raman probe attached to a passively articulated 

mechanical arm was used to scan and classify objects within a phantom skull.  The prototype 

system was successfully able to track the Raman probe, classify objects within the phantom 

skull, and display the classifications on medical imaging data within virtual reality and 

augmented reality environments.  With further research and improvements to the system, its 

utility can be enhanced, and it could further the field of sensor-based computer-assisted surgery. 

4.3 Background and Motivation 

Current techniques in image-guided surgery rely primarily on visual feedback from the 

surgical site.  This chapter addresses the issue of extending this feedback by adding a sensing 

modality, Raman spectroscopy, to the already successful techniques of image guidance.  It is 

hypothesized that other modalities of information from the surgical/tumor site based on these 

non-visual (biochemical) aspects will enhance the surgeon’s ability to more completely define 

resection margins. 

Conventional histopathology lacks both the capability for providing immediate feedback and 

the precision to quantify the extent of disease, particularly in the early stages.  Final results 

usually require 12–24 hours.  Even the examination of the more immediate frozen sections 

typically requires at least 20 minutes from the time the tissue is removed until the time an answer 

is available.  During tumor-removal surgeries (e.g., for brain cancer), this means the patient must 

remain open for a longer operative time. 

Raman spectroscopy is a technique capable of detecting normal and abnormal regions of 

tissue [40].  Its near-real-time analysis and the fact that it does not require sample preparation 
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make it highly suited for in vivo applications [13, 55].  Image-guided surgery helps the surgeon 

position and track instruments (such as a Raman probe) inside the body [79], making it a natural 

complement for Raman spectroscopy.  Integration of this sensing technology with image-guided 

surgery should help maximize its usefulness for in vivo applications.  Thus, this chapter 

investigates the integration of a Raman probe with an image-guided surgery system for future 

applications like the diagnosis of cancer. 

4.3.1 Raman Spectroscopy 

Raman spectroscopy is a near-real-time technique that measures the wavelength and intensity 

of light inelastically scattered from molecules.  In Raman spectroscopy, a specimen is irradiated 

with a laser light, resulting in the scattering of light due to its interaction with the vibrating 

molecules in the sample.  The majority of scattered light has unchanged frequencies (Rayleigh 

scattering), whereas the rest is shifted in frequency (Raman scattering) by an amount 

characteristic of the frequency of the vibrating molecules.  These vibrations are a function of 

molecular conformation, the distribution of electrons in the chemical bonds, and the molecular 

environment.  Disease leads to changes in the molecular composition and morphologic 

appearance of affected tissues.  Since Raman spectroscopy is sensitive enough to detect these 

molecular changes, it is a logical choice for the diagnosis of cancer [17, 25, 55, 80-85].  This 

technique is also well-suited for in vivo applications because it is non-destructive and requires no 

sample preparation or contrast-enhancing agents.  These features make it appealing for real-time 

medical diagnosis. 

Using recent developments in near-infrared Raman spectroscopy, in vivo real-time cancer 

diagnosis has been attempted during breast surgery [13].  Raman spectroscopy offers many 

opportunities for the development of sensitive diagnostic tools for rapid identification of 
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pathogenic microorganisms [86], assessing tissue specimens including tumor grade types [87, 

88], performing continuous patient monitoring (e.g., blood analysis), guiding of surgical 

interventions, and intraoperative tumor border determination.  Since the differentiation of tissue 

is possible, it is predicted that Raman spectroscopy may soon become a valuable tool to assist in 

clinical pathology [89]. 

Researchers at Wayne State University have been investigating the potential of Raman 

spectroscopy for tumor detection [56, 90, 91].  In 2005–6, 143 human tissues samples (22 from 

normal tissues and 121 from tumors) were studied and approximately 1700 Raman spectra were 

collected.  This library of Raman data has been analyzed using a variety of statistical techniques, 

such as principal component analysis and discriminant function analysis.  In addition, learning 

algorithms based on artificial neural networks and support vector machines have been developed 

to classify the data.  Chapter 3 contains more information. 

4.3.2 Image-Guided Surgery 

During complex operations, surgeons must maintain a precise sense of three-dimensional 

anatomical relationships [92].  In addition, they must use their judgment, experience, and 

pathological evaluation (biopsy) to determine resection boundaries.  Image-guided surgery fuses 

medical imaging, computer visualization, and real-time tracking of medical tools to provide the 

surgeon with a more detailed view of the patient’s anatomy and the operating environment.  In 

addition, image-guided surgery has allowed the development of minimally invasive surgical 

systems, which can greatly reduce cost, surgeon strain, and patient recovery time. 

There are two different types of visualization technology that are especially applicable for the 

medical domain: augmented reality (AR) and virtual reality (VR) [93].  Traditional image 

guidance is an example of VR.  Surgeons can view a computer-generated 3D scene showing their 
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tracked surgical tools with respect to a lesion inside a patient.  This technology is now starting to 

be used in several branches of surgery, such as neurosurgery, spinal surgeries [94], orthopedic 

surgery [95], dental surgery, and even some examples of general surgery [96]. 

An AR system generates a composite view for the user that includes a live camera view fused 

(via registration) with computer-generated data (e.g., 3D geometry) or other sensed data [97].  

AR is an extension of VR that represents a middle ground between computer graphics in a 

completely synthetically generated world (as in VR) and the real world [98-100].  In 2005, a 

system was developed at Wayne State University that simultaneously allows the surgeon to have 

both an AR and VR view of the patient’s data [101]. 

Merging visualization technology with sensor technology will enable surgeons to accurately 

locate and classify tissues within the body.  For example, Raman spectroscopy is a powerful 

sensing technology that can benefit from integration with advanced visualization techniques.  

Technology that integrates imaging and sensor information in real-time will add new dimensions 

to what can be done to diagnose and treat patients [102, 103]. 

4.4 Materials and Methods 

The goal of this work is to create a system to detect cancerous tissue in the human body.  

However, since this chapter focuses on the integration and visualization of Raman spectroscopy 

with image-guided surgery, a phantom model can be used instead of actual tissue.  Once the 

work is more developed, it can be tested on animal and human models.  It is known from other 

literature and the research at Wayne State University that Raman spectroscopy is capable of 

detecting cancerous tissue quickly and accurately [13, 25, 40, 56, 91].  Therefore, this work has 

the potential to extend to real tissue. 
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Thus, in order to evaluate the integration of Raman spectroscopy and image-guided surgery, 

a system utilizing several components was developed (Figure 4.1).  A portable Raman 

spectrometer was attached to a passively articulated mechanical arm.  Classification algorithms 

for Raman spectra were also implemented.  The results of the classification are sent to a medical 

visualization system.  Once these systems were integrated together, testing was done with a 

phantom skull (shown in Figure 4.2).  The skull was filled with various plastic and rubber 

objects, and CT images were obtained.  The entire system was then used to scan objects in the 

skull, classify the resulting spectral data, and then place markers within the visualization system.  

Each of the subsystems is described in greater detail below. 

 
Figure 4.1:  Organization of the system components and the software messages sent among them. 

4.4.1 Tracking Arm 

To track the position of a Raman spectrometer, one was attached to a passively articulated 

arm, a MicroScribe G2X (Immersion, San Jose, CA), as shown in Figure 4.2.  This arm has five 
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degrees of freedom and, based on previous research [93], can track the location of its end-

effector with an error less than 1 mm.  It was chosen because it is simple to use and its tracking 

accuracy is within acceptable limits. 

 
Figure 4.2:  The Raman probe, attached to the end of the tracking arm, is used to scan a plastic cup and 
other objects within the phantom skull. 

A software application was developed that registers the MicroScribe with patient imaging 

data and tracks the location of its end-effector.  The tracking is accomplished by passing the 

arm’s angular joint feedback through a mathematical model of the MicroScribe (a process known 

as forward kinematics).  The tracking data is relayed in real-time to the visualization system.  In 

the following section, the technical details of the tracking software are presented. 
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4.4.2 Medical Robot 

The AESOP 1000 is a medical robot that was designed to position an endoscope during 

minimally invasive surgery.  As described in [104], a custom control system was developed to 

enable computerized control of the robot.  Further details on the robot can be found in section 

5.6.2.1. 

The tracking and control software for the robot was designed to integrate with the 

visualization systems of the image-guided surgery system [104].  Hence, it should be possible to 

use the robot to position and track a Raman probe.  For this preliminary work, the robot held an 

endoscope instead of a Raman probe. 

A robot would enable automated scanning of a region with a probe.  The time required to 

scan a region would depend on at least three factors.  The first is the movement speed of the 

robot, which may have to be lowered for safe use inside a patient.  The second is the acquisition 

time of the Raman spectrometer.  The Raman system used in this chapter requires 5–10 seconds 

to obtain a spectrum with a sufficient signal-to-noise ratio.  The third factor is the processing 

time for the Raman data.  This can be completed in well under a second, which means it is not a 

significant factor. 

Depending on the number of points to be scanned and their locations, it could take several 

minutes to complete a series of scans with a robot-controlled probe.  For a surgical application 

with long wait times for histopathology, this may be reasonable. 

4.4.3 Tracking Algorithms 

The model of the MicroScribe was expressed using Craig’s modified Denavit–Hartenberg 

(DH) convention [28].  As described under section 2.3, the DH convention provides a compact 
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way to represent the structure of a robot (including link lengths, joint types, and joint angles).  

The DH parameters of the MicroScribe are shown in Table 4.1. 

i ai−1 (mm) di (mm) αi−1 (rad) θi (rad) 
1 0 210.82 0 (θ1) 
2 24.18 –22.53 0.4999π (θ2) 
3 260.68 –0.30 –0.0002π (θ3) 
4 13.89 234.70 0.4972π (θ4) 
5 –10.26 8.10 –0.5007π (θ5) 
6 10.16 –134.16 –0.4994π 0 

Table 4.1:  Denavit–Hartenberg parameters for the MicroScribe G2X mechanical arm.  The non-zero (θi) 
terms represent variable joint angles. 

Homogeneous transformation matrices are efficient mathematical structures that can be used 

to translate between different frames of reference [28].  The tracking system uses these matrices 

to establish the spatial relationships among the MicroScribe arm, Raman probe, patient (phantom 

skull), and patient imaging (CT scan data).  This enables the software to track the location of the 

MicroScribe with respect to the phantom skull and overlay this information on the CT scan data 

in the visualization system. 

In order to track the MicroScribe’s end-effector relative to the skull, a registration must be 

performed between the two.  To accomplish this, a pair-point-matching algorithm is executed 

using seven common fiducial points on the phantom skull and its CT scan data.  The algorithm 

uses an iterative Levenberg–Marquardt optimization method to establish a homogeneous 

transformation from the skull (S) to the base of the MicroScribe (B), 𝑻 S B [78, 105]. 

The next step in tracking the MicroScribe is to determine the location of its end-effector (EE) 

relative to its base.  This is achieved via forward kinematics (described in section 2.3.1.1).  

Specifically, a series of transformation matrices are multiplied as shown in Equation 4.1.  The 

first matrix ( 𝑻 B
1) represents the change in position and orientation from the base coordinate 
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frame to the frame at joint 1, the second matrix ( 𝑻 1 2) represents the change in 

position/orientation from the frame at joint 1 to the frame at joint 2, etc.  Each transformation 

matrix is generated via Equation 2.10, which uses the joint angles (θi) and other DH parameters 

given in the rows of Table 4.1.  Note that the final transformation to the end-effector corresponds 

to row 6. 

Finally, the transformation from the skull to the base ( 𝑻 S B) can be combined with the 

transformation from the base to the end-effector ( 𝑻 B
EE) to produce the desired transformation 

from the skull to the end-effector ( 𝑻 S EE).  This is accomplished with Equation 4.2.  The 

transformation from the skull to the end-effector allows the visualization system to display the 

location of the MicroScribe’s tip relative to the 3D CT imaging of the phantom skull. 

To track the Raman probe, which is attached to the MicroScribe, the model for the 

MicroScribe was extended by adding an extra transformation from the end-effector to the tip of 

the Raman probe (RP).  This transformation is shown in Equation 4.3.  The negative terms 

represent the offsets (in mm) of the probe’s tip along the x-axis and z-axis of the end-effector’s 

coordinate frame. 

 𝑻 B
EE = 𝑻 B

1 𝑻 1 2 𝑻 2 3 𝑻 3 4 𝑻 4 5 𝑻 5 EE Equation 4.1 

 𝑻 S EE = 𝑻 S B 𝑻 B
EE Equation 4.2 

 

𝑻 EE
RP = �

1 0 0 −14.2875
0 1 0 0
0 0 1 −268.2875
0 0 0 1

� 
Equation 4.3 
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Combining the results of Equation 4.2 and Equation 4.3 allows the computation of the 

transformation from the skull to the tip of Raman probe ( 𝑻 S RP).  This is done in Equation 4.4.  

The transformation allows the probe to be tracked in the visualization system relative to the 

skull’s CT scan data. 

4.4.4 Raman Spectrometer 

The portable Raman spectrometer used in this research is a VERAX (InPhotonics, Norwood, 

MA).  It is shown in Figure 4.3.  This device uses a fiber optic probe and a 785 nm, 300 mW 

laser to obtain Raman spectra with an accuracy up to 4 cm–1.  The end of the probe is a long tube 

with a diameter of 1 cm, which is suitable for a test platform for minimally invasive surgery.  In 

addition, the probe can be sterilized via an autoclave. 

The Raman probe (shown in Figure 4.2) was affixed to the MicroScribe using a simple 

clamping system.  The end-effector of the MicroScribe was marked to ensure consistent 

placement, allowing the probe to be detached and reattached. 

 
Figure 4.3:  The VERAX portable Raman spectrometer with an attached fiber optic probe. 

 𝑻 S RP = 𝑻 S EE 𝑻 EE
RP Equation 4.4 
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4.4.5 Raman Classification 

Many techniques have been developed for the classification of Raman spectra.  For this 

implementation, a method based on artificial neural networks was used, which have been shown 

to perform well for Raman classification [22, 106, 107]. 

A variety of preprocessing tasks are performed on the raw Raman spectral data, including 

background fluorescence subtraction (via the “adaptive minmax” method [69]), median noise 

filtering, and normalization.  Due to the high dimensionality of Raman spectra, principal 

component analysis [49] is used to capture the portions of spectral data with the highest variance 

and express them in a compact form (called scores).  These scores are fed into the neural 

network. 

The implemented neural network is a two-layer feedforward perceptron network.  There is 

one input for each score produced during the preprocessing phase and one output for each 

possible class (e.g., plastic vs. rubber or healthy vs. cancerous tissue).  The hidden layer uses 

hyperbolic tangent activation functions, and the output layer has logistic sigmoid activation 

functions.  For this application, the network used 10 hidden neurons and was trained via 

backpropagation.  The final output was the classification of the scanned tissue/material and a 

percentage indicating the confidence of the neural network. 

As Raman scans are initiated with the image guidance system, the results of processing and 

classifying the spectra can be viewed on a monitor.  An example of the output is shown in Figure 

4.4. 
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Figure 4.4:  Image of the real-time classification application as it processes and classifies a Raman 
spectrum. 

4.4.6 Virtual Reality Visualization 

The visualization for the presented image-guided surgery system is implemented using 3D 

Slicer (www.slicer.org), an open-source application for displaying medical data. 3D Slicer 

provides a virtual reality environment in which various imaging modalities (e.g., CT or MRI 

data) can be presented. The software includes the ability to display the locations of objects with 

respect to 3D models that are derived from segmentation of the medical imaging. 

3D Slicer was modified in several ways to adapt it for this application.  First, a TCP/IP 

interface was developed that receives the tracking data for the MicroScribe and displays its 

position in the VR environment relative to the medical imaging data.  This allows the Raman 

probe to be tracked in real-time.  Second, a method was developed to place colored markers that 

 

http://www.slicer.org/
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indicate tissue/material classification on the medical imaging data.  The combination of these 

modifications enables the system to denote the location and classification of tissue/material 

scanned with the probe in near real time. 

 
Figure 4.5:  A screenshot of the visualization system showing 3D models (derived from CT imaging of 
the phantom skull), the location of the tracked Raman probe, collected Raman spectra, and colored 
markers denoting the classifications (computed from Raman scan data) of various objects within the skull. 

4.4.7 Augmented Reality Visualization 

An AR visualization module was also developed for the image guidance system.  It uses a 

standard USB camera to acquire live images of the target object (e.g., the phantom skull).  An 

optical tracking device, the Polaris Accedo (Northern Digital Inc., Ontario, Canada), was used to 
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track the position of the camera.  To accomplish the tracking, spheres that reflect infrared light 

were affixed to the camera.  This is shown in Figure 4.5. 

 
Figure 4.6:  Standard USB camera with spherical markers affixed for optical tracking. 

The optical tracker returns the transformation from the camera to the tracker.  To obtain the 

camera’s position with respect to the skull, a transformation was needed from the tracker’s 

coordinate system to the skull.  This was accomplished by registering the camera to the skull in 

the same manner as described in section 4.4.3.  The tip of the camera was used to touch the 

fiducial points on the skull, enabling the required transformation to be computed.  

With the position of the camera known with respect to the skull, the 3D models from the VR 

visualization can be placed on top of the video from the camera.  In addition, the results of 

Raman analyses (classification markers) can also be displayed on the video.  Figure 4.7 shows an 

image of the AR module in use. 
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Figure 4.7:  Augmented reality visualization module of the image guidance system.  The 3D models are 
shown on top of the real objects in the skull, and the colored markers denoting Raman classifications can 
be seen. 

4.5 Results 

As described in section 4.4, the completed system was used to scan objects within a phantom 

skull.  The MicroScribe and probe were positioned manually and tracked in real-time during this 

test.  The collected Raman spectra were classified and displayed as colored markers in the 

visualization system.  This is shown in Figure 4.5. 

The system performed as expected.  The tracking of the probe, the classification of the 

Raman spectra, and the display of the colored markers all occurred in real-time.  The only major 
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delay was caused by the scanning of the tissue by the Raman probe, which requires roughly 5 

seconds to produce a scan with a reasonable signal-to-noise ratio. 

The Raman scans were able to distinguish between the plastic and the rubber objects.  The 

corresponding markers in the visualization display correctly reflected the classifications that 

were made.  The positions of the markers were also accurate with respect to the locations from 

which scans were taken.  Since the setup of the system is very similar to that of some previous 

work [93], it is estimated that the probe tracking accuracy is around 1 mm. 

4.5.1 Preliminary AESOP 1000 Results 

The AESOP 1000 medical robot was also tested with the VR module of the system.  

Unfortunately, errors in its DH model made it insufficient for accurate sensor placement.  The 

tracking system and measured errors of the AESOP 1000 are described in [104].  These errors 

were the motivation to create the kinematic calibration technique of Chapter 5. 

4.6 Discussion and Future Work 

In a paper discussing the future of robotic surgery [108], Taylor and Stoianovici stated that it 

will become increasingly important to design systems that can incorporate a wide range of 

biomedical sensors and that can work with multiple imaging modalities.  An example of this goal 

has been provided via the successful integration of Raman spectroscopy with an image-guided 

surgery system, demonstrated using a phantom skull.  The presented system, which tracks a 

registered Raman probe, is developed in a manner that allows the results of neural network-

classified Raman data to be displayed directly on any imaging modality of the phantom’s 

anatomy, all in near real-time. 

This chapter demonstrates that Raman spectroscopy and image-guided surgery can be 

combined to provide a powerful diagnostic system.  Even though a phantom model was used, the 
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underlying technologies have been previously shown to work with human tissue.  With further 

research and development, this system should be suitable for human applications.  For now, the 

system will continue to be developed and tested using phantom models.  In the future, the plan is 

to evaluate the system with animal testing.  Eventually, the application of the work to human 

cases is anticipated.  If the results continue to be positive, it will demonstrate that Raman 

spectroscopy has the potential to be a powerful complement to conventional histopathology. 

To the author’s knowledge, there had been no prior prototypes in the literature that attempted 

to combine Raman spectroscopy and image-guided surgery before this work was published [20].  

It is hypothesized that a system based on these technologies could eventually provide many 

benefits in the surgical environment.  These benefits could include faster diagnoses and more 

accurate resections, hence producing better patient outcomes.  However, there are certain issues 

that need detailed research and development. 

One key issue is the size of the Raman probe.  Ideally, the entire instrument should be about 

the size of a scalpel for easy manipulation by the surgeon.  Existing portable systems are still too 

bulky as real-time diagnostic tools for certain applications.  The availability of miniaturized 

hand-held devices would create a platform for a wider range of research on real-time tissue 

diagnostics.  Once developed, this technology will enable the creation of a whole new field of 

real-time, in vivo spectroscopic diagnostics of tissue. 

Another relevant issue is the positional accuracy of the image-guided Raman system.  

Although the tip of the employed Raman probe can be tracked to within an acceptable accuracy 

for neurosurgery, there is an uncertainty of about 5 mm (the diameter of the probe’s transmission 

window) as to exactly where the human-held probe actually measures the point of interest.  A 

system in which the actual point of interest could be better determined and more accurately 
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placed would be much more useful.  The issues of placement accuracy and the requirement of 

holding the sensor still during acquisition can be alleviated by the closely related field of medical 

robotics.  A robot can accurately place and steadily hold a probe in the surgical environment. 

Thus, the plan is to expand the work described in this chapter to include the AESOP medical 

robot (Intuitive Surgical, Sunnyvale, CA).  This robot will be used to actively position the 

Raman probe instead of the passive MicroScribe arm.  This will provide several benefits over the 

current system.  First, the AESOP will be able to hold the probe completely steady during a scan, 

which is important considering scans can take 5 or more seconds.  Second, the AESOP will be 

able to position the probe more accurately using medical imaging data, enabling the surgeon to 

precisely scan the tissue of interest.  Third, automated scanning will be possible, in which the 

AESOP moves among numerous points over a defined area of tissue, taking a Raman scan at 

each. 

The work with the AESOP will include a detailed human (surgeon) factors study.  Tests will 

be performed to ensure that the system is beneficial to surgeons.  For example, it must be 

verified that the speed and accuracy of tissue diagnoses are improved through the use of the 

system.  Moreover, several visualization techniques will be implemented and compared to find 

the best one.  Such testing is necessary during research and development to ensure that the 

results are a useful addition to the field. 
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Chapter 5: 
Fixed-Point Kinematic Calibration 

5.1 Introduction 

When positioning a sensor, it is important for the robotic manipulator to have sufficient 

accuracy.  If the sensor is placed at the wrong location, the acquired data may be insufficient or 

incorrect.  A number of issues can contribute to error in the robot’s positioning, such as 

manufacturing tolerances, imprecise assembly, and component deformation.  A process known 

as kinematic calibration can be executed to reduce the level of error. 

This chapter describes a calibration technique that can improve the positional accuracy of a 

serial manipulator.  It consists of easily performed procedures and a set of computer algorithms.  

It requires no external measurement system, and it overcomes some of the limitations of existing 

techniques.  It can be used for the improvement of sensor placement or any other application that 

involves positioning or tracking based on a kinematic model. 

5.2 Overview 

The kinematic calibration technique presented in this chapter is an extension of earlier work 

in closed-loop calibration (section 5.3).  It involves placing the end-effector of a serial 

manipulator at a fixed point and then altering the orientation of the end-effector while 

maintaining contact with the point.  Using only the internal joint sensors of the robot, it is 

possible to collect enough information to calibrate most of the parameters of the robot’s model. 

The calibration technique consists of four phases (section 5.4).  First, joint readings of the 

robot are acquired when the robot touches a fixed point from multiple orientations.  Second, the 

collected data is processed to generate a calibrated model.  Third, the joint values of the robot are 
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recorded when the robot touches specific points on a known object.  Finally, this data is used to 

correct certain deficiencies in the calibrated model and enable the robot to operate in an 

application-specific coordinate system. 

The presented calibration technique was evaluated in three experiments (section 5.6).  The 

first two experiments were performed in a simulated environment using four different robot 

models.  One simulation was ideal, and the other added noise to the joint feedback.  The final 

experiment tested the calibration algorithms on two actual manipulators with real measured data. 

5.3 Background and Related Work 

5.3.1 Kinematic Calibration 

Typically, a robot’s kinematic model is provided by the manufacturer or can be developed 

from its specifications.  However, due to errors/tolerances in the construction or possibly the 

wear of normal usage, the model will not match the physical structure of the robot.  Kinematic 

calibration is a process that attempts to minimize the differences between the kinematic model of 

a robot and the actual structure of the robot. 

It is generally not feasible to attempt a direct measurement of the robot’s parameters (e.g., 

link lengths and angles) using simple tools like a ruler.  The accuracy would be limited, and the 

physical structure of the robot often makes it difficult or impossible to appropriately place a 

measuring tool.  Therefore, kinematic calibration often relies on measurements of the end-

effector’s position and orientation (pose) or some subset of this information.  It then uses 

mathematics to indirectly identify a more accurate version of the robot’s parameters. 

The two most commonly used types of kinematic calibration are open-loop methods and 

closed-loop methods [109].  Open-loop methods require an external measurement system (e.g., a 

laser interferometer or coordinate measuring machine) to assess the pose of the end-effector 
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[105].  This adds to the cost and complexity of the process, and the measurement device can 

introduce its own error.  Closed-loop methods, on the other hand, only require the internal joint 

feedback of the robot to perform the calibration [110, 111].  The method described in this chapter 

(fixed-point calibration) can be classified as closed loop. 

5.3.2 Open-Loop Kinematic Calibration 

The traditional form of calibration is open-loop calibration.  It requires the position and/or 

orientation of the end-effector to be determined via an external measurement system.  It is called 

“open loop” because the end-effector is positioned freely in space (instead of being constrained 

by contact with the environment). 

This section provides an overview of the fundamental concepts used in open-loop calibration.  

Many of these concepts also apply to closed-loop (and fixed-point) calibration.  For more 

detailed information, there are numerous references that explain the mathematical background of 

open-loop kinematic calibration [105, 111].  Section 2.3 also provides some relevant background 

information on robot modeling. 

The goal of kinematic calibration is to optimize the parameters of a robot’s kinematic model 

so that calculations using the model match the performance of the actual robot as closely as 

possible.  For example, a calibrated model can be used to more accurately track and move the 

robot.  In order to perform calibration, it is assumed that an initial model of the robot is available. 

In open-loop calibration, parameters of the model are adjusted so that the pose of the robot 

calculated via the model (and internal joint measurements) matches the pose determined via 

external measurements.  Thus, a number of measurements are needed to perform open-loop 

calibration.  The measurements include the joint feedback from the sensors built into most robots 
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(e.g., encoders) and the output of an external measurement system (e.g., a coordinate measuring 

machine). 

Typically, the first step in acquiring a set of measurements is to place the robot into a 

particular pose.  Next, the current set of variable joint values (𝜃𝑖var or 𝑑𝑖var) is recorded using the 

robot’s controller and its internal sensors.  Note that a set of joint values that corresponds to a 

specific pose of the robot will be referred to as a joint configuration.  After that, the external 

measurement system is used to record the pose of the robot (usually of its end-effector) or some 

subset of its pose. 

Due to the number of unknown parameters and sources of noise/error, multiple sets of 

measurements must be taken.  Therefore, the joint values and position/orientation of the robot are 

measured when the robot is placed into many different poses/joint configurations.  Different 

techniques are available for choosing sets of poses that improve the observability of the 

parameters [109, 111]. 

5.3.2.1 Mathematical Formulation of Open-Loop Parameter Identification 

Open-loop calibration compares the calculated pose of the robot to its measured pose.  The 

pose of a robot (especially of its end-effector) is computed using forward kinematics (section 

2.3.1.2).  These calculations require a complete set of DH parameters for the robot.  For the 

purpose of calibration, the DH parameters are divided into two groups. 

The first group, 𝒄𝑞, represents the variable joint values (𝜃𝑖var or 𝑑𝑖var) that are associated with 

a particular pose (q) of the robot.  These values define the joint configurations, which are 

obtained via measurement of the robot’s internal sensors in the manner described above.  

Although techniques are sometimes used to calibrate the sensors, the measured joint values are 

not modified during a kinematic calibration. 

 



85 

The second group of DH parameters, 𝒎, contains the non-variable ones; they do not change 

when the pose of the robot changes.  These parameters described the fixed structure of the robot, 

including the fixed offsets (𝜃𝑖off or 𝑑𝑖off) for each variable joint.  Therefore, they are the ones that 

need to be modified to produce a calibrated robot model. 

The two groups of DH parameters (𝒄𝑞 ,𝒎) are both used to compute the forward kinematics 

of the robot.  The output is the pose (position and orientation), 𝒚𝑞, of the robot’s end-effector.  

This process is expressed in Equation 5.1. 

The following terms are used in Equation 5.1 or are necessary to define those terms: 

• npc is the number of pose components being measured and calculated in the 

calibration.  Six components can be used to completely specify the position and 

orientation of the robot’s end-effector. 

• 𝒚𝑞 is an npc×1 vector that contains the calculated pose of the end-effector for joint 

configuration q.  For a complete pose, 𝒚𝑞 often has the form �𝑝𝑥,𝑝𝑦,𝑝𝑧 ,𝜑,𝜃,𝜓�
T
.  

This vector contains the position (𝑝𝑥,𝑝𝑦,𝑝𝑧) and orientation (𝜑, 𝜃,𝜓) of the end-

effector expressed using Cartesian coordinates and Euler angles (per section 2.3.1.1).  

If any pose components are not being used (such as the orientation), the 

corresponding variables are omitted from 𝒚𝑞. 

• 𝒇 is a function that computes the forward kinematics of the robot using the variable 

and non-variable DH parameters.  Section 2.3.1.2 has a detailed description. 

• nj is the number of joints in the robot. 

 𝒚𝑞 = 𝒇�𝒄𝑞 ,𝒎� = 𝒇𝑞(𝒎) Equation 5.1 
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• 𝒄𝑞 is a vector containing the measured joint values (𝜃𝑖var or 𝑑𝑖var) for joint 

configuration q.  Its length is equal to nj. 

• 𝒎 is 4nj×1 vector that contains all the non-variable DH parameters of the robot’s 

model.  It holds the sets of four fixed DH parameters for all joints.  For example, in 

the original form of the DH convention, it would contain (𝛼𝑖, a𝑖,𝜃𝑖off,𝑑𝑖) for revolute 

joints or (𝛼𝑖, a𝑖 ,𝜃𝑖 ,𝑑𝑖off) for prismatic joints. 

• 𝒇𝑞 is the same as 𝒇 with 𝒄𝑞 as an implicit input.  This is used to simplify the notation 

since the variable joint values, 𝒄𝑞, are not modified during kinematic calibration. 

Considering the description given above, the objective of open-loop calibration is to modify 

the non-variable parameters, 𝒎, so that the difference between the calculated pose, 𝒚𝑞, and the 

measured pose is minimized.  To accomplish this goal, a more direct relationship between 

changes in the pose and changes in the parameters is useful.  This relationship can be found by 

through a Taylor series expansion of 𝒇𝑞(𝒎) at a particular set of parameters, 𝒎𝑘.  This is shown 

in Equation 5.2 with the higher order terms omitted (making the relationship an approximation). 

In Equation 5.2, 𝑱𝑞,𝑘 is a npc×4nj Jacobian matrix that provides the partial derivatives of the 

functions for each pose component of 𝒚𝑞 with respect to each of the model parameters in 𝒎.  

These functions and partial derivatives can be derived from the forward kinematics equations, 

but the process is lengthy and not needed here.  The reader can find the derivations in other 

literature [105, 111]. 

 
𝒇𝑞(𝒎) = 𝒇𝑞(𝒎𝑘) +

𝜕𝒇𝑞(𝒎)
𝜕𝒎

�
𝒎=𝒎𝑘

(𝒎−𝒎𝑘) + ⋯ 

𝒇𝑞(𝒎) ≈ 𝒇𝑞(𝒎𝑘) + 𝑱𝑞,𝑘(𝒎−𝒎𝑘) Equation 5.2 
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Equation 5.3 shows the form of the Jacobian matrix 𝑱𝑞,𝑘.  The functions denoted by 

𝑓component,𝑞 are equivalent to 𝒇𝑞 but with only the specified pose component being calculated.  

One point of interest is that the partial derivatives evaluate to single numbers when a specific 

joint configuration (𝒄𝑞) and a specific set of model parameters (𝒎𝑘) is used. 

If an iterative process is used to find the optimal parameters, the next set of parameters in the 

sequence will be 𝒎𝑘+1.  This can be put into Equation 5.2 in place of 𝒎 to clarify the iterative 

procedure.  This is shown in Equation 5.4 along with some consolidation of terms. 

In Equation 5.4, the following new terms are used: 

• ∆𝒚𝑞 and ∆𝒇𝑞 represent the incremental change in pose that occurs for an incremental 

change in the non-variable DH parameters 

• ∆𝒎 represents an incremental change in the non-variable DH parameters 

Equation 5.4 represents a linear model that approximates the relationship between the 

calculated pose and the parameters.  This model can be used to help find the optimal set of 

parameters.  In open-loop calibration,  the error is defined by the difference between the 
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Equation 5.3 

 𝒇𝑞(𝒎𝑘+1) ≈ 𝒇𝑞(𝒎𝑘) + 𝑱𝑞,𝑘(𝒎𝑘+1 −𝒎𝑘) 
𝒇𝑞(𝒎𝑘+1) − 𝒇𝑞(𝒎𝑘) ≈ 𝑱𝑞,𝑘(𝒎𝑘+1 −𝒎𝑘) 

∆𝒇𝑞 ≈ 𝑱𝑞,𝑘∆𝒎 
∆𝒚𝑞 ≈ 𝑱𝑞,𝑘∆𝒎 Equation 5.4 
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calculated pose, 𝒚𝑞, and the measured pose.  To correct the error, the incremental change in pose, 

∆𝒚𝑞, can be set according to the difference between the calculated and measured poses.  

Furthermore, the elements of 𝑱𝑞,𝑘 can be computed using the partial derivatives evaluated at the 

current set of joint values (𝒄𝑞) and the current DH parameters (𝒎𝑘).  Consequently, all that 

remains is to solve for the incremental change in the parameters (∆𝒎) that will effect the 

corrections to the calculated pose. 

In the linear model of Equation 5.4, npc equations can be written (six at most), but there are 

4nj unknown parameters, and manipulators have multiple joints.  Therefore, it is not possible to 

solve for an optimized set of DH parameters using Equation 5.4 with the measured data from a 

single joint configuration, q.  However, by using the measured data from multiple joint 

configurations, a sufficient number of equations can be formed to solve for the unknown 

parameters.  Equation 5.5 represents an extended form of Equation 5.4 that incorporates the 

measured data from all the joint configurations into which the robot was placed. 

The following terms are used in Equation 5.5 or are necessary to define those terms: 

• njc is the number of joint configurations (poses) from which measurements were 

obtained. 

• ∆𝒚 is the npcnjc×1 vector that results from stacking the incremental changes in pose 

for each joint configuration:  �∆𝒚1,∆𝒚2, … ,∆𝒚𝑛jc�
T
. 

• 𝑱𝑘 is the npcnjc×4nj Jacobian matrix that results from stacking the individual Jacobian 

matrices for each joint configuration:  �𝑱1,𝑘, 𝑱2,𝑘, … , 𝑱𝑛jc,𝑘�
T
.  It is still a function of the 

 ∆𝒚 ≈ 𝑱𝑘∆𝒎 Equation 5.5 
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current set of parameters, 𝒎𝑘.  𝑱𝑘 is sometimes referred to as the identification 

Jacobian. 

Using the extended linear model of Equation 5.5, it is now possible to (attempt to) solve for 

∆𝒎.  First, ∆𝒚 and 𝑱𝑘 are generated as described earlier for Equation 5.4.  Due to noise and other 

sources of error, there is no exact solution for ∆𝒎.  Instead, the pseudoinverse of 𝑱𝑘 can be used 

to find a best fit (least-squares) solution.  This is shown in Equation 5.6. 

Once the incremental change in the parameters has been found, the current set of parameters, 

𝒎𝑘, can be updated according to Equation 5.7.  Since the linear model of the relationship 

between the calculated pose and the parameters is actually an approximation of a more complex 

nonlinear relationship, the first updated set of parameters is likely not the optimal solution.  

Instead, Equation 5.6 and Equation 5.7 should be iteratively applied until the incremental change 

is sufficiently small.  This corresponds to the Gauss–Newton algorithm [105], which can work 

well if the initial set of parameters is reasonably accurate.  Related (but slightly more complex) 

techniques like the Levenberg–Marquardt algorithm [105] can also be applied for additional 

robustness, especially if the initial set is not as accurate. 

5.3.2.2 Identification Jacobian 

The identification Jacobian (𝑱𝑘) from Equation 5.5 in the previous section is very useful.  At 

a high level, it relates changes in each pose component to changes in each of the non-variable 

DH parameters.  Consequently, it can be used to determine what changes are necessary in the 

model parameters to effect a desired change in the pose. 

 ∆𝒎 ≈ ��𝑱𝑘T𝑱𝑘�
−1
𝑱𝑘T� ∆𝒚 Equation 5.6 

 𝒎𝑘+1 = 𝒎𝑘 + ∆𝒎 Equation 5.7 
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Analysis of the identification Jacobian can reveal lot of information about the robot’s model 

with respect to the calibration.  For example, if the identification Jacobian matrix has full rank, it 

indicates that all parameters of the model are identifiable.  However, if the matrix is rank 

deficient, some parameters will not be (uniquely) identifiable. 

A column of all zeros indicates that modifying the corresponding parameter has no effect on 

any of the measurable pose components.  Consequently, that parameter cannot be identified.  It is 

generally excluded from the calibration to avoid creating problems for the calibration algorithm. 

If columns of the identification Jacobian matrix are linearly dependent, then the parameters 

corresponding to those columns are said to be linearly dependent.  In this case, it is not possible 

to find the exact values of each of the parameters in the linearly dependent set.  However, the 

value that represents the combined effect of the parameters can generally be found.  Therefore, 

sometimes certain parameter values are excluded from calibration so the algorithm doesn’t try to 

assign specific values to parameters that cannot be uniquely determined.  Instead, just one 

parameter for a linearly dependent set will be calibrated.  The identified value will not match the 

true value, but the overall effect of the linearly dependent parameters should be correct. 

More rigorous approaches to analyzing the identification Jacobian are found in the literature 

[105, 109-112].  For example, by performing a singular value decomposition or QR 

decomposition of the matrix and analyzing the results, it is possible to classify parameters as 

identifiable, unidentifiable, weakly identifiable, or only identifiable in linear combinations.  

Once the parameters are better understood, they can be handled by the calibration algorithm in an 

appropriate fashion. 
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5.3.3 Closed-Loop Kinematic Calibration 

Closed-loop kinematic calibration differs from open-loop calibration in an important way:  it 

requires no external device to measure the pose of the robot.  Instead, a closed-loop technique 

only requires the internal joint feedback of the robot.  It is called “closed loop” because the end-

effector is constrained by contact with the environment, forming a closed loop via the ground. 

Closed-loop calibration is able to work without external measurements because of physical 

constraints on the end-effector.  By using the environment to constrain some or all of the end-

effector’s pose (position and orientation) components, information about the end-effector’s pose 

is known without acquiring any external measurements.  Although the amount of known 

information about the pose is often less than in open-loop calibration, the data is generally 

sufficient to calibrate most of the kinematic parameters of a manipulator’s model. 

Closed-loop calibration is closely related to self-calibration and autonomous calibration.  

Sometimes, the terms are used synonymously.  In other cases, “self-calibration” or “autonomous 

calibration” refers to calibration using additional sensors on the robot instead of external 

systems.  They are often associated with parallel robots or the use of integrated vision systems.  

This chapter focuses on closed-loop calibration for serial manipulators using internal joint 

feedback and end-effector constraints. 

This section provides an overview of some important concepts in closed-loop calibration.  

These concepts also apply to fixed-point calibration, which is a subset of closed-loop calibration.  

For more detailed information, the work by Bennett and Hollerbach [110] and other references 

[109, 111] can be consulted.  Section 2.3 also provides some relevant background information on 

robot modeling. 
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There has been much research on the subject of closed-loop calibration.  For example, work 

has been done where the robot’s end-effector is constrained via a hinge joint [113], movement 

along a plane [114, 115], or movement along a cylinder [116].  It has been applied to parallel and 

cooperative robots/arms using multiple closed loops [117-120].  In addition, the technique has 

been used to calibrate both a robot and the parameters of a camera system [121].  Wampler et al. 

devised a method called the implicit loop method that unifies that mathematics of open-loop and 

closed-loop (including point-contact) calibration [122].  Their method incorporates a priori 

estimates of measurement and parameters errors, and it can be applied to parallel manipulators. 

To perform closed-loop calibration, several requirements must be met.  As with open-loop 

calibration, the ability to measure the variable joint values (joint configuration) of the robot is 

needed.  In addition, the robot must have a sufficient number of degrees of freedom to permit 

movement in the robot’s arm while the constraints on the end-effector are being enforced.  

Furthermore, a way to move the robot while respecting the end-effector constraints is required 

(e.g., manual positioning or a fixture and force control).  It is also assumed that an initial model 

of the robot is available. 

One weakness of open-loop calibration, which is stated in [110], is that it requires a length 

component of the robot to be precisely known in order to set the robot’s scale.  It can also be 

more difficult to place the robot into the multiple constrained poses needed by the method.  

However, the simplicity and savings afforded by closed-loop calibration can make it worthwhile. 

Closed-loop calibration is also unable to determine the position and orientation of the robot’s 

base (or equivalently, its end-effector) with respect to some external (world) coordinate system, 

as mentioned elsewhere [118, 123-125].  The robot is only calibrated with respect to the base of 
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its model, and even then there may be ambiguities due to unidentifiable parameters (per section 

5.3.4.1).  This problem is easier to solve in open-loop calibration with its external measurements. 

5.3.3.1 Execution of Closed-Loop Calibration 

Closed-loop calibration requires constraints to be imposed on the end-effector’s pose, for 

which there is a variety of possibilities.  For example, three different constraints were discussed 

in [110].  The complete pose (position and orientation) of the end-effector can be fixed, the 

complete position and two of three orientation components can be fixed (only allowing rotation 

like that of a hinge joint on a door), or just the position components can be fixed.  In the last 

example, the end-effector is kept at a fixed point, but its orientation can vary freely.  This is 

called the fixed-point or point-contact constraint. 

Similar to open-loop calibration, multiple sets of measurements of the joint values must be 

recorded when the robot is placed into different poses.  This ensures that a sufficient number of 

equations can be written to solve for the many unknowns of a robot model’s kinematic 

parameters.  In addition, multiple measurements must be taken under the same constraints.  For 

example, with a fixed-point constraint, the same fixed point must reached (from various 

orientations) by multiple recorded poses/joint configurations.  The consistency of the constraint 

across a number of measurements is what enables the constraint to substitute for external 

measurements. 

There are at least two approaches to calibrating a robot model using closed-loop 

measurements.  In the first, the constrained portion of the end-effector’s pose is estimated using 

the current model of the robot and the measured joint configurations.  For instance, with a fixed-

point constraint, the position of the fixed point can be estimated by using the forward kinematics 

equations (section 2.3.1.2) to calculate the position of the end-effector for each joint 
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configuration and then finding the average of the results.  Then an algorithm is used to modify 

the robot parameters until the constrained portion of the calculated poses converge upon the 

estimated constrained pose.  This approach was mentioned by Craig [126], and it is the approach 

used in this chapter.  Thus, it is explained in detail under section 5.4.4. 

The second approach to calibrating a model with closed-loop data was described by Bennett 

and Hollerbach [110].  It applies an important modification to enable the techniques of open-loop 

calibration to be applied to closed-loop calibration [111].  Specifically, the constrained position 

and/or orientation of the end-effector are used to define the origin of a new base coordinate 

system.  In other words, the true values of all constrained pose components of the end-effector 

are defined to be 0 in a new coordinate system.  The definition of any components of the new 

coordinate system not related to constrained pose components is arbitrary. 

For example, for a fixed-point constraint, the true position of the fixed point would be 

defined as (0, 0, 0) in the new base coordinate system.  Since the orientation of the end-effector 

is not constrained, the orientation of the new coordinate system (with respect to the robot’s 

original base coordinate system) is arbitrary. 

To use this new coordinate system, the relationship between the robot’s original base 

coordinate system and the new system must be specified.  This can be defined by a 

transformation from the constrained position/orientation of the end-effector to the robot’s 

original base coordinate system.  Although there are many ways to represent a transformation 

(such as a homogeneous transformation matrix), it can be conveniently expressed as an 

additional set of four DH parameters (or two if four parameters is not enough).  Thus, the 

transformation from the constrained end-effector pose back to the robot’s original base is treated 
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like an additional link in the robot’s kinematic chain.  This transformation creates a closed loop 

in the robot model, so it will be referred to as the loop-closing transformation. 

If the robot has nj joints and its original base coordinate system has the subscript 0, then the 

new base coordinate system can be given the subscript −1.  The coordinate system at −1 is 

partially or fully coincident with the coordinate system at the end-effector (subscript nj) as 

needed to ensure the constrained pose components have a value of 0.  Therefore, when using 

forward kinematics to calculate the pose of the end-effector with respect to coordinate system 

−1, the desired output is for all the constrained pose components to have a value of 0.  Any 

deviation of these components from 0 is due to errors in the kinematic parameters (𝒎) or other 

sources of noise/error in the system. 

With the loop-closing transformation in place, the desired values of the constrained end-

effector components are known and defined to be 0.  This is analogous to having measured the 

end-effector’s pose with an external device and finding the values to be 0.  Thus, the closed-loop 

calibration can be treated like an open-loop calibration and executed with the same mathematical 

techniques (section 5.3.2.1) with a few minor modifications. 

To utilize an open-loop algorithm with closed-loop data, the definition of the error has to 

change (to the difference between the calculated constrained end-effector pose and all 0s).  In 

addition, any unconstrained pose components have to be removed from consideration because 

their values are unknown.  Furthermore, the DH parameters representing the loop-closing 

transformation have to be added to the robot’s model (𝒎) and included in the calibration.  They 

can be ignored when the calibration is complete. 
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5.3.4 Fixed-Point Kinematic Calibration 

As mentioned in the previous section, fixed-point kinematic calibration is a specific type of 

closed-loop calibration.  It requires the robot’s end-effector have its position constrained to a 

fixed location while the orientation of the end-effector is altered.  Using internal measurements 

of multiple joint configurations under this constraint, it is possible to calibrate the robot without 

using any external measurement devices. 

One approach to fixed-point calibration was mentioned by Craig [126].  It seems to be 

similar to the approach used in this chapter (at least in terms of the error function), but 

insufficient detail was provided, and no results were presented.  On the other hand, the approach 

suggested by Bennett and Hollerbach [110, 111] was described in much greater detail.  In [110], 

they provide much of the mathematical background for open-loop calibration.  They also include 

the results of several simulations. 

The “point-contact” method of [110] corresponds to the fixed-point method described in this 

chapter.  Hence, the point-contact method will be the focus of this section.  Some of the 

limitations of that work will be highlighted, and comparisons will be made with the fixed-point 

method presented in this chapter. 

Other authors have based their work on the point-contact method of [110].  Meggiolaro et al. 

used the technique to successfully calibrate a hydraulic robot with six degrees of freedom [127, 

128].  Haidegger et al. applied the method to a neurosurgical robot [129].  Abtahi et al. extended 

the technique to the calibration of a parallel manipulator with six legs [130].  Gatla et al. 

extended the point-contact method so that it does not require the robot to maintain contact with a 

physical surface [131].  Instead, the robot aims a laser pointer at a distant fixed point, which is 
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safer for the robot and can increase the accuracy.  Recently, Tan et al. used the method to 

calibrate a micropositioner with the assistance of a microscope vision system [132]. 

5.3.4.1 Limitations of the Point-Contact Method 

One limitation of the point-contact method (and other closed-loop techniques) is that it does 

not work without a precisely known length value [110].  Mathematically, this is due to a linear 

dependency among the length parameters in the identification Jacobian (section 5.3.2.2).  The 

solution used in [110] was to assume that one of the length parameters was known.  However, 

this may not be a good practical solution because the reason that the calibration is being 

performed is because accurately known parameters are not available.  Furthermore, if the known 

length parameter happens to be linearly dependent on some other parameter (due to the geometry 

of the robot), the calibration will still not work 

As pointed out in [109], a robot with accurate feedback from a prismatic joint can provide the 

requisite knowledge of length.  If the robot lacks a prismatic joint or feedback, some form of 

external measurement pertaining to a distance moved by the end-effector can be made.  In this 

case, some simple technique for obtaining the measurement is desired. 

Another limitation mentioned in [110] has to do with the orientation of the end-effector.  

Since only the end-effector’s position is constrained in point-contact calibration, the orientation 

of the end-effector is unknown.  Consequently, the paper points out that the link twist parameter 

(from the standard form of the DH convention) of the final joint (𝛼𝑛j) cannot be identified during 

calibration.  The result is that the orientation of the end-effector will remain twisted according to 

the error in the original model, even after the calibration. 

Measurements or constraints on the end-effector’s orientation would be needed to correct this 

problem.  Unfortunately, this would require external equipment or a more difficult calibration 
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procedure, which is not desirable.  Therefore, it is reasonable to accept the twist of the original 

model if the twist is not especially important for the intended application (e.g., positioning a 

cylindrical Raman probe). 

It should be noted that the unknown orientation parameter changes if a different robotics 

convention is used (e.g., Craig’s modified form of the DH convention).  In addition, other 

parameters may be affected if they are linearly dependent on the unknown orientation parameter.  

A method to detect the affected parameters is desired. 

As stated in section 5.3.3, closed-loop techniques only (attempt to) calibrate the model with 

respect to its base coordinate system.  This is due to the lack of measurements from an external 

device in some external coordinate system.  Therefore, the robot cannot move with respect to 

data in an alternate coordinate system (such as that of an imaging device) without an appropriate 

transformation.  This transformation would essentially locate the position and orientation of the 

robot’s base in the alternate coordinate system.  A registration procedure could be used to 

provide this transformation. 

In [110], there appears to be the implicit assumption that by including the loop-closing 

transformation (section 5.3.3.1), the exact location of the end-effector can be determined with 

respect to the base of the robot’s model.  Their results (Table VI of [110]) suggest that the 

technique correctly identified all of the DH parameters (excluding the known length parameter, 

the final twist parameter, and the arbitrary parameters of the loop-closing transformation).  

However, experiments have shown that there is another class of parameters that cannot be 

identified with the point-contact method. 

The experiments (described below) indicate that any parameter that has a uniform effect on 

the end-effector's constrained pose for all joint configurations is not identifiable.  For example, 

 



99 

consider the link offset parameter of the first joint (𝑑1) when the joint is revolute and the model 

uses the standard form of the DH convention.  If 𝑑1 increased by 1 cm, the calculated pose for all 

joint configurations will be extended by exactly 1 cm.  Thus, the change in 𝑑1 produces no 

relative differences among the computed end-effector locations for the joint configurations.  

Since point-contact calibration only modifies the model parameters to minimize relative 

differences in the calculated positions, no modifications will be made for the change in 𝑑1.  

Hence, 𝑑1 cannot be identified by the technique. 

Modifying 𝑑1 is equivalent to translating the entire robot (moving its base).  Since the 

closed-loop technique incorporates no absolute measurements of the end-effector’s pose with 

respect to its base (only joint values), it has no way of knowing where the robot’s base should 

actually be located.  The parameters of the loop-closing transformation (which is supposed to go 

from the end-effector to the robot's base) are variables that are included in the calibration.  

Therefore, if 𝑑1 is modified to extend all calculated poses by 1 cm, the loop-closing variables can 

simply increase to include that additional 1 cm.  Again, 𝑑1 will not be identified. 

Continuing with the same example, the same problem will occur for the first joint angle 

offset (𝜃1off).  Modifying 𝜃1off is equivalent to rotating the entire robot (spinning its base).  Any 

change in 𝜃1off will produce no relative differences among the computed end-effector locations 

for the joint configurations.  Thus, 𝜃1off will not be identifiable. 

To demonstrate the issue, a simulation experiment was performed with the robot model used 

for the point-contact example in [110].  First, 30 joints configurations were generated that caused 

the end-effector of the robot to reach an arbitrary fixed point from various orientations.  Then, 

using their initial model parameters (from Table V), a closed-loop calibration algorithm 

comparable to theirs was run on the data.  Everything was simulated without introducing any 
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noise/error into the process.  The actual/true model and the resulting calibrated model are shown 

below in Table 5.1. 

Point-
Contact 
Robot 

 
True 

Model 

Joint, i di / si (m) ai (m) αi (rad) 𝜽𝒊off (rad) 
0 1.5940 0.7370 3.6000* 0.0000* 
1 1.7220 −0.5270 −0.5030 0.1200 
2 1.0000* 0.0000 0.5300 0.0000 
3 −0.3300 −0.3300 2.3000 0.0000 
4 0.4400 −0.4400 −0.9000 0.0000 
5 −0.6600 −0.5500 1.2000 0.0000 
6 −1.7930 0.9110 −1.8600* 1.8250 

Point-
Contact 
Robot 

 
Calibrated 

Model 

Joint, i di / si (m) ai (m) αi (rad) 𝜽𝒊off (rad) 
0 1.5512 0.7547 3.6000* 0.0000* 
1 1.6836 −0.5270 −0.5030 0.1454 
2 1.0000* 0.0000 0.5300 0.0000 
3 −0.3300 −0.3300 2.3000 0.0000 
4 0.4400 −0.4400 −0.9000 0.0000 
5 −0.6600 −0.5500 1.2000 0.0000 
6 −1.7930 0.9110 −1.8600* 1.8250 

Table 5.1:  Denavit–Hartenberg parameters of the point-contact robot [110] for its true model and a 
calibrated model generated from ideal simulation data.  The parameters marked with an asterisk were 
excluded from the calibration.  The calibrated parameters shaded in gray do not match the true 
parameters. 

In Table 5.1, joint 0 represents the loop-closing transformation.  Since it is not an actual joint, 

the variable portion of the joint value (𝜃0var) was assumed to be fixed at 0 rad.  It is clear from the 

results that the calibrated values of 𝑑1 (𝑠1 in their notation) and 𝜃1off do not match the true values.  

To verify the results, some forward kinematics calculations (section 2.3.1.2) were performed. 

To demonstrate that valid joint configurations were used, the (closed-loop) position of the 

end-effector was calculated for all 30 joint configurations using the true model.  Similarly, to 

verify that the implementation of the calibration algorithm was correct, the calculations were 

repeated using the calibrated model.  Per the definition of point-contact calibration, all the 

calculated positions should be (0, 0, 0) if the data represented a fixed point and the calibration 
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algorithm operated ideally.  This is shown for two example joint configurations (from the thirty) 

in Table 5.2, where 𝜽𝑗 contains [𝜃1var,𝜃2var,𝜃3var,𝜃4var,𝜃5var,𝜃6var]: 

• 𝜽1 = [0.7019, 1.1987, −1.5348, −1.0081, −1.1480, −0.6245] rad 

• 𝜽2 = [1.3863, 0.0161, 0.2820, 0.2294, −1.9752, −0.8118] rad 

Joint 
Configuration 

Closed-Loop Position of 
True Model (Joints 0–6) 

Closed-Loop Position of 
Calibrated Model (Joints 0–6) 

𝜽1 (0.0000, 0.0000, 0.0000) m (0.0000, 0.0000, 0.0000) m 
𝜽2 (0.0000, 0.0000, 0.0000) m (0.0000, 0.0000, 0.0000) m 

Table 5.2:  Computed closed-loop end-effector positions for two example joint configurations using the 
true and calibrated models of the point-contact robot. 

Next, the loop-closing transformation (joint 0) was removed from the true and calibrated 

robot models since it is a mathematical construct that is not a part of the actual robot.  Then, the 

(open-loop) end-effector position was calculated for all 30 joint configurations.  If the calibration 

were correct, the positions calculated with the true model would match those of the calibrated 

model.  However, as shown for the two example joint configurations in Table 5.3 (and the 

others), they did not. 

Joint 
Configuration 

Open-Loop Position of 
True Model (Joints 1–6) 

Open-Loop Position of 
Calibrated Model (Joints 1–6) 

𝜽1 (−0.7370, 0.7054, 1.4294) m (−0.7547, 0.6864, 1.3910) m 
𝜽2 (−0.7370, 0.7054, 1.4294) m (−0.7547, 0.6864, 1.3910) m 

Table 5.3:  Comparison of the computed open-loop end-effector positions for two example joint 
configurations using the true and calibrated models of the point-contact robot. 

The fact that the error metric of the point-contact calibration (deviation of the closed-loop 

positions from the origin) was zero but the actual open-loop position was incorrect demonstrates 

two things.  The first is that the point-contact calibration algorithm was implemented and 

executed correctly, and the second is that the algorithm found incorrect values for 𝑑1 and 𝜃1off 
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(along with 𝑑0 and a0 of the loop-closing transformation).  This shows that the point-contact 

calibration was incapable of identifying those parameters. 

In addition, it can be noted that the incorrect parameters aren’t too distant from the correct 

ones.  By modifying the initial model or implementation details of the algorithm, an unlimited 

number of incorrect values that are arbitrarily close to the true values can be produced (while 

maintaining zero closed-loop error).  This is further evidence that those parameters are 

unidentifiable. 

Finally, the set of unidentifiable parameters can change depending on the convention used for 

the robot’s model (e.g., Craig’s modified DH convention).  In addition, any parameters that are 

linearly dependent on the unidentifiable parameters will also be unidentifiable.  As explained 

under section 5.5, several conditions can cause linearly dependent parameters (e.g., robots with 

prismatic joints).  Therefore, it is important to have a technique that can recognize and manage 

the unidentifiable parameters. 

The simulations in [110] were only run under ideal conditions.  The models had no 

ambiguous parameters (e.g., due to prismatic joints or consecutive parallel joint axes), and 

perfectly accurate values were used for parameters that were recognized as unidentifiable.  In 

addition, no noise or error was included in their simulated measurements.  Thus, their results 

were not as meaningful since problems that can occur in more realistic scenarios were not tested.  

A more complete testing of the point-contact technique would be desirable. 

5.3.4.2 Benefits of the Proposed Technique 

The fixed-point calibration technique described in this chapter has a number of beneficial 

features.  It was designed to overcome or mitigate some of the weaknesses in alternative 

techniques.  In addition, it was made to be as simple as possible for the user to execute. 
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The proposed technique includes an algorithm for the detection of unidentifiable parameters 

(section 5.4.4.2).  The algorithm automatically (without user intervention) detects and excludes 

from calibration any parameters that cannot be identified by the fixed-point technique.  This 

includes the last link’s orientation parameter, the parameters that have a uniform effect of the 

end-effector’s constrained pose, and parameters that are linearly dependent on those parameters.  

The parameters are detected for both forms of the DH convention used in this dissertation.  In 

addition, the algorithm could be easily applied to other conventions because it does not require 

the calculation of any Jacobian matrices. 

The algorithm for detecting unidentifiable parameters is integrated in the core of the 

calibration technique.  It is repeatedly executed as the parameters are calibrated.  This is 

important because the set of unidentifiable parameters depends on the true geometry of the robot, 

which is not perfectly known.  By iteratively checking for unidentifiable parameters, the result is 

more likely to be correct as the model being calibrated approaches the true model.  Note that due 

to noise/error and complexities in the model, the results may not be perfect.  However, 

experiments indicate that it works rather well (section 5.7). 

As mentioned previously, closed-loop calibration cannot always determine the scale of the 

robot, and certain parameters that determine the position/orientation of the robot’s base may be 

unidentifiable.  In addition, closed-loop calibration has no way to locate the robot’s base relative 

to some external coordinate system.  To simultaneously overcome all of these issues, the 

proposed technique includes a targeted registration process (section 5.4.5).  By performing this 

registration, the scale of the robot is determined and a transformation from the robot’s base 

coordinate system is found so that the robot can operate in an external coordinate system.  The 
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registration doesn’t actually find the true values of the unidentifiable parameters related to the 

base, but the registration transformation compensates for their combined error. 

The registration process requires the coordinates of registration points that have been 

externally measured.  While this is not ideal, it is an unavoidable necessity due to the limited 

measurement data of closed-loop calibration.  Moreover, a registration would be needed in any 

case where the robot must operate in an external coordinate system, such as that of an imaging 

device.  By solving multiple problems with a single registration, the overall process is much 

simpler for the user. 

The calibration technique allows multiple fixed points to be used instead of just a single point 

(section 5.4.3).  This provides two advantages.  The first is that it may be easier to achieve a 

sufficient number of joint configurations.  The constraints of closed-loop calibration can make it 

difficult to achieve diverse poses of the end-effector, but alternate fixed points can offer new 

possibilities for joint configurations.  The second advantage is that using multiple points 

throughout the robot’s working envelope may improve the observability of the parameters and 

accuracy of the calibration [109, 111]. 

The implemented parameter calibration algorithm (section 5.4.4) uses a bounded direct 

search technique.  It only uses the forward kinematics equations and does not require the 

computation of any Jacobian matrices.  Consequently, it would be easier to adapt the technique 

to work with other robot modeling conventions.  The technique also appears to be rather robust 

with respect to parameter uncertainties and numerical issues due to the parameter bounds and 

direct usage of the forward kinematics equations.  The direct search makes the technique 

somewhat slower, but this is not a concern for general robot calibration. 
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Finally, the presented calibration technique has been extensively tested through a variety of 

experiments (section 5.6).  The experiments included ideal and noisy simulations of four 

different robot models.  These models included ambiguous parameters, and unidentifiable 

parameters were given inexact values.  In addition, experiments were performed on two real 

robots to evaluate how the calibration algorithms perform under realistic conditions. 

5.4 Description of the Technique 

5.4.1 Overview 

The developed kinematic calibration technique is divided into four phases.  Two of the 

phases require positioning the robot and acquiring measurements, and the other two phases 

involve the execution of software algorithms.  Figure 5.1 provides an overview of the four 

phases, including their inputs and outputs.  The following sections describe the entire calibration 

technique in detail. 
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Figure 5.1:  Overview of the four phases of the developed kinematic calibration technique. 

5.4.2 External Inputs to the Technique 

As shown of the left side of Figure 5.1, there are two external inputs required by the 

calibration technique (the initial robot model and target registration point coordinates).  Unlike 

the other data, they are not generated during the execution of the calibration technique.  This 

section provides a summary of these inputs and how they can be obtained. 

The first external input, the initial DH model of the robot, is extremely important.  It provides 

the overall structure of the robot and serves as a starting point for the calibration algorithms.  If 

the initial model does not correctly portray the structure of the robot or contain reasonable 

estimates of the parameters (per section 5.4.4.3), the calibration will probably fail. 
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In the implemented version of the calibration technique, the model must be expressed in 

either the original form or Craig’s modified form of the DH convention.  The joints must be 

prismatic (linear) or revolute, or an immobile (fixed) joint can be specified.  All four DH 

parameters must be specified for each joint (with reasonable accuracy), including any fixed 

offsets for the variable joint parameters (𝜃𝑖off or 𝑑𝑖off). 

Ideally, the initial model of the robot can be obtained from the manufacturer.  The 

manufacturer should have access to the component schematics of the robot, from which 

relatively accurate DH parameters can be produced.  The errors in a DH model from a 

manufacturer should only be the result of limitations in the manufacturing/assembly process or 

wear to the device. 

If an initial model is not available, one can be generated with some effort.  First, it is 

necessary to create a general DH model of the robot that encompasses all the joints, links, 

coordinate frames, etc.  This process can be found in a book on robotics, such as [28].  Next, the 

lengths and angles of the robot must be carefully measured to assign relatively accurate values to 

the DH parameters.  This can be accomplished using common measurement tools, such as a 

caliper and protractor.  Some ingenuity or disassembly may be required to measure parts of a 

robot with a complicated structure. 

The second external input is the target registration point coordinates.  These points represent 

the fixed locations on some object with which the robot must be registered.  The object must be 

rigid (not deformable) to ensure that the registration points are in known locations.  For example, 

indented points on a hard plastic skull were used for testing the image guidance system in 

Chapter 4. 
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The coordinates of the registration points should be expressed in some chosen target 

coordinate system.  The target coordinate system is specific to chosen application, and it doesn’t 

have to be similar to the robot’s base coordinate system.  For instance, a starting position on the 

surface of a spacecraft could be designated as the origin of a target coordinate system for an 

outer space application.  For environments that have been scanned with an imaging device (e.g., 

a human patient), the coordinate system of the imaging devices can be used. 

There are different ways by which the coordinates of the registration points can be obtained 

in the target coordinate system.  It could involve precise measurement of a target object using a 

device like a coordinate measuring machine.  If accurate imaging of the object has been 

performed, the registration point coordinates can be derived from the imaging data.  For 

example, the coordinates of the registration points on the phantom skull of Chapter 4 were 

obtained by locating the indented points in CT scan data of the skull.  In this case, the CT 

imaging data both defined the target coordinate system and provided the coordinates of the 

registration points. 

At least three registration points must be available.  The registration points are used to find 

seven unknown parameters, and three equations can be written for each registration point.  

Additional registration points are preferred to help reduce the effects of error when attempting to 

position the robot’s end-effector at the registration points. 

5.4.3 Phase 1:  Measurement of Joint Configurations 

The developed calibration technique does not rely on measurements from an external device, 

such as a laser interferometer or stereo camera system.  Instead, it only uses measurements of the 

joint values (angles or lengths) of the robot.  Most robots have built-in sensors (e.g., encoders) 
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that provide this information since it is typically used to move and track a robot.  Hence, the 

measurements can generally be performed without modifying the robot. 

When the end-effector of the robot is held in a particular pose, all of its joints have specific 

values that enable the end-effector to achieve the pose.  The variable value of a revolute or 

prismatic joint is denoted by 𝜃𝑖var or 𝑑𝑖var, respectively.  As mentioned before, a set of joint values 

that produces a particular pose of the end-effector will be referred to as a joint configuration.  

The number of values in a complete joint configuration is equal to the number of joints in the 

robot. 

As indicated in Figure 5.1, the presented calibration technique requires the measurement of 

multiple joint configurations that enable the end-effector to reach a particular fixed point from 

different orientations.  In other words, the tip of the end-effector must be kept in a fixed position 

while the robot’s joints are manipulated to achieve different approaches to the fixed position. 

If the robot can be moved by hand, it can be relatively simple to generate the required joint 

configurations.  One simply has to hold the end-effector at a fixed point (e.g., a mark on a flat 

surface), repeatedly alter the robot’s joints (while maintaining contact with the fixed point), and 

ask the robot’s control system to record the joint values.  This process can be executed using 

only the human hand and eye. 

If the robot cannot be moved by hand, it is more difficult to generate the required joint 

configurations.  The robot cannot simply be commanded to move to the fixed point because the 

kinematic calculations would be using the uncalibrated model, which would lead to inaccurate 

positioning.  An iterative approach could be used in which the operator makes small corrections 

that compensate for the error, although this would be time consuming.  Alternatively, the end-

effector can be attached to a fixture that functions like a ball joint, keeping the end-effector at a 
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constant position but allowing the orientation to vary.  In either case, force control will be 

necessary to ensure the robot or fixture is not damaged when the robot is moved.  Examples of 

such control schemes can be found in the literature [113, 128, 133]. 

In order to approach a fixed point from different orientations, the robot must possess a 

sufficient number of degrees of freedom.  Since rotating about a fixed point uses three passive 

degrees of freedom, a manipulator with at least four degrees of freedom should work [110].  In 

some cases, it is possible to use a robot with three degrees of freedom (per section 5.6.2.3 on the 

PUMA 560), but it is much harder to achieve a sufficient number of poses, and multiple fixed 

points may be required. 

It is important to obtain a sufficient number of joint configurations for the calibration 

algorithms.  The number of equations that can be formed from the measurements must meet or 

exceed the unknown variables (DH parameters) [62].  The presented calibration technique uses a 

fixed-point position with varying end-effector orientations, which means that only the (relative) 

position is known.  Since each of the three positional coordinates (x, y, and z) is a function of the 

DH parameters, three equations can be formed for each measured joint configuration. 

A robot with nj joints has a total of 4nj (unknown) DH parameters.  If njc is defined as the 

number of measured joint configurations, then the inequality in Equation 5.8 must be satisfied to 

ensure a sufficient number of joint configurations are obtained.  Note that in practical 

applications, additional configurations should be acquired to reduce the effects of errors and 

potential dependencies in the data. 

 3𝑛jc ≥ 4𝑛j Equation 5.8 
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Finally, the presented technique allows multiple fixed points to be used.  There are two 

reasons for having this feature.  First, it may be physically easier to acquire joint configurations 

from multiple fixed points instead of a single one.  It some cases (as in section 5.6.2.3), it may 

even be necessary in order to obtain a sufficient quantity of configurations.  Second, choosing 

points throughout the working envelope may result in a more accurate parameter calibration.  A 

number of techniques have been developed for choosing the best sets of poses for observability 

of the parameters [109, 111]. 

5.4.4 Phase 2:  Execution of the Calibration Algorithms 

After a sufficient number of joint configurations have been captured from fixed point(s), the 

next phase entails the execution of the kinematic calibration algorithms.  As indicated by Figure 

5.1, these algorithms use the measured joint configurations and an initial DH model of the robot 

to produce a calibrated model of the robot.  Collectively, the calibration algorithms can be 

classified as offline, which means that all the input data must be available before execution. 

There are a total of three algorithms used for the calibration process.  The main algorithm is 

called the high-level calibration algorithm because it runs the other algorithms.  The other 

algorithms are the effective parameter identification algorithm and the parameter optimization 

algorithm.  All three of the algorithms are described in the following sections. 

5.4.4.1 High-Level Calibration Algorithm 

The high-level calibration algorithm is summarized in Figure 5.2.  Its purpose is to generate a 

calibrated model of the robot using an initial model and the recorded joint configurations.  The 

high-level algorithm iteratively executes the other two algorithms until a suitable calibrated 

model is produced. 
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Figure 5.2:  Diagram of the high-level calibration algorithm. 

Step 1 of the algorithm is to convert the initial model and joint configuration (pose) data to 

standard units of measurement.  For simplicity, lengths are converted to meters, and angles are 

translated to radians.  There are more complicated ways to scale the DH parameters and end-

effector pose values for potentially better performance [111], but the simple conversion was 
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found to be sufficient.  In addition, the technique’s focus on position error means that the units 

do not have to be scaled to make orientation error comparable to position error. 

In step 2, the effective parameter identification algorithm is executed to generate an initial 

list of effective DH parameters.  Effective parameters are defined as those that have an effect 

(when modified) on the chosen error metric, and thus can be calibrated.  (Section 5.4.4.2 has 

more details.)  The effective parameters are identified so the optimization algorithm only tries to 

alter parameters that have a chance of improving the model.  In fact, attempting to modify the 

ineffective parameters is likely to result in a worse model because the algorithm cannot detect 

when the changes have a negative effect. 

For the initial list of effective parameters, the identification algorithm is run in “deep” mode.  

This means that the algorithm attempts to find the effective parameters using not only the initial 

DH model, but also using modified versions of the DH model (explained in section 5.4.4.2).  

This is done because the starting model is uncalibrated and thus cannot be trusted to produce the 

ideal list of effective parameters.  The goal of the initial deep search is to find all the parameters 

that could potentially be effective.  This list may ultimately contain too many parameters, but the 

largest list is desired for the first attempt at calibration. 

For step 3, the parameter optimization algorithm is run to calibrate all of the identified 

effective parameters.  This algorithm is described in section 5.4.4.3.  The accuracy of the 

calibrated parameters depends upon the accuracy of the effective parameter list (among other 

things).  Hence, it is important to recheck the effective parameter list, as explained below. 

In step 4, the effective parameter identification algorithm is executed again on the newly 

calibrated model.  This time, the identification is run in “regular” mode.  In this mode, the 

algorithm finds the effective parameters using only the calibrated model (not any modified 
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versions of it).  Therefore, the generated list of effective parameters represents the best 

estimation (so far) of the list of parameters that should have been calibrated.  Note that due to 

noise and other sources of error, it may not be possible to find the ideal list of effective 

parameters. 

For step 5, the new list of effective parameters is compared against the previously calculated 

list of effective parameters.  If there are any differences, it means that the parameter optimization 

algorithm probably did not calibrate the ideal list of parameters and thus did not generate the best 

possible calibration.  In this case, the high-level algorithm returns to step 3 to make another 

attempt at calibrating the robot’s model using the new list of effective parameters. 

If there was no change in the list of effective parameters, it is assumed that the parameter 

optimization algorithm ran on the correct list of effective parameters and therefore produced the 

best possible calibration.  This is the desired case, which may take a few iterations to achieve.  

Consequently, the high-level algorithm proceeds to step 6. 

It is possible for the new list of effective parameters to be different from the immediately 

previous list but match some preceding list.  If left unhandled, this would lead to a cycle and 

hence an infinite loop.  Thus, there is some additional logic to prevent cycles from occurring in 

the lists of effective parameters.  If a repeat list is produced, the algorithm computes the 

intersection (from set theory) of the list(s) produced after the original matching list.  It then 

repeats the comparison of step 5 to determine how to proceed. 

In step 6, the units of measurement of the final calibrated model are restored to the original 

units.  This makes the previous conversion of units invisible to the user.  With this step, the high-

level calibration algorithm is complete. 
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The final calibrated model (along with the set of registration parameters) is an important 

output of the overall calibration technique.  It serves as the replacement for the initial 

uncalibrated model, and it is used in the next phase of the technique.  If everything goes as 

intended, the calibrated model should provide higher accuracy than the initial model when 

combined with the registration parameters. 

5.4.4.2 Effective Parameter Identification Algorithm 

The goal of the effective parameter identification algorithm is to identify a list of model 

parameters that have an effect (when modified) on the error metric chosen for the calibration.  

This needed because of the issues discussed in section 5.3.4.1.  This algorithm is called by the 

high-level calibration algorithm.  Its inputs are the current DH model under evaluation, all of the 

measured joint configurations, and the search type (“deep” or “regular”).  The algorithm uses this 

data to produce an effective parameter list.  An overview of the algorithm is shown in Figure 5.3. 
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Figure 5.3:  Diagram of the effective parameter identification algorithm. 
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For step 1, the algorithm begins by assuming that all the parameters are ineffective.  In step 

2, the value of an error metric is computed for the current DH model.  The chosen error metric is 

the mean deviation of the end-effector from the (estimated) fixed-point location(s).  It is 

calculated in two stages. 

First, each fixed-point location is estimated (because the technique uses no absolute external 

measurements).  This is accomplished by computing the mean position of the end-effector when 

all the joint configurations for a specific fixed point are run through the forward kinematics 

algorithms (section 2.3.1.1) using the current DH model.  Equation 5.9 shows the formula. 

The following terms are used in Equation 5.9: 

• 𝒑�ep,𝑖 is the estimated location (position) of fixed point i 

• njc,i is the number of joint configurations (poses) measured for fixed point i 

• 𝒑ee,𝑖,𝑘 is the position of the end-effector (computed using forward kinematics) for the 

kth joint configuration associated with fixed point i 

Second, the mean deviation of the end-effector’s position from the estimated fixed-point 

locations is determined.  This is achieved by calculating the end-effector’s position for each joint 

configuration (using the forward kinematics equations with the current DH model) and 

computing the Euclidean distance from the end-effector to the corresponding fixed point.  

Equation 5.10 and Equation 5.11 represent this process. 

 
𝒑�ep,𝑖 =

∑ 𝒑ee,𝑖,𝑘
𝑛jc,𝑖
𝑘=1
𝑛jc,𝑖

 
Equation 5.9 

 𝑑𝑖,𝑘 = �𝒑�ep,𝑖 − 𝒑ee,𝑖,𝑘� Equation 5.10 
 

�̅� =
∑ ∑ 𝑑𝑖,𝑘

𝑛jc,𝑖
𝑘=1

𝑛ep
𝑖=1

𝑛jc
 

Equation 5.11 
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 The following new terms are used in the above equations: 

• di,k is the Euclidean distance (deviation) between the estimated location of fixed point 

i and end-effector pose k of those measured at fixed point i 

• �̅� is the error metric (the mean deviation of the end-effector from the estimated fixed-

point locations) 

• nep is the number of fixed-point locations used for the joint configuration data 

• njc is the total number of measured joint configurations (poses) for all fixed points 

For step 3, one DH parameter is temporarily perturbed by a significant value (1000 m or 

π/3 rad in the implemented algorithm).  The value is large to ensure that any impact on the error 

metric is also significant.  In step 4, the mean deviation is recalculated (per Equation 5.11) using 

the DH model with the temporarily perturbed parameter.  Afterwards, the perturbed parameter is 

restored to its previous value. 

For step 5, the mean deviations computed before and after perturbing the parameter are 

compared.  If the mean deviation changed, it means that the parameter had an effect on the error 

metric.  In this case, the parameter is marked as “effective” in step 6.  Otherwise, the parameter 

is left as ineffective. 

In step 7, the algorithm checks to see if all the DH parameters had a chance to be perturbed.  

If not, the algorithm returns to step 3 to repeat the process with the next parameter.  This loop 

will continue until all the DH parameters of the robot model have been evaluated.  Once the loop 

has finished, a complete list of the effective parameters has been generated. 

In step 8, the algorithm checks its inputs to determine the type of search being performed.  If 

it is a “regular” search, no further processing is necessary.  Thus, the effective parameter list is 
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returned to the high-level calibration algorithm, ending the effective parameter identification 

algorithm.  If it is a “deep” search, the algorithm continues to step 9. 

For step 9, the newly generated list of effective parameters is compared with the previous list 

of effective parameters.  For the first iteration of a “deep” search, the previous list is considered 

to be the empty list (all parameters considered to be ineffective).  If there are no changes to the 

list, the algorithm is complete, and the list is returned to the high-level calibration algorithm.  If 

any changes are found, the algorithm continues to step 10. 

In step 10, the input DH model is modified to help find more parameters that may be 

effective.  Any null effective parameters (those with a length of roughly 0 m or an angle that is 

approximately a multiple of 2π rad) are set to a non-null value.  The intention is to help find 

effective parameters that may be hidden by nearby null parameters.  For example, a parameter 

that controls the rotation of a link with an uncalibrated length of 0 m might not appear to have 

any effect on the end-effector’s position.  However, if the link’s length is actually greater than 

0 m, the rotational parameter could be effective.  Therefore, any effective parameters with a null 

value are modified in step 10 to promote the discovery of additional effective parameters. 

After step 10, the algorithm returns to step 2 using the modified input DH model.  The 

subsequent steps are run to determine if any more effective DH parameters can be identified.  

The whole process iteratively repeats until the effective parameter list is found not to have 

changed in step 9.  At this point, the algorithm is finished, and the final list of effective 

parameters is returned to the high-level calibration algorithm. 

Note that due to noise/error and complexities of the model, the identified set of effective 

parameters may not be ideal.  It is possible for some ineffective parameters to be marked as 

effective and vice versa.  To perfectly identify the effective parameters, the true model and 
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perfect measurements would have to be available.  Since this is not a realistic requirement, the 

algorithm does the best it can with the data available.  Mistakes may be mitigated by the fact that 

is algorithm is run multiple times throughout the calibration process, the calibrated parameters 

are bounded (section 5.4.4.3.1), and the registration algorithm can compensate for some 

problems (section 5.4.6). 

It should also be noted that steps 1 through 7 are often accomplished in the literature using 

the identification Jacobian matrix [105, 112].  By performing a singular value decomposition or 

QR decomposition of the matrix and analyzing the results, it is possible to determine which 

parameters are unidentifiable, weakly identifiable, or only identifiable in linear combinations of 

parameters [111].  Section 5.3.2.2 has more details.  The presented calibration technique does not 

require Jacobian matrices to be computed, so the method described in this section for identifying 

parameters was created.  Steps 8 through 10 would remain the same for any identification 

method. 

5.4.4.3 Parameter Optimization Algorithm 

The purpose of the parameter optimization algorithm is to perform a calibration of all model 

parameters identified as effective.  This algorithm is called by the high-level calibration 

algorithm of section 5.4.4.1.  It uses the measured joint configurations along with the current DH 

model and effective parameter list to achieve its goal.  A diagram of the algorithm is shown in 

Figure 5.4. 
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Figure 5.4:  Diagram of the parameter optimization algorithm. 

Step 1 of the optimization algorithm is to compute an initial mean deviation using the 

inputted DH model.  The calculations are the same as those described in the previous section 

using Equation 5.11 and its supporting equations.  The initial mean deviation is used later in the 

algorithm to help determine when the optimization is complete. 

In step 2, the mathematical optimization of an objective function (𝑓cal) is performed to 

calibrate the effective DH parameters.  The objective function calculates the previously defined 

error metric, �̅�, which represents the mean deviation of the end-effector from the (estimated) 

fixed-point location(s).  Therefore, the objective function encapsulates Equation 5.11 and all its 
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supporting equations, including the requisite forward kinematics equations (from section 

2.3.1.1).  Equation 5.12 summarizes the direct relationship between the calibration objective 

function, 𝑓cal, and the error metric, �̅�. 

The following new terms are defined for Equation 5.12: 

• 𝑀 is a set of all the non-variable DH parameters of the robot model (including both 

the effective parameters, 𝑀eff, and the ineffective parameters, 𝑀ineff).  The parameters 

that represent variable joint values (𝜃𝑖var or 𝑑𝑖var) are contained in the following set. 

• 𝐶 is a set of all the measured joint configurations (the sets of joint values associated 

with each fixed point). 

Equation 5.12 specifies that the mean deviation is a function of the robot model parameters 

and the joint configurations.  Assuming all the joint configurations were captured correctly, the 

robot model parameters are the primary source of error (deviation).  Therefore, the error can be 

minimized by finding a set of DH parameters that minimizes the objective function.  The 

optimized DH parameters will represent the calibrated robot model. 

As explained previously, only the effective DH parameters are intended to be calibrated by 

this algorithm.  Attempting to modify the ineffective parameters would likely increase the pose 

error produced by the model because the error metric cannot be used to guide their calibration.  

Therefore, the goal of the optimization is to choose a set of effective DH parameters that 

minimizes the value of the objective function.  Equation 5.13 demonstrates this objective. 

 �̅� = 𝑓cal(𝑀,𝐶) Equation 5.12 

 𝑀eff,cal = arg  min
𝑀eff

𝑓cal(𝑀eff,𝑀ineff,𝐶) 
Equation 5.13 
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In Equation 5.13, 𝑀eff,cal represents the calibrated effective DH parameters.  They are found 

using an optimization method that is explained in section 5.4.4.3.1.  The calibrated effective 

parameters, 𝑀eff,cal, must be combined with the (unoptimized) ineffective parameters, 𝑀ineff, to 

produce a complete set of model parameters.  This new set of parameters is the output of step 2. 

For step 3, the mean deviation is recalculated (Equation 5.11) using the newly optimized DH 

model.  In step 4, the percentage decrease from the previous mean deviation to the new deviation 

is computed and compared to a threshold.  The default threshold is 1% in the implemented 

algorithm, but it can be adjusted to control how aggressively the algorithm searches for an 

answer.  If the percentage decrease in mean deviation is greater than the threshold, the algorithm 

returns to step 2.  In this case, the new DH model is used as the input model,  𝑀, for the 

optimization of the objective function.  Otherwise, the algorithm exits and returns the newly 

optimized DH model to the high-level calibration algorithm. 

The reason for the loop between steps 2 and 4 is to help ensure that the optimization method 

achieves a good solution for the optimized model.  The complexity of the objective function can 

cause the optimization method to produce a solution that is less than optimal if the initial DH 

model isn’t very accurate.  One reason for this is the lack of absolute end-effector measurements, 

which requires the fixed-point locations to be estimated (Equation 5.9 in the previous section).  

The estimated fixed-point locations depend on the current DH model, and the objective function 

depends on the estimated locations.  Therefore, it is almost like the surface of the objective 

function changes as the parameters change, which makes the optimization more challenging.  

This issue is less of a problem when the parameters are more accurate and thus require less 

change. 
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Finally, it is important to mention that the objective function, like the overall calibration 

technique, only takes into account the mean positional deviation of the end-effector.  The 

measured data does not enable any calculation of error in orientation.  Thus, although the final 

model should improve the positional accuracy of the end-effector, some orientation error is likely 

to remain. 

5.4.4.3.1 Optimization of the Calibration Objective Function 

Finding an optimized set of effective parameters (Equation 5.13) can be a difficult task.  The 

number of effective parameters is typically large (up to four per joint), which means the search 

space for a solution has a high dimension.  In addition, the objective function (Equation 5.12) is a 

complicated nonlinear function.  Consequently, there is no simple equation that will produce the 

desired set of parameters.  Instead, a method based on mathematical optimization or nonlinear 

estimation can be used to find a solution. 

In the implemented algorithm, a standard optimization technique, the Nelder–Mead simplex 

method [76], is used to optimize the objective function.  This method constructs a simplex (the 

generalization of a triangle to higher dimensions) in the parameter space.  If neff is the number of 

parameters being optimized, then the simplex consists of neff+1 vertices.  Each vertex represents 

a possible set of effective parameters.  Through iterative evaluation of the objective function at 

numerous test points (sets), each vertex is slowly moved in the direction of decreasing error.  

Eventually, the simplex converges about a point that represents the optimized set of effective 

parameters. 

The simplex method does not require any gradients or Jacobian matrices to be calculated, 

which makes it easier to adapt to different robot conventions.  Other calibration techniques often 

use a gradient-based method like the Gauss–Newton or Levenberg–Marquardt algorithms to find 
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the solution [105, 111].  In general, these methods converge much faster, but they require 

Jacobian matrices to be computed.  In addition, a direct search algorithm like the simplex method 

may be more forgiving of numerical issues than the gradient-based methods [105]. 

It is possible for the chosen optimization technique (or any other) to produce incorrect or 

unexpected solutions when trying to minimize the objective function.  The resulting robot 

models may differ from the desired model in subtle or significant ways.  There are at least five 

different causes for this issue, which are summarized below. 

First, the presence of noise and other sources of error in the joint measurements will prevent 

the optimization from generating an ideal solution.  The accuracy of any calibration depends 

upon the quality of the data on which it is based.  Special care should be taken during the 

measurement of joint configurations to avoid introducing any additional noise/error. 

Second, the fact that parameters marked as “ineffective” are not calibrated will almost 

certainly lead to an inexact solution.  Unless the ineffective parameters had perfect values from 

the start, their values in the final model will remain imperfect.  The registration process attempts 

to compensate for these deviations, but it still means that the calibrated DH model is not ideal.  

In addition, there will be further error if any parameters are improperly identified as “effective” 

or “ineffective”.  The list of effective parameters is rechecked after every optimization to help 

prevent this from happening. 

A third cause of alternate solutions is the fact that a DH model is often not an ideal, minimal 

representation of a robot.  As explained under section 5.5, there can be poorly defined or 

redundant DH parameters, which means there are multiple sets of parameters that effectively 

produce the same robot.  For example, the presence of prismatic joints or consecutive parallel 

joint axes will lead to such problems.  Therefore, the optimization method is likely to find one of 
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the alternative solutions if the robot’s structure has any of these issues.  Even though the solution 

might not exactly match the physical structure of the robot, the positional accuracy of the end-

effector will be the same as that for all of the equivalent models. 

Fourth, the optimization method might find a trivial (but unrealistic) solution for minimizing 

the objective function.  For example, the error can be zero if all the length parameters are set to 

0 m or all the joint axes are made parallel.  To avoid these kinds of incorrect solutions, the search 

space for 𝑀eff can be constrained to small region around the initial parameter values of 𝑀eff.  

This remedy assumes a reasonable initial model of the robot is available (which is required by 

the calibration technique). 

Fifth, non-ideal solutions may be produced if the optimization method becomes stuck at a 

local minimum of the objective function.  In general, optimization methods cannot always 

achieve the ideal, global minimum value of an objective function.  To reduce the chance of 

finding a local minimum, the optimization method should start its search from a reasonable 

estimate of the solution.  In this case, the starting point can be the initial DH model of the robot.  

A kinematic model based on the DH convention is only mildly nonlinear [111], so a good initial 

model should help the optimization method achieve the correct solution. 

Therefore, to help the optimization method achieve the best possible solution, two measures 

are taken with respect to its execution.  First, the initial model of the robot is used for the starting 

parameters of the optimization.  This also reduces the time needed to find the solution.  Second, 

each parameter being optimized is given an upper bound and a lower bound based on the 

corresponding initial parameter.  The optimization method will not exceed the specified bounds 

while searching for optimal parameter values.  For the implemented algorithm, these bounds 
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default to ±2 cm for length parameters and ±0.3 rad for angular parameters (with respect to the 

initial parameters). 

The bounds for the parameters can be adjusted to suit the accuracy of the initial model.  For a 

more precise model, smaller bounds can be used to increase the speed of the search.  However, 

the bounds must be at least as large as the maximum error in any of the initial DH parameters, or 

the correct solution will fall outside the optimization method’s search space.  For less precise 

models, larger bounds must be used.  Note that if the bounds are too large, non-ideal solutions 

are more likely to be found. 

With these measures in place, the optimization was found to be sufficiently robust.  For 

example, it was able to handle robot models with parallel or nearly parallel consecutive joint 

axes.  Commonly, an alternative robotics convention (such as one based on Hayati’s system 

[134]) is used to avoid numerical issues that occur with parallel axes (section 5.5).  All of the 

experiments in this chapter (section 5.6) were successfully executed on challenging robot models 

using only standard DH conventions. 

5.4.5 Phase 3:  Measurement of Registration Points 

As shown in Figure 5.1, the coordinates of registration points are used by the presented 

technique.  The coordinates of these points need to be known in two different coordinate 

systems.  The first is the target coordinate system, which is used to define positions in the robot’s 

operating environment.  The second is the robot’s base coordinate system, which is specific to 

the robot model being used. 

The registration point coordinates in the target coordinate system are assumed to be an 

external input to the system, as explained in section 5.4.2.  The coordinates in the robot’s base 

coordinate system must be acquired during this phase of the calibration technique.  Once the 
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coordinates of the registration points are available in both systems, the registration algorithm can 

generate the registration parameters (section 5.4.6).  The parameters enable the robot to operate 

in a target coordinate system instead of being limited to the robot’s base coordinate system. 

The process of obtaining the registration point coordinates in the base coordinate system is 

very similar to the method used to measure the fixed-point joint configurations in section 5.4.3.  

First, the user must place the end-effector of the robot at one of the registration points on the 

object to which the robot is being registered.  This can be accomplished via manual positioning 

or a more complicated control scheme.  Once the end-effector is accurately positioned at the 

registration point, the joint configuration of the robot must be recorded using the robot’s control 

system. 

The same process needs to be repeated for each of the remaining registration points.  In 

addition, the identity of the registration point associated with each joint configuration should also 

be recorded.  This will enable the registration algorithm to compare the correct pairs of 

coordinates between the two coordinate systems. 

Finally, using each of the newly recorded joint configurations, the position of the end-

effector can be calculated using forward kinematics (section 2.3.1.1).  These positions represent 

the coordinates of the registration points in the robot’s base coordinate system.  Note that the 

forward kinematics must be performed using the calibrated robot model from the previous phase.  

This ensures that the registration algorithm corrects the calibrated model instead of the obsolete 

initial model. 

5.4.6 Phase 4:  Execution of the Registration Algorithm 

The registration of the robot is executed for two reasons.  First, it enables the robot to operate 

in a desired target coordinate system instead of being limited to the robot’s base coordinate 
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system.  For example, this would allow the robot to easily and accurately move to locations 

determined from imaging data of the environment.  Second, the registration compensates for 

some limitations of the data collected for the calibration process.  In effect, it enables the position 

and orientation of the robot’s base and the scale of the robot to be found, which may not be 

correct in the calibrated DH model. 

The inputs to the registration algorithm are the coordinates of the registration points in both 

the robot’s base coordinate system and the target coordinate system.  Using this data, it generates 

a transformation between the two coordinate systems.  This transformation is defined by 

registration parameters that indicate how to translate, rotate, and scale the calibrated robot model 

to achieve accurate positioning in the target environment.  An overview of the registration 

algorithm is shown in Figure 5.5. 

 
Figure 5.5:  Overview of the registration algorithm. 

There are a total of seven registration parameters.  The three translation parameters 

(∆x, ∆y, ∆z) and three rotation parameters (φ, θ, ψ) define the necessary changes in the position 

and orientation (respectively) of the robot model’s base.  These parameters conceptually move 

the entire robot so that its base coordinate system aligns with the target coordinate system.  This 

transformation also compensates for the ambiguous definition of the robot’s base in the 

calibrated DH model, which results from the lack of absolute position measurements in the 

presented calibration technique.  Sections 5.3.3 and 5.3.4.1 have more information. 
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The translation parameters (∆x, ∆y, ∆z) represent the distances along the three axes of the 

base coordinate system that the base of the robot must be moved (conceptually, not physically).  

The rotation parameters (φ, θ, ψ) describe the overall change in orientation of the robot’s base 

that must occur relative to the base coordinate system.  Specifically, the rotation parameters 

represent Euler angles, which are described in section 2.3.1.1. 

The final parameter is the scale parameter, s.  This parameter defines the change in the scale 

(size) of the calibrated robot model that is necessary to achieve accurate positioning.  It is a 

dimensionless quantity that represents the ratio of the new size of the robot model to its original 

size.  This parameter is important because the lack of absolute position measurements in the 

presented calibration technique can cause the calibrated robot model to have the wrong scale (in 

some instances).  Sections 5.3.3 and 5.3.4.1 have more information. 

The goal of the registration algorithm is to generate a specific set of registration parameters.  

This set will be used to produce a transformation.  When the transformation is applied to any 

point expressed in the robot’s base coordinate system, the coordinates of the transformed point 

should match the coordinates of the same point expressed in the target coordinate system.  

Hence, the transformation derived from the registration will allow the position of the end-

effector (or any frame of the robot) to be known in the target coordinate system.  This 

information will enable the robot to accurately operate within the target environment.  The 

inverse of the transformation will also permit any point in the target coordinate system to be 

expressed in the robot’s base coordinate system. 

The registration algorithm only has access to the registration points measured in phase 3 (and 

those provided as an external input).  Thus, it must generate the set of registration parameters 

(and the corresponding transformation) using only these points.  When the transformation is 
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applied to the registration points expressed in the robot’s base coordinate system, the coordinates 

of the transformed points should match the coordinates of the corresponding points expressed in 

the target coordinate system. 

The mathematical optimization of an objective function (𝑓reg) is performed to generate the 

necessary registration parameters.  The objective function performs three tasks.  First, it applies a 

transformation based on the current set of registration parameters to each registration point 

expressed in the robot’s base coordinate system.  Second, it computes the Euclidean distance 

between each transformed point and the corresponding point expressed in the target coordinate 

system.  Third, it calculates the mean of the distances and returns this value as a measure of the 

registration error.  Equation 5.14 represents the objective function. 

The following terms are used in Equation 5.14: 

• 𝑅 is a set of registration parameters: {∆𝑥,∆𝑦,∆𝑧,𝜑,𝜃,𝜓, 𝑠} 

• 𝑛rp is the number of registration points 

• 𝑷b is a 3 × 𝑛rp matrix that contains column vectors of the positional coordinates of 

the 𝑛rp registration points expressed in the robot’s base coordinate system 

• 𝒑b,𝑖 is a 4 × 1 homogeneous position vector containing column 𝑖 of 𝑷b with an 

additional value of  ‘1’ in the 4th location 

• 𝑷t is a 3 × 𝑛rp matrix that contains column vectors of the positional coordinates of 

the 𝑛rp registration points expressed in the target coordinate system 

 
𝑓reg(𝑅,𝑷b,𝑷t) =

∑ �𝑭trans(𝑅)𝒑b,𝑖 − 𝒑t,𝑖�
𝑛rp
𝑖=1

𝑛rp
 

Equation 5.14 
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• 𝒑t,𝑖 is a 4 × 1 homogeneous position vector containing column 𝑖 of 𝑷t with an 

additional value of  ‘1’ in the 4th location 

In Equation 5.14, 𝑭trans(𝑅) is a function that generates a transformation from the base 

coordinate system to the target coordinate system based on the input set of registration 

parameters.  It is defined by the following equations. 

The following terms are used in the above equations: 

• 𝑻 b t is the matrix representation of a homogeneous transformation from the robot’s 

base coordinate system to the target coordinate system. 

• 𝑻c is a homogeneous transformation matrix that combines the change in position 

defined by (∆𝑥,∆𝑦,∆𝑧) and the change in orientation defined by (𝜑,𝜃,𝜓). 

• 𝑹𝜑,𝜃,𝜓 is a 3 × 3 rotation matrix that is equivalent to the change in orientation defined 

by (𝜑, 𝜃,𝜓).  It is computed using Equation 2.6 from section 2.3.1.1. 

• 𝑻s is a homogeneous transformation matrix that represents the change in scale 

defined by s. 

The objective function must be minimized by finding an optimal set of registration 

parameters, 𝑅opt.  Equation 5.18 represents this goal.  Note that the optimal registration 

 𝑭trans(𝑅) = 𝑭trans(∆𝑥,∆𝑦,∆𝑧,𝜑,𝜃,𝜓, 𝑠) = 𝑻 b
t = 𝑻c𝑻s Equation 5.15 

 

𝑻c = �

   ∆𝑥
 𝑹𝜑,𝜃,𝜓  ∆𝑦
   ∆𝑧
0 0 0 1

� 

Equation 5.16 
 

𝑻s = �

𝑠 0 0 0
0 𝑠 0 0
0 0 𝑠 0
0 0 0 1

� 
Equation 5.17 
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parameters will probably not produce a perfect transformation due to the noise and other sources 

of error in the measurement of the registration points. 

Mathematical optimization can be used to find the set of registration parameters that 

minimizes the objective function.  As with the parameter optimization algorithm, the Nelder–

Mead simplex method [76] was used.  However, unlike the parameter optimization algorithm, no 

additional iterative procedure is needed.  This is because the registration objective function is 

much simpler than the calibration objective function.  In addition, the number of registration 

parameters (seven) is much smaller than the number of DH parameters for any robot that can be 

used with the calibration technique. 

With the computation of the optimal registration parameters, the kinematic calibration 

technique is complete.  The robot model produced in phase 2 serves as the new, calibrated model 

of the robot.  The transformation provided by the optimized registration parameters enables the 

robot to work in the target coordinate system and overcomes some limitations of the data 

collected for the calibration process. 

5.5 Caveats for the Technique 

There are a few points that the user should be aware of when using the present fixed-point 

calibration technique.  Some of these issues are caused by limitations in the technique, and others 

are the result of more general challenges in robot calibration.  These points are found in the 

sections below. 

 𝑅opt = arg  min
𝑅

𝑓reg(𝑅,𝑷b,𝑷t) 
Equation 5.18 
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5.5.1 Limitations of Denavit–Hartenberg Parameters 

In general, DH parameters do not form an ideal or minimal representation of a robot’s 

geometrical structure.  A number of issues with the DH convention can be found in literature [28, 

63, 105, 111].  Some common problems are described below. 

Only two of the four DH parameters are required to specify a prismatic joint.  Consequently, 

there is no one correct way to set the remaining parameters.  If these parameters are included in a 

calibration, their calibrated values could end up being very different from any expected values.  

This does not indicate an error in the calibration; they simply have no specific true values. 

When there are consecutive parallel joint axes in a robot’s model, the parameters that define 

the common normal between the axes are no longer unique.  Hence, this issue is another cause of 

ambiguous parameters in a DH model.  If the joint axes are nearly (but not exactly) parallel, then 

the normal becomes unique.  However, this situation causes small errors in the alignment of the 

axes to produce large changes in the parameters.  As a result, many calibration techniques have 

trouble performing the calibration.  To avoid this problem (in some cases), an alternate robot 

modeling convention based on the Hayati system is often used [134]. 

Another problem can occur if there are any fixed (immobile) joints in the robot.  Some 

parameters for these joints will be linearly dependent on other parameters (per section 5.3.2.2), 

which means that they cannot be uniquely identified.  This can cause issues in some calibration 

techniques or simply produce results that are unexpected (but correct). 

In summary, one cannot expect there to be a single true DH model for a robot.  There may be 

an infinite number of equally correct models.  A model might not match the physical structure of 

the robot but still produce correct results.  No assumption should be made that a calibrated model 
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must match a given “true” model is invalid.  A calibrated model should always be tested using 

objective metrics like end-effector positional accuracy to determine if the model is correct.   

5.5.2 Lack of Orientation Optimization 

The fixed-point calibration technique does not utilize any external measurement systems.  

Instead, it substitutes those measurements with constraints upon the end-effector’s pose.  

Specifically, the end-effector is kept at a fixed point, but its orientation is altered. 

This means that no information is available about the orientation of the end-effector.  

Consequently, the calibration technique cannot directly attempt to improve the orientation 

accuracy of that is produced by the robot’s model.  Only the positional accuracy of the end-

effector is optimized.  It is possible that the orientation accuracy will improve as the parameters 

are calibrated for positional accuracy, but it is not guaranteed. 

If optimization of the end-effector’s orientation is required, a different calibration technique 

can be employed.  A device that measures the orientation of the end-effector can be combined 

with an open-loop calibration technique to improve the orientation accuracy (section 5.3.2).  In 

addition, there are alternative closed-loop techniques that constrain the end-effector’s orientation 

that could be applied (section 5.3.3). 

5.5.3 Necessity of Registration 

As mentioned under sections 5.3.3 and 5.3.4, there are some limitations to a closed-loop or 

fixed-point calibration technique.  The scale of the robot may be unknown, a final orientation 

parameter may not be identifiable, and other parameters related to the robot’s base may be 

unidentifiable.  These are inherent issues due to the limitations of the collected closed-loop data. 

The registration process compensates for the scale and base parameter problems 

simultaneously.  In addition, it enables the robot to operate in some external coordinate system.  
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In many cases, a registration would be needed to operate in alternate coordinate system 

regardless of the technique.  Therefore, solving many problems via single registration process 

can be a reasonable decision. 

If registration is not desired, there are other ways around the problems.  For example, a 

length parameter of the robot can be independently measured to set the scale.  Alternatively, 

more complex techniques and external measurements systems can help avoid these issues. 

5.6 Experiments 

5.6.1 Overview 

Three different types of experiments were performed using four different robot models.  The 

hypothesis of the experiments was that the proposed calibration technique can improve the 

positional accuracy of the end-effector for the robot models.  The first two experiments were 

performed entirely in simulation to eliminate variables such as the error inherent in a physical 

measurement device.  The third experiment was performed using two real robots to demonstrate 

that the proposed technique can be applied in the real world. 

The calibration algorithms and simulations were implemented in MATLAB 7.10 (release 

2010a, 32-bit).  In addition, the Robotics Toolbox (release 8) [135] for MATLAB was employed, 

which provides many useful functions for robotics.  All of the software was executed on a 

computer with 3 GiB of RAM and a 3.17 GHz Core 2 Duo processor (Intel, Santa Clara, CA) 

running Windows 7 (Microsoft, Redmond, WA). 

5.6.2 Robot Models 

5.6.2.1 AESOP 1000 

The AESOP, produced by Computer Motion (now Intuitive Surgical), is a medical robot 

designed to position an endoscope during surgery.  Several different versions were made, but the 
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AESOP 1000 was the one used for the experiments.  The AESOP is an excellent choice for this 

research because it is capable of positioning a device similar to a sensor inside the human body, 

and it has been used in numerous medical procedures around the world. 

The AESOP 1000 has six variable joints (and one fixed joint) connected via links in a serial 

fashion.  Consequently, it supports a full six degrees of freedom at the end-effector.  The first 

joint is prismatic, and the other joints are revolute.  The forth joint is a fixed revolute joint that 

must be locked into one of several positions.  It was kept in one position (that extends the arm 

perfectly horizontally) for all the experiments. 

The first three joints and the last joint are actively controlled with motors.  The remaining 

joints are passive, meaning they must be moved by an external force (e.g., by hand).  

Alternatively, if the tool held by the AESOP 1000 is inserted through an opening that allows 

rotation (like a laparoscopic port), the end-effector can be actively directed to any position.  

However, this comes at the expense of a reduced number of degrees of freedom (i.e., no control 

over the end-effector’s yaw or pitch).  As described elsewhere [104], a custom motion control 

system was developed to provide complete control of the AESOP from a PC. 

The last joint of the AESOP 1000 controls the roll of the end-effector; it has no effect on the 

end-effector’s position.  Since the presented calibration technique only uses position information, 

the value of the last joint is of no value.  This means that from the perspective of the calibration 

technique, the AESOP 1000 is similar to a robot with one less degree of freedom. 

A model of the AESOP 1000 was developed using original DH parameters.  The values of 

the DH parameters are presented in section 5.7.1.1.  Note that the axes of joints 1, 2, and 3 are all 

parallel.  In addition, the minimum and maximum joint values (for rotation or translation) were 

determined for each of the robot’s joints.  This information is found in Table 5.4. 
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Joint, i Minimum Value Maximum Value Unit 
1 0.000 320.000 mm 
2 −2.1062 2.1062 rad 
3 −2.7118 2.7118 rad 
4 0.0000 0.0000 rad 
5 −2.3562 2.3562 rad 
6 −1.5708 1.5708 rad 
7 −3.1416 3.1416 rad 

Table 5.4:  Measured limits on the joint values of the AESOP 1000. 

5.6.2.2 MicroScribe G2X 

The MicroScribe G2X, produced by Immersion, is a serial tracking arm with five passive 

revolute joints.  Although it lacks any active joints, it can be positioned manually with ease.  One 

could argue that the lack of active joint control means that it does not meet the proper definition 

of a robot, but it is sufficient for this research.  The MicroScribe G2X has encoders that relay the 

angles of every joint with a relatively high level of accuracy [93].  This accuracy, as well as its 

limited number of degrees of freedom (five), makes the MicroScribe G2X an interesting test case 

for the experiments. 

A model of the MicroScribe G2X was developed using Craig’s modified DH parameters.  

The values of the DH parameters are presented in section 5.7.1.2.  Note that the axes of joints 2 

and 3 are almost exactly parallel.  The last “joint” in the model actually represents a fixed 

transformation that aligns the final coordinate frame with the tip of a stylus that serves as the 

arm’s end-effector. 

The minimum and maximum joint angles of the MicroScribe G2X were not measured 

because active joint manipulation was not an option.  For the purposes of simulation, the joints 

were assumed to be able to rotate a full 2π rad.  The actual ranges of the MicroScribe G2X’s 

joints are less than 2π rad, meaning the real device has a somewhat smaller working envelope. 
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The fact that the developed model for the MicroScribe G2X uses modified DH parameters is 

significant for the testing.  Although original DH convention and Craig’s modified DH 

convention are conceptually very similar, the parameter definitions—and thus the kinematic 

equations—are different.  Despite the differences, no change is made to the presented calibration 

algorithms other than substituting the forward kinematics equation for modified DH parameters 

(Equation 2.10).  Consequently, the experiments with the MicroScribe G2X should indicate 

whether the calibration algorithms are flexible enough to support an alternative convention for 

the robotic model. 

5.6.2.3 PUMA 560 

The PUMA, produced by Unimation in the late 1970s, is a serial manipulator originally used 

for industrial applications.  The specific model used for this research (entirely in simulation) is 

the PUMA 560.  The PUMA 560 was chosen because it is often used as a test model for robotics 

research [136].  In addition, the PUMA may have been the first robot used in a surgical 

procedure (a brain biopsy) [137]. 

The PUMA 560 has six active revolute joints.  The first three joints can be used to control the 

end-effector’s position, and the last three joints form a spherical wrist that can be used to control 

the orientation.  An original DH model of the PUMA 560 was taken from the Robotics Toolbox 

(release 8) [135] for MATLAB.  The values of the DH parameters are presented in section 

5.7.1.3.  Note that the axes of joints 2 and 3 are parallel. 

The minimum and maximum joint angles of the PUMA 560 were not included in the model.  

Thus, the joints were assumed to be able to rotate a full 2π rad in the simulation.  Most of the 

actual ranges of the PUMA 560’s joints are less than 2π rad, meaning the real robot has a 

somewhat smaller working envelope. 
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Of special interest is the fact that the last three joints of the model only control the orientation 

of the end-effector.  They have no effect on its position because there is no link or tool after the 

spherical wrist.  Since the presented calibration technique only uses position information, the 

values of the last three joints are essentially ignored.  This means that from the perspective of the 

calibration technique, the PUMA 560 model is basically equivalent to a robot with only three 

degrees of freedom.  While this may seem insufficient for a technique that requires multiple 

poses to achieve the same position, there are two factors that make calibration feasible. 

First, there are multiple solutions by which the PUMA 560 can achieve a designated pose of 

the end-effector (assuming it is not at a singularity) [138].  Even ignoring the last three joints, 

four different configurations of the first three joints can be used to reach a specific position.  

Second, the proposed calibration technique allows multiple fixed points to be used for the input 

data.  Using multiple fixed points (with four poses per point), sufficient data can be collected for 

the calibration algorithms. 

5.6.2.4 Stanford Arm 

The Stanford Arm, designed by Victor Scheinman at Stanford University in the 1960s, is a 

serial manipulator with six degrees of freedom.  It was one of the first computer-controlled 

robots.  Like the PUMA 560, a simulated model of the Stanford Arm was used for this research.  

The Stanford Arm was selected because it is a well-known robot that is commonly used as a 

model in the literature on robotics. 

The Stanford Arm has six active joints.  The third joint is prismatic, while all the other joints 

are revolute.  The last three joints form a spherical wrist.  Unlike the model of the PUMA 560, 

there is a link after the spherical wrist.  Therefore, these joints do affect the position of the end-

effector, with the exception of the last joint. 
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The last joint of the Stanford Arm alters the roll of the end-effector without affecting its 

position.  Since the presented calibration technique only uses position information, the value of 

the last joint is of no value.  This means that from the perspective of the calibration technique, 

the Stanford Arm is similar to a robot with one less degree of freedom. 

An original DH model of the Stanford Arm was taken from the Robotics Toolbox (release 8) 

[135] for MATLAB.  The values of the DH parameters are presented in section 5.7.1.4.  Note 

that the axes of joints 3 and 4 are parallel. 

The minimum and maximum joint values of the Stanford Arm were not included in the 

model.  Thus, some assumptions were made for the simulation.  The revolute joints were allowed 

to rotate a full 2π rad, and the prismatic joint was given a range of 1 m.  The actual ranges of the 

Stanford Arm’s joints are likely less than the assumptions, meaning the real robot probably has a 

smaller working envelope. 

5.6.3 Ideal Simulation Experiment 

The ideal simulation experiment was performed using all four robot models in a simulated 

environment.  In this experiment, there was no noise/error added to the feedback from each joint.  

The only source of error was the modification of each robot’s true kinematic parameters. 

The ideal simulation experiment was executed to validate the presented calibration technique.  

Since there was no error added to the measurements, the algorithms were expected to achieve 

nearly ideal results.  Any significant deviation from this expectation could indicate a problem 

with the technique or its implementation. 

5.6.3.1 Generation of Test Joint Configurations 

The DH model for each robot from section 5.6.2 was considered to be the true, correct 

model.  For each true robot model, several fixed points within the robot’s working envelope were 
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arbitrarily chosen.  Then, for each fixed point, a number of joint configurations that would place 

the robot’s end-effector at the point were calculated (with no concern for the orientation).  The 

joint configurations were computed by feeding arbitrary starting joint values into an iterative 

inverse kinematics algorithm based on the pseudoinverse of the manipulator Jacobian matrix 

[135, 139].  Table 5.5 summarizes the numbers of fixed points and joint configurations chosen 

for each robot. 

Robot Model Chosen 
Points 

Configurations 
per Point 

Total 
Configurations 

Unknown 
Parameters 

AESOP 1000 5 15 75 28 
MicroScribe G2X 5 15 75 24 

PUMA 560 8 4 32 24 
Stanford Arm 6 12 72 24 

Table 5.5:  Numbers of fixed points and joint configurations chosen for each robot in the simulation.  The 
number of (unknown) DH parameters in each robot model is shown for comparison. 

As shown in Table 5.5, the number of total test joint configurations was larger than the 

number of unknown parameters in each robot’s model.  In terms of Equation 5.8 (explained in 

section 5.4.2), this meant that 3𝑛jc ≫ 4𝑛j.  Thus, there was sufficient data for the calibration 

algorithms. 

The quantity of data for the PUMA 560 was somewhat different from that of the other robots.  

As explained in section 5.6.2.3, its last three joints have no effect on the end-effector’s position, 

so there are a limited number of effectively unique configurations that can reach a fixed point.  

Therefore, the quantity of fixed points was increased for the PUMA 560 to compensate. 

5.6.3.2 Modification of Robot Models 

A modified version of each robot was produced by perturbing the kinematic (DH) parameters 

of the robot’s true model.  Each perturbed robot model represented a robot in need of kinematic 

calibration.  To modify the robot models, each non-variable length parameter (ai, and di of non-
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prismatic joints) was arbitrarily perturbed by up to ±15 mm, and each non-variable angular 

parameter (αi, and θi of non-revolute joints) was arbitrarily perturbed by up to ±0.25 rad.  In 

addition, for the AESOP and MicroScribe models, the fixed offset (𝜃𝑖off or 𝑑𝑖off) for each variable 

parameter was perturbed in the same manner.  The DH parameters of the perturbed robot models 

can be found alongside the true and calibrated models under section 5.7.1. 

5.6.3.3 Generation of Registration Data 

The presented registration algorithm requires a number of known points and their positional 

coordinates in both a chosen coordinate system and the unregistered robot’s base coordinate 

system.  Since the desired outputs of this experiment were robot models and parameters that 

effectively match the true models as closely as possible, the coordinate system chosen for each 

robot was the base coordinate system of the robot’s true model. 

To generate a registration point within the base coordinate system of each robot’s true model, 

each variable joint of the robot was set to a random value from a uniform distribution within the 

joint’s minimum/maximum limits (described under section 5.6.2).  Then, using forward 

kinematics calculations, the positional coordinates of the true model’s end-effector were 

computed.  This process was executed seven times to generate seven registration points (and 

their coordinates in the true model’s base coordinate system) for each robot. 

Using this method to generate registration points was convenient because it provided joint 

configurations (the randomly generated values) that would enable the robot to reach each 

registration point.  The positional coordinates of each registration point in the unregistered 

robot’s base coordinate system were calculated by running the same joint configurations through 

the forward kinematics equations using the unregistered robot model.  Thus, the positional 
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coordinates of each registration point were found in both the chosen coordinate system (the true 

model’s base coordinate system) and the unregistered model’s base coordinate system. 

5.6.3.4 Execution of Kinematic Calibration/Registration 

For each robot, its perturbed model and the generated test joint configurations (grouped by 

fixed point) were run through the presented calibration algorithms to produce a calibrated model.  

Next, registration data (the sets of positional coordinates described above) was generated using 

the true model and the calibrated (but unregistered) model for each robot.  This data was then fed 

into the presented registration algorithm to produce registration parameters for each calibrated 

robot model.  The calibrated model and corresponding registration parameters were the final 

outputs for each of the four robots. 

5.6.3.5 Evaluation of Calibrated/Registered Models 

Each of the four calibrated and registered models were evaluated in terms of the errors in the 

end-effector’s position and orientation.  The errors were determined by the difference between 

the true model’s end-effector pose and the calibrated/registered model’s end-effector pose when 

the robot was set to a particular joint configuration.  Specifically, the position error (𝑒p) was 

defined as the Euclidean distance between the end-effector position of the true model (𝒑t) and 

the end-effector position of the calibrated/registered model (𝒑c).  This is shown in Equation 5.19. 

The orientation error (𝑒o) was defined as the (shortest) angle between the end-effector 

orientation of the true model and the end-effector orientation of the calibrated/registered model.  

This was computed according to Equation 5.20, where 𝒒t and 𝒒c are the unit quaternion 

representations of the true and calibrated/registered orientations (respectively) and the “⋅” 

 𝑒p = ‖𝒑t − 𝒑c‖ Equation 5.19 
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operator represents the dot product.  The equations needed to convert a 3×3 rotation matrix to a 

unit quaternion can be found in [111]. 

There are an infinite number of possible joint configurations for each robot, and each 

configuration can lead a different amount of position error and orientation error.  To provide an 

overall representation of the position and orientation error of each model, the mean position error 

and mean orientation error were computed using 1000 joint configurations per robot.  In 

addition, the 95% confidence interval around each mean was calculated to determine the 

reliability of the estimated (mean) error. 

To generate one of the 1000 joints configurations per robot, each variable joint of the robot 

was set to a random value from a uniform distribution within the joint’s minimum/maximum 

limits (described under section 5.6.2).  This was performed 1000 times to produce 1000 random 

joint configurations.  The forward kinematics equations (section 2.3.1.2) were then used to 

determine the end-effector pose for each model when using each joint configuration. 

To quantify any improvements provided by the calibration/registration, the same error 

calculations were performed using the same joint configurations for each of the four (initial) 

perturbed models.  Thus, the mean position and orientation errors of each robot before the 

calibration/registration were also obtained.  By comparing the errors before and after 

calibration/registration, the effects of the calibration/registration can be understood. 

5.6.4 Noisy Simulation Experiment 

The noisy simulation experiment was performed using all four robot models in a simulated 

environment.  In this experiment, there was noise added to the feedback from each variable joint.  

 𝑒o = 2 arccos|𝒒t ⋅ 𝒒c| Equation 5.20 
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In addition, each robot’s true kinematic parameters were modified to introduce error.  The noise 

was introduced to challenge the technique while remaining in the controlled environment of a 

simulation. 

5.6.4.1 Generation of Test Joint Configurations 

The same test joint configurations as those described in section 5.6.3.1 (for the ideal 

simulation experiment) were used as a starting point.  Next, random values were added to the 

joint values in the test joint configurations to simulate noise/error in the joint feedback.  A 

random value between ±1 mrad (taken from a uniform distribution) was added to each revolute 

joint angle in each test joint configuration.  Similarly, a random value between ±1 mm (taken 

from a uniform distribution) was added to each prismatic joint value in each test joint 

configuration. 

Even though real encoders can be more accurate than implied by the chosen random values, 

there are many other potential sources of error in a robotic system.  Some examples include 

backlash, joint/link compliance, and inexact end-effector placement (or measurement).  The 

added random values were merely a simplification of the sources of error in a real robot. 

5.6.4.2 Modification of Robot Models 

The same perturbed robots models as those used for the ideal simulation experiment were 

used for the noisy simulation experiment.  The DH parameters of the perturbed robot models can 

be found alongside the true and calibrated models under section 5.7.1. 

5.6.4.3 Generation of Registration Data 

The same registration points as those described in section 5.6.3.3 (for the ideal simulation 

experiment) were used as a starting point.  Therefore, the positional coordinates of the 
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registration points in the chosen coordinate system (the base coordinate system of each robot’s 

true model) were the same.  However, for the unregistered models, random values were added to 

the joint values in the registration joint configurations to simulate noise/error in the joint 

feedback.  Since these joint configurations were used to calculate (via forward kinematics) the 

positional coordinates of each registration point in the unregistered robot’s base coordinate 

system, these positional coordinates were perturbed. 

The random values added to the joint values were taken from the same distributions as those 

used for the noisy test joint configurations (from section 5.6.4.1).  Thus, each joint value was 

modified by an amount between ±1 mrad (for revolute joints) or ±1 mm (for prismatic joints). 

5.6.4.4 Execution of Kinematic Calibration/Registration 

The same basic process was used to execute the noisy kinematic calibration/registration as 

the one used for the ideal kinematic calibration/registration (described in section 5.6.3.4).  The 

only differences were in the data that was used.  For the calibration algorithms, the perturbed 

robot models were used along with the randomly modified test joint configurations (grouped by 

fixed point).  For the registration algorithm, the ideal positional coordinates of the registration 

points in each true model’s base coordinate system were used along with the perturbed positional 

coordinates of the registration points in each calibrated (but unregistered) model’s base 

coordinate system.  The calibrated model and corresponding registration parameters were the 

final outputs for each of the four robots. 

5.6.4.5 Evaluation of Calibrated/Registered Models 

The same process was used to evaluate the noisy calibrated/registered models as the one used 

for the ideal calibrated/registered models (described in section 5.6.3.5).  The same 1000 joint 

configurations per robot were used to estimate the mean position error and mean orientation error 
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of each calibrated/registered model.  In addition, the same error results for the (initial) perturbed 

models can be used to highlight any improvements provided by the calibration/registration. 

5.6.5 Real Robot Experiment 

The real robot experiment was performed using two actual robots (the AESOP 1000 and the 

MicroScribe G2X) in the real world.  In this experiment, actual joint measurements from 

multiple fixed points were used to calibrate the robots’ models.  More specifically, leave-one-out 

calibrations were performed to avoid biasing the results. 

5.6.5.1 Acquisition of AESOP 1000 Test Joint Configurations 

The AESOP 1000 has encoders and potentiometers that it uses to acquire feedback from its 

variable joints.  Unfortunately, this feedback is not directly available to external systems, so a 

custom motion control system had to be developed.  The details of the motion control system are 

provided in [104].  In summary, the system enables all the active joints of the AESOP to be 

controlled, and it provides the values of all joints in real time. 

Four fixed points on flat surfaces were arbitrarily chosen within the AESOP’s working 

envelope.  Using a combination of active joint control and manual manipulation of the passive 

joints, the AESOP’s end-effector was placed into numerous poses that reached the established 

fixed points.  The poses were chosen somewhat arbitrarily, but an effort was made to move each 

joint through a broad range and approach the fixed points from diverse orientations.  After the 

AESOP was placed in a pose that reached a fixed point, the current joint configuration was 

recorded. 

In the end, a total of 79 joint configurations were acquired.  There were 20, 20, 20, and 19 

poses recorded for each fixed point, respectively.  As shown in Table 5.5 in section 5.6.3.1, the 

 



149 

AESOP 1000 only has 28 unknown DH parameters.  Thus, there was sufficient data for the 

calibration algorithms. 

5.6.5.2 Acquisition of MicroScribe G2X Test Joint Configurations 

The MicroScribe G2X has optical encoders that measure the angles of its five variable joints.  

The device comes with software that allows all the joint angles to be viewed.  Thus, it was easy 

to record joint configurations. 

Five fixed points on flat surfaces were arbitrarily chosen within the MicroScribe’s working 

envelope.  Since the MicroScribe G2X is a passive tracking device, it was manually manipulated 

to place its end-effector into numerous poses that reached the established fixed points.  The poses 

were chosen somewhat arbitrarily, but an effort was made to move each joint through a broad 

range and approach the fixed points from diverse orientations.  After the MicroScribe was placed 

in a pose that reached a fixed point, the current joint configuration was recorded. 

In the end, a total of 90 joint configurations were acquired.  There were 18, 17, 19, 14, and 

22 poses recorded for each fixed point, respectively.  As shown in Table 5.5 in section 5.6.3.1, 

the MicroScribe G2X only has 24 unknown DH parameters.  Thus, there was sufficient data for 

the calibration algorithms. 

5.6.5.3 Determination of Initial Robot Models 

There was no DH model of the AESOP 1000 available from the manufacturer.  Thus, the 

initial model was generated from manual measurements of the robot’s links and joints (e.g., 

using a caliper).  The process that was followed is described in [104].  Since the measurements 

were made by hand on an assembled robot, it was expected that there would be some error in the 

model.  In addition, usage of the robot subsequent to the generation of the model caused wear 

that may have added further error to the initial DH model. 
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For the MicroScribe G2X, a relatively accurate DH model was available.  This was used as 

the initial model for the calibration.  Any error in the model was likely caused by limitations in 

the manufacturing/assembly process or wear to the device. 

5.6.5.4 Selection of an Error Metric 

Unlike the simulation experiments, there was no known true model of either robot for the real 

robot experiment.  In addition, there was no registration data available.  Therefore, a different 

approach was required for the evaluation (and execution) of the kinematic calibration. 

The presented calibration technique presumes that all poses used to reach a fixed point have 

the end-effector’s tip at the same position.  Assuming the end-effector is placed correctly, any 

deviation of the end-effector’s calculated position (obtained via forward kinematics) from the 

location of the fixed point is due to error in the system.  Although there are a number of potential 

sources of error in a real robotic system, errors in the DH model will definitely cause deviation 

of the end-effector’s calculated position from the location of the fixed point.  In general, a less 

accurate DH model will cause more deviation, and a more accurate DH model will result in less 

deviation.  Thus, the deviations of the end-effector’s calculated positions from the fixed points 

can be used as a measure of the DH model’s relative accuracy (section 5.4.4.2). 

The exact locations of the fixed points relative to the robot’s base coordinate system were not 

known.  They could have been measured with an external measurement device, but even then 

there would have been error in the external measurements.  Instead, the location of each fixed 

point was estimated to be the mean of the end-effector positions (calculated via forward 

kinematics) of all the poses that were used to reach the point.  Section 5.4.4.2 contains the 

relevant calculations.  Even if the estimated fixed-point locations weren’t absolutely correct, they 

should still function similar to the true fixed-point locations for the accuracy assessment.  In 
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general, a less precise DH model will have more deviation from the estimated fixed points (a 

wider spread), and a more precise DH model will have less deviation (a tighter spread). 

No data was collected that could be used to register either robot.  If there had been, the 

presented registration process could have been used to set the scale of the robot and adjust the 

location and orientation of the robot’s base in an external coordinate system.  However, since it 

was desired to assess the internal accuracy of the DH models, the location and orientation of the 

robot’s base could be neglected.  The same deviations would be found when the fixed point’s 

location was expressed in the robot’s local coordinate system instead of a translated/rotated 

external coordinate system. 

On the other hand, the scale of a robot would have an effect on the calculated deviations.  

Scaling a robot by a certain factor would result in the computed deviations being scaled by the 

same factor.  Thus, it would have been beneficial to collect registration data to help set the scale 

(particularly for the MicroScribe, which lacks a prismatic joint).  However, results from 

simulations showed that the scale typically drifts by no more than a few percent during 

calibration.  In addition, the implemented calibration algorithms limit how much the DH 

parameters can change, thus limiting the change in scale.  Therefore, it was deemed reasonable to 

proceed without registration. 

In summary, the mean of the deviations of the end-effector’s calculated position from each 

corresponding estimated fixed-point location was chosen as the metric for comparing each 

calibrated DH model to the initial model.  Although this was not as complete as the evaluation 

used in the simulation experiments, it provided a seemingly reasonable estimate of the accuracy.  

As explained below, multiple models were generated for each robot, which were used to 

demonstrate the consistency of the estimated accuracy. 
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5.6.5.5 Execution of Kinematic Calibration 

Unlike the simulation experiments, the true models were not known in the real robot 

experiment, and there were practical limits to the number of joint configurations that could be 

measured.  For example, it would not be possible to generate 1000 new joint configurations to 

evaluate each model.  Instead, the data used to evaluate the system would have to be drawn from 

the limited set of measurements that were made. 

To avoid biasing the results, the data used to evaluate each model should be separate from 

the data used to calibrate the model.  This posed a problem because limited data was collected, 

and the calibration should be more accurate when performed with more data (at least to a certain 

extent).  Leave-one-out calibrations were used to mitigate this problem. 

For the leave-one-out calibrations of each robot, the recorded joint configurations were 

grouped according the fixed point they reached.  Next, a calibration was performed using the 

data from all of the groups except one.  The excluded group would later be used to evaluate the 

calibrated model.  This process was repeated until every group had the opportunity to be the 

excluded one. 

There were four fixed points used for the AESOP 1000 and five fixed points used for the 

MicroScribe G2X.  Consequently, there were four sets of joint configurations employed in the 

AESOP calibration (along with the common initial DH model), and there were five sets of joint 

configurations employed in the MicroScribe calibration (along with the common initial model).  

Thus, the outputs of the kinematic calibrations were four different calibrated models of the 

AESOP 1000 and five different calibrated models of the MicroScribe G2X.  Note that no 

registrations were performed, meaning no registration parameters were produced. 
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5.6.5.6 Evaluation of Calibrated Models 

As explained in section 5.6.5.4, the metric selected to evaluate each robot’s models was the 

mean of the deviations of the end-effector’s calculated position from each corresponding 

estimated fixed-point location (per section 5.4.4.2).  To convey exactly what this entailed, the 

evaluation of the first calibrated model for the AESOP 1000 will be described in detail.  The 

evaluations of the other calibrated models followed the same procedure, each using a different 

excluded fixed point for the calculations. 

The first calibrated model of the AESOP 1000 was previously generated using the 59 

measured joint configurations that reached all the fixed points except the first one.  Therefore, 

the 20 joint configurations that reached the first fixed point were used for this evaluation.  To 

estimate the location of the first fixed point, the joint configurations that reached the first point 

were run through the forward kinematics equations (section 2.3.1.2) using the calibrated model.  

The outputs were 20 different end-effector positions that were intended to be at the first fixed 

point.  The mean of these 20 positions was used as the estimated location of the first fixed point. 

Next, the Euclidean distance between each of the 20 calculated end-effector positions and the 

estimated first fixed-point location was computed.  Finally, the average of these 20 distances was 

calculated to produce the mean deviation of the end-effector’s calculated position from the 

estimated first fixed-point location.  This represented the desired error metric. 

In addition to being applied to the other calibrated models, the same evaluation process was 

followed while using each robot’s initial model in place of the calibrated models.  In other 

words, the four mean deviations were calculated for the initial AESOP 1000 model, and the five 

mean deviations were calculated for the initial MicroScribe G2X model.  This was done so the 

errors before the calibrations could be compared to the errors after the calibrations. 
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5.7 Results 

The results from each of three experiments (ideal simulation, noisy simulation, and real 

robot) are presented in the sections below.  As appropriate, execution times, calibrated models, 

registration parameters, and calculated errors are presented. 

5.7.1 Ideal Simulation Results 

The results of the ideal simulation experiment (described under section 5.6.3) are shown 

below.  The results are grouped according to each of the robots used in the experiment.  The 

average execution time of the calibration algorithms for all four robots was 56.4 minutes on the 

test computer (described in section 5.6.1). 

5.7.1.1 AESOP 1000 

The calibrated model of the AESOP 1000 that was derived from the ideal simulation is 

presented in Table 5.6 (using the original DH convention).  In addition, the true model and the 

perturbed model (upon which the calibration was run) are included for comparison.  The terms 

with the superscript “var” represent variable joint values.  The parameters that are shaded in gray 

were found to be “ineffective”; they could not be calibrated with the data used by the fixed-point 

calibration technique. 
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AESOP 
1000 

 
True 

Model 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 0.0000 0.000 0.0000 𝑑1var + 0.000 
2 0.0000 384.440 𝜃2var + 0.0000 0.000 
3 1.5708 52.710 𝜃3var + 0.0000 0.000 
4 1.5708 0.000 1.5708 0.000 
5 1.5708 0.000 𝜃5var + 3.1416 250.700 
6 −1.5708 17.200 𝜃6var + 1.5708 0.000 
7 0.0000 0.000 𝜃7var − 1.5708 −275.420 

AESOP 
1000 

 
Perturbed 

Model 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 0.1000 5.000 −0.2000 𝑑1var − 10.000 
2 0.2000 399.440 𝜃2var − 0.2000 −5.000 
3 1.3208 62.710 𝜃3var + 0.2000 −5.000 
4 1.3708 −15.000 1.6708 10.000 
5 1.6708 5.000 𝜃5var + 3.0416 260.700 
6 −1.7708 7.200 𝜃6var + 1.8208 −10.000 
7 0.2000 −5.000 𝜃7var − 1.7708 −260.420 

AESOP 
1000 

 
Calibrated 

Model 
(Ideal) 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 0.0000 5.000 −0.2000 𝑑1var − 10.000 
2 0.0000 384.440 𝜃2var − 0.2000 −5.000 
3 1.4632 50.345 𝜃3var + 0.4116 −5.000 
4 1.1617 −34.883 1.5240 17.628 
5 1.5708 0.000 𝜃5var + 3.2589 250.258 
6 −1.5909 5.714 𝜃6var + 1.6125 −5.559 
7 0.2000 0.000 𝜃7var − 1.7708 −275.953 

Table 5.6:  Denavit–Hartenberg parameters of the AESOP 1000 for its true model, the perturbed model, 
and the calibrated model generated from the ideal simulation.  The parameters shaded in gray could not be 
calibrated. 

The registration parameters (for translation, rotation, and scaling of the calibrated model) 

computed by the registration algorithm (using ideal joint values) are found in Table 5.7.  The 

values at the bottom indicate the overall changes in robot position and orientation effected by the 

parameters. 

Translation Rotation Scale 
∆x (mm) ∆y (mm) ∆z (mm) φ (rad) θ (rad) ψ (rad) s 
−4.900 −0.993 52.750 −2.6249 0.0000 3.0249 1.0000 

Change in Position Change in Orientation 
52.987 mm 0.4000 rad 

Table 5.7:  Registration parameters and their overall effects from the ideal post-calibration registration of 
the AESOP 1000. 
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The mean position error and mean orientation error of the end-effector both before and after 

calibration/registration are displayed in Table 5.8.  The errors were derived from the simulation 

of 1000 random joint configurations.  Using this information, the 95% confidence interval 

around each mean was calculated to indicate the reliability of the estimated (mean) error. 

Model Mean Position Error (mm) Mean Orientation Error (rad) 
AESOP Perturbed 277.139 ± 6.279 0.8125 ± 0.0136 
AESOP Calibrated 0.000 ± 0.000 0.2863 ± 0.0014 

Table 5.8:  Comparison of the mean errors of the end-effector’s position and orientation before and after 
ideal calibration/registration of the AESOP 1000.  The 95% confidence interval for each mean is 
provided. 

5.7.1.2 MicroScribe G2X 

The calibrated model of the MicroScribe G2X that was derived from the ideal simulation is 

presented in Table 5.9 (using Craig’s modified DH convention).  In addition, the true model and 

the perturbed model (upon which the calibration was run) are included for comparison.  The 

terms with the superscript “var” represent variable joint angles.  The parameters that are shaded 

in gray were found to be “ineffective”; they could not be calibrated with the data used by the 

fixed-point calibration technique. 
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MicroScribe 
G2X 

 
True 

Model 

Joint, i αi−1 (rad) ai−1 (mm) θi (rad) di (mm) 
1 0.0000 0.000 𝜃1var + 0.0000 210.820 
2 1.5705 24.181 𝜃2var + 0.0000 –22.530 
3 –0.0006 260.680 𝜃3var + 0.0000 –0.305 
4 1.5621 13.894 𝜃4var + 0.0000 234.696 
5 –1.5731 –10.262 𝜃5var + 0.0000 8.103 
6 –1.5690 10.160 0.0000 –134.163 

MicroScribe 
G2X 

 
Perturbed 

Model 

Joint, i αi−1 (rad) ai−1 (mm) θi (rad) di (mm) 
1 0.1000 5.000 𝜃1var − 0.2000 200.820 
2 1.3705 14.181 𝜃2var + 0.2000 –7.530 
3 –0.1006 275.680 𝜃3var − 0.1000 –5.305 
4 1.3121 23.894 𝜃4var + 0.2500 219.696 
5 –1.3731 –15.262 𝜃5var – 0.2000 13.103 
6 –1.3190 0.160 −0.2000 –124.163 

MicroScribe 
G2X 

 
Calibrated 

Model 
(Ideal) 

Joint, i αi−1 (rad) ai−1 (mm) θi (rad) di (mm) 
1 0.1000 5.000 𝜃1var − 0.2000 200.820 
2 1.5705 23.956 𝜃2var + 0.0000 –0.912 
3 –0.0006 258.260 𝜃3var + 0.0000 –21.710 
4 1.5621 13.765 𝜃4var + 0.0000 232.517 
5 –1.5731 –10.166 𝜃5var + 0.0754 32.955 
6 –1.3842 0.030 −0.2000 –135.653 

Table 5.9:  Denavit–Hartenberg parameters of the MicroScribe G2X for its true model, the perturbed 
model, and the calibrated model generated from the ideal simulation.  The parameters shaded in gray 
could not be calibrated. 

The registration parameters (for translation, rotation, and scaling of the calibrated model) 

computed by the registration algorithm (using ideal joint values) are found in Table 5.10.  The 

values at the bottom indicate the overall changes in robot position and orientation effected by the 

parameters. 

Translation Rotation Scale 
∆x (mm) ∆y (mm) ∆z (mm) φ (rad) θ (rad) ψ (rad) s 
−4.946 −1.003 8.118 1.7708 0.1000 −1.5708 1.0094 

Change in Position Change in Orientation 
9.559 mm 0.2235 rad 

Table 5.10:  Registration parameters and their overall effects from the ideal post-calibration registration 
of the MicroScribe G2X. 
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The mean position error and mean orientation error of the end-effector both before and after 

calibration/registration are displayed in Table 5.11.  The errors were derived from the simulation 

of 1000 random joint configurations.  Using this information, the 95% confidence interval 

around each mean was calculated to indicate the reliability of the estimated (mean) error. 

Model Mean Position Error (mm) Mean Orientation Error (rad) 
MicroScribe Perturbed 127.732 ± 3.723 0.5998 ± 0.0143 
MicroScribe Calibrated 0.000 ± 0.000 0.2772 ± 0.0000 

Table 5.11:  Comparison of the mean errors of the end-effector’s position and orientation before and after 
ideal calibration/registration of the MicroScribe G2X.  The 95% confidence interval for each mean is 
provided. 

5.7.1.3 PUMA 560 

The calibrated model of the PUMA 560 that was derived from the ideal simulation is 

presented in Table 5.12 (using the original DH convention).  In addition, the true model and the 

perturbed model (upon which the calibration was run) are included for comparison.  The terms 

with the superscript “var” represent variable joint angles.  The parameters that are shaded in gray 

were found to be “ineffective”; they could not be calibrated with the data used by the fixed-point 

calibration technique. 
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PUMA 
560 

 
True 

Model 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 1.5708 0.000 𝜃1var + 0.0000 0.000 
2 0.0000 431.800 𝜃2var + 0.0000 0.000 
3 –1.5708 20.300 𝜃3var + 0.0000 150.050 
4 1.5708 0.000 𝜃4var + 0.0000 431.800 
5 –1.5708 0.000 𝜃5var + 0.0000 0.000 
6 0.0000 0.000 𝜃6var + 0.0000 0.000 

PUMA 
560 

 
Perturbed 

Model 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 1.6708 5.000 𝜃1var + 0.0000 –10.000 
2 0.2000 446.800 𝜃2var + 0.0000 –5.000 
3 –1.8208 30.300 𝜃3var + 0.0000 145.050 
4 1.3708 –15.000 𝜃4var + 0.0000 441.800 
5 –1.4708 5.000 𝜃5var + 0.0000 10.000 
6 –0.2000 –10.000 𝜃6var + 0.0000 –10.000 

PUMA 
560 

 
Calibrated 

Model 
(Ideal) 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 1.5708 0.000 𝜃1var + 0.0000 –10.000 
2 0.0000 437.140 𝜃2var + 0.0000 –3.525 
3 –1.5315 30.750 𝜃3var + 0.0233 138.279 
4 1.3708 0.000 𝜃4var + 0.0000 436.878 
5 –1.4708 0.000 𝜃5var + 0.0000 0.000 
6 –0.2000 0.000 𝜃6var + 0.0000 0.000 

Table 5.12:  Denavit–Hartenberg parameters of the PUMA 560 for its true model, the perturbed model, 
and the calibrated model generated from the ideal simulation.  The parameters shaded in gray could not be 
calibrated. 

The registration parameters (for translation, rotation, and scaling of the calibrated model) 

computed by the registration algorithm (using ideal joint values) are found in Table 5.13.  The 

values at the bottom indicate the overall changes in robot position and orientation effected by the 

parameters. 

Translation Rotation Scale 
∆x (mm) ∆y (mm) ∆z (mm) φ (rad) θ (rad) ψ (rad) s 

0.000 0.000 9.878 0.0000 0.0000 0.0000 0.9878 
Change in Position Change in Orientation 

9.878 mm 0.0000 rad 
Table 5.13:  Registration parameters and their overall effects from the ideal post-calibration registration 
of the PUMA 560. 
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The mean position error and mean orientation error of the end-effector both before and after 

calibration/registration are displayed in Table 5.14.  The errors were derived from the simulation 

of 1000 random joint configurations.  Using this information, the 95% confidence interval 

around each mean was calculated to indicate the reliability of the estimated (mean) error. 

Model Mean Position Error (mm) Mean Orientation Error (rad) 
PUMA Perturbed 129.312 ± 4.047 0.4150 ± 0.0106 
PUMA Calibrated 0.000 ± 0.000 0.2860 ± 0.0058 

Table 5.14:  Comparison of the mean errors of the end-effector’s position and orientation before and after 
ideal calibration/registration of the PUMA 560.  The 95% confidence interval for each mean is provided. 

5.7.1.4 Stanford Arm 

The calibrated model of the Stanford Arm that was derived from the ideal simulation is 

presented in Table 5.15 (using the original DH convention).  In addition, the true model and the 

perturbed model (upon which the calibration was run) are included for comparison.  The terms 

with the superscript “var” represent variable joint values.  The parameters that are shaded in gray 

were found to be “ineffective”; they could not be calibrated with the data used by the fixed-point 

calibration technique. 
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Stanford 
Arm 

 
True 

Model 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 –1.5708 0.000 𝜃1var + 0.0000 412.000 
2 1.5708 0.000 𝜃2var + 0.0000 154.000 
3 0.0000 0.000 –1.5708 𝑑3var + 0.000 
4 –1.5708 0.000 𝜃4var + 0.0000 0.000 
5 1.5708 0.000 𝜃5var + 0.0000 0.000 
6 0.0000 0.000 𝜃6var + 0.0000 263.000 

Stanford 
Arm 

 
Perturbed 

Model 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 –1.4708 5.000 𝜃1var + 0.0000 402.000 
2 1.7708 15.000 𝜃2var + 0.0000 149.000 
3 –0.2500 10.000 –1.6708 𝑑3var + 0.000 
4 –1.7708 –15.000 𝜃4var + 0.0000 10.000 
5 1.6708 5.000 𝜃5var + 0.0000 10.000 
6 –0.2000 –10.000 𝜃6var + 0.0000 253.000 

Stanford 
Arm 

 
Calibrated 

Model 
(Ideal) 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 –1.5708 0.000 𝜃1var + 0.0000 402.000 
2 1.5708 2.427 𝜃2var + 0.0000 168.286 
3 0.0000 14.491 –1.7391 𝑑3var − 7.726 
4 –1.5708 0.000 𝜃4var + 0.1683 7.726 
5 1.5716 2.708 𝜃5var − 0.0103 0.220 
6 –0.2000 0.000 𝜃6var + 0.0000 262.986 

Table 5.15:  Denavit–Hartenberg parameters of the Stanford Arm for its true model, the perturbed model, 
and the calibrated model generated from the ideal simulation.  The parameters shaded in gray could not be 
calibrated. 

The registration parameters (for translation, rotation, and scaling of the calibrated model) 

computed by the registration algorithm (using ideal joint values) are found in Table 5.16.  The 

values at the bottom indicate the overall changes in robot position and orientation effected by the 

parameters. 

Translation Rotation Scale 
∆x (mm) ∆y (mm) ∆z (mm) φ (rad) θ (rad) ψ (rad) s 

0.000 0.000 10.000 0.0000 0.0000 0.0000 1.0000 
Change in Position Change in Orientation 

10.000 mm 0.0000 rad 
Table 5.16:  Registration parameters and their overall effects from the ideal post-calibration registration 
of the Stanford Arm. 
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The mean position error and mean orientation error of the end-effector both before and after 

calibration/registration are displayed in Table 5.17.  The errors were derived from the simulation 

of 1000 random joint configurations.  Using this information, the 95% confidence interval 

around each mean was calculated to indicate the reliability of the estimated (mean) error. 

Model Mean Position Error (mm) Mean Orientation Error (rad) 
Stanford Arm Perturbed 147.667 ± 4.534 0.4259 ± 0.0104 
Stanford Arm Calibrated 0.000 ± 0.000 0.2004 ± 0.0005 

Table 5.17:  Comparison of the mean errors of the end-effector’s position and orientation before and after 
ideal calibration/registration of the Stanford Arm.  The 95% confidence interval for each mean is 
provided. 

5.7.2 Noisy Simulation Results 

The results of the noisy simulation experiment (described under section 5.6.4) are presented 

below.  The results are grouped according to each of the robots used in the experiment.  The 

average execution time of the calibration algorithms for all four robots was 34.4 minutes on the 

test computer (described in section 5.6.1). 

5.7.2.1 AESOP 1000 

The calibrated model of the AESOP 1000 that was derived from the noisy simulation is 

presented in Table 5.18 (using the original DH convention).  In addition, the true model and the 

perturbed model (upon which the calibration was run) are included for comparison.  The terms 

with the superscript “var” represent variable joint values.  The parameters that are shaded in gray 

were found to be “ineffective”; they could not be calibrated with the data used by the fixed-point 

calibration technique. 
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AESOP 
1000 

 
True 

Model 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 0.0000 0.000 0.0000 𝑑1var + 0.000 
2 0.0000 384.440 𝜃2var + 0.0000 0.000 
3 1.5708 52.710 𝜃3var + 0.0000 0.000 
4 1.5708 0.000 1.5708 0.000 
5 1.5708 0.000 𝜃5var + 3.1416 250.700 
6 −1.5708 17.200 𝜃6var + 1.5708 0.000 
7 0.0000 0.000 𝜃7var − 1.5708 −275.420 

AESOP 
1000 

 
Perturbed 

Model 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 0.1000 5.000 −0.2000 𝑑1var − 10.000 
2 0.2000 399.440 𝜃2var − 0.2000 −5.000 
3 1.3208 62.710 𝜃3var + 0.2000 −5.000 
4 1.3708 −15.000 1.6708 10.000 
5 1.6708 5.000 𝜃5var + 3.0416 260.700 
6 −1.7708 7.200 𝜃6var + 1.8208 −10.000 
7 0.2000 −5.000 𝜃7var − 1.7708 −260.420 

AESOP 
1000 

 
Calibrated 

Model 
(Noisy) 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 0.0006 5.000 −0.2000 𝑑1var − 10.000 
2 0.0004 384.602 𝜃2var − 0.5000 −5.000 
3 1.6105 51.257 𝜃3var + 0.3293 −7.722 
4 1.2428 −34.035 1.5850 19.122 
5 1.5742 0.197 𝜃5var + 3.1018 249.378 
6 −1.6206 9.682 𝜃6var + 1.5955 −12.876 
7 0.2000 −0.113 𝜃7var − 1.5251 −276.382 

Table 5.18:  Denavit–Hartenberg parameters of the AESOP 1000 for its true model, the perturbed model, 
and the calibrated model generated from the noisy simulation.  The parameters shaded in gray could not 
be calibrated. 

The registration parameters (for translation, rotation, and scaling of the calibrated model) 

computed by the registration algorithm (using noisy joint values) are found in Table 5.19.  The 

values at the bottom indicate the overall changes in robot position and orientation effected by the 

parameters. 

Translation Rotation Scale 
∆x (mm) ∆y (mm) ∆z (mm) φ (rad) θ (rad) ψ (rad) s 
−4.013 −2.893 57.272 2.2852 0.0024 −1.5857 0.9991 

Change in Position Change in Orientation 
57.486 mm 0.6995 rad 

Table 5.19:  Registration parameters and their overall effects from the noisy post-calibration registration 
of the AESOP 1000. 
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The mean position error and mean orientation error of the end-effector both before and after 

calibration/registration are displayed in Table 5.20.  The errors were derived from the simulation 

of 1000 random joint configurations.  Using this information, the 95% confidence interval 

around each mean was calculated to indicate the reliability of the estimated (mean) error. 

Model Mean Position Error (mm) Mean Orientation Error (rad) 
AESOP Perturbed 277.139 ± 6.279 0.8125 ± 0.0136 
AESOP Calibrated 1.202 ± 0.040 0.2077 ± 0.0023 

Table 5.20:  Comparison of the mean errors of the end-effector’s position and orientation before and after 
noisy calibration/registration of the AESOP 1000.  The 95% confidence interval for each mean is 
provided. 

5.7.2.2 MicroScribe G2X 

The calibrated model of the MicroScribe G2X that was derived from the noisy simulation is 

presented in Table 5.21 (using Craig’s modified DH convention).  In addition, the true model and 

the perturbed model (upon which the calibration was run) are included for comparison.  The 

terms with the superscript “var” represent variable joint angles.  The parameters that are shaded 

in gray were found to be “ineffective”; they could not be calibrated with the data used by the 

fixed-point calibration technique. 
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MicroScribe 
G2X 

 
True 

Model 

Joint, i αi−1 (rad) ai−1 (mm) θi (rad) di (mm) 
1 0.0000 0.000 𝜃1var + 0.0000 210.820 
2 1.5705 24.181 𝜃2var + 0.0000 –22.530 
3 –0.0006 260.680 𝜃3var + 0.0000 –0.305 
4 1.5621 13.894 𝜃4var + 0.0000 234.696 
5 –1.5731 –10.262 𝜃5var + 0.0000 8.103 
6 –1.5690 10.160 0.0000 –134.163 

MicroScribe 
G2X 

 
Perturbed 

Model 

Joint, i αi−1 (rad) ai−1 (mm) θi (rad) di (mm) 
1 0.1000 5.000 𝜃1var − 0.2000 200.820 
2 1.3705 14.181 𝜃2var + 0.2000 –7.530 
3 –0.1006 275.680 𝜃3var − 0.1000 –5.305 
4 1.3121 23.894 𝜃4var + 0.2500 219.696 
5 –1.3731 –15.262 𝜃5var – 0.2000 13.103 
6 –1.3190 0.160 −0.2000 –124.163 

MicroScribe 
G2X 

 
Calibrated 

Model 
(Noisy) 

Joint, i αi−1 (rad) ai−1 (mm) θi (rad) di (mm) 
1 0.1000 5.000 𝜃1var − 0.2000 200.820 
2 1.5706 23.746 𝜃2var + 0.0000 –10.472 
3 –0.0007 255.680 𝜃3var + 0.0002 –11.913 
4 1.5623 13.600 𝜃4var + 0.0000 230.188 
5 –1.5733 –10.064 𝜃5var + 0.0749 30.590 
6 –1.3992 0.085 −0.2000 –133.986 

Table 5.21:  Denavit–Hartenberg parameters of the MicroScribe G2X for its true model, the perturbed 
model, and the calibrated model generated from the noisy simulation.  The parameters shaded in gray 
could not be calibrated. 

The registration parameters (for translation, rotation, and scaling of the calibrated model) 

computed by the registration algorithm (using noisy joint values) are found in Table 5.22.  The 

values at the bottom indicate the overall changes in robot position and orientation effected by the 

parameters. 

Translation Rotation Scale 
∆x (mm) ∆y (mm) ∆z (mm) φ (rad) θ (rad) ψ (rad) s 
−4.851 −0.923 6.030 1.7741 0.1004 −1.5740 1.0200 

Change in Position Change in Orientation 
7.793 mm 0.2239 rad 

Table 5.22:  Registration parameters and their overall effects from the noisy post-calibration registration 
of the MicroScribe G2X. 
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The mean position error and mean orientation error of the end-effector both before and after 

calibration/registration are displayed in Table 5.23.  The errors were derived from the simulation 

of 1000 random joint configurations.  Using this information, the 95% confidence interval 

around each mean was calculated to indicate the reliability of the estimated (mean) error. 

Model Mean Position Error (mm) Mean Orientation Error (rad) 
MicroScribe Perturbed 127.732 ± 3.723 0.5998 ± 0.0143 
MicroScribe Calibrated 0.308 ± 0.007 0.2678 ± 0.0000 

Table 5.23:  Comparison of the mean errors of the end-effector’s position and orientation before and after 
noisy calibration/registration of the MicroScribe G2X.  The 95% confidence interval for each mean is 
provided. 

5.7.2.3 PUMA 560 

The calibrated model of the PUMA 560 that was derived from the noisy simulation is 

presented in Table 5.24 (using the original DH convention).  In addition, the true model and the 

perturbed model (upon which the calibration was run) are included for comparison.  The terms 

with the superscript “var” represent variable joint angles.  The parameters that are shaded in gray 

were found to be “ineffective”; they could not be calibrated with the data used by the fixed-point 

calibration technique. 
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PUMA 
560 

 
True 

Model 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 1.5708 0.000 𝜃1var + 0.0000 0.000 
2 0.0000 431.800 𝜃2var + 0.0000 0.000 
3 –1.5708 20.300 𝜃3var + 0.0000 150.050 
4 1.5708 0.000 𝜃4var + 0.0000 431.800 
5 –1.5708 0.000 𝜃5var + 0.0000 0.000 
6 0.0000 0.000 𝜃6var + 0.0000 0.000 

PUMA 
560 

 
Perturbed 

Model 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 1.6708 5.000 𝜃1var + 0.0000 –10.000 
2 0.2000 446.800 𝜃2var + 0.0000 –5.000 
3 –1.8208 30.300 𝜃3var + 0.0000 145.050 
4 1.3708 –15.000 𝜃4var + 0.0000 441.800 
5 –1.4708 5.000 𝜃5var + 0.0000 10.000 
6 –0.2000 –10.000 𝜃6var + 0.0000 –10.000 

PUMA 
560 

 
Calibrated 

Model 
(Noisy) 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 1.5710 0.067 𝜃1var + 0.0000 –10.000 
2 0.0004 457.613 𝜃2var + 0.0001 –9.145 
3 –1.5266 11.380 𝜃3var − 0.0222 147.995 
4 1.0969 0.000 𝜃4var − 0.3000 458.530 
5 –1.7708 0.008 𝜃5var + 0.3000 0.039 
6 –0.2000 –0.076 𝜃6var + 0.2997 –0.198 

Table 5.24:  Denavit–Hartenberg parameters of the PUMA 560 for its true model, the perturbed model, 
and the calibrated model generated from the noisy simulation.  The parameters shaded in gray could not 
be calibrated. 

The registration parameters (for translation, rotation, and scaling of the calibrated model) 

computed by the registration algorithm (using noisy joint values) are found in Table 5.25.  The 

values at the bottom indicate the overall changes in robot position and orientation effected by the 

parameters. 

Translation Rotation Scale 
∆x (mm) ∆y (mm) ∆z (mm) φ (rad) θ (rad) ψ (rad) s 

0.074 −0.282 9.327 −0.4021 0.0006 0.4023 0.9434 
Change in Position Change in Orientation 

9.332 mm 0.0007 rad 
Table 5.25:  Registration parameters and their overall effects from the noisy post-calibration registration 
of the PUMA 560. 
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The mean position error and mean orientation error of the end-effector both before and after 

calibration/registration are displayed in Table 5.26.  The errors were derived from the simulation 

of 1000 random joint configurations.  Using this information, the 95% confidence interval 

around each mean was calculated to indicate the reliability of the estimated (mean) error. 

Model Mean Position Error (mm) Mean Orientation Error (rad) 
PUMA Perturbed 129.312 ± 4.047 0.4150 ± 0.0106 
PUMA Calibrated 0.520 ± 0.013 0.6780 ± 0.0150 

Table 5.26:  Comparison of the mean errors of the end-effector’s position and orientation before and after 
noisy calibration/registration of the PUMA 560.  The 95% confidence interval for each mean is provided. 

5.7.2.4 Stanford Arm 

The calibrated model of the Stanford Arm that was derived from the noisy simulation is 

presented in Table 5.27 (using the original DH convention).  In addition, the true model and the 

perturbed model (upon which the calibration was run) are included for comparison.  The terms 

with the superscript “var” represent variable joint values.  The parameters that are shaded in gray 

were found to be “ineffective”; they could not be calibrated with the data used by the fixed-point 

calibration technique. 
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Stanford 
Arm 

 
True 

Model 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 –1.5708 0.000 𝜃1var + 0.0000 412.000 
2 1.5708 0.000 𝜃2var + 0.0000 154.000 
3 0.0000 0.000 –1.5708 𝑑3var + 0.000 
4 –1.5708 0.000 𝜃4var + 0.0000 0.000 
5 1.5708 0.000 𝜃5var + 0.0000 0.000 
6 0.0000 0.000 𝜃6var + 0.0000 263.000 

Stanford 
Arm 

 
Perturbed 

Model 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 –1.4708 5.000 𝜃1var + 0.0000 402.000 
2 1.7708 15.000 𝜃2var + 0.0000 149.000 
3 –0.2500 10.000 –1.6708 𝑑3var + 0.000 
4 –1.7708 –15.000 𝜃4var + 0.0000 10.000 
5 1.6708 5.000 𝜃5var + 0.0000 10.000 
6 –0.2000 –10.000 𝜃6var + 0.0000 253.000 

Stanford 
Arm 

 
Calibrated 

Model 
(Noisy) 

Joint, i αi (rad) ai (mm) θi (rad) di (mm) 
1 –1.5703 0.028 𝜃1var + 0.0000 402.000 
2 1.5707 0.504 𝜃2var − 0.0001 155.628 
3 0.0007 1.382 –1.8621 𝑑3var − 0.534 
4 –1.5702 0.000 𝜃4var + 0.2918 0.979 
5 1.5941 24.400 𝜃5var − 0.0923 6.090 
6 –0.2000 0.000 𝜃6var + 0.0000 262.026 

Table 5.27:  Denavit–Hartenberg parameters of the Stanford Arm for its true model, the perturbed model, 
and the calibrated model generated from the noisy simulation.  The parameters shaded in gray could not 
be calibrated. 

The registration parameters (for translation, rotation, and scaling of the calibrated model) 

computed by the registration algorithm (using noisy joint values) are found in Table 5.28.  The 

values at the bottom indicate the overall changes in robot position and orientation effected by the 

parameters. 

Translation Rotation Scale 
∆x (mm) ∆y (mm) ∆z (mm) φ (rad) θ (rad) ψ (rad) s 
−0.009 −0.536 10.203 −3.0358 0.0003 3.0361 0.9995 

Change in Position Change in Orientation 
10.217 mm 0.0004 rad 

Table 5.28:  Registration parameters and their overall effects from the noisy post-calibration registration 
of the Stanford Arm. 
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The mean position error and mean orientation error of the end-effector both before and after 

calibration/registration are displayed in Table 5.29.  The errors were derived from the simulation 

of 1000 random joint configurations.  Using this information, the 95% confidence interval 

around each mean was calculated to indicate the reliability of the estimated (mean) error. 

Model Mean Position Error (mm) Mean Orientation Error (rad) 
Stanford Arm Perturbed 147.667 ± 4.534 0.4259 ± 0.0104 
Stanford Arm Calibrated 0.759 ± 0.017 0.2134 ± 0.0041 

Table 5.29:  Comparison of the mean errors of the end-effector’s position and orientation before and after 
noisy calibration/registration of the Stanford Arm.  The 95% confidence interval for each mean is 
provided. 

5.7.3 Real Robot Results 

The results of the real robot experiment (described under section 5.6.5) are found below.  The 

results are grouped according to each of the two robots used in the experiment.  The average 

execution time of the calibration algorithms for each calibration of the robots was 20.6 minutes 

on the test computer (described in section 5.6.1). 

5.7.3.1 AESOP 1000 

The results of the four leave-one-out calibrations of the AESOP 1000 are presented in Figure 

5.6.  For each fixed point, the error of the initial model was calculated (shown in blue), as was 

the error of the model that was calibrated without access to that point’s data (shown in red).  The 

error was defined as the mean of the deviations of the calculated end-effector position from each 

estimated fixed-point location (per section 5.6.5.6).  Approximately 20 recorded joint 

configurations per fixed point were used to determine the mean deviations. 
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Figure 5.6:  Comparison of the mean deviations of the end-effector from each estimated fixed-point 
location before and after four different leave-one-out calibrations of the AESOP 1000. 

Table 5.30 summarizes the errors seen before and after the four leave-one-out calibrations.  It 

provides the average values of the end-effector’s mean deviations from the estimated fixed-point 

locations (as detailed in Figure 5.6). 

Model Average of Mean Deviations (mm) 
AESOP Initial 18.566 

AESOP Calibrated 7.152 
Table 5.30:  Average value of the mean deviations of the end-effector from each estimated fixed-point 
location before and after the four leave-one-out calibrations of the AESOP 1000. 

As an example, the calculated end-effector positions of the initial AESOP model and the 

calibrated AESOP model for fixed point 4 are shown in Figure 5.7.  The estimated fixed-point 

locations for both the initial and calibrated models have been placed at the origin so the spread of 

the end-effector positions can be compared. 
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Figure 5.7:  Comparison of the calculated end-effector positions before and after calibration of the 
AESOP 1000 model for fixed point 4.  The estimated fixed-point locations have been placed at the origin. 

5.7.3.2 MicroScribe G2X 

The results of the five leave-one-out calibrations of the MicroScribe G2X are presented in 

Figure 5.8.  For each fixed point, the error of the initial model was calculated (shown in blue), as 

was the error of the model that was calibrated without access to that point’s data (shown in red).  

The error was defined as the mean of the deviations of the calculated end-effector position from 

each estimated fixed-point location (per section 5.6.5.6).  Between 14 and 22 recorded joint 

configurations per fixed point were used to determine the mean deviations. 
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Figure 5.8:  Comparison of the mean deviations of the end-effector from each estimated fixed-point 
location before and after five different leave-one-out calibrations of the MicroScribe G2X. 

Table 5.31 summarizes the errors seen before and after the five leave-one-out calibrations.  It 

provides the average values of the end-effector’s mean deviations from the estimated fixed-point 

locations (as detailed in Figure 5.8). 

Model Average of Mean Deviations (mm) 
MicroScribe Initial 0.278 

MicroScribe Calibrated 0.223 
Table 5.31:  Average value of the mean deviations of the end-effector from each estimated fixed-point 
location before and after the five leave-one-out calibrations of the MicroScribe G2X. 

5.8 Discussion 

5.8.1 Ideal Simulation Discussion 

The results of the ideal simulation experiment were excellent for all four robots.  In all cases, 

the calibration/registration algorithms were able to reduce the mean position error to practically 

zero.  This was possible due to the lack of noise in the simulated data.  The only sources of (very 

insignificant) position error seemed to be the finite numerical precision and finite execution time 

available to the algorithms. 
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The mean orientation error was also significantly reduced (but still meaningfully present) for 

each of the robots.  This was interesting because the presented calibration/registration algorithms 

do not have the ability to directly optimize the orientation error (due to the lack of orientation 

data).  It turned out that by optimizing for the position error, the algorithms generated models for 

these robots that were also closer to producing the ideal orientations.  Note that the orientation 

error could have increased under different circumstances, so the presented algorithms should not 

be relied upon to reduce orientation error. 

It is also interesting to compare the parameters of each calibrated DH model to the 

parameters of the corresponding true model.  Despite the practically nonexistent position error, 

the majority of the calibrated parameters do not match the true parameters.  Only 6 out of 28 

parameters (AESOP 1000), 7 out of 24 parameters (MicroScribe G2X), 13 out of 24 parameters 

(PUMA 560), and 10 out of 24 parameters (Stanford Arm) actually matched (within the 

precision of the presented DH tables).  Moreover, 4 of the PUMA 560 parameters and 2 of the 

Stanford Arm parameters only matched because the fixed joint offsets for those robots were 

never perturbed. 

There are two reasons why most of the calibrated parameters did not match the true 

parameters even though the position error was practically zero.  First, certain DH parameters 

cannot be calibrated due to the lack of absolute end-effector positional coordinates and the 

absence of orientation data.  As described under section 5.4.4, these “ineffective” parameters 

have no effect on the calibration technique’s error metric.  Fortunately, the registration process 

compensates for this problem (with respect to the position error).  The translation, rotation, and 

scaling provided by the registration parameters enabled the correct absolute positions to be 

achieved despite the fact that some DH parameters were left uncalibrated. 
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The second reason why most of the parameters did not match is because a DH model is often 

not an ideal, minimal representation of a robot.  As explained under section 5.5, there can be 

poorly defined or redundant DH parameters, which means there are multiple sets of parameters 

that effectively produce the same robot.  For example, the presence of prismatic joints or 

consecutive parallel joint axes will lead to such problems.  When coupled with the lack of 

orientation data in the calibration process, the result is that it is often not possible to exactly 

identify all the parameters of a specific true model.  All of the chosen true models have one or 

more of these issues. 

The registration parameters that were computed for each calibrated robot model successfully 

compensated for the lack of absolute coordinates for the end-effector’s position.  The proof is 

that the position errors were practically zero even though a number of DH parameters could not 

be calibrated.  Without the registration transformations, the mean position errors would be 

significant. 

The translational registration parameters show that three robots each needed about 1 cm of 

repositioning, although the AESOP required over 5 cm (in part due to having more uncalibrated 

length parameters).  The rotation parameters indicate that the AESOP and MicroScribe needed 

approximately 0.40 rad and 0.22 rad of reorienting (respectively), whereas the PUMA and 

Stanford Arm required none (because their fixed joint offsets were never perturbed).  The scale 

parameters show that the robots with prismatic joints (the AESOP and Stanford Arm) needed no 

scale adjustment, but the other robots required a slight scale correction (approximately 1%). 

5.8.2 Noisy Simulation Discussion 

The results of the noisy simulation experiment were very good for all four robots.  The 

calibration/registration algorithms were able to reduce each mean position error to a value 
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between 0.308 and 1.202 mm.  Obviously, the addition of noise to the joint feedback led to this 

error, which was not seen in the ideal simulation experiment.  The noise added to each joint 

value was between ±1 mrad or ±1 mm, so the magnitude of the mean position errors seems 

reasonable. 

The mean orientation error was also significantly reduced (but still meaningfully present) for 

all the robots except the PUMA 560.  For the PUMA, the mean orientation error increased from 

0.4150 rad to 0.6780 rad.  There are several factors that explain the increase.  First, the presented 

calibration/registration algorithms do not have the ability to directly optimize the orientation 

error (due to the lack of orientation data).  In addition, half of the PUMA model’s six joints only 

affect the orientation of the end-effector, and the noise in the joint feedback made the 

corresponding DH parameters difficult to detect as “ineffective” (per section 5.4.4).  Thus, more 

orientation error was expected for the PUMA.  For the other three robots, the decrease in 

orientation error was comparable to the results of the ideal simulation experiment. 

Very few parameters of the calibrated DH models matched the parameters of the 

corresponding true models (within the precision of the presented DH tables).  In fact, only 2 out 

of 24 parameters (MicroScribe G2X), 2 out of 24 parameters (PUMA 560), and 4 out of 24 

parameters (Stanford Arm) actually matched, and none of the 28 AESOP 1000 parameters 

matched.  Moreover, 1 of the PUMA 560 parameters and 2 of the Stanford Arm parameters only 

matched because the fixed joint offsets for those robots were never perturbed.  Nevertheless, for 

the calibrated parameters that matched in the ideal experiment, the same parameters in the noisy 

experiment were relatively close to their true values. 

The most obvious cause of the parameter mismatch was the noise added to the joint 

feedback, which made it extremely difficult to exactly recover any of the true parameters.  In 
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addition, the other causes of parameter mismatch described in the previous section (uncalibrated 

parameters and non-ideal DH models) also apply to this experiment.  In fact, the noise made it 

even harder to detect parameters that could not be calibrated (i.e., were ineffective), as explained 

below. 

The calibration algorithms attempt to detect parameters that cannot be calibrated by 

perturbing each parameter and checking for no change in the output position error (per section 

5.4.4.2).  Unfortunately, this process is dependent upon the accuracy of the model.  Errors in the 

partially calibrated models (caused by the added noise) made the algorithms miss a few 

parameters that were detected as “ineffective” in the ideal simulation (for the AESOP 1000 and 

PUMA 560).  Consequently, the algorithms in the noisy simulation tried to calibrate a few extra 

parameters, which mostly ended up further from the true values than their initial values. 

The registration parameters that were computed for each calibrated robot model appear to 

have successfully compensated for the lack of absolute coordinates for the end-effector’s 

position.  The final mean position errors were much smaller than the amounts by which each 

model was translated/rotated/scaled by the registration parameters, indicating that the registration 

transformed the models in at least a mostly correct manner.  In addition, the registration 

parameters calculated in the noisy simulation were mostly similar to those of the ideal 

simulation, and the differences appear to reflect the changes between the experiments.  Note that 

the registration process can’t correct internal errors of the DH model (caused by the added joint 

noise), which explains why some position error remained after registration. 

The translational registration parameters show that three robots each needed roughly 1 cm of 

repositioning, although the AESOP required almost 6 cm (in part due to having more 

uncalibrated length parameters).  The rotation parameters indicate that the AESOP and 
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MicroScribe needed approximately 0.70 rad and 0.22 rad of reorienting (respectively), whereas 

the PUMA and Stanford Arm required almost none (because their fixed joint offsets were never 

perturbed).  The scale parameters show that the robots with prismatic joints (the AESOP and 

Stanford Arm) needed almost no scale adjustment, but the MicroScribe and PUMA required 

some small scale corrections (about 2% and 5.7%, respectively). 

5.8.3 Real Robot Discussion 

The results of the real robot experiment for the AESOP 1000 were very good.  As seen in 

Table 5.30, the estimated mean position error of the robot was reduced by more than half (from 

1.86 cm to 0.72 cm).  In addition, Figure 5.6 shows that the reduction was relatively consistent 

for each of the four fixed points and calibrated models.  This is important because each 

calibrated model was generated without access to the fixed-point data (joint configurations) 

against which it was tested.  These facts indicate that the calibration technique is correctly 

approximating the actual structure of the robot instead of generating a model that only fits the 

test data. 

Figure 5.7 gives a graphical representation of the increased precision provided by the 

calibration technique.  After the calibration, there is an obvious decrease in the spread of the 

calculated end-effector positions from the estimated fixed-point locations.  Assuming the robot 

can be accurately registered with little scale adjustment, the figure demonstrates the improved 

position accuracy that is possible with the presented calibration technique. 

The large improvement for the AESOP 1000 was anticipated due to the expectation of 

imperfections in the initial model.  As explained in section 5.6.5.3, the starting model for the 

AESOP was generated from older, manual measurements of the robot.  This left a lot of room for 

improvement, even with the noise and other sources of error in the real joint measurements.  
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Further gains in the accuracy might not have been possible because the AESOP 1000 was 

originally designed for manual positioning, not precise computer control. 

For the MicroScribe G2X, the real robot experiment also produced good results.  As shown 

in Table 5.31, the estimated mean position error of the robot was reduced by approximately 20% 

(from 0.28 mm to 0.22 mm).  According to Figure 5.8, a decrease in error was seen for all five 

fixed points and calibrated models.  Since each calibrated model was generated without access to 

the fixed-point data against which it was tested, the calibration technique seems to be producing 

models that correctly approximate the actual structure of the robot. 

The improvement for the MicroScribe G2X was much less than the improvement seen for the 

AESOP 1000.  This was expected because the initial model for the MicroScribe was already 

relatively accurate.  Thus, there was less room for improvement, and the noise/error in the real 

joint measurements was likely limiting any further progress. 

5.9 Conclusion 

The results show that the presented calibration technique was able to increase the positional 

accuracy of the end-effector for robot models in each of the three experiments.  Positive 

outcomes were achieved for all four robots that were tested, which demonstrates the flexibility of 

the technique.  Not all of the true DH parameters (or approximations thereof) could be recovered 

via the calibration, but this was expected due to limitations in the collected data and 

dependent/redundant/ambiguous parameters inherent in DH modeling.  Ultimately, the 

calibration technique generated models that effectively reduced the positional error of the end-

effector. 
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5.10 Future Work 

There are many ways in which the presented calibration technique could be improved.  For 

example, more intelligent scaling of the pose components and DH parameters could result in 

improved performance [109, 111].  An automated method of selecting fixed-point locations 

within the robot’s workspace could also improve the calibration process [109, 111]. 

The calibration technique currently uses a direct search method that requires no Jacobian 

matrices to be calculated.  This enables the technique to be implemented more easily and adapted 

to alternative robot modeling conventions with less effort, but it also means that advantages of a 

Jacobian-based technique are lost.  For example, a Jacobian-based technique will generally be 

faster than a direct search technique. 

An analysis of the identification Jacobian would provide more information about the 

identifiability of various DH parameters [105, 109-112].  The unidentifiable and weakly 

identifiable parameters could be found more accurately.  In addition, linearly dependent sets of 

parameters could be located.  The technique would be benefit if it were able to remove most of 

the linearly dependent parameters. 

To better model the uncertainties of parameters and measurement errors, a priori estimates 

for these quantities could be incorporated into the technique.  For example, the implicit loop 

method provides a powerful way to incorporate and test statistical variables in the calibration 

[122].  The incorporation of statistical methods can improve the robustness of the technique and 

help identify unmodeled factors. 

There are a number of robot parameters beyond the four DH parameters that define aspects 

of the robot.  For example, it may be necessary to calibrate the gains of the joint feedback 

sensors.  In some cases, it is desired to work with parameters of the Hayati convention to avoid 
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ambiguities in the robot model [111, 134].  In addition, there are a large number of 

dynamic/inertial parameters that need to be calibrated for certain applications.  Some of these 

kinds of parameters could be added to the technique if found to be compatible. 

Additional testing of the real robots (AESOP 1000 and MicroScribe G2X) is expected to be 

performed.  The robots can be registered to different objects, and the accuracy can be assessed 

with an external measurement device (e.g., an optical tracker).  The calibrated robot models 

should also be tested with the image guidance system of Chapter 4. 
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Chapter 6: 
Summary and Future Work 

6.1 Summary 

In Chapter 3, an open software system for processing, analyzing, and classifying Raman 

spectra was introduced.  The system was successfully applied to the classification of two Raman 

data sets.  In Chapter 4, a novel image guidance system for a robot with an integrated sensor was 

presented.  The system was able to successfully track the sensor, collect new data, classify the 

data, and present the results in near real time.  Finally, in Chapter 5, a flexible kinematic 

calibration technique for serial manipulators was described.  The technique was able to improve 

the positional accuracy of four different robots in three different experiments. 

6.2 Future Work 

As discussed in Chapter 3, Chapter 4, and Chapter 5, there are number of potential 

improvements that can be made to the systems and techniques that were developed in this 

research.  However, from a broader perspective, the goal of this work was to make contributions 

that facilitate the use of sensor-integrated robotic systems.  In fact, the chosen contributions 

represent important building blocks that could be used to create an actual image-guided robotic 

system with an integrated Raman probe.  For example, they could be merged to produce a 

powerful robotic surgery system, as explained below. 

The developed Raman software system (Chapter 3) provides the necessary infrastructure to 

identify diseased (e.g., cancerous) human tissue.  The work described in [104] will make it 

possible to move a Raman probe with a surgical robot (the AESOP 1000) inside the body.  The 

image guidance system (Chapter 4) offers a way to track the Raman probe inside the body, 
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initiate scans, and view the results in real time.  Lastly, the kinematic calibration technique 

(Chapter 5) can be used to improve the limited accuracy of the AESOP, which was noted in 

[104]. 

The aforementioned systems were designed with the goal of eventually working together.  

However, some of them have not been tested together, and there is still some refinement and 

application-specific work that has to be done.  Some of the important high-level tasks that are 

needed to produce a functional combined system are described below. 

First, the full kinematic calibration technique (including the registration process) should be 

applied to the AESOP 1000 using new joint configuration data with an attached Raman probe.  

Second, the Raman classification software must be trained to recognize various tissues or other 

specimens of interest.  It may also be necessary to adapt more of the Raman software algorithms 

for use with the real-time image guidance system.  Third, the control system for the robot should 

be tested and possibly adjusted to ensure that the Raman probe can be maneuvered with 

sufficient ease and precision.  Fourth, the Raman probe should be tested and potentially altered 

to work in its intended environment (e.g., in the body).  Fifth, imaging data of the target 

environment has to be obtained and processed. 

Many other steps would likely need to be completed before the combined system could be 

used in a particular application.  For example, if the system were intended to be used inside a 

person during surgery, extensive testing and refinement would be required to ensure the system 

is safe and effective.  In some cases, other instruments may need to be tracked, and domain-

specific information may need to be displayed within the image guidance system.  Meeting these 

kinds of requirements may take considerable effort, but the work is much easier when systems 

like those developed in this research are available. 

 



184 

A future image-guided robotic surgery system with an integrated Raman probe could be a 

great benefit in the operating room.  The surgeon could diagnose diseased tissue in seconds 

instead of waiting for a pathological analysis.  Consequently, the surgeon could immediately 

remove the diseased tissue while preserving the surrounding healthy tissue.  This kind of 

technology has the potential to save lives and reduce the costs of operations. 

 



185 

REFERENCES 

[1] J. P. Grotzinger, J. Crisp, A. R. Vasavada, R. C. Anderson, C. J. Baker, R. Barry, et al., 

"Mars Science Laboratory mission and science investigation," Space Science Reviews, pp. 

1-52, 2012. 

[2] L. Robledo, M. Carrasco, and D. Mery, "A survey of land mine detection technology," 

International Journal of Remote Sensing, vol. 30, pp. 2399-2410, 2009. 

[3] A. M. Okamura, "Haptic feedback in robot-assisted minimally invasive surgery," Current 

opinion in urology, vol. 19, p. 102, 2009. 

[4] A. K. Pandya, G. K. Serhatkulu, A. Cao, R. E. Kast, H. Dai, R. Rabah, et al., "Evaluation 

of Pancreatic Cancer With Raman Spectroscopy in a Mouse Model," Pancreas, vol. 36, 

pp. e1-e8, 2008. 

[5] H. Wills, R. Kast, C. Stewart, R. Rabah, A. Pandya, J. Poulik, et al., "Raman spectroscopy 

detects and distinguishes neuroblastoma and related tissues in fresh and (banked) frozen 

specimens," Journal of Pediatric Surgery, vol. 44, pp. 386-391, 2009. 

[6] H. Wills, R. Kast, C. Stewart, B. Sullivan, R. Rabah, J. Poulik, et al., "Diagnosis of Wilms' 

tumor using near-infrared Raman spectroscopy," Journal of Pediatric Surgery, vol. 44, pp. 

1152-1158, 2009. 

[7] J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. 

Reynolds, "Standoff Detection of High Explosive Materials at 50 Meters in Ambient Light 

Conditions Using a Small Raman Instrument," Applied Spectroscopy, vol. 59, pp. 769-775, 

2005. 

[8] G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, "Combined Raman 

spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars," 

 



186 

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 68, pp. 

1023-1028, 2007. 

[9] S. Y.-S. Lee, "An augmented reality interface for multi-robot tele-operation and control," 

Ph.D. Thesis, Electrical Engineering, Wayne State University, ETD Collection, 2011. 

[10] K. Chintamani, "Augmented reality navigation interfaces improve human performance in 

end-effector controlled telerobotics," Ph.D. Thesis, Mechanical Engineering, Wayne State 

University, ETD Collection, 2010. 

[11] M. F. Mrozek, D. Zhang, and D. Ben-Amotz, "Oligosaccharide identification and mixture 

quantification using Raman spectroscopy and chemometric analysis," Carbohydrate 

Research, vol. 339, pp. 141-145, 2004. 

[12] C. J. Strachan, D. Pratiwi, K. C. Gordon, and T. Rades, "Quantitative analysis of 

polymorphic mixtures of carbamazepine by Raman spectroscopy and principal 

components analysis," Journal of Raman Spectroscopy, vol. 35, pp. 347-352, 2004. 

[13] A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, et al., "In vivo 

Margin Assessment during Partial Mastectomy Breast Surgery Using Raman 

Spectroscopy," Cancer Research, vol. 66, pp. 3317-3322, March 15 2006. 

[14] J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, et al., 

"Real-time Raman system for in vivo disease diagnosis," Journal of Biomedical Optics, 

vol. 10, p. 031113, 2005. 

[15] T. C. Bakker Schut, R. Wolthuis, P. J. Caspers, and G. J. Puppels, "Real-time tissue 

characterization on the basis of in vivo Raman spectra," J. Raman Spectroscopy, vol. 33, 

pp. 580-585, 2002. 

 



187 

[16] P. J. Caspers, G. W. Lucassen, and G. J. Puppels, "Combined In Vivo Confocal Raman 

Spectroscopy and Confocal Microscopy of Human Skin," Biophysical Journal, vol. 85, pp. 

572-580, 2003. 

[17] A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-

Kortum, "Development of a fiber optic probe to measure NIR Raman spectra of cervical 

tissue in vivo," Photochemistry and Photobiology, vol. 68, pp. 427-431, September 1998. 

[18] A. Robichaux-Viehoever, E. Kanter, H. Shappell, D. Billheimer, H. Jones Iii, and A. 

Mahadevan-Jansen, "Characterization of Raman Spectra Measured in Vivo for the 

Detection of Cervical Dysplasia," Applied Spectroscopy, vol. 61, pp. 986-993, 2007. 

[19] B. W. King, L. A. Reisner, R. D. Ellis, M. D. Klein, G. W. Auner, and A. K. Pandya, 

"Optimized port placement for in vivo biosensors," The International Journal of Medical 

Robotics and Computer Assisted Surgery, vol. 5, pp. 267-275, 2009. 

[20] L. A. Reisner, B. W. King, M. D. Klein, G. W. Auner, and A. K. Pandya, "A prototype 

biosensor-integrated image-guided surgery system," The International Journal of Medical 

Robotics and Computer Assisted Surgery, vol. 3, pp. 82-88, 2007. 

[21] I. Salakhutdinov and G. W. Auner, "Diffraction gratings for compact integrated optical 

structures," in Proceedings of SPIE, 2009, p. 72050O. 

[22] S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, 

"Detection of skin cancer by classification of Raman spectra," IEEE Transactions on 

Biomedical Engineering, vol. 51, pp. 1784-1793, 2004. 

[23] A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, 

"Diagnosing breast cancer by using Raman spectroscopy," Proc National Academy of 

Sciences of the USA, vol. 102, pp. 12371-12376, 2005. 

 



188 

[24] U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. 

Richards-Kortum, "Near-infrared Raman spectroscopy for in vivo detection of cervical 

precancers," Appl. Spectroscopy, vol. 55, pp. 955-959, 2001. 

[25] N. Stone, C. Kendall, N. Shepherd, P. Crow, and H. Barr, "Near-infrared Raman 

spectroscopy for the classification of epithelial pre-cancers and cancers," Journal of 

Raman Spectroscopy, vol. 33, pp. 564-573, 2002. 

[26] A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, 

"Identifying Microcalcifications in Benign and Malignant Breast Lesions by Probing 

Differences in Their Chemical Composition Using Raman Spectroscopy," vol. 62, pp. 

5375-5380, 2002. 

[27] J. Denavit and R. S. Hartenberg, "A kinematic notation for lower-pair mechanisms based 

on matrices," Journal of Applied Mechanics, vol. 22, pp. 215-221, 1955. 

[28] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed. Prentice Hall, 2004. 

[29] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, "Global cancer 

statistics," CA: a cancer journal for clinicians, vol. 61, pp. 69-90, 2011. 

[30] J. R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy, Academic Press, 2003. 

[31] M. J. Pelletier, Analytical Applications of Raman Spectroscopy, Blackwell Publishing, 

1999. 

[32] C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, 

"Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: 

Environment and Temperature Effects," Physical Review Letters, vol. 93, p. 147406, 2004. 

[33] S. Piscanec, M. Cantoro, A. C. Ferrari, J. A. Zapien, Y. Lifshitz, S. T. Lee, et al., "Raman 

spectroscopy of silicon nanowires," Physical Review B, vol. 68, p. 241312, 2003. 

 



189 

[34] P. C. A. M. Buijtels, H. F. M. Willemse-Erix, P. L. C. Petit, H. P. Endtz, G. J. Puppels, H. 

A. Verbrugh, et al., "Rapid identification of mycobacteria by Raman spectroscopy," J. 

Clinical Microbiology, pp. 01763-07, January 3, 2008 2008. 

[35] K. T. Tsen, E. C. Dykeman, O. F. Sankey, S. W. D. Tsen, N. T. Lin, and J. G. Kiang, 

"Raman scattering studies of the low-frequency vibrational modes of bacteriophage M13 

in water—observation of an axial torsion mode," Nanotechnology, vol. 17, pp. 5474-5479, 

2006. 

[36] S. J. Tinnemans, M. H. F. Kox, T. A. Nijhuis, T. Visser, and B. M. Weckhuysen, "Real 

time quantitative Raman spectroscopy of supported metal oxide catalysts without the need 

of an internal standard," Physical Chemistry Chemical Physics, vol. 7, pp. 211-216, 2005. 

[37] B. M. Vogelaar, A. D. van Langeveld, S. Eijsbouts, and J. A. Moulijn, "Analysis of coke 

deposition profiles in commercial spent hydroprocessing catalysts using Raman 

spectroscopy," Fuel, vol. 86, pp. 1122-1129, 2007. 

[38] L. P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, et al., 

"Medical applications of Raman spectroscopy: from proof of principle to clinical 

implementation," Biopolymers (Biospectroscopy), vol. 67, pp. 1–9, 2002. 

[39] H. P. Buschman, J. T. Motz, G. Deinum, T. J. Römer, M. Fitzmaurice, J. R. Kramer, et al., 

"Diagnosis of human coronary atherosclerosis by morphology-based Raman 

spectroscopy," Cardiovascular Pathology, vol. 10, pp. 59-68, 2001. 

[40] A. Mahadevan-Jansen and R. Richards-Kortum, "Raman spectroscopy for cancer 

detection: a review," in 19th International Conference of IEEE/EMBS, Chicago, IL, 1997, 

pp. 2722-2728. 

 



190 

[41] E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, et al., 

"Prospects for in vivo Raman spectroscopy," Physics in Medicine and Biology, vol. 45, p. 

1–59, 2000. 

[42] M. Hashimoto, T. Araki, and S. Kawata, "Molecular vibration imaging in the fingerprint 

region by use of coherent anti-Stokes Raman scattering microscopy with a collinear 

configuration," Optics Letters, vol. 25, pp. 1768-1770, 2000. 

[43] D. L. Massart, Handbook of Chemometrics and Qualimetrics: Part A, Elsevier, 1997. 

[44] T. Howley, M. G. Madden, M. L. O'Connell, and A. G. Ryder, "The Effect of Principal 

Component Analysis on Machine Learning Accuracy with High Dimensional Spectral 

Data," Knowledge-Based Systems, vol. 19, pp. 363-370, 2006. 

[45] A. G. Ryder, G. M. O'Connor, and T. J. Glynn, "Quantitative analysis of cocaine in solid 

mixtures using Raman spectroscopy and chemometric methods," Journal of Raman 

Spectroscopy, vol. 31, pp. 221-227, 2000. 

[46] R. N. Feudale, N. A. Woody, H. Tan, A. J. Myles, S. D. Brown, and J. Ferré, "Transfer of 

multivariate calibration models: a review," Chemometrics and Intelligent Laboratory 

Systems, vol. 64, pp. 181-192, 2002. 

[47] O. E. De Noord, "Multivariate Calibration Standardization," Chemometrics and Intelligent 

Laboratory Systems, vol. 25, pp. 85-97, 1994. 

[48] K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, et al., 

"Raman microspectroscopic model of human breast tissue: implications for breast cancer 

diagnosis in vivo," J. Raman Spectroscopy, vol. 33, pp. 552-563, 2002. 

[49] I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York: Springer-Verlag, 2002. 

 



191 

[50] M. J. Adams, Chemometrics In Analytical Spectroscopy, Royal Society of Chemistry, 

2004. 

[51] J. E. Jackson, A User's Guide to Principal Components, Wiley, 1991. 

[52] Y. Wang, D. J. Veltkamp, and B. R. Kowalski, "Multivariate instrument standardization," 

Analytical Chemistry, vol. 63, pp. 2750-2756, 1991. 

[53] Z. Wang, T. Dean, and B. R. Kowalski, "Additive Background Correction in Multivariate 

Instrument Standardization," Analytical Chemistry, vol. 67, pp. 2379-2385, 1995. 

[54] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Machine Learning, Neural and Statistical 

Classification. Upper Saddle River, NJ: Ellis Horwood, 1994. 

[55] A. Molckovsky, L.-M. Wong Kee Song, M. G. Shim, N. E. Marcon, and B. C. Wilson, 

"Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating 

adenomatous from hyperplastic polyps," Gastrointestinal Endoscopy, vol. 57, pp. 396-402, 

March 2003. 

[56] J. S. Thakur, H. Dai, G. K. Serhatkulu, R. Naik, V. M. Naik, A. Cao, et al., "Raman 

spectral signatures of mouse mammary tissue and associated lymph nodes: normal, tumor 

and mastitis," J. Raman Spectroscopy, vol. 38, pp. 127-134, February 2007. 

[57] S. J. Baek, A. Park, J. Y. Kim, S. Y. Na, Y. Won, and J. Choo, "Detection of Basal Cell 

Carcinoma by Automatic Classification of Confocal Raman Spectra," in Computational 

Intelligence and Bioinformatics. vol. 4115, S. Istrail, P. Pevzner, and M. Waterman, Eds., 

ed: Springer Berlin / Heidelberg, 2006, pp. 402-411. 

[58] S. K. Majumder, N. Ghosh, and P. K. Gupta, "Support vector machine for optical 

diagnosis of cancer," Journal of Biomedical Optics, vol. 10, p. 024034, 2005. 

 



192 

[59] P. Legendre and L. Legendre, Numerical Ecology, 2nd ed. Amsterdam: Elsevier Science, 

1998. 

[60] M. H. Hassoun, Fundamentals of Artificial Neural Networks, 1st ed. Cambridge: The MIT 

Press, 1995. 

[61] C. J. C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition," Data 

Mining and Knowledge Discovery, vol. 2, pp. 121-167, 1998. 

[62] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling, planning and 

control. London: Springer, 2009. 

[63] R. P. Paul, Robot manipulators: mathematics, programming, and control. USA: MIT 

Press, 1981. 

[64] L. A. Reisner, A. Cao, and A. K. Pandya, "An integrated software system for processing, 

analyzing, and classifying Raman spectra," Chemometrics and Intelligent Laboratory 

Systems, vol. 105, pp. 83-90, January 15 2011. 

[65] M. C. Demirel, P. Kao, N. Malvadkar, H. Wang, X. Gong, M. Poss, et al., "Bio-organism 

sensing via surface enhanced Raman spectroscopy on controlled metal/polymer 

nanostructured substrates," Biointerphases, vol. 4, pp. 35-41, 2009. 

[66] K. L. Brown, O. Y. Palyvoda, J. S. Thakur, S. L. Nehlsen-Cannarella, O. R. Fagoaga, S. A. 

Gruber, et al., "Raman spectroscopic differentiation of activated versus non-activated T 

lymphocytes: An in vitro study of an acute allograft rejection model," Journal of 

Immunological Methods, vol. 340, pp. 48-54, 2009. 

[67] K. De Gussem, J. De Gelder, P. Vandenabeele, and L. Moens, "The Biodata toolbox for 

MATLAB," Chemometrics and Intelligent Laboratory Systems, vol. 95, pp. 49-52, 2009. 

 



193 

[68] R. A. Viscarra Rossel, "ParLeS: Software for chemometric analysis of spectroscopic data," 

Chemometrics and Intelligent Laboratory Systems, vol. 90, pp. 72-83, 2008. 

[69] A. Cao, A. K. Pandya, G. K. Serhatkulu, R. E. Weber, H. Dai, J. S. Thakur, et al., "A 

robust method for automated background subtraction of tissue fluorescence," Journal of 

Raman Spectroscopy, vol. 38, pp. 1199-1205, September 2007. 

[70] C. R. Mittermayr, S. G. Nikolov, H. Hutter, and M. Grasserbauer, "Wavelet denoising of 

Gaussian peaks: A comparative study," Chemometrics and Intelligent Laboratory Systems, 

vol. 34, pp. 187-202, 1996. 

[71] M. J. Tosina Muñoz, "Diseño de un filtro morfológico para la reducción de fluorescencia 

en espectros Raman," Master's Thesis, Teoría de la Señal y Comunicaciones, Universidad 

Politécnica de Catalunya, 2008. 

[72] R. Perez-Pueyo, M. J. Soneira, and S. Ruiz-Moreno, "Morphology-based automated 

baseline removal for Raman spectra of artistic pigments," Applied spectroscopy, vol. 64, 

pp. 595-600, 2010. 

[73] F. Y. Shih, Image processing and mathematical morphology: Fundamentals and 

applications, CRC, 2009. 

[74] N. Brandt, O. Brovko, A. Y. Chikishev, and O. Paraschuk, "Optimization of the rolling-

circle filter for Raman background subtraction," Applied spectroscopy, vol. 60, pp. 288-

293, 2006. 

[75] R. J. Meier, "On art and science in curve-fitting vibrational spectra," Vibrational 

spectroscopy, vol. 39, pp. 266-269, 2005. 

 



194 

[76] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence Properties of 

the Nelder-Mead Simplex Method in Low Dimensions," SIAM Journal on Optimization, 

vol. 9, pp. 112-147, 1998. 

[77] Z. Movasaghi, S. Rehman, and D. I. U. Rehman, "Raman spectroscopy of biological 

tissues," Applied Spectroscopy Reviews, vol. 42, pp. 493-541, 2007. 

[78] A. Pandya, "Medical augmented reality system for image-guided and robotic surgery: 

Development and surgeon factors analysis," Ph.D. Thesis, Biomedical Engineering, 

Wayne State University, ETD Collection, 2004. 

[79] F. Sauer, "Image Registration: Enabling Technology for Image Guided Surgery and 

Therapy," in 27th Annual International Conference of the IEEE Engineering in Medicine 

and Biology Society, Shanghai, China, 2005, pp. 7242-7245. 

[80] P. Crow, N. Stone, C. A. Kendall, J. S. Uff, J. A. Farmer, H. Barr, et al., "The use of 

Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro," Br J 

Cancer, vol. 89, pp. 106-8, Jul 7 2003. 

[81] C. Krafft, S. Miljanic, S. B. Sobottka, G. Schackert, and R. Salzer, "Near-infrared Raman 

spectroscopy to study the composition of human brain tissue and tumors," Proceedings of 

SPIE-The International Society for Optical Engineering, vol. 5141, pp. 230-236, 2003. 

[82] C. J. Frank, D. C. Redd, T. S. Gansler, and R. L. McCreery, "Characterization of human 

breast biopsy specimens with near-IR Raman spectroscopy," Anal Chem, vol. 66, pp. 319-

26, Feb 1 1994. 

[83] M. Gniadecka, H. C. Wulf, O. F. Nielsen, D. H. Christensen, and J. Hercogova, 

"Distinctive molecular abnormalities in benign and malignant skin lesions: studies by 

Raman spectroscopy," Photochem Photobiol, vol. 66, pp. 418-23, Oct 1997. 

 



195 

[84] C. K. Johansson, D. H. Christensen, and O. F. Nielsen, "Near-infrared Fourier transform 

Raman spectral studies of human skin," Dansk Kemi, vol. 80, pp. 12-13, 1999. 

[85] Y.-K. Min, T. Yamamoto, E. Kohda, T. Ito, and H.-o. Hamaguchi, "1064 nm near-infrared 

multichannel Raman spectroscopy of fresh human lung tissues," Journal of Raman 

Spectroscopy, pp. 73–76, 2005. 

[86] K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, H. P. Endtz, B. Smith, R. Bennett, et 

al., "Raman spectroscopic method for identification of clinically relevant microorganisms 

growing on solid culture medium," Anal Chem, vol. 72, pp. 12-9, Jan 1 2000. 

[87] K. S. Kalasinsky and V. F. Kalasinsky, "Infrared and Raman microspectroscopy of foreign 

materials in tissue specimens," Spectrochimica Acta A: Mol Biomol Spectroscopy, vol. 61, 

pp. 1707-13, May 2005. 

[88] M. D. Schaeberle, V. F. Kalasinsky, J. L. Luke, E. N. Lewis, I. W. Levin, and P. J. Treado, 

"Raman chemical imaging: histopathology of inclusions in human breast tissue," Anal 

Chem, vol. 68, pp. 1829-33, Jun 1 1996. 

[89] D. Pappas, B. W. Smith, and J. D. Winefordner, "Raman spectroscopy in bioanalysis," 

Talanta, vol. 51, pp. 131-144, 2000. 

[90] A. Pandya and G. Auner, "Robotic Technology: a Journey into the Future," in Robotic 

Urologic Surgery. vol. 31, M. Menon and S. Das, Eds., ed: Elsevier, Inc., 2004, pp. 793-

800. 

[91] A. Lorincz, D. Haddad, R. Naik, V. Naik, A. Fung, A. Cao, et al., "Raman spectroscopy 

for neoplastic tissue differentiation: a pilot study," Journal of Pediatric Surgery, vol. 39, 

pp. 953-956, 2004. 

 



196 

[92] R. D. Bucholz, K. R. Smith, K. A. Laycock, and L. L. McDurmont, "Three-dimensional 

localization: From image-guided surgery to information-guided therapy," Methods, vol. 

25, pp. 186-200, Oct 2001. 

[93] A. Pandya, M. R. Siadat, and G. Auner, "Design, implementation and accuracy of a 

prototype for medical augmented reality," Computer Aided Surgery, vol. 10, pp. 23-35, 

2005. 

[94] L. T. Holly and K. T. Foley, "Intraoperative spinal navigation," Spine, vol. 28, pp. S54-

S61, AUG 1 2003. 

[95] A. M. DiGioia, "Computer assisted orthopaedic surgery: Medical robotics and image 

guided surgery - Comment," Clinical Orthopaedics and Related Research, pp. 2-4, SEP 

1998. 

[96] D. M. Cash, T. K. Sinha, W. C. Chapman, H. Terawaki, B. M. Dawant, R. L. Galloway, et 

al., "Incorporation of a laser range scanner into image-guided liver surgery: Surface 

acquisition, registration, and tracking," Medical Physics, vol. 30, pp. 1671-1682, JUL 

2003. 

[97] A. Pandya and L. Zamorano, "Augmented Tracking Using Video, Computer Data and/or 

Sensing Technologies," US Patent application 20030179308, 2002. 

[98] A. K. Pandya, M. Siadat, Z. Ye, M. Prasad, G. Auner, L. Zamorano, et al., "Medical Robot 

Vision Augmentation—A Prototype," in Medicine Meets Virtual Reality, Newport Beach, 

California, 2003, p. 85. 

[99] A. K. Pandya, M. Siadat, L. Zamorano, J. Gong, Q. Li, J. C. Maida, et al., "Augmented 

Robotics for Neurosurgery," in American Association of Neurological Surgeons, Toronto, 

Ontario, 2001. 

 



197 

[100] A. K. Pandya, L. Zamorano, M. Siadat, Q. Li, J. Gong, and J. C. Maida, "Augmented 

Robotics for Medical and Space Applications," in Human Systems, NASA Johnson Space 

Center, Houston, TX, 2001. 

[101] A. Pandya and G. Auner, "Simultaneous Augmented and Virtual Reality for Surgical 

Navigation," in North American Fuzzy Information Processing Society Annual 

Conference, Ann Arbor, Michigan, 2005, pp. 429-435. 

[102] E. Samset and H. Hirschberg, "Image-guided stereotaxy in the interventional MRI," 

Minimally Invasive Neurosurgery, vol. 46, pp. 5-10, FEB 2003. 

[103] N. Nakao, K. Nakai, and T. Itakura, "Updating of neuronavigation based on images 

intraoperatively acquired with a mobile computerized tomographic scanner: Technical 

note," Minimally Invasive Neurosurgery, vol. 46, pp. 117-120, Apr 2003. 

[104] B. King, "Optimal port placement and automated robotic positioning for instrumented 

laparoscopic biosensors," Ph.D. Thesis, Computer Engineering, Wayne State University 

Dissertations, 2011. 

[105] B. W. Mooring, Z. S. Roth, and M. R. Driels, Fundamentals of Manipulator Calibration, 

1st ed. New York, NY: John Wiley & Sons, 1991. 

[106] M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, 

et al., "Melanoma Diagnosis by Raman Spectroscopy and Neural Networks: Structure 

Alterations in Proteins and Lipids in Intact Cancer Tissue," Journal of Investigative 

Dermatology, vol. 122, pp. 443-449, 2004. 

[107] A. R. de Paula Jr and S. Sathaiah, "Raman spectroscopy for diagnosis of atherosclerosis: a 

rapid analysis using neural networks," Med Eng Phys, vol. 27, pp. 237-44, 2005. 

 



198 

[108] R. H. Taylor and D. Stoianovici, "Medical Robotics in Computer-Integrated Surgery," 

IEEE Transactions on Robotics and Automation, vol. 19, pp. 765-782, October 2003. 

[109] J. M. Hollerbach and C. W. Wampler, "The Calibration Index and Taxonomy for Robot 

Kinematic Calibration Methods," The International Journal of Robotics Research, vol. 15, 

pp. 573-591, 1996. 

[110] D. J. Bennett and J. M. Hollerbach, "Autonomous calibration of single-loop closed 

kinematic chains formed by manipulators with passive endpoint constraints," IEEE 

Transactions on Robotics and Automation, vol. 7, pp. 597-606, 1991. 

[111] B. Siciliano and O. Khatib, Springer handbook of robotics. Heidelberg: Springer, 2008. 

[112] W. Khalil, M. Gautier, and C. Enguehard, "Identifiable parameters and optimum 

configurations for robots calibration," Robotica, vol. 9, pp. 63-70, 1991. 

[113] L. Giugovaz and J. M. Hollerbach, "Closed-loop kinematic calibration of the Sarcos 

Dextrous Arm," in Intelligent Robots and Systems '94, 1994, pp. 329-334. 

[114] H. Zhuang, S. H. Motaghedi, and Z. S. Roth, "Robot calibration with planar constraints," 

in Robotics and Automation, 1999, pp. 805-810. 

[115] M. Ikits and J. M. Hollerbach, "Kinematic calibration using a plane constraint," in 

Robotics and Automation, 1997, pp. 3191-3196. 

[116] Y. J. Chiu and M. H. Perng, "Self-calibration of a general hexapod manipulator using 

cylinder constraints," International Journal of Machine Tools and Manufacture, vol. 43, 

pp. 1051-1066, 2003. 

[117] A. Nahvi, J. M. Hollerbach, and V. Hayward, "Calibration of a parallel robot using 

multiple kinematic closed loops," in Robotics and Automation, 1994, pp. 407-412. 

 



199 

[118] H. Zhuang, "Self-calibration of parallel mechanisms with a case study on Stewart 

platforms," IEEE Transactions on Robotics and Automation, vol. 13, pp. 387-397, 1997. 

[119] J. M. Hollerbach and D. M. Lokhorst, "Closed-loop kinematic calibration of the RSI 6-

DOF hand controller," IEEE Transactions on Robotics and Automation, vol. 11, pp. 352-

359, 1995. 

[120] P. G. de Santos, M. A. Jiménez, and M. A. Armada, "Improving the motion of walking 

machines by autonomous kinematic calibration," Autonomous Robots, vol. 12, pp. 187-

199, 2002. 

[121] D. J. Bennett, D. Geiger, and J. M. Hollerbach, "Autonomous robot calibration for hand-

eye coordination," The International journal of robotics research, vol. 10, pp. 550-559, 

1991. 

[122] C. W. Wampler, J. M. Hollerbach, and T. Arai, "An implicit loop method for kinematic 

calibration and its application to closed-chain mechanisms," IEEE Transactions on 

Robotics and Automation, vol. 11, pp. 710-724, 1995. 

[123] Y. J. Chiu and M. H. Perng, "Self-calibration of a general hexapod manipulator with 

enhanced precision in 5-DOF motions," Mechanism and Machine Theory, vol. 39, pp. 1-

23, 2004. 

[124] Y. Meng and H. Zhuang, "Autonomous robot calibration using vision technology," 

Robotics and Computer-Integrated Manufacturing, vol. 23, pp. 436-446, 2007. 

[125] G. Yang, I. M. Chen, S. H. Yeo, and W. K. Lim, "Simultaneous base and tool calibration 

for self-calibrated parallel robots," Robotica, vol. 20, pp. 367-374, 2002. 

[126] J. Craig, "Calibration of industrial robots," in Proceedings of the International Symposium 

on Industrial Robots, 1993, pp. 889-893. 

 



200 

[127] M. A. Meggiolaro, G. Scriffignano, and S. Dubowsky, "Analysis and Optimization of 

Closed-Loop Manipulator Calibration with Fixed Endpoint," in Proceedings of the 

CONEM, Brazil, 2002. 

[128] M. A. Meggiolaro, G. Scriffignano, and S. Dubowsky, "Manipulator calibration using a 

single endpoint contact constraint," in Proceedings of the DETC2000, Baltimore, MD, 

2000, pp. 1-9. 

[129] T. Haidegger, T. Xia, and P. Kazanzides, "Accuracy improvement of a neurosurgical robot 

system," in Biomedical Robotics and Biomechatronics, 2008, pp. 836-841. 

[130] M. Abtahi, H. Pendar, A. Alasty, and G. R. Vossoughi, "Calibration of parallel kinematic 

machine tools using mobility constraint on the tool center point," The International 

Journal of Advanced Manufacturing Technology, vol. 45, pp. 531-539, 2009. 

[131] C. S. Gatla, R. Lumia, J. Wood, and G. Starr, "An automated method to calibrate industrial 

robots using a virtual closed kinematic chain," IEEE Transactions on Robotics, vol. 23, pp. 

1105-1116, 2007. 

[132] N. Tan, C. Clévy, G. J. Laurent, and N. Chaillet, "Calibration and validation of XYΘ 

micropositioners with vision," in Advanced Intelligent Mechatronics, 2012, pp. 256-261. 

[133] P. Kazanzides, J. Zuhars, B. Mittelstadt, and R. H. Taylor, "Force sensing and control for a 

surgical robot," in Robotics and Automation, 1992, pp. 612-617. 

[134] S. Hayati and M. Mirmirani, "Improving the absolute positioning accuracy of robot 

manipulators," Journal of Robotic Systems, vol. 2, pp. 397-413, 1985. 

[135] P. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB, 1st ed. 

Springer, 2011. 

 



201 

[136] P. I. Corke and B. Armstrong-Helouvry, "A search for consensus among model parameters 

reported for the PUMA 560 robot," in Robotics and Automation, 1994, pp. 1608-1613. 

[137] Y. S. Kwoh, J. Hou, E. A. Jonckheere, and S. Hayati, "A robot with improved absolute 

positioning accuracy for CT guided stereotactic brain surgery," IEEE Transactions on 

Biomedical Engineering, vol. 35, pp. 153-160, 1988. 

[138] R. P. Paul and H. Zhang, "Computationally efficient kinematics for manipulators with 

spherical wrists based on the homogeneous transformation representation," The 

International journal of robotics research, vol. 5, pp. 32-44, 1986. 

[139] S. Chiaverini, L. Sciavicco, and B. Siciliano, "Control of robotic systems through 

singularities," Advanced Robot Control, pp. 285-295, 1991. 

 

 

 



202 

ABSTRACT 

TECHNIQUES FOR SENSOR-INTEGRATED ROBOTIC SYSTEMS:  RAMAN 
SPECTRA ANALYSIS, IMAGE GUIDANCE, AND KINEMATIC CALIBRATION 

by 
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December 2012 
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Major:   Computer Engineering 

Degree:   Doctor of Philosophy 

Robotics and sensor technology have made impressive advancements over the years.  There 

are now robotic systems that help perform surgeries or explore the surface of Mars, and there are 

sensors that detect trace amounts of explosives or identify diseased human tissue.  The most 

powerful systems integrate robots and sensors, which are natural complements to each other.  

Sensors can provide information that might otherwise be unavailable due to indirect robotic 

manipulation (e.g., images of the target environment), and robots can provide suitably precise 

positioning of an analytical sensor. 

To have an effective sensor-integrated robotic system, multiple capabilities are needed in the 

areas of sensors, robotics, and techniques for robot/sensor integration.  However, for many types 

of applications, there are shortcomings in the current technologies employed to provide these 

capabilities.  For the analysis of complex sensor signals, there is a need for improved algorithms 

and open platforms that enable techniques to be shared.  For the path planning and tracking of 

integrated sensors and the visualization of collected information, image guidance systems that 

support advanced analytical sensors would be very beneficial.  For robotic placement of a sensor, 

 



203 

easily usable calibration procedures and methods to overcome limited feedback could help 

improve the accuracy. 

To help address these issues, some novel systems and techniques were developed in this 

research.  First, a software system was created to process, analyze, and classify data from a 

specific kind of sensor (a Raman spectrometer).  The system is open and extensible, and it 

contains novel techniques for processing and analyzing the sensor data.  Second, an image 

guidance system was made for use with a sensor-integrated robotic system (a Raman probe 

attached to a surgical system).  The system supports tool tracking, sensor activation, real-time 

sensor data analysis, and presentation of the results in a 3D computer visualization of the 

environment.  Third, a kinematic calibration technique was developed for serial manipulators.  It 

requires no external measurement devices for calibration, provides solutions for some limitations 

of existing techniques, and can significantly enhance the positional accuracy of a robot to 

improve sensor placement. 

The implemented techniques and systems were successfully evaluated using various data sets 

and conditions.  Together, the contributions of this work provide important building blocks for 

an accurate robot with an integrated analytical sensor.  This type of a system would be a 

powerful tool for many future applications, such as a surgical robot that automatically scans for 

diseased tissue and assists the surgeon in the necessary treatment.  Ultimately, this work is 

intended to foster the development of advanced sensor-integrated robotic systems. 
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