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CHAPTER 1 

Background 

1.1 Introduction to Brain Ischemia and Reperfusion Injury 

1.1.1 Overview 

The topic of my thesis pertains to brain ischemia and reperfusion (I/R) injury.  

The issue of brain I/R is a widespread problem that clinically manifests as either stroke 

or cardiac arrest and resuscitation.  Furthermore, it has a major impact on the quality of 

life of the millions of individuals it afflicts each year, and costs billions of dollars in 

healthcare costs and lost productivity worldwide.  While it is well understood that brain 

I/R results in neuronal death, the underlying mechanisms of exactly how these neurons 

die have continued to evade researchers and clinicians alike.  As such, there has been 

almost complete failure of all clinical trials aimed to test potential therapeutics (O’Collins 

et al., 2006), and still to this date treatments available to prevent or halt the morbidity 

following the incidence of brain I/R are of very limited utility.   

The work presented in this thesis is rooted in the translation arrest (TA) of protein 

synthesis and the ribonomic structures dictating this process as it occurs following brain 

I/R.  The inhibition of protein synthesis is a reliable predictor of neuronal outcome: in 

neurons where protein synthesis is recovered, the cells will survive; if neuronal protein 

synthesis fails to recover, the cell will succumb to neuronal death.  Data collected earlier 

in our lab has correlated this process of translation arrest to the presence of a specific, 

novel ribonomic structure known as mRNA granules.  The aims of this thesis will be (1) 

to characterize the behavior of mRNA granules along a time course of ischemia and (2) 

study whether the protective phenomenon known as ischemic preconditioning (IPC) 

influences mRNA granules during early reperfusion I/R.   
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1.1.2 Two Types of Brain Ischemia: Global versus Focal Ischemia 

Ischemia is a reduction or cessation of blood flow to an organ or tissue. 

Conversely, reperfusion is the subsequent restoration of blood flow.  Both processes 

are capable of producing damage to the tissue, and each does so by different, yet 

synergizing, damage mechanisms.  Furthermore, the various brain cell types are 

differentially affected, where some are able to overcome the damage and others 

succumb to it.  There are two types of brain ischemia known as focal or global ischemia.   

Focal brain ischemia occurs in a circumscribed brain area.  The most significant 

clinical manifestation of focal ischemia is stroke.  Occurrence of a stroke is marked by 

the reduction or complete elimination of blood supply to an isolated area of the brain.  

Often referred to as cerebrovascular accident (CVA), it is the third leading cause of 

death worldwide after heart disease and cancer, and remains the leading cause of adult 

disability.  Tissue injury from focal ischemia follows a distinct pattern.  There is a core 

region, which is at the epicenter of the occluded vessel; it consequently contains cells 

that die by necrosis.  This core is surrounded by the penumbra region, consisting of a 

zone of hypoperfused cells (Muir et al., 2006).  Cells in this region will die over the 

course of hours to days in a manner known as delayed neuronal death (DND).  

Global brain ischemia on the other hand, is where the entire brain suffers from 

cessation of blood flow.  Cardiac arrest is the most common clinical manifestation of 

global ischemia where there is complete cessation of the heart’s mechanical activity and 

therefore absence of circulation (Roger et al., 2011).  The pattern of damage following 

global ischemia is distinct from that of focal ischemia.  In global ischemia, the patterns 

and morphological alterations are time dependent.  For example, no obvious brain 

damage occurs following an ischemic duration of 4 minutes (min) or less.  However, 
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widespread necrosis and brain death ensue if the global insult lasts 30 min or more.  In 

the window of 4 to 30 min, specific neuronal populations begin to exhibit a gradient of 

ischemic impact (Hossmann and Kleihues, 1973).  It has been established that the 

neurons most vulnerable to ischemia are the pyramidal neurons located in zone 1 of the 

Cornu Ammonis layer of the hippocampus (CA1), followed by CA3, then cerebral 

cortical layers II and III, cerebellar Purkinje cells, striatal and thalamic regions (White et. 

al., 1993), and then the remainder of the brain.  These selectively vulnerable neurons 

go on to die within 24-72 hours (hr) following reperfusion via a process of DND, similar 

to the penumbra neurons of stroke.  However, the more resistant vascular and glial cells 

survive the same insult as do the local interneurons  (Kirino, 1982). 

1.1.3 Clinical Manifestations and Relevant Statistics Concerning Global Brain 

Ischemia and Reperfusion 

The incidence of sudden cardiac arrest within the population is significant: for 

adults forty years and older it is the leading cause of death (Roger et al., 2011).  Out-of-

hospital deaths caused by cardiac arrest claim the lives of an estimated 250,000 

Americans each year  (Forcina et al., 2009).  The rate of patient survival following an in-

hospital cardiac arrest is only 33% in children and 21% in adults  (Roger et al., 2011).  

Even when individuals survive resuscitation, they are subject to serious brain damage if 

not already diagnosed as brain dead.  It was found in a observational study that out of 

1700 adults who met the criteria for having suffered an episode of primary cardiac 

arrest, only a dismal 1.4% of these patients remained neurologically intact (Eckstein et 

al., 2005).  Moreover, out of the 70,000 individuals per year that survives cardiac arrest, 

only 3-10% of that population is able to maintain their quality of life.  Another 60% of 

patients die after succumbing to extensive brain damage.  Most survivors require 
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assistance to sustain a standard quality of life (Lloyd-Jones et al., 2009).  

1.2 Mechanisms and Dynamic Changes Associated with Brain 

Ischemia/Reperfusion Injury  

1.2.1 Consequences of Ischemia 

The mechanisms of damage that arise during I/R have been extensively studied, 

and it is now well understood that these are a product of either the ischemic insult or the 

subsequent reperfusion.  The brain heavily relies on a steady supply of oxygen and 

glucose to function properly.  Thus when that supply is suddenly cut off, very serious 

consequences ensue. These encompass numerous, independently fatal pathways that 

ultimately result in neuronal death if the 

insult is extensive enough. This proposed 

“ischemic cascade” as it has been 

commonly referred to, is presented in Figure 

1 (Lyden and Wahlgren, 2000). 

At the onset of ischemia, the delivery 

of oxygen and glucose is eliminated 

completely (Krause et al., 1988).  

Accompanying this loss is the rapid 

depletion of high energy phosphate stores within 3-4 minutes (Krause et al., 1988; 

White et al., 2000).  The presence of adenosine triphosphate (ATP) is a requirement for 

maintaining neuronal ion gradients.  Therefore, when ATP is depleted the ion gradients 

of sodium, potassium, and calcium quickly dissipate as the ions equilibrate across the 

neuronal membrane.  The sudden influx of Na+ and Ca2+ down their gradients into the 

cell triggers an overall membrane depolarization which fires action potentials and 

Figure 1. An overview of the ischemic 
cascade. (Adapted from Lyden and 
Wahlgren, 2000). 
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releases glutamate into the synaptic cleft (Lyden and Wahlgren, 2000; White et al., 

2000).  

Excitotoxicity 

The concept of excitotoxicity is based on the notion that the excessive release 

and activity of excitatory amino acids (EAAs) results in neuronal damage (Lyden and 

Wahlgren, 2000).  Glutamate is the main excitatory amino acid transmitter in the brain. 

Under normal physiologic conditions it serves an important role in both metabolic and 

neurotransmitter functions, such as producing long-lasting changes in neuronal 

excitability and synaptic organization (Olney, 1990; Sattler and Tymianski, 2001).  

Glutamate acts via distinct subtypes of glutamate receptors, including the metabotropic 

receptors and ionotropic, ligand-gated ion channels such as N-methyl-D-aspartate 

(NMDA), kainate, and 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate (AMPA) 

receptors (Sattler and Tymianski, 2001).  The physiologic binding of glutamate to the 

metabotropic receptors results in calcium release from intracellular stores.  Ligand 

binding to NMDA receptors opens dual Na+-Ca2+ channels,  and binding to AMPA 

receptors opens Na+ channels  (Lyden and Wahlgren, 2000; White et al., 2000).  

Graded depolarization ultimately leads to the induction of action potentials and 

subsequent release of more glutamate (Danton and Dietrich, 2004).  However under 

ischemic conditions, this well-balanced and highly regulated system becomes hyper-

active and all the normal feedback is lost, driving the system into a deregulated state.  

The excessive stimulation of glutamate receptors plays a central role in mediating 

glutamate excitotoxicity and perpetuates the release of additional intracellular Ca2+ to 

further aggravate normal cell homeostasis.  With the understanding of the ischemic 

cascade, research on pharmacologic agents such as NMDA and AMPA antagonists and 
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Ca2+ channel blockers have been pursued with only limited success in the clinic, mainly 

because of highly adverse side-effects due to glutamate antagonism in the brain 

(Danton and Dietrich, 2004).  

Consequence of Ca2+ Imbalance and Influx 

Calcium is a critical ion within cells, due to its key role as an intracellular 

messenger and modulator of various cellular processes (Martínez-Sánchez et al., 

2004).  As such, cells have an elaborate system of maintaining tight calcium 

homeostasis.  Regulation is accomplished in three main ways: control of Ca2+ influx and 

efflux via the plasma membrane, shuttling into and out of intracellular stores, and 

buffering of intracellular Ca2+ (Martínez-Sánchez et al., 2004).  These processes are 

directly and indirectly dependent on ATP, and consequently are forced into an 

unregulated state by ischemia. Such deregulation is central to activating a host of 

pathological processes.  Both in vitro and in vivo studies (Siemkowicz and Hansen, 

1981; Nakamura et al., 1999) have investigated the changes in intracellular calcium 

during ischemia.  Siemkowicz and Hansen (Siemkowicz and Hansen, 1981) observed 

that in normoglycemic rats at the point of anoxic depolarization during global ischemia, 

the extracellular Ca2+ concentration sharply decreased from pre-ischemic normal levels 

of ~ 1.2 mM to ~0.1 mM within about 90 seconds following the induction of ischemia. In 

terms of the intracellular calcium, microelectrodes measured large increases in 

intracellular Ca2+ levels in both CA1 and CA3 hippocampal neurons (Silver and 

Erecińska, 1990).  For instance, within the first minute of ischemia, small increases of 

10-30 nM were observed.  However by 2-3 minutes of ischemia, the level of cytosolic 

Ca2+ within the hippocampal CA1 neurons increased from 90 nM to 30 μM.  Verification 

of these changes in calcium concentration was achieved with, MK-801, a non-
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competitive antagonist of NMDA receptors.  The effective blockade of NMDA receptors 

with MK-801 prevented the dramatic increase in intracellular Ca2+, primarily seen in the 

hippocampus during ischemia, and it was concluded that this was due to the inhibition 

of Ca2+ channel opening and prevention of the subsequent Ca2+ influx (Silver and 

Erecińska, 1990). 

Dramatically altered Ca2+ homeostasis during ischemia affects the cell’s viability.  

For example, calpains are Ca2+-dependent cysteine proteases  consisting of μ-calpain 

and m-calpain, aptly named for the concentrations of calcium they require to become 

activated (micromolar and millimolar, respectively) (Goll et al., 2003).  Calpains are 

known to play a role in synaptic remodeling.  Specifically, the remodeling occurs in 

those cytoskeletal components attached to the plasma membrane which are active in 

the processes of cell motility and fusion (Goll et al., 2003).  However during I/R, the 

calpains become hyper-activated and degrade the neuronal cytoskeleton.  This has 

been shown in animal models of cerebral ischemia where MAP2 and α-spectrin, both 

integral cytoskeletal proteins, are degraded soon after the onset of ischemia, as 

evidenced by the presence of a 150 kDa α-spectrin fragment at 5 min and 60 min post-

ischemia (Bartus et al., 1999; Neumar et al., 2001; Goll et al., 2003).  Furthermore the 

administration of calpain inhibitors, AK-275 and AK-295, has been shown to prevent the 

calpain-induced spectrin breakdown observed in these earlier experiments (Bartus et 

al., 1999).  Around the same time, Neumar et. al (2001) directly measured calpain 

activation in neurons following both global and focal ischemia and also showed two 

important regulators of protein synthesis were degraded by calpain, eIF-4G and eIF4E 

(DeGracia, 2004).  These are two important eukaryotic initiation factors essential to the 

process of protein synthesis initiation and will be discussed below.  
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Another important calcium dependent process affected by ischemia deregulation 

is calcium-regulated phospholipases; specifically phospholipase A2 (PLA2).  The 

phospholipases are an important class of enzymes that are responsible for catalyzing 

the cleavage of fatty acids from phospholipids (Sun et al., 2004).  PLA2 is the enzyme 

responsible for releasing free fatty acids via the hydrolysis of the sn-2 fatty acyl bond 

and ultimately for the generation of arachidonic acids (AA) leading to the production of 

eicosanoids (Dennis, 1994). Under physiologic conditions, PLA2 participates in the 

inflammatory process by releasing the arachidonic acid which in turn serves as a 

substrate for cyclooxygenase 1 and 2 (COX-1, COX-2) which ultimately produce the 

prostaglandins (Cummings et al., 2000).  PLA2 also contributes to other processes of 

the cell including signal transduction and host defense. 

During brain ischemia, hyperactivation of PLA2 alters permeability of the 

membranes  (Murakami et al., 1997) and generates high levels of arachidonate (Bazan, 

1989).  The production of prostanoids, downstream products of arachidonate 

metabolism, is a well-known biochemical marker associated with ischemia and other 

CNS disorders (Sairanen, 1998).  Prostanoid production, catalyzed by the conversion of 

arachidonic acid via cyclooxygenases, contributes to the deleterious production of 

reactive oxygen species (Sairanen et al., 1998).  In studies performed by Sairanen et. al 

(1998), they observed that following focal ischemia there was prominent COX-2 

induction in the neurons located at the site of the infarct core.  Taken together with the 

notion that prostanoid production and free radicals can exacerbate tissue damage 

during episodes of cerebral ischemia, it suggests that COX-2 activity plays a crucial role 

in the overall process of excitotoxicity.  

The disrupted state of calcium regulation is an important underlying similarity in 
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the above examples of biochemical disturbances during ischemia.  However, the 

damaging effects of ischemia are only part of the story.  

1.2.2 Consequences of Reperfusion 

Reperfusion is the resumption of blood flow after ischemia, allowing metabolites 

and nutrients to be restored to the tissue.  The restoration of blood and oxygen to the 

tissues is necessary to prevent the immediate death of cells, however, in a paradoxical 

fashion, this restorative act is fundamentally harmful to tissues and perpetuates the 

damage incurred during the ischemic period.  

As blood flow is restored to the ischemic tissue, it is reintroduced into an altered 

cellular environment.  It is due to the damage products accumulated during ischemia 

and their reaction with oxygen that makes reperfusion a double-edged sword.  In the 

initial period of reperfusion, the buildup of vasodilating metabolites during the ischemic 

period now produce an increase in blood flow (hyperemia) and the levels of ATP are 

restored within the first 10 min (Krause et al., 1988).  In the presence of ATP, ion-

gradients are re-established after 20 min of reperfusion (Hoehner et al., 1987).  

Hyperemia is short lived however, as by 60 min of reperfusion a hypoperfusion occurs 

(Krause et al., 1988).  At this point since the metabolic demands of the brain are still 

very high, there is an uncoupling of blood flow with the brain’s metabolic needs during 

the reperfusion period, and this results in at least a 50% depression of the metabolic 

rate over the course of 6 hours following the ischemic event (Mies et al., 1990).  

Furthermore, the release of various factors such as reactive oxygen species and lipid 

peroxidation products further exacerbates cell damage.  Additionally, pathways involved 

in cell signaling are altered and there are major changes in the protein synthesis system 

during reperfusion.  
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Reactive Oxygen Species 

The presence of oxygen during reperfusion generates reactive oxygen species 

(ROS) (McCord, 1993).  The presence of ROS is detrimental to the cell.  As mentioned 

earlier, arachidonic acid is released by PLA2 during ischemia.  During reperfusion, 

arachidonate is catalyzed by cyclooxygenase into prostaglandin G, and ultimately 

prostaglandin H and a free radical (Krause et al., 1988).  In the oxidative degradation 

which occurs next, the resulting free radicals strip the phospholipid membrane of its free 

electrons thus affecting the membrane properties of permeability and fluidity (Farber, 

1982).  This process of lipid peroxidation is equally harmful to the cell as it results in the 

cross-linking of fatty acid side chains and polymerization of membrane lipids (Freeman 

and Crapo, 1982) and leads to inhibition of the Na+-K+ ATPase (Demopoulos et al., 

1980).  

Dysfunction at the level of Protein Translation: Translation Arrest 

Another major change in reperfusion is the focus of this thesis.  It was first 

reported in 1971 (Kleihues and Hossmann, 1971) that translation of proteins is inhibited 

during reperfusion. We will refer to protein synthesis inhibition by the term “translation 

arrest” (TA).  They observed: (1) the amount of incorporated radioactive leucine 

decreased in in vitro translation of brain homogenates exposed to 30 min reperfusion 

compared to controls, and (2) polysomes disaggregated during reperfusion as 

visualized with an electron microscope and through biochemical quantification using 

polysome profiles.   

However, TA was not present in in vitro translation reactions derived from brain 

that underwent only ischemia but not reperfusion.  They showed that during the 

ischemic period, messenger ribonucleic acid (mRNA) remains attached to the 
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ribosomes, and suggested that polyribosomes “freeze” due to the complete lack of 

energy producing metabolism during ischemia.  This halts protein synthesis solely due 

to lack of metabolic energy during the ischemic period. 

However, that polyribosomes dissociated following reperfusion, even after ATP 

levels returned, suggested that TA during reperfusion was in some way linked to the 

inhibition of translation initiation (Kleihues and Hossmann, 1971).  Even in 1971 it was 

understood that polysomes disaggregated because they could not re-initiate; and this 

notion was clear even though all the molecular details were not yet known at the time. 

Thereafter, many labs confirmed the 

findings in this initial study by showing that 

indeed for several hours following reperfusion, 

protein synthesis is inhibited (DeGracia, 

2004).  This was ultimately elaborated upon 

and gave way to yet another significant 

discovery: that the recovery from TA is 

different depending on the brain region, and 

correlated with the survival of a particular 

region.  When a brain region recovers from 

TA it will survive, whereas the vulnerable 

brain regions fail to recover from TA and consequently succumb to DND (Hossmann, 

1993).  

Figure 2 documents this occurrence via a series of autoradiograph images 

showing in vivo protein translation following global brain I/R in gerbils.  The main area of 

interest, the hippocampus, is shown following 5 min global ischemia and subsequent 

Figure 2. Autoradiographs showing
failed recovery of translation. Arrows
indicate lack of radioactive amino acid
incorporation into the CA1 region
following 5 min global ischemia and
24 hr reperfusion (Hossmann, 1993). 
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periods of reperfusion up to 24 hr.  The results illustrate that translation is completely 

inhibited in all brain regions following 5 min ischemia, 45 min reperfusion.  By 6 hr of 

reperfusion, there is recovery of translation within all areas of the hippocampus except 

for the hippocampal CA1 neurons, demonstrated by lack of 14C-leucine incorporation. 

Lack of protein translation in CA1 persisted throughout 24 hr reperfusion, and invariably 

the CA1 cells died by 72 hr reperfusion (Hossmann, 1993).  

This observation firmly linked DND following I/R to TA, and it brought TA to the 

forefront of explanations for why DND occurs in some brain regions but not others 

following reperfusion.  It became essential to investigate every aspect of the translation 

process in order to understand and pinpoint the exact step(s) that goes awry during I/R, 

which in turn results in the DND of vulnerable neurons following reperfusion.  

1.3 Consequences of Reperfusion on Overall Protein Synthesis 

1.3.1 Overview of Protein Synthesis: Initiation, Elongation, Termination 

Protein synthesis is a well-

understood process consisting of 

three main phases: initiation, 

elongation, and termination.  

Translation initiation uses multiple 

eukaryotic initiation factors (eIF) that 

facilitate the assembly of mRNA, 

40S and 60S ribosomal subunits 

and a special transfer ribonucleic 

acid (tRNA) known as methionine-

conjugated initiator tRNA, denoted as tRNAMET
i.  Once the 80S ribosomal complex is 

Figure 3. Overview of steps in the initiation phase 
of translation.  
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formed, as shown in Figure 3, the elongation phase begins and additional factors 

facilitate the movement of the ribosome along the mRNA, adding a specific amino acid 

as dictated by a triplet codon.  The elongation process continues in the 5’ to 3’ direction, 

adding amino acids to the growing polypeptide chain.  This process continues until the 

ribosome encounters a stop codon on the mRNA, which signals the end of elongation 

and the beginning of termination.  The newly synthesized protein is also subject to a 

series of posttranslational events, such as protein folding and chemical modifications, 

which ultimately transform the new polypeptide chain into a functional protein correctly 

folded into its three dimensional conformation. 

Each of these phases are subject to regulation in order to control the overall level 

of protein being synthesized within a cell.  However, the regulation of initiation is the 

most important because it is the rate limiting step in protein synthesis, and it selects 

which mRNAs will be translated at any given moment. 

1.3.2 Rate-Limiting Steps: Translation Initiation Factors  

Two specific proteins control the rate limiting steps of translation initiation, and 

these are subject to specific regulation.  The proteins are known as eukaryotic initiation 

factor 2 (eIF2) and eukaryotic initiation factor 4 (eIF4), mediate the two rate limiting 

steps in the overall process of translation initiation (Merrick, 1990).  The role of eIF2 is 

to catalyze the delivery of the methionyl-charged tRNAi to form the 43S pre-initiation 

complex (PIC).  Regulation of this step allows the cell to control the global rate of total 

protein synthesis.  The absence of the first amino acid tRNAi at the P site prevents 

protein synthesis from taking place.  The second rate limiting step is eIF4 delivering the 

mRNA to the 43S PIC.  Regulation of this step provides the cell’s ability to control how 

much of, and which mRNAs will be translated.  Given their central roles in the process 
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of initiation, it is essential to understand what factors and conditions can alter the 

regulation of these two necessary players which ultimately determine the direction of 

protein synthesis.  

Role of eIF4F in Regulating Translation Initiation 

eIF4F is a hetrotetramer that consists of the following subunits: eIF4A, eIF4B, 

eIF4E, and eIF4G.  The function of this tetrameric structure is to deliver the mRNA to 

the 43S PIC and for that reason is regarded as one of the rate limiting steps of 

translation initiation.  Each subunit serves a distinct role in uniting the mRNA with the 

ribosome.  eIF4A is an ATP-dependent RNA helicase that, along with the eIF4B 

cofactor, facilitates the unwinding of the mRNA’s secondary structure in the 5’ 

untranslated region (UTR) and promotes the movement of the ribosome in the 5’ to 3’ 

direction (Gingras et al., 1999; Sonenberg and Dever, 2003).  This unwinding step 

enables the process of scanning, the translocation 

of the PIC along the mRNA in the 5’ to 3’ direction, 

which allows the ribosome to locate the start 

codon. eIF4E is the cap binding protein which 

binds the 7-methyl guanylyl cap (m7G) at the 5’end 

of the mRNA. Its presence is absolutely essential 

to the translation of all capped mRNA (Gingras et 

al., 1999) and is subject to tight regulation 

(discussed below).  eIF4G is a large scaffold 

protein that participates in a ribosome-mRNA 

bridging function, and also contains sites for binding eIF4E, eIF4A, eIF3, and poly-A 

binding protein (PABP), and several other proteins (Gingras et al., 1999).  This 

Figure 4. An illustration of the
circularization of mRNA mediated
by eIF4. (from Sonnenberg and
Dever, 2003).  
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association between PABP with eIF4G is responsible for the circularization of mRNA, 

shown in Figure 4.  Note how eIF4E is bound to eIF4G, while on another portion of 

eIF4G, it binds PABP, the latter bound to the 3’ polyadenylated (pA) tail.  The 

significance of this circularization is to produce a synergistic interaction between the 5’ 

cap and the 3’poly-A tail which makes initiation more efficient (Sonenberg and Dever, 

2003).  Given the importance of eIF4E and eIF4G, their tight regulation is what allows 

the cell to dictate the selectivity of mRNAs that get delivered to the ribosome for 

translation.  

Role of eIF2 in Regulating Translation Initiation 

eIF2 has a trimeric structure comprised of three subunits: alpha (α), beta (β), and 

gamma (γ).  The beta and gamma subunits are necessary for binding the tRNA and 

GTP, and the alpha subunit is the regulatory subunit.  In order to understand the 

regulation of eIF2 conferred by the alpha subunit, it is important to first establish the 

underlying mechanism of eIF2 function. eIF2 is a G-protein, meaning that in order to be 

active, it must bind GTP.  At the start of initiation, eIF2 complexes with GTP and then 

becomes capable of binding Met-tRNAi.  Upon binding, the ternary complex is formed, 

which consists of eIF2-GTP-Met-tRNAi (DeGracia et al., 2002).  Together, this ternary 

complex then binds with the small 40S ribosomal subunit to form the 43S PIC.  The 

5’end of the mRNA recruits eIF4F coupling it to the 43S PIC, thus forming the 48S PIC. 

Now the process of scanning can proceed in the 5’ to 3’ direction until the AUG start 

codon is encountered.  As soon as this happens, scanning ceases. Hydrolysis of the 

GTP then occurs by the base pairing between the Met-tRNAi anti-codon and the AUG 

start codon (Sonenberg and Dever, 2003).  The hydrolysis step converts GTP in the 

ternary complex to GDP. Consequently, this event leaves the eIF2 bound to GDP and 
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releases it along with the other initiation factors from the 48S PIC.  The large 60S 

ribosomal subunit is now able to access and bind the 48S PIC, allowing formation of the 

translation-competent 80S complex and signaling the end of the initiation process 

(Sonenberg and Dever, 2003).  

eIF2 requires the binding of GTP to be active.  eIF2 is unable to bind the Met-

tRNAi when it is not bound to GTP.  However, after initiation, the GTP is hydrolyzed and 

leaves eIF2 bound to GDP.  In order for eIF2 to recycle and function in subsequent 

rounds of initiation, the GDP must be replaced with GTP.  This step is carried out by the 

enzymatic activity of another eukaryotic initiation factor known as eIF2B (also called 

guanine nucleotide exchange factor, GEF), whose function is to replace the GDP with a 

GTP, thus regenerating the eIF2-GTP complex.  As such, eIF2B is a necessary 

component to maintain translation initiation.  If there is an insufficient amount of eIF2B 

present, the initiation step and subsequently translation as a whole will either be slowed 

or stopped.  The stoichiometric ratio of eIF2 to eIF2B in most cells is 5:1 (Oldfield et al., 

1994) which is an important fact in the regulation of initiation.  

The regulation eIF2B, the activity of eIF2, the rate of initiation, and ultimately the 

overall rate of translation all hinge on one event: the phosphorylation of the alpha 

subunit on eIF2 (eIF2α).  The alpha subunit is the regulatory component of eIF2 

because it is a substrate for phosphorylation on the serine 51 residue, denoted as 

eIF2(αP).  When this occurs, the binding affinity between eIF2(αP) and eIF2B increases 

150-fold in comparison to the alpha-unphosphorylated form eIF2 (Rowlands et al., 

1988).  This means that eIF2B becomes bound so tightly to eIF2(αP) that it is 

unavailable to interact with its normal substrate eIF2-GDP and therefore is unable to 

perform the necessary enzymatic exchange of GTP for GDP.  In other words, eIF2 is 
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normally a substrate of eIF2B, but when eIF2α is phosphorylated, it converts eIF2 into a 

competitive inhibitor of eIF2B.  Thus, eIF2-GDP will accumulate, and the pool of eIF2-

GTP needed to form the ternary complex becomes depleted so delivery of the tRNAi
MET 

to the 40S subunit slows or halts.  If enough eIF2B is sequestered by eIF2(αP), then 

initiation of translation is halted, and protein synthesis also grinds to a halt.  The 

aforementioned concentration 5:1 of eIF2:eIF2B means that if only 1 out of 5 (20%) of 

eIF2 becomes phosphorylated, that will be sufficient to competitively inhibit all eIF2B, 

thus resulting in complete translation arrest (Burda et al., 1994; Oldfield et al., 1994). 

1.3.3 The Role of Reperfusion in Altering Translation Initiation 

The changes evoked in the rate limiting eukaryotic initiation factors, eIF2 and 

eIF4, during reperfusion have been thoroughly investigated.  In the first such study, Hu 

and Wieloch (1993) measured the activity of eIF2 following global cerebral ischemia.  

They concluded that following 15 minutes ischemia and either 30 minutes or 1 hour 

reperfusion, the ternary complex was inhibited, but could be restored upon addition of 

purified eIF2.  Therefore, this suggested eIF2B inhibition during reperfusion caused 

inhibition of protein translation (Hu and Wieloch, 1993).  Subsequently, Burda et. al 

(1994), presented evidence that following brain I/R, levels of eIF2(αP) were substantially 

increased, thus concluding that it was this phosphorylation event of eIF2α that impaired 

eIF2B activity, prevented formation of the ternary complex, and led to the inhibition of 

translation initiation (Burda et al., 1994).  Burda’s results were confirmed by DeGracia 

et. al (1996), who showed 30% of eIF2α was phosphorylated.  Subsequently, DeGracia 

et. al (1997) developed the first phosphor-specific antibody against serine 51 

phosphorylated eIF2, which made it possible to map by immunohistochemistry the 

distribution of eIF2(αP) in the reperfused brain.  Their results presented a clear picture 
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that first of all, eIF2(αP) was present in all post-ischemic neurons, and secondly, that 

eIF2α phosphorylation peaked at 10 minutes but began to decline by 4 hours of 

reperfusion to baseline levels (Kumar et al., 2003).  These studies solidified the 

understanding that the phosphorylation of eIF2(α), which thereby resulted in translation 

arrest, was a transient event and therefore was not linked to cell death.  

In terms of the changes occurring with eIF4F during reperfusion, Dr. DeGracia 

was the first to show degradation of the scaffold protein eIF4G, but no change in eIF4E 

following brain I/R (DeGracia et al., 1996).  Burda and colleagues later confirmed this 

observation and additionally, they localized the highest level of eIF4G degradation to 

the hippocampal CA1 neurons (Martín de la Vega et al., 2001).  Furthermore, it was 

shown that the loss of eIF4G was caused by μ-calpain during reperfusion (Neumar et 

al., 1998) and (García et al., 2004) later confirmed this finding.  

The end conclusion from these studies has remained evident: changes in 

initiation factors share a commonality of transient alteration during the first several hours 

of reperfusion, but however eventually return to basal state whether in the vulnerable or 

resistant neuronal populations.  This provides strong evidence that transient changes in 

eIFs do not have a direct correlation and impact on the pattern of cell death as observed 

in vulnerable neurons that eventually go on to die by DND.  

1.4 The Ribonomic Network and mRNA Regulation 

1.4.1 Stress Granules, HuR Granules, and other Ribonomic Structures 

Turning the focus now to additional regulatory processes that may contribute to 

sustained TA, I will briefly discuss a variety of structures that have been proposed to 

play a role in executing these changes in the post-ischemic brain.  It has been proposed 

in the DeGracia laboratory (DeGracia et al., 2002) as well as other laboratories 
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(Paschen, 1996; Martín de la Vega et al., 2001) that a strong correlation exists between 

TA in the post-ischemic brain and the intracellular stress responses induced by I/R.  

Specifically, stress responses such as the heat shock response and unfolded protein 

response are well-known to cause TA.  However, once the stress responses have been 

successfully carried out, normal translation recovers.  This pattern is what is observed in 

resistant neurons.  But TA persists in vulnerable neurons and is correlated with the lack 

of successful stress response execution.  Therefore, there is some type of important 

connection between TA and stress responses. 

The field of ribonomics, the study of how mRNA molecules are regulated by 

mRNA binding proteins, has clarified the understanding of mRNA regulation 

(Tenenbaum et al., 2002) and has provided an expanded perspective from which to 

think about the role of TA and I/R-induced stress responses.  Central to the 

understanding of ribonomics is the notion that mRNA molecules are dynamically 

regulated and mRNA activity involves much more than simply moving from nucleus to 

ribosomes as it gets translated into protein.  In fact contrary to this understanding, 

mRNA molecules are bound to a variety of proteins, throughout its life cycle and form 

complexes known as messenger ribonucleoprotein particles (mRNPs) (Anderson and 

Kedersha, 2006).  There have been at least a dozen of these particles identified within 

recent years, and nine of these known foci are depicted in Figure 5.  Each mRNP 

maintains a unique, yet integrated function in regulating the flow of the cell’s mRNA 

from biogenesis to degradation (DeGracia et al., 2008).  All of these subcellular 

structures taken together comprise the ribonomic network.  The mRNA functions carried 

out by this network include: transcription, processing, routing/transport, 

silencing/storage, translation, and degradation (DeGracia et al., 2008).  Thus, a firm 
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understanding of each of these ribonomic structures and their functions is essential to 

understanding the regulation of mRNA during physiologic and stress conditions.  

mRNA Handling outside the Nucleus 

Because we are focused on cytoplasmic mRNA regulation, I will not describe 

nuclear mRNA processing here.  Following transcription and processing in the nucleus, 

the mRNA gets routed to the cytoplasm. Based on the needs and conditions of the cell 

at a particular time, mRNA is shuttled to any one of the mRNPs, discussed below.  

Figure 5. Depiction of structures 
that comprise the ribonomic 
network. (from DeGracia et. al, 
2008). 

 

 

 

 

 

 

 

 
Stress Granules 

In the context of environmental stressors, cells maintain the ability to reprogram 

their translation machinery in order to selectively translate the proteins necessary to 

combat the stressor (Kedersha et al., 2005).  When this occurs, the translation of the 

normal mRNAs being translated in the cell must stop and be removed from the 

polysomes in order to make ribosomes available for the translation of stress-induced 

mRNAs.  The changing of the mRNA population on the ribosomes directly correlates 
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with the stress-induced TA (Kedersha et al., 2005).  However, the normal, pre-existing 

transcripts prior to the stress must be dealt with and contained.  The work of Anderson 

and Kedersha (2005) has revealed that the role of stress granules (SGs) is to serve as 

sites of “mRNA triage” where mRNAs from the disaggregated polysomes first 

accumulate and then are routed to the other ribonomic foci where they will either be 

reinitiated, degraded, or stored (Kedersha et al., 2005). 

Polyribosomes 

It has been known for a long time that polysomes are the subcellular structures 

that catalyze the conversion of the mRNA genetic information into protein.  Recently 

however, the original dogma, in which mRNA goes immediately to ribosomes to become 

translated, has been challenged in light of the concept of the ribonomic network.  

Anderson and Kedersha (Anderson and Kedersha, 2006) maintain that  polyribosomes 

are subject to formation and disaggregation just like the other mRNPs in order to meet 

the needs of the cell.  The transient nature of polysomes, as a function of a cell’s 

physiological or pathological condition, is related to qualitative mRNA regulation, 

whereby the ability of specific mRNAs to access the ribosomes will ultimately determine 

the cell’s proteome and effectively its phenotype (DeGracia et al., 2008). 

ELAV/HuR Granules 

The embryonic lethal abnormal vision (ELAV) is the Drosophila homolog of the 

mammalian Hu proteins which play a critical role in mRNA regulation.  HuR has long 

been known to stabilize mRNAs that contain a specific sequence in the 3’ untranslated 

region (3’ UTR) known as an adenine and uridine rich element (ARE).  More recently, 

the laboratory of Jack Keene has determined that Hu proteins play a larger role in cell 

function by participating in molecular complexes that partition mRNAs into sets or 
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cohorts based on functional or structural similarities.  This partitioning feature provides 

for the coordinated handling of mRNAs and has been referred to as an ‘RNA operon’ 

(Keene, 2007).  Bacterial operons are sets of functionally related genes that are 

simultaneously transcribed and translated.  The coordinated handling of eukaryotic 

mRNAs is functionally similar and therefore Keene uses the term ‘RNA operon’.  The 

HuR granules act as RNA operons to coordinate mRNA cohort activity, specifically to 

target them for collective translation, silencing, or degradation (DeGracia et al., 2008).  

These HuR granules are believed to provide the basis for the cell to execute complex 

physiologic “programs” of activity like stress responses and differentiation.  This operon-

like feature provides the eukaryotic cell with a level of speed, efficiency, and flexibility in 

genetic reprogramming to respond to changes in the cell’s environment.  The cell 

cannot solely rely on transcriptional regulation because large scale changes in gene 

expression require hours, and is often too slow for many important biological processes, 

such as, for example, ischemic injury or heat shock (Keene, 2007).  

Processing Bodies and Exosomes 

These are the important mRNP structures responsible for the degradation of 

mRNA (DeGracia et al., 2008).  Processing bodies (P-bodies) possess both 

exonucleolytic and RNA silencing machinery, and therefore maintain the ability to either 

silence or degrade the mRNA (Brengues et al., 2005).  On the other hand, exosomes 

possess the 3’-5’ exonuclease machinery necessary to decap and deadenylate the 

mRNA which are enzymatic prerequisites for mRNA degradation (Schwartz and Parker, 

2000).  mRNA degradation serves as an important pathway for mRNA regulation as it 

maintains the half-lives of transcripts (DeGracia et al., 2008). 

 



23 

 

1.4.2 Ribonomics and Post-Ischemic Translation Arrest 

As introduced earlier, the role of SGs is to act as a triage center for the mRNA.  

In the work performed in support of his Ph.D. dissertation, Dr. Foaz Kayali, working in 

the DeGracia laboratory, proposed that SGs played a key mechanistic role in the 

prolonged translation arrest observed in post-ischemic CA1 neurons that would 

eventually go on to die.  He hypothesized that following I/R, SGs would form in all post-

ischemic neurons and furthermore, it was the prolonged presence of these SGs during 

reperfusion that caused the irreversible TA seen in CA1 neurons.  Additionally, he 

hypothesized that the SGs formed in CA1 must be different from those observed in 

CA3. In order to test these hypotheses, global ischemia was induced in the rat using a 

cardiac arrest and resuscitation (CA/R) model.  Overall Dr. Kayali’s work was significant 

in providing the first in vivo account of the behavior of SGs in any whole animal model, 

and specifically during the first 4 hours of reperfusion following 10 minutes of global 

ischemia.  

His results revealed that the 40S ribosomal subunit (visualized with anti-small 

ribosomal protein S6 antibody) was completely sequestered (colocalized) within SGs 

(which were detected using anti-TIA-1 antibody) during a critical period in which 

eIF2α(P) was in a dephosphorylated state 80% from its peak phosphorylation  (Kayali et 

al., 2005).  This was an important finding which related a mechanism, the sequestration 

of the small 40S ribosomal subunit, to the prolonged translation arrest seen in CA1 

neurons, supporting a plausible connection between prolonged TA and DND.  In a 

subsequent study, DeGracia et al. (2006) immunomapped eIF4G, again using the CA/R 

model, in order to clarify what role the degradation of eIF4G had on reperfusion-induced 

neuronal death.  It was observed that when eIF4G and TIA-1 were co-stained, the 
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eIF4G formed granules in the CA1 neurons at 90 min and 4 hr reperfusion, which 

suggested that 4G fragments were accumulating in nonproductive complexes, thus 

contributing to the prolonged TA (DeGracia et al., 2006).  

As important as these findings were, there was a major limitation in the model 

which ultimately prevented extensive investigation into the extended reperfusion time 

points.  The CA/R model was limiting in the fact that reperfusion could only be carried 

out to 4 hr because the animal model is so lethal to the experimental animals.  Yet DND 

occurs at 72 hr reperfusion.  The CA/R model yields a low survival rate of < 25% and 

the animals die more frequently as the duration of reperfusion is increased (Montie et 

al., 2005).  Furthermore, the CA/R model damages not only the brain, but also 

peripherally the heart, lungs, kidneys, and GI tract (Montie et al., 2005).  Given these 

limitations, the DeGracia laboratory adopted a different model of inducing global 

ischemia known as the bilateral carotid artery (two-vessel) occlusion plus hypotension 

ischemia model (2VO/HT).  As documented by (Smith et al., 1984), the 2VO/HT model 

generates DND but maintains a much higher survival rate of 85%, and the animals can 

be reperfused for essentially any duration of time, as opposed to being limited to 4 

hours.  

The application of this superior model of global brain ischemia, the 2VO/HT 

model, made it possible to assess the behavior of SGs out to later reperfusion time 

points. In a 2007 study, the model was used to induce 10 min global ischemia in the rat, 

followed by 1, 2, and 3 days reperfusion (DeGracia et al., 2007).  The results of this 

study demonstrated that out to a period of 48 hr reperfusion, the levels of TIA-1, the 

marker for SGs, did not change in either cytoplasmic or nuclear fractions taken from 

CA1 and CA3 neurons.  Furthermore, the levels of S6 did not decrease in CA1.  
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Comparison of data using the two different models of brain ischemia highlighted 

significant discrepancies in the cardiac arrest results.  The 2VO/HT model of ischemia 

showed no significant change in SGs out to 48 hr of reperfusion.  Thus, the result of 

40S subunits sequestered into SGs seen in the cardiac arrest model did not hold in the 

2VO/HT model.  But the 2VO/HT model causes DND of hippocampal CA1 neurons.  

Therefore, the conclusion was that the changes seen in the first 4 hr of reperfusion after 

cardiac arrest were not necessary to cause DND.  While this provided greater insight 

about the role of SGs in post-ischemic stress response, it failed to answer the question 

of what caused prolonged TA in neurons that would eventually die by DND. 

The next major project was conducted by Dr. Jill Jamison, another former Ph.D. 

student in the DeGracia laboratory.  Dr. Jamison studied the microscopic appearance 

and colocalization properties of total mRNA in reperfused neurons using the 2VO/HT 

model.  She used the method of fluorescence in situ hybridization (FISH) which is also 

the main technique of my work in this thesis.  The application of the FISH technique, 

based on the protocol used in Bessert and Skoff (Bessert and Skoff, 1999), allows for 

the visualization of all polyadenylated mRNAs by hybridizing a 5’-biotinylated 50-mer 

oligo-dT probe.  

Her main finding was that she observed a redistribution of cytoplasmic poly(A) 

mRNAs that went from a homogenous staining pattern in the cytoplasm of control 

neurons, to a highly granular appearance in reperfused neurons.  The granulated 

appearance of poly-A mRNAs was termed by the lab “mRNA granules”.  The mRNA 

granules were observed to be reversible in CA3 but irreversible in CA1 over the 48 hr 

time course of reperfusion studied.  Most significantly, when radioactive amino acids 

were administered IV to the animals and proteins were isolated and measured for 
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radioactive incorporation, it was found that whenever protein synthesis rates were below 

the control level, the cells also possessed mRNA granules.  There was a strict 

correlation between in vivo protein synthesis and mRNA granules.  Further 

colocalization studies shed light on this correlation. 

The colocalization of mRNA granules with various mRNA binding proteins was 

undertaken.  The proteins studied were: eIF4G, HuR, poly-A binding protein (PABP), 

S6, TIA-1, and tristetraprolin (TTP; a marker for processing bodies).  mRNA granules 

did not colocalize with TIA-1, or TTP, which indicated they were independent entities 

from both SGs and processing bodies.  A more complicated result occurred when HuR 

was studied.  There were differences in HuR colocalization between resistant CA3 and 

vulnerable CA1 neurons.  The colocalization of HuR and poly-A occurred early on in 

CA3, beginning at 1 hr reperfusion.  In CA1 neurons HuR/mRNA granule colocalization 

was not observed until 36 hr reperfusion (Jamison et al., 2008).  Moreover, it was 

observed that when HuR colocalized with mRNA granules, this correlated with the 

translation of stress-induced 70kDa heat shock protein (HSP70) (Jamison et al., 2008).  

It was probably the most important finding of the colocalization studies that poly-

A mRNA granules did not colocalize with the 40S marker, S6.  This indicated that 

mRNA was physically separated from the 40S subunits, and gave a clear cut 

explanation for the correlation between mRNA granules and decreased protein 

synthesis in the reperfused neurons.  The mRNA granules were some type of 

subcellular structure that partitioned mRNA away from the 40S subunit, and this would 

therefore prevent translation.  In a study more recently conducted in the lab, Dr. 

Jamison showed that mRNA granules also did not colocalize with a marker of the 60S 

subunit (Jamison et al., 2011), indicating that the mRNA granules were separated from 
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both ribosomal subunits.  This is a highly significant finding and is the first 

demonstration of any mechanism at all that strictly correlates a structural change in the 

translation machinery with the TA that occurs in reperfused neurons. 

1.4.3 Technical Issues of Studying mRNA Granules in Microscope Images 

Since the identification of mRNA granules, a tremendous amount of work has 

been done in Dr. DeGracia’s lab to further characterize them in terms of how and when 

they form in the context of global brain I/R.  Given the microscope intensive nature of 

visualizing and studying these granules, a method needed to be developed that would 

allow for the objective quantification of the appearance of poly-A staining in the 

microscopy data.  In a recent study, a method known as texture analysis was 

employed as a means to quantitatively analyze subcellular morphological changes as 

obtained from the microscope images (Szymanski et al., 2012).  Given that mRNA 

granules introduce a significant change to the texture of the neuronal cytoplasm, this 

provided an ideal situation for the implementation of the texture analysis techniques.  

Equipped with this technique, they could then more accurately quantify the data 

obtained by carrying out various manipulations on the mRNA granules.  

Texture analysis is a computer-based method to quantify differences in images.  

The overall process of texture analysis will be described in greater detail in the methods 

section, but essentially it utilizes a program known as MaZda to define an image in 

terms of its multiple texture features which are assigned as numerical values.  By way of 

these numerical values, the program is then able to extract subtle details contained 

within microscopy data in an organized and consistent manner.  In terms of real life 

applications, it is used in the fields of artificial vision, used by the military to study 

satellite images, and it is used in biomedicine to diagnose MRI images, for example, to 
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diagnose the presence of brain tumors (Zook and Iftekharuddin, 2005).  It has also been 

used previously to characterize changes in microscope images of cells.  The technique 

involves masking off a region of interest (ROI) and then calculating a number of different 

parameters that characterize the pixels in the ROI.  The texture analysis used by our lab 

calculates 168 different texture features.  For example, the variance of the pixels from 

the mean intensity is one such parameter.  The variance in pixels that surround a given 

pixel is another measure.   

In the Szymanski et al. (2012) study they applied the use of a pharmacological 

agent in order to better understand the molecular biology of mRNA granules. 

Cycloheximide (CHX) is a well-known glutarimide antibiotic that inhibits protein 

synthesis by effectively “freezing” the polysomes in an inactive state (Pestka, 1971).  

More specifically, it halts elongation by preventing the deacylated tRNA from being 

released by the ribosome, thus preventing the disassembly of polysomes (Pestka, 

1971).  The results of this study showed that when CHX was administered via 

intraperitoneal (I.P.) injection 15 min prior to 10 min ischemia, it inhibited the formation 

of mRNA granules.  However, if CHX was given after 10 min ischemia at 15 min 

reperfusion there was no effect, and the texture parameters calculated from microscope 

images were indistinguishable from vehicle treated reperfused samples (Szymanski et 

al., 2012).  Since the primary action of CHX is to prevent the dissociation of 

polyribosomes, these results indicated that the formation of the mRNA granules is 

dependent upon the liberation of polysome-bound mRNAs via polysome dissociation, 

and consequently this dissociation must be an upstream event to the formation of 

mRNA granules.  In addition, this study was valuable for demonstrating that CHX can 

be used as an experimental tool to modulate mRNA granules.  I will use CHX in this 
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fashion in the studies described ahead.  

1.5 Neuroprotection and Ischemic Preconditioning 

1.5.1 The Concept of Neuroprotection 

Up to this point, I have reviewed studies that first identified the correlation 

between TA and DND.  I next detailed studies which led to our current understanding of 

the changes in the translational system by brain I/R, and how mRNA granules provide 

the first mechanism that correlates perfectly with TA  in reperfused neurons.  I will now 

shift gears to discuss a topic important in the field of brain I/R, and that is the 

phenomenon of ischemic preconditioning (IPC).  This understanding of IPC is significant 

because I will propose to study how mRNA granules behave following IPC. 

The concept of IPC is centered on the understanding that a very brief ischemic 

event which in itself is nonlethal, can induce tolerance within a tissue and confer 

resistance or protection to the cell against cell death during a subsequent, normally 

lethal ischemic insult (Barone et al., 1998; Wiegand et al., 1999; Pérez-Pinzón, 2004).  

The statistics of stroke and cardiac arrest in this country necessitate the need for a 

clinically useful therapeutic intervention.  However to date, most clinical trials have 

failed. While the value of IPC in conferring neuroprotection is very difficult to implement 

clinically, it is important to study because it shows that it is possible for neurons to not 

succumb to cell death following a lethal bout of ischemia.  Also, it is widely believed that 

understanding how IPC works mechanistically will eventually lead to therapies for both 

stroke and cardiac arrest brain damage that will be effective in the clinical setting.  

1.5.2 Immediate versus Delayed Preconditioning 

Classically, the preconditioning paradigms are categorized as either immediate 

(rapid) or delayed preconditioning.  This designation is based on the time which is 
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allowed to elapse between the introduction of the sublethal insult (i.e. the 

preconditioning event) and the subsequent lethal ischemic insult.  In an immediate 

preconditioning paradigm, the sublethal preconditioning insult is given very shortly (1-30 

min) before the subsequent lethal ischemic insult occurs (Barone et al., 1998).  

Whereas delayed preconditioning is based on an extended timeline in which the lethal 

ischemic insult is administered 24-48 hr after the initial preconditioning insult (Puisieux 

et al., 2004).  

Immediate preconditioning has been widely investigated and applied to 

myocardial tissue with promising results, whereas its utility has been more questionable 

in cerebral ischemia, with mixed reports of its success in conferring neuroprotection 

(Stetler et al., 2009).  In 1997, Pérez-Pinzón and colleagues first reported the effects of 

immediate IPC on vulnerable rat CA1 neurons. In this study they employed the 2VO/HT 

model to induce global brain ischemia.  In line with the immediate IPC paradigm, they 

administered a sublethal ischemic event for 2 min, followed by 30 min of reperfusion, 

after which they initiated the 10 min ischemic insult (Pérez-Pinzón et al., 1997).  They 

observed that in comparison to control animals that only underwent 10 min ischemia, 

there was reduced histopathological cell death in the IPC group when examined after 3 

days reperfusion.  However, hippocampal cell death after 7 days reperfusion was not 

significantly different between the preconditioned and non-preconditioned groups 

(Pérez-Pinzón et al., 1997).  These results suggested at the time that the immediate 

preconditioning paradigm in the brain was a transient phenomenon.  

Conversely, much work has also been done to investigate the potential role of 

delayed preconditioning on conferring neuroprotection.  In the early 1990s, multiple 

investigators preceding Pérez-Pinzón and colleagues studied the delayed 
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preconditioning paradigm in the context of global brain ischemia. In these earlier studies 

both groups (Kato et al., 1991; Kitagawa et al., 1991) used bilateral carotid artery 

occlusion to achieve global ischemia and their preconditioning event consisted of 2 min 

of ischemia followed by 2 days reperfusion prior to the lethal ischemic insult.  They 

observed that the neuroprotection conferred during this delayed preconditioning 

protocol was significant, preventing neuron death up to 7 days after the long duration 

ischemic insult.  The significant preservation of the hippocampal CA1 neurons in this 

study demonstrated that delayed preconditioning was very protective of CA1 neurons.  

Compared to the maximum protection of 3 days observed after immediate IPC, these 

results were important in demonstrating the robust and long term effect of protection 

produced when the preconditioning stimulus was allowed sufficient time to set in before 

the lethal insult.  

Years later in a 2004 study, Pérez-Pinzón et. al (2004), compared the two 

different windows of neuroprotection afforded by either immediate or delayed 

preconditioning.  They replicated their results from their earlier study on immediate IPC, 

that rapid IPC  could only protect against histopathological changes for up to 3 days of 

reperfusion but not 7 days (Pérez-Pinzón et al., 1997), and in addition they also 

performed delayed preconditioning to measure its protective capacity (Pérez-Pinzón, 

2004).  For delayed preconditioning, they followed the exact same procedure as above 

except the reperfusion period between the IPC and prolonged ischemia was 48 hr, as 

opposed to 30 min.  This set of data revealed that following delayed preconditioning, 

there was a robust and long-lasting neuroprotection, as demonstrated by 33% 

protection of normal neurons by the 7th day of reperfusion (Pérez-Pinzón, 2004).  Again, 

this asserted the idea demonstrated years earlier, that delayed preconditioning offers a 
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more long-term protection against cell death in vulnerable neurons.  

Despite the results from the 1997 study showing that immediate IPC could confer 

short-term, transient neuroprotection, the majority of the field as well as the literature 

has continued to focus more heavily on the concept of delayed preconditioning in brain 

ischemia.  The fact that the neuroprotection conferred during delayed IPC has proven to 

be more robust, and long-lived than that of immediate IPC has made it a more 

worthwhile avenue to pursue.  However, the disparity in the protection of vulnerable 

hippocampal neurons as revealed in these studies of immediate versus delayed IPC, 

seems to suggest that some variation exists in the underlying mechanism(s) of 

preconditioning as it occurs over different time courses.  This has introduced another 

set of issues to be resolved, before IPC can truly be of utility in any setting.  The fact 

that two distinct time frames of IPC can produce drastically different results in overall 

protection from cell death makes the investigation into the underlying mechanisms of 

neuroprotection all the more relevant. 

1.5.3 Gene Expression and Ischemic Preconditioning 

The molecular mechanisms of IPC responsible for conferring neuroprotection are 

still incompletely understood.  Yet, studies like the ones reviewed above discovered that 

ischemic tolerance requires at least 24 hours to manifest, achieves maximal intensity at 

3 days, and persists for about a week (Puisieux et al., 2004; Simon et al., 2007).  This 

time course has highlighted the roles of protein synthesis and altered gene expression 

in IPC induced tolerance.  There are two schools of thought in regards to alteration of 

gene expression during IPC:  1.) preconditioning results in gene suppression to confer a 

protected phenotype, or 2.) IPC leads to the induction of de novo protein synthesis to 

upregulate levels of protective proteins.  I will return to a discussion of the latter; 
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however, it is important to address both in the context of ischemia to develop a 

complete picture.  

Roger Simon’s group has done a significant amount of work investigating the role 

of gene suppression, and they propose that the basis of developing tolerance lies in the 

ability of preconditioning to genetically reprogram the cell’s response to ischemia 

(Stenzel-Poore et al., 2004; Simon et al., 2007).  In their model of focal ischemia via 

middle cerebral artery occlusion (MCAO), they employed a delayed preconditioning 

paradigm consisting of 15 min occlusion, 72 hr reperfusion (preconditioning event), 

followed by 60 min of occlusion, essentially to replicate preconditioning plus stroke.  

Using microarray analysis, they found that following IPC plus stroke, there was 

widespread down regulation in a number of genes, but primarily those involved in 

metabolism and the processes of synaptic transmission/transport (Stenzel-Poore et al., 

2004).  Interestingly, these genes were shown not to be down regulated during 

conditions of stroke alone.  These results suggest that the reprogramming role of 

preconditioning is to dampen overall cellular activity resulting in decreased expenditure 

of cellular energy and preservation of cellular homeostasis.  They liken this profile to 

one of hibernation and continue to support the notion that changes in gene expression 

during preconditioning must essentially incorporate overall gene suppression of high-

energy utilizers in order to achieve a protected state.  

Other investigators have taken a different approach from Simon’s group and 

have undertaken studies to systematically evaluate the role of preconditioning induced 

ischemic tolerance.  The observation that it requires at least 24 hours to induce 

ischemic tolerance, reasonably suggests that this process directly involves the 

synthesis of neuroprotective proteins.  There has been much disagreement to date 
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regarding the exact identity of genes thought to be up-regulated during preconditioning, 

and thus remains a highly investigated area.  Among the proteins focused on in IPC, the 

heat shock proteins (HSPs) remain popular subjects of study. HSPs are highly 

conserved molecular chaperones, which facilitate protein folding (Stetler et al., 2009).  

During the induction of stress, they improve cell survival by buffering the rapid 

accumulation of protein aggregates and denatured proteins (Stetler et al., 2009). 

In an early study by Kirino et. al (1991), they subjected gerbils to preconditioning 

of 2 min ischemia plus 2 or 4 days reperfusion and then a subsequent ischemic insult of 

5 min.  Using immunocytochemistry with an anti-body against HSP70, their data 

revealed a definite increase in HSP70 protein staining within the hippocampal CA1 

neurons following 2 min ischemia, 2 day reperfusion (Kirino et al., 1991).  Even after 4 

days reperfusion following the 2 min ischemia, staining was still as intense as in the 2 

day reperfusion group, whereas the HSP70 immunostaining was faintly detectable in 

the CA1 pyramidal neurons of animals not subjected to the preconditioning event prior 

to the 5 min ischemia.  This initial study was significant in demonstrating the 

upregulation of HSP70 during the 2 day window of preconditioning, thus indicating its 

possible role in conferring tolerance.  

Later on another group Zhao et. al (Zhao et al., 2006), used the MCAO model of 

focal ischemia to also evaluate the role of protein synthesis in preconditioning induced 

ischemic tolerance.  They evaluated infarct size, neurological deficits, and HSP70 

expression both with and without preconditioning in order to determine its effects in 

building tolerance.  They also employed the use of cycloheximide (CHX), as described 

above, a well-known protein synthesis inhibitor, to evaluate the role of total protein 

synthesis in preconditioning.  They observed that when CHX was given just prior to the 
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preconditioning (sublethal) ischemia, it inhibited all subsequent protein synthesis for the 

duration of 24 hr, and consequently the CHX pre-treated, preconditioned group showed 

no reduction in infarct size as compared to their vehicle treated preconditioned 

counterparts (Zhao et al., 2006).  In the second part of the study, they administered the 

same dose of CHX 30 min before the 2nd (lethal) permanent MCAO (i.e. after the 24 

hour window following preconditioning), and they observed a reduction in percent infarct 

size in both the vehicle and CHX treated groups compared to the controls.  These 

results taken together emphasize the significance that blocking protein synthesis has on 

the ability of the preconditioning event to develop ischemic tolerance.  When protein 

synthesis is completely inhibited in that critical window 24 hours following the sublethal 

preconditioning event, the end result is that the cells are no longer protected in the 

same manner or to the same degree as when protein synthesis is permitted during 

preconditioning.  Taking it one step further, they also assessed the levels of HSP70 

protein via Western blot analysis in the 24 hour period after the preconditioning event 

was initiated.  They observed an increase in HSP70 protein during this period compared 

to the sham-operated controls.  However, when CHX was administered prior to 

preconditioning, the expression of HSP70 in the CHX treated preconditioned group was 

significantly decreased compared to vehicle-treated preconditioned counterparts.  

Furthermore, protein synthesis in the CHX pretreated group no longer significantly 

differed from the expression of that in the sham-operated control group.  

Overall these results demonstrate that the preconditioning paradigm is a powerful 

inducer of ischemic tolerance and moreover, the tolerance that is established in this 

critical window of preconditioning is dependent on the de novo synthesis of proteins.  

When protein synthesis is compromised or inhibited, so too is the protective mechanism 
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that preconditioning is based upon.  

1.6 Summary and Proposed Hypothesis 

Thus far, I have introduced the overall problem of how TA occurs during periods 

of reperfusion following global brain ischemia.  I then presented information correlating 

prolonged translation arrest with DND of the vulnerable hippocampal CA1 pyramidal 

neurons following brain I/R.  I discussed how the alteration in translation initiation 

factors, primarily the phosphorylation of eIF2α, initially inhibits translation in the post-

ischemic brain, but is not a sustained event and cannot explain prolonged TA.  Finally, I 

reviewed recent work from our laboratory that identified the sequestration of 

translational machinery into novel ribonomic structures, termed mRNA granules, as the 

event leading to the persistent TA in neurons that eventually succumb to DND.  This 

same body of work also presented information that demonstrated that the HuR 

colocalization within mRNA granules was directly correlated to translation of HSP70 

protein.  I then briefly reviewed IPC, a highly effective paradigm for neuroprotection, and 

discussed how its role in conferring neuroprotection is dependent upon protein 

synthesis.  

That IPC depends on protein synthesis and is abolished in the presence of CHX 

is significant for our lab’s results with CHX and mRNA granules.  As reviewed above, 

ischemia itself causes TA.  Thus, the action of CHX cannot be to simply inhibit 

translation, because it is already inhibited by I/R.  However, our lab showed CHX to 

inhibit mRNA granule formation.  This suggests that CHX may abolish IPC by inhibiting 

mRNA granules, which in turn suggests that IPC may be mediated by the RNA operon 

action of mRNA granules in carrying out the stress reprogramming of ischemic neurons.  

These considerations lead to the main hypothesis for this thesis.  I hypothesize that:  
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mRNA granules are a protective phenomenon that allows stress reprogramming of post-

ischemic neurons.   

I will test this hypothesis by studying HuR colocalization with mRNA granules in 

CA1 neurons following IPC.  I predict that, after an IPC stimulus, CA1 neurons will 

behave like CA3 neurons following a CA1-lethal 10 min insult and show colocalization of 

HuR with mRNA granules.  A corollary of this hypothesis will be to investigate the effect 

of varying duration of ischemia on mRNA granule formation, because it is not known if 2 

min of ischemia, the standard IPC stimulus, even induces mRNA granules.  

I will carry out the following experiments to test these hypotheses:  

[1] Experiment 1: Using poly-A FISH, assess mRNA granules at 2,4,6,8 min 

ischemia. 

[2] Experiment 2: Assess HuR and mRNA granules colocalization after 2 min 

ischemia plus 2 days reperfusion (IPC), and then 10 min ischemia and 1 hr of 

reperfusion. 

[3] Experiment 3 

a. 3A: Assess the effect of Cycloheximide on HuR and mRNA granules 

colocalization after IPC, and then 10 min ischemia and 1 hr of reperfusion. 

b. 3B: Assess the effect of CHX + IPC on cell survival at 7 days reperfusion 

following 10 min ischemia. 
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CHAPTER 2 

Effect of Ischemic Duration on the Formation of mRNA Granules 

2.1 Hypothesis Stated 

I previously discussed how mRNA granules may play a role in IPC-induced 

tolerance against neuronal death caused by ischemia.  A prerequisite to studying this 

phenomenon is to determine the dependence of mRNA granule formation on ischemia 

duration.  To date, this has never been investigated in any study and thus provides a 

basis for the work presented in this chapter.  The hypothesis of the studies described in 

this chapter is: 

The formation of mRNA granules during reperfusion is a function of the duration 

of the preceding ischemia. 

2.2 Experimental Overview 

The 2VO/HT model was employed to induce global brain I/R in male Long Evans 

rats.  The experimental groups (n = 3 per group) consisted of rats exposed to 2 min (2I), 

4 min (4I), 6 min (6I), and 8 min (8I) of ischemia, each followed by 1 hour of reperfusion.  

The control group was sham-operated non-ischemic controls (NIC).  At 1 hr reperfusion, 

experimental animals were anesthetized, and, along with NICs, perfusion fixed, and 50 

micron tissue slices through the dorsal hippocampus were prepared.  Slices were 

stained by double-labeling immunofluorescence histochemistry (IF)/FISH for HuR and 

poly-A to assess formation of mRNA granules and HuR-poly-A colocalization.  To 

quantify the extent of colocalization of HuR and poly-A mRNA granules in CA1, five 

additional 4I animals were performed and compared to rats subjected to 10 min 

ischemia and 1 hr reperfusion (10I, n = 5).   
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2.3 Experimental Procedures  

2.3.1 Materials 

The two Alexa Fluors used for IF histochemistry, Alexa FluorR 488 donkey anti-

goat IgG and Alexa FluorR 555 anti-mouse IgG, were purchased from Molecular Probes 

(Eugene, OR).  The normal donkey serum was purchased from Sigma-Aldrich (St. 

Louis, MO).  The 5’-biotinylated 50-mer oligo-dT probe was ordered from Integrated 

DNA Technologies, Inc (Coralville, IA).  Prehybridization and hybridization buffers were 

purchased from Ambion (Austin, TX).  Alexa 488-labeled strepavidin (S32354) was 

purchased from Invitrogen (Eugene, OR) and the biotinylated goat anti- strepavidin (BA-

0500) was obtained from Vector Laboratories (Burlingame, CA).  HuR (sc-5261) 

antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, CA).  All other 

chemicals were reagent grade. 

2.3.2 Animal Model 

All of the following animal experiments were approved by the Wayne State 

University Animal Investigation Committee and were performed in accordance with the 

Guide for the Care and Use of Laboratory Animals (National Research Council, revised 

1996).  In order to induce a state of global brain ischemia in our rat model, the bilateral 

carotid artery (two-vessel) occlusion and hypovolemic hypotension (2VO/HT) model 

was performed (Smith et al., 1984).  

At the onset of surgery, anesthesia was induced with a loading dose of 5% 

halothane.  Thereafter, a sufficient maintenance dose of 2% halothane in 100% O2 was 

administered throughout the duration of the surgery using a nosecone.  Core body 

temperature was closely monitored with the use of a rectal temperature probe.  During 

the ischemic period and 1 hr reperfusion period, core body temperature was kept 
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constant at 37 ± 0.5° C with a homeostatic blanket system.  Temporalis muscle 

temperature was monitored with a thermistor and head temperature was maintained at 

37 + 1o C by a heat lamp.  Three major incisions were made.  The tail artery was first 

accessed and exposed for the placement of a small catheter.  This served as the port to 

monitor mean arterial pressure (MAP) in real-time during the entire procedure. Next, a 

vertical ventral incision was made at the neck in order to gain access to the common 

carotids for induction of ischemia.  Here, the external carotid arteries were carefully 

isolated bilaterally, being careful to avoid perturbing the vagus nerve.  A third incision 

was made near the hind leg in order to access and catheterize the femoral artery for 

blood withdrawal to achieve hypovolemia.  Upon completing surgery steps, ischemia 

was induced by first removing 10 cc of blood until MAP was 50 mmHg.  The bilateral 

carotid arteries were then immediately clipped using micro-aneurysm clips, and the 

appropriate amount of time was allowed to pass (2, 4, 6, or 8 min) to achieve the 

desired period of ischemia.  The clips were then removed and blood was reinfused back 

into circulation via the femoral port.  Animals were maintained under anesthesia with 

temperature control for the 1 hr reperfusion period.  At 1 hr reperfusion, animals were 

sacrificed by transcardial perfusion fixation.  

2.3.3 Perfusion Fixation/Tissue Slicing 

Solutions for the fixation process, 0.9% NaCl and 4% paraformaldehyde (PFA) in 

0.1 M phosphate buffered saline (PBS), were prepared in advance and stored at 4° C 

prior to use.  Rats were perfused transcardially first with 250 ml of ice cold 0.9% NaCl, 

followed by 300-350 ml of 4% PFA at a rate of 47 ml/min and 30 ml/min, respectively.  

Following perfusion, brains were carefully dissected so as to not damage the tissue, and 

stored in vials containing 4% PFA for the post-fixation period ranging from 24-48 hrs.  
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Post-fixed brains were sliced in the coronal plane using a vibratome to obtain 50 μm 

thick slices.  The tissue was sectioned accordingly in 0.1 M PBS solution and each slice 

was placed in individual wells of a tissue culture dish filled with cryoprotectant solution. 

All tissue was stored at -20° C in cryoprotectant solution until stained.  

2.3.4 Immunofluorescence (IF) and Fluorescence In Situ Hybridization (FISH) 

All concentrations of primary and secondary antibodies used in the 

immunolabeling protocol were previously determined by testing a series of dilutions on 

control and experimental samples (Jamison et al., 2008).  Double IF/FISH 

immunolabeling was performed in two stages over a 3 day period.   

Immunofluorescence (IF) was carried out over the first 2 days.  Prior to staining, 

sample brain slices were washed in 0.1 M PBS solution for 10 min X4.  Following the 

washes, the samples underwent a preblock step in a solution containing 0.3% Triton X-

100 dissolved in 0.1 M PBS (PBS-Tx) and mixed with 10% normal donkey serum 

(NDS), the same species as the secondary antibody.  Slices were gently rocked in 330 

μl of preblock solution for 25 min.  Next, samples were washed for 10 min X3 in PBS 

and then 330 μl of primary HuR antibody (1:25 concentration) diluted in 1% NDS and 

PBS-Tx was applied and allowed to incubate on a rocker at room temperature 

overnight.  The primary antibody was then removed the following day and samples were 

again rinsed for 10 min X3 in PBS solution.  Following the final wash step, secondary 

antibody (1:300 concentration) was prepared under low light illumination in 0.1 M PBS-

0.3% Tx-10% NDS and 330 μl was applied to each sample and left to rock for a 2 hr 

incubation period.  Slices were then mounted onto lysine-coated slides in a 0.1 M PBS 

solution.  After mounting, slices were fixed for 10 min in 330 μl of 3.6% formaldehyde in 

distilled water, and fixative was drained from slides by blotting on a paper towel. 
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The second stage, FISH, was performed immediately following fixation of the IF 

stage using a modified procedure of (Bessert and Skoff, 1999).  The entire FISH 

protocol was performed under low light illumination or in the dark.  The first step was a 3 

hr prehybridization period performed in an incubator at 32° C in which prehybridization 

buffer was placed on each slide and then placed within a box humidified with 50% 

formamide/4X saline-sodium citrate (SSC).  Using the same apparatus, slides were 

incubated overnight at 32° C in a solution containing 50 ng/ml 5’-biotinylated 50-mer 

oligo-dT probe dissolved in the same hybridization buffer from the previous step.  All 

subsequent processing of tissue was performed in the dark at room temperature the 

following day.  Slides were washed in 2X SSC for 10 min X3 and then incubated for 60 

min in a solution containing 1:500 Alexa 488-labeled strepavidin in 4X SSC 0.1% 

TritonX-100.  The solution was removed and slides were washed for 10 min in 4X SSC 

after which, a solution of 1:667 biotinylated goat anti-strepavidin dissolved in 2X 

SSC/0.1% Triton X-100 was applied and allowed to incubate for 60 min.  Slides were 

washed once more in 4X SSC for 10 min and then the final incubation was performed 

for 60 min in a solution of 1:667 Alexa 488-labeled strepavidin in 2X SSC/0.1% Triton X-

100.  Following the final incubation and prior to coverslipping, the slides were 

sequentially washed in 4X SSC and 2X SSC for 10 min each.  Slides were coverslipped 

using Vectashield hard-set and stored at -20° C until they could be imaged.  The 

specificity of the poly(T) probe for poly-A mRNA was previously validated as described 

by (Jamison et al., 2008) where it was shown that poly-A signal was abolished following 

prior incubation of slices in RNAse or 0.1 M NaOH, but not DNAse. 
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2.3.5 Microscopic Analysis and Data Acquisition 

Data Acquisition 

Evaluation of all slides was performed using photomicrographs obtained from an 

ApoTome-equipped Axioplan 2 Imaging System (Carl Zeiss, Oberkochen, Germany) 

under 63X oil immersion magnification.  Excitation and emission for Alexa 488 (green) 

was 488 nm and 518 nm, respectively.  Excitation and emission for Alexa 555 (red) was 

568 nm and 600 nm, respectively.  The ApoTome-equipped system uses a grid in the 

aperture plane to optically section samples.  This feature is designed to reduce 

extraneous light scattered from other focal planes and thus produces images with 

exceptional sharpness.  

The term “optical sectioning” refers to the individual images obtained at discreet 

focal planes throughout the depth of a sample.  For each focal plane, the computer 

program, working in conjunction with the ApoTome, acquires images of the specimen’s 

multiple layers and separates them by a defined distance.  The recorded set of 

photomicrographs consisting of sequential optical sections is known as a z-stack.  We 

collected stacks of z = 10 optical sections, separated by distances of 0.35 microns.  All 

images were collected at 1388 x 1040 pixel resolution, corresponding to x and y 

distances of 0.102 microns per pixel edge.  For each brain slice, photomicrographs of 

CA1 and CA3 were obtained bilaterally at the level of the dorsal hippocampus, resulting 

in four z-stacks per animal. 

Data Analysis 

A. Orthographic Projections. For each z-stack, a maximum intensity orthographic 

projection was constructed in NIH ImageJ (Abramoff et al., 2004).  An orthographic 

projection “blends” all z-slices to produce a single image.  The term “maximum intensity” 
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projection means that the corresponding pixels from each slice are added together.  The 

final image is then normalized to the mean brightness of the input images.  While a 

single z-slice has excellent focus, the light intensity has been reduced > 95% from the 

original image.  Therefore, orthographic projections are constructed to amplify the signal 

and make subcellular structures, such as mRNA granules, more distinct for subsequent 

analyses.  Additionally, since the projections reduce the 10 images per stack to a single 

image, this helps simplify downstream analyses. 

B. mRNA granules as a function of ischemia duration.  Next, all orthographic 

projections were input into Adobe Photoshop and compiled into a single large 

composite image so all samples could be viewed side by side.  Using these composite 

images for CA1 and CA3, the number of samples containing mRNA granules was 

counted per region per experimental group, and then expressed as the percentage:  

number of samples containing mRNA granules per group per region
100%

total number of samples per group per region
x

 

Graphs of percentages were plotted against the duration of the ischemia and 

either fit by linear regression or by a Hill function using the function fitting routine in 

Matlab (ver. R2012a).  The Hill equation outputs a value ranging from 0 to 1 and 

corresponds to the function, ݂ሺݔሻ ൌ ௫೙

௫೙ା௕೙
  where:  x = the time of ischemia in min, n = 

the Hill coefficient and b = the threshold duration of ischemia at which 50% of rats have 

mRNA granules in their neurons.  At low values of n, the function approximates a linear 

relationship. By plugging increasing values of n into the above equation, the function will 

gradually resemble the classic sigmoidal curve (DeGracia et al., 2012).  When n is large 

(~  > 20), the function assumes a square wave at the threshold value b.  This 

demonstrates an on/off effect at the threshold.  We allowed Matlab to find the optimal 
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values of both n and b for the Hill equation fits. 

C. Colocalization of HuR and poly-A. In a double-labeling experiment where two 

distinct antibodies are represented in separate channels, such as red and green, a 

specific type of analysis must be employed in order to determine the overlap or extent to 

which the channels co-vary.  This colocalization analysis incorporates mathematical 

techniques to determine the extent to which the two staining patterns differ.  These 

standard techniques involve evaluating all pixels contained within an image, however, in 

the current study this proved to be too broad of an application since our aim is to 

investigate the colocalization of HuR with mRNA granules in neuronal cytoplasm.  

Therefore, the adapted method used in the current analysis is described below.  A 

sample image from the analysis is shown in Figure 6, and is followed by a summary of 

the steps performed in the analyses. 

The procedure for generating the image in Figure 6 consisted of 5 steps.  They are 

Figure 6. Images showing how colocalization is measured. Fluorescent images show the
procedure for measuring colocalization of HuR and poly-A in the cytoplasm of
hippocampal CA1 neurons. The top panel corresponds to a sample from a non-ischemic
control (NIC). The lower panel shows neurons from an animal exposed to 4I, 1hR. From
left to right, the panels are (1) Regular merged images, (2) yellow channels falsely
colored yellow, (3) yellow channels with the nuclei masked, showing the masks, (4) yellow
channels with the masks subtracted, (5) yellow channels shown as inverted gray scale
images.  The inverted gray scale images were counted for optical density (OD) in the
program ImageJ. Scale bar = 20 μm; applies to all panels.  

20 μm 
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as follows: (1) calculate the yellow channel, (2) mask all nuclei in the yellow channel to 

effectively eliminate their contribution to the signal, (3) eliminate residual background 

signal, (4) perform densitometric analysis on the resulting images, (5) average the 

densities for experimental groups and test for statistical significance.  

Step 1: Calculate the yellow channels.  The first step is to generate a “yellow 

channel” (Kayali et al., 2005). When an image is merged in a double-labeling study 

containing green and red fluorophores, a graded yellow color is observed anywhere a 

given pixel has signal in both channels.  Since each channel is an 8 bit image, this 

means that a maximum of 256 (28) colors or shades of gray (when viewed in gray 

scale), can be displayed at any one time.  This means that each intensity of gray within 

the gray scale image corresponds to a certain numerical value ranging from 0-255, 

where no signal is represented by 0, and maximum signal (or light intensity) is 

represented by 255.  Essentially, what this process does is define the light intensity of 

each individual pixel within an image as a numerical value.  Taken together, each digital 

image can be thought of as a 2x2 matrix of numbers.  The number of columns of the 

matrix equals the x resolution in pixels, and the number of rows represents the y 

resolution in pixels.  Since each channel varies with respect to light intensities and thus 

represents its own separate matrix, a standard merged image can be obtained by 

performing a mathematical operation on the two input matrices (i.e. the red and green 

channel for each image).   

When the two input matrices are displayed as a merged image, the operation is 

known as the set operator union, where red, green, and their overlap is displayed.  

However, it is also possible to perform other set operations on the channels.  For 

example, one can calculate the intersection of the two input channels.  The resulting 
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intersection displays only the pixels where the two channels overlap, ultimately 

eliminating the presence of the separate red and green signals.  The “yellow channel” is 

exactly this operation of intersection applied to the two input channels.  Therefore, our 

first step is to take each orthographic projection and calculate the intersection of the two 

channels.  This is performed in Adobe Photoshop by applying the “multiply” calculation 

to the red and green channels.  Any overlap between red and green pixels results in the 

production of a new channel, which we call the yellow channel.  

Step 2: Masking of images. Since we are only interested in the overlap of signal 

in the neuronal cytoplasm, we used Photoshop to manually mask the nuclei of all input 

images.  This step is important because substantial HuR and poly-A overlap appears in 

the nucleus.  However, this has no bearing on the current analyses because the nuclear 

colocalization has been shown not to change as a function of brain I/R (Jamison et al., 

2008; Szymanski et al., 2012).  Yet, since the nuclei occupy a large cellular area, the 

corresponding amount of colocalized nuclear signal is also very large.  Thus, it would 

eliminate any differences between groups if left in the densitometric analysis.  

Therefore, by masking the nuclei, this nuclear signal is removed from the images.  This 

step is feasible because HuR staining results in visualization of clearly defined nuclei 

(Szymanski et al., 2012) which are then easy to see and manually mask. 

Step 3: Resetting yellow channel baselines to eliminate background signal. 

Similar to nuclear colocalization, there is also a low level of HuR/poly-A colocalization in 

the cytoplasm.  This baseline amount of colocalization does not represent mRNA 

granules since it is present in NIC samples known to lack mRNA granules (Jamison et 

al., 2008; Szymanski et al., 2012).  This constitutes a background signal within which 

true mRNA granules are embedded and thus needs to be accounted for.  By resetting 



48 

 

the baseline of the yellow channels, it effectively sets the background signal to zero.  In 

order to subtract this background colocalization signal, it is first necessary to measure 

the density of nuclear-masked yellow channels in NIC samples.  With the nuclei 

masked, this gives a measurement of the yellow channel density present in only the 

cytoplasm.  The density from several NIC samples is measured and then averaged.  

This average now accounts for the residual yellow background.  Finally, this average 

yellow density can be subtracted from the average yellow density of all experimental 

group samples to yield whatever yellow density remains in the cytoplasm.  When this 

average background density is subtracted from NIC samples, it sets the density of those 

samples to zero.  Yet, when that average background density is subtracted from the 

average density of reperfused samples containing any significant amount of additional 

yellow signal in the cytoplasm, it will yield a signal greater than the NIC average. 

Step 4: Measuring density.  To measure density of the nuclear-masked yellow 

channels, they are taken into NIH Image J which has the capacity to measure the pixel 

density (optical density, OD) of any 8 bit region of interest (ROI).  The entire nuclear-

masked yellow channel is measured for each control and experimental sample, and 

then tabulated in Microsoft Excel.  The NIC group is first averaged, and this average, as 

explained above, is subtracted from each individual sample of the experimental groups, 

and each experimental group is then averaged.  The resulting data is then tested for 

statistical significance using Student’s t-test for 2 group comparisons or ANOVA for 

comparing more than 2 experimental groups.  The p values are calculated in Excel and 

reported with the data. In line with the universally accepted rule for statistical 

significance, groups were considered to be different if p < 0.05.   
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2.4 Results 

2.4.1 Formation of mRNA Granules with Varying Ischemia Duration 

We observed that mRNA granules formed in all ischemia duration groups. 

Representative samples are shown in Figure 7.  The frequencies of rats in each group 

containing mRNA granules are tabulated in Table 1.  It is known that NIC rats contain 

zero mRNA granules in their neurons (0% frequency), and 100% of rats subjected to 10 

min ischemia, will possess mRNA granules in CA1 and CA3 neurons at 1 hr reperfusion 

(Jamison et al., 2008).  We can use these as end-points in plots that show the 

frequency of mRNA granule-containing rats vs. ischemia duration for CA1 and CA3 

(Figure 8).  The curves in Figure 8 appear very similar and approach 100% by 6-8 min 

ischemia.   

 

 
Figure 7. mRNA granules at varying durations of ischemia. The above images are 
examples showing mRNA granules at the tested durations of ischemia: 2, 4, 6, and 8 
min I, followed by 1 hr reperfusion. Upper panel is taken from CA1 neurons and the 
lower panel shows CA3 neurons. Staining was poly-A FISH (green) and HuR (red).  
mRNA granules are visible in all ischemia groups. Scale bar = 20 μm applies to each.  

 
 
 
 

20 μm
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Table 1. Frequencies of rats with mRNA granules for durations of ischemia and 
hippocampal regions CA1 and CA3. 

2minI 4minI 6minI 8minI 

n, total 3 8 3 3 

# yes CA1 2 6 3 3 

% yes CA1 67% 75% 100% 100% 

# yes CA3 2 7 2 3 

% yes CA3 67% 88% 67% 100% 
 

Two types of regressions were conducted on this data.  Linear regressions are 

plotted in Figure 8, along with the fit equations and the correlation coefficients (R2).  The 

slope and y-intercepts were almost identical for CA1 and CA3, and the R2 values were 

0.73 and 0.68 for CA1 and CA3, respectively.  The relatively low R2 values indicate that 

fitting to a straight line was not ideal.  Since the data plotted in Figure 8 more closely 

resembled an S-shaped curve, we also fit it to the Hill equation. 

 

Figure 8. The appearance of mRNA granules as a function of ischemic duration. The 
plot shows the proportion of rats in each group that displayed mRNA granules. The 
proportion of rats with mRNA granules approaches 100% by 6-8 min of ischemia in both 
CA1 and CA3.  

Figure 9 shows the data points fit to the Hill equation.  The parameter b 

represents the threshold duration of ischemia at which 50% of rats have mRNA 

CA1 y = 0.0891x + 0.291
R² = 0.7364

CA3 y = 0.0826x + 0.2893
R² = 0.6807
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granules in their neurons and n is the Hill coefficient.  The values from the Hill fits were: 

CA1:  b = 1.43 + 0.55 and n = 1.78 + 0.88 

CA3:   b = 1.10 + 1.15 and n = 1.16 + 1.00 

Problematically, the lower bound for the standard deviations (-2σ) for b and n for 

the CA3 fit gave negative values of -1.205 and -0.857.  A negative value for b, the 

threshold duration of ischemia whereby 50% of rats show mRNA granules, physically 

does not make sense.  In addition, the Matlab curve fitting  routine identified the  CA3 6I 

 
Figure 9. Hill Equation Fits. Since the data points closely resembled an S-shaped 
curve, they were fit to the Hill equation accordingly, (A) CA1, (B) CA3, (C) CA3 with 
outlier removed. (D) Gaussian distributions of the threshold, b, and Hill coefficient, n for 
CA1 (blue curves) and CA3 (red curves).   

group frequency point as an outlier.  Simply looking at the points plotted in Figure 8, this 

made sense because if 4I led to 88% of rats showing mRNA granules, then 6I must be 

equal to or greater than the 4I value, but it is less in our data (Table 1).  Thus, the Hill 

equation fit was re-run treating the 6I CA3 point as an outlier (Figure 9C), resulting in 

new values for the CA3 fit of b = 1.444 + 0.17 and n = 2.113 + 0.48.  For the Hill fits, the 

adjusted R2 values for CA1 and re-fit CA3 were 0.97 and 0.99, respectively, 
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considerably better than the linear regression. 

Figure 9D shows the Gaussian distributions of b and n for CA1 and re-fit CA3.  

Although the CA1 curve is broader, it lies directly on top of the CA3 curve for the b 

parameter.  In terms of the n parameter, the values do not clear statistically between 

CA1 and CA3, but the two Gaussian curves are not identical and the mean value of n 

for CA1 is less than that of CA3.  Results from the Gaussian curves for parameter b 

indicate that the threshold duration of ischemia for forming mRNA granules is the same 

between CA1 and CA3, approximately 1.4 min of ischemia.  This indicates that the 

formation of mRNA granules in neurons is extremely sensitive to the duration of 

ischemia.  Additionally, the result for the n parameter Gaussian distribution suggests, 

but clearly does not prove, that the difference in response between CA1 and CA3 lies in 

factors that could be represented by the Hill coefficient.  In terms of its meaning, n is 

traditionally a measure of “cooperativity” or how the parts of the system interact to carry 

out the process being modeled by the Hill equation.  These points will be elaborated in 

the discussion of this data in Chapter 5. 

2.4.2 Colocalization of HuR and mRNA Granules after 4 min and 10 min Ischemia 

It was previously observed that HuR colocalized with mRNA granules in resistant 

CA3 neurons at 1 hr reperfusion after 10 min ischemia, but did not colocalize in 

vulnerable CA1 (Jamison et al., 2008).  Therefore, it was of special significance to 

observe that some of the lesser durations of ischemia, as shown in Figure 7, showed 

colocalization of HuR and mRNA granules in the cytoplasm of CA1 neurons.  Because 

the study of varying ischemic durations showed this colocalization to be the greatest in 

the 4I group, we added five additional animals to this experimental group.  We then 

applied the procedure described above (Figure 6) to quantify cytoplasmic HuR and poly-
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A colocalization in CA1 of the 4I group versus legacy samples of the 10 min ischemia, 1 

hr reperfusion group (10I).    

Figure 10 shows representative samples for the NIC, 4I and 10I groups, 

illustrating the (1) merged, (2) green poly-A, and (3) red HuR channels.  The 4I group 

showed distinct granular structures in the HuR (red) channel, but the 10I group 

resembled NICs in the HuR channel, in spite of granular poly-A staining in both the 10I 

and 4I samples. 

 
Figure 10. Contrast in HuR staining in CA1 at 4I and 10I. The colocalization of HuR with 
poly-A is shown in the left column as merged images for experimental groups as 
labeled. Individual channels for poly-A (center) and HuR (right) are also shown. Note 
the absence of granules in the HuR channel of 10I and NIC samples, and the 
corresponding lack of colocalization with poly-A in the merged image.  

10 μm 
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Figure 11A shows the respective yellow channels for the images in Figure 10, 

and also shows the nuclear masked yellow channels.  In the 4I group there are granular 

structures that colocalized in both the poly-A and HuR channels, resulting in intense 

dark mRNA granules in the 4I yellow channel.   While the 10I yellow channel appears 

more granular than the NIC, the colocalized yellow signal is less intense than the 4I 

group.  The 3rd column shows the respective optical density of each image, and the 

value obtained when subtracted from the NIC value.  When 5 animals were run per 

group and ODs averaged, the mean density of the 4I group was about 5-fold greater 

than that of the 10I group, after each was normalized to the NIC group (Figure 11B), 

and these cleared at p = 0.041 by a Student’s t-test. 

 
Figure 11. Yellow channels and quantification of mRNA granules. (A) Left: the yellow 
channels in gray scale corresponding to the merged image in Figure 10. Center: the 
yellow channels with the nuclei masked. Right: the respective optical density of each 
image as measured in ImageJ. (B) Average density (+ standard deviation) of the 4I 
group compared to that of the 10I group. For the 4I and 10I groups, n=5. p value is 
result of Student’s t-test. Scale bar = 10 μm; applies to all panels.  

 

10 μm 
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2.4.3 Summary 

I showed here that mRNA granules formed at all durations of ischemia tested 

from 2-8 min, and there were no statistical differences in the Hill function fit of the data 

between CA1 and CA3; however, the parameter n was not identical between the 

groups.  Additionally, when the 4I group was compared to the 10I group for 

colocalization of poly-A and HuR signal in the cytoplasm of CA1 neurons, the 4I group 

was ~	5X greater than the 10I and this is consistent with the qualitative observation that 

HuR colocalized with mRNA granules in CA1 neurons after 4 min ischemia and 1 hr 

reperfusion.  These results indicate that short durations of ischemia, as applied in 

preconditioning (e.g. 2I) have the ability to induce mRNA granule formation as well as 

colocalization with HuR in neurons during the reperfusion period. 
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CHAPTER 3 

Effect of Ischemic Preconditioning on mRNA Granules 

3.1 Hypothesis Stated 

 Since sublethal durations of ischemia induce mRNA granules, it is possible that 

mRNA granules contribute to IPC-induced neuronal survival following the 2nd, lethal 

ischemic insult.  As shown in Chapter 2, at 1 hr reperfusion following 4 min ischemia, 

HuR colocalized with mRNA granules in CA1 neurons.  This is a novel and significant 

observation because the colocalization of HuR and mRNA granules early in reperfusion 

following a lethal 10 min ischemic insult has been shown to correlate with the translation 

of stress proteins (e.g. HSP70) and cell survival in resistant CA3 neurons, but this 

colocalization does not occur in CA1 which does not translate HSP70 and does not 

survive (Jamison et al., 2008).  However, it is unknown how neuronal mRNA granules 

respond after the 2nd, lethal ischemic insult, following an IPC stimulus of 2 min ischemia.  

Therefore, in this chapter I characterize the relationship between HuR and mRNA 

granule staining after rats have been subjected to 2 min ischemia and 48 hr reperfusion 

(IPC stimulus) followed by 10 min ischemia and 1 hr reperfusion.  The specific 

hypothesis to be tested is: 

Following an IPC stimulus, CA1 neurons will show colocalization of HuR and 

mRNA granules at 1 hr reperfusion after the 2nd, 10 min ischemic insult. 

3.2 Experimental Overview 

The experiments in this chapter compare the response following 10 min ischemia 

+ 1 hr reperfusion, with and without IPC.  The three experimental groups (n = 5/group) 

are: (1) NIC, (2) 10 min ischemia + 1 hr reperfusion (1hR), (3) 2 min ischemia + 48 hr 

reperfusion + 10 min ischemia + 1 hr reperfusion (IPC).  Brain slices were prepared and 
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then double stained with HuR IF and poly-A FISH.  The experimental groups were 

analyzed by texture analysis (Szymanski et al., 2012) to characterize the staining 

patterns in the three experimental groups and to correlate these to the survival or death 

outcome of CA1 and CA3.  Texture analysis is explained in greater detail below. 

3.3 Experimental Procedures 

3.3.1 Materials 

All materials were as described in Chapter 2. 

3.3.2 Animal Model 

Ischemic Preconditioning.  The IPC surgery consisted of two sequential 

surgeries as described in Chapter 2.  On day one, animals (n = 5) were subject to 2 min 

of normothermic global forebrain ischemia.  Surgical incisions were sutured and animals 

returned to their cages for exactly 48 hrs reperfusion.  Following the first surgery, 

animals were individually housed and had free access to food and water during the 

recovery period.  At the 48 hr time point, the second surgery was performed in which 

animals were subjected to 10 min global ischemia followed by 1 hr reperfusion in order 

to evaluate the formation of mRNA granules.  

3.3.3 Immunofluorescence and Fluorescence In Situ Histochemistry 

IF and FISH techniques were performed exactly as described in Chapter 2. 

3.3.4 Texture Analysis 

A major difficulty encountered when trying to analyze and interpret microscope 

images is the fact that their analysis by visual inspection is qualitative by nature.  This 

consequently leaves the analysis open to subjective interpretation.  Qualitative analysis, 

by definition, rules out quantifying the changes in microscope images.  As a result, this 

has led to the advent of multiple forms of analyses, invariably based in computer 
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technology, which has allowed researchers to overcome the traditional limitations in 

analyzing microscope data.  One such method is texture analysis (TA) (Harrison et al., 

2009; Szczypiński et al., 2009).  TA, as the name implies, is the ability to extract 

information from an image based on its texture.  TA derives from the computer science 

field of artificial vision and has its roots in mathematical methods dating back to the 

1970s (Haralick et al., 1973).  TA has been applied in very diverse fields in which the 

ability to accurately differentiate between textures in an image is critical.  Examples 

include: characterizing radar images in meteorology (Alparone, 1990), analyzing military 

satellite data (Sengottuvelan, 2008), and applying robotics and machine vision 

(Pietikäinen, 2000).  Moreover, the biological and biomedical sciences have also found 

increasing utility in the application of TA methods.  For example, it is used for detection 

of non-Hodgkin lymphoma in MRI images (Harrison et al., 2009), and has been used to 

characterize cell behavior in microscope images of, for example, cytoskeleton 

rearrangement (Uppal et al., 2010), and apoptosis (Losa and Castelli, 2005).  

As it pertains to the present research, the DeGracia laboratory has also adapted 

TA methods to quantify microscope images of poly-A staining in reperfused neurons 

(Szymanski et al., 2012).  TA has been a valuable tool in our analyses, since mRNA 

granule formation after brain I/R represents a major change in the texture of the cell 

staining of poly-A mRNAs.  However, since the main purpose of Szymanski et al. (2012) 

was to validate the TA methods, only CA3 was studied.  I here will use the same 

methods, and for the first time, apply them to study the change in texture of CA1 

neurons following I/R with and without IPC.  A brief overview of the TA method is first 

given, followed by a more detailed explanation of each step.  

Briefly, the steps performed in TA are as follows: (1) Obtain orthographic 
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projections as described above, (2) Mask the nuclei and background for each image, 

subtract those masks, and obtain the final cytoplasmic area, (3) Perform TA and 

measure 168 texture features of the cytoplasmic images, (4) Run feature selection 

using Fisher’s test to reduce the 168 features to the top 10 features, (5) Perform feature 

projection to further reduce the 10 features to one to three principle components, and 

(6) Run statistics on the principle components using ANOVA to assess whether any 

differences exist between experimental groups. 

Generating Masks 

After generating the orthographic projections, as described in Chapter 2, masking 

of the nuclei and background is required.  The purpose of masking is to ensure that only 

the regions of interest (ROIs) are subjected to TA while all regions of non-interest are 

excluded from the analysis.  Since mRNA granules are cytoplasmic, the entire 

cytoplasmic area within each image served as the ROI.  

All masks were generated in Adobe Photoshop (ver cs8) by manually “coloring 

in” all visible nuclei in the image.  This is possible and feasible because HuR staining of 

neuronal nuclei is distinct and prominent so nuclei can easily be identified (see example 

of HuR staining in Chapter 2, Figure 10).  The nuclear masks are saved as “alpha 

channel 1”.  Next, the black background is selected by the “magic wand” tool set to 25 

followed by the command “select similar”, and the resulting mask of the background is 

saved as “alpha channel 2”.  Alpha 1 and 2 are added to give alpha channel 3, which is 

then inverted, to give only the area of the image containing cell cytoplasm.  Alpha 

channel 3 is saved as an 8 bit grayscale image and imported into the TA software, 

MaZda. This channel is used to generate “region of interest” files that are used as 

masks in MaZda. 
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This masking method was validated in Szymanski et al., (2012) where it was 

shown that masking the entire cytoplasmic area gave the average result obtained from 

masking individual cells, and hence was independent of the size and shape of the ROI 

used for TA.  Once imported into MaZda, the image intensities are normalized to 

eliminate variation due to image histograms.  Thus, by masking and measuring all the 

cell cytoplasms in an image as a single unit, the resulting texture features represent the 

normalized average of all cells in the image.  Because all reperfused neurons in an 

image will contain mRNA granules in their cytoplasms, this step is feasible. 

Texture Analysis 

TA was performed in MaZda (ver 4.6). MaZda is TA software developed at 

Technical University of Lodz, Institute of Electronics, Sweden, in the context of the 

COST B11 European project for analyzing MRI data (Szczypiński et al., 2009).  MaZda 

has the capacity to measure almost 300 texture features using 6 well-validated TA 

methods.  Table 2, adapted from Szymanski et al. (2012), lists and briefly describes 

each TA method. 

Table 2. Brief description of texture analysis (TA) methods calculated by MaZda. 
TA method Brief Description 

histogram analysis Computes statistical features of first-order histogram 

absolute gradient 
method 

Computes statistics of the gradient magnitude map 

run-length matrix Computes pixel runs of a given intensity along specified vectors 

co-occurrence matrix Computes statistics of change in pixel intensities a given distance and 
direction from a central pixel 

autoregressive model Computes intensity deviation of a central pixel from a linear weighted 
average of surrounding pixels 

wavelet analysis Pixel intensity changes transformed into frequencies; determines 
frequency components of texture 
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To use MaZda, the 8 bit grayscale red and green channels are imported and 

analyzed separately, using the mask files generated as described above.  Texture 

features and program options are chosen and then calculated by MaZda, which outputs 

texture features as a spreadsheet column to be used for further analysis.  Our choice of 

texture features and program options were the same as Szymanski et al. (2012) and 

involved calculating a total of 168 texture features spread over the 6 TA methods listed 

in Table 2.  The [] normalization method was also used, where  is the 

mean gray level value and the standard deviation.  This normalization method has 

been shown to result in the most consistent output amongst other normalization 

methods applied prior to TA (Collewet et al., 2004). 

Therefore, for each experimental animal, we input four images (masked as 

described above): left and right CA1 red (HuR) and left and right CA1 green (poly-A), 

and obtained as the output, 4 columns of 168 rows where each row was a measured 

texture feature of that respective 8-bit image.  The texture features of the left and right 

CA1 for each poly-A and HuR image were averaged for each experimental animal and 

each was treated as a single sample for downstream analyses so that each sample 

gave 2 output TAs: the bilateral average for poly-A and for HuR. 

Feature Selection 

The next step in TA is feature selection.  Because there is redundancy in the 168 

measured texture features, and some are not informative for distinguishing the input 

groups, feature selection is used to find the most informative texture features.  This step 

employs statistical tests to reduce the total number of 168 texture features down to the 

top 10 optimal set of features that can best distinguish between the experimental 

groups.  The groups being compared are defined beforehand in a “supervised” fashion, 
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as opposed to an “unsupervised” algorithm which allows the software to automatically 

divide the samples into groups. 

The idea of “supervised” feature selection is very important in the analysis of the 

present data.  The goal is to distinguish the granular staining of reperfused neuronal 

cytoplasm from the more homogeneous cytoplasmic staining of NICs.  Therefore in 

order to find the texture features that can best make this discrimination, the TA routine 

is initially run on the two experimental groups that display the extremes of the textures 

we wish to distinguish.  Meaning, we select the sample which contains the most 

granules in the cytoplasm because it will ultimately provide the greatest difference in 

appearance from that of a smooth NIC sample which lacks granules.  Since the 10I 

group (as described in Chapter 2) had the greatest mRNA granulation in the poly-A 

channel (Szymanski et al., 2012), it was run against the NIC for feature selection.  The 

resulting ten features were then subsequently used to test poly-A staining in all 

experimental groups.  Likewise, since the 4I HuR staining showed the most significant 

granulation, and in fact the only significant granulation for HuR staining in reperfused 

CA1 neurons, the 4I HuR staining was run against NICs to generate the 10 best texture 

features for assessing HuR channels in all experimental groups.  The experimental 

groups used for feature selection are summarized in Table 3: 

Table 3. Experimental groups used for feature selection by the Fisher test.   
  “smooth”  “granular” 

poly‐A  NIC  10I 

HuR  NIC  4I 

 

The top 10 texture features are determined by calculation of the Fisher coefficient 

(F) for each texture feature in the experimental groups in Table 3.  The F coefficient 
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measures the ratio of between-group variance to within-group variance.  The greater the 

value for the F coefficient obtained for a particular texture feature, the better that texture 

feature is for discriminating between groups.  Once determined, the top 10 texture 

features were isolated for all experimental groups and carried forward for further 

analysis.  

Principle Component Analysis 

Once the top 10 features were identified, they were subject to principle 

component analysis (PCA) as carried out in the MaZda software.  PCA is a 

mathematical technique that allows data contained within a higher dimensional data 

space (e.g. the 10 dimensional features) to be projected into a lower dimensional space 

while keeping intact the relative relationship of the higher dimensional data.  The 

resulting lower dimensions are called principle components, and in the MaZda 

software are called “most expressive features” (MEF).  The principle components are 

linearly independent variables that are obtained by accounting for the variability that 

exists among the higher dimensional input variables.  The first MEF accounts for the 

greatest degree of variability among input variables, and any additional MEFs account 

for any remaining variability until all has been accounted for. 

The final step is the conversion of the 10-dimensional feature space into a set of 

principle components used to describe each image texture.  The final data are shown 

either as plots of individual images on axes of the MEFs, or as averages of the MEFs 

plotted as bar graphs.  MEFs were also analyzed by ANOVA and Tukey post hoc test to 

detect statistical significance between experimental groups. 

Summary of Texture Analysis    

The cytoplasmic area of each input image is converted into a set of 168 numbers 



64 

 

that represent the texture of the image.  The set of 168 numbers is reduced by the 

Fisher test to the top 10 numbers that best discriminate the input groups.  The set of 10 

numbers is further reduced to principle components, or MEFs, which are then 

interpreted as a numerical representation of the textures contained within the original 

input images.  The MEFs are then analyzed statistically to show differences amongst 

the experimental groups.  Essentially, the entire process of texture analysis is a way to 

describe the appearance of a microscope image in terms of numerical values.  These 

values can then be compared statistically to reliably quantify differences between 

microscope images. 

3.3.5 Colocalization Analysis 

To determine colocalization of poly-A/HuR co-labeling, the optical density method 

described in Chapter 2 was used.  In addition, TA of experimental group yellow 

channels was also performed, using the methods described above.  The input images 

were the 8-bit gray scale yellow channels calculated in the same manner as described 

in Chapter 2.  For yellow channels, feature selection was based on the three input 

groups: NIC, 1hR and IPC, and so was on a different basis than the poly-A or HuR TA. 

3.4 Results 

3.4.1. Qualitative Analysis. 

Examples of HuR/poly-A staining of CA1 are shown in Figure 12A.  Qualitatively, 

there were no obvious differences between the 1hR and the IPC groups.  Both groups 

showed mRNA granules in the cytoplasm of the CA1 neurons.  Furthermore, both 

showed a low degree of HuR colocalization with the mRNA granules.  But qualitative 

analysis limited our ability to interpret this data.  This motivated us to perform 

quantitative TA on this dataset. 
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poly‐A  HuR 

Texture feature  F  Method  Texture Feature  F  Method 

WavEnLH_s‐5  14.564 WA  Perc.90%  9.0075 H 

GrNonZeros  12.903 GR  Teta2  7.9319 AR 

WavEnHL_s‐2  12.677 WA  Variance  7.555 H 

WavEnHH_s‐3  11.675 WA  Teta1  7.3903 AR 

Skewness  11.574 H  S(2,2)Entropy  7.0338 CO 

WavEnLL_s‐1  9.3666 WA  S(2,‐2)Entropy  6.5853 CO 

Teta1  9.237 AR  S(2,‐2)SumEntrp  6.4518 CO 

S(2,‐2)DifVarnc  8.9064 CO  Vertl_GLevNonU  6.34 CO 

Teta2  8.437 AR  45dgr_GLevNonU  6.3265 CO 

WavEnLL_s‐2  8.3466 WA  Horzl_GLevNonU  6.3183 CO 

Table 4. Top 10 texture features selected by the Fisher Test.

3.4.2. Quantitative Texture Analysis   

The top 10 texture   features used to distinguish “granular” from “smooth” staining 

in the poly-A and HuR channels are shown in Table 4.  Again, these features were 

determined by comparing the experimental groups listed in Table 3.  For poly-A, half of 

the features were from 

wavelet analysis, two 

from the autoregressive 

model, and one each 

from wavelet analysis, 

the co-occurrence 

matrix, and the gradient 

method.  For HuR staining, there were six texture features from the co-occurrence 

method and two each from the autoregressive and histogram models.  Thus, wavelet 

analysis tended to be the best TA method to distinguish the input groups for poly-A 

staining, but the co-occurrence matrix method tended to best distinguish HuR granular 

from non-granular staining. 

3.4.3. Texture Analysis of poly-A staining   

The main results of TA on poly-A staining are shown in Figure 12B and 12C.  

PCA reduction of the 10 features in Table 4 resulted in three principle components, 

MEFs 1, 2 and 3.  In Figure 12B, each individual animal is plotted as a point in the 3-

dimensional MEF space, and the experimental groups are shown as color-coded 

clusters (red = NIC; green = 1hR; yellow = IPC).  The NIC and 1hR clusters did not 

overlap, but the IPC cluster overlapped both the NIC and 1hR groups.  Figure 12C plots 

the means (+ one standard deviation) of each MEF for the experimental groups and 
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shows the results of ANOVA testing. Only MEF1 cleared statistically at p = 0.0017; post 

hoc testing showed that the 1hR group was different from NIC and IPC, but the latter 

two were not statistically different.  Thus, while our feature selection was optimized to 

distinguish the NIC and 1hR groups,  the IPC group was intermediate to both in terms of 

poly-A cytoplasmic texture.  The conclusion, based on quantitative TA, that poly-A 

staining in IPC is intermediate between NIC and 1hR, is not obvious from qualitative 

inspection of the input images. 

3.4.4. Texture Analysis of HuR staining  

The analysis of the HuR TA is shown in Figure 12D and 12E.  When the 10 best 

features for distinguishing “granular” from “smooth” HuR staining were applied to the 

experimental groups,  it resulted in a one dimensional MEF space.  There was no 

statistical difference in the HuR texture between the NIC, 1hR and IPC groups.  This 

agrees with the qualitative observation that HuR granules are not apparent in 

photomicrographs of the 1hR and IPC groups.  On this basis, we can conclude that IPC 

does not enhance HuR colocalization in mRNA granules becase HuR texture after IPC 

was not different from NICs. 

3.4.5. Colocalization Analysis at 1hR with and without IPC 

To directly evaluate colocalization of poly-A and HuR in the cytoplasm of the 

experimental groups, two additonal tests were performed.  (1) TA was run on yellow 

channels and (2) the colocalization method used in Chapter 2 was performed.  

Texture analysis of the yellow channels reduced to the one-dimensional MEF1 

that statistically separated the NIC from the 1hR group (ANOVA p = 0.02).  However, 

the IPC group overlapped both (Figure 13A), and was not statistically different from 

either group (Figure 13B).  Using the colocalization method described in Chapter 2, 
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there was no difference in yellow channel OD between any of the experimental groups 

(Figure 13C; ANOVA p = 0.13). 

 
Figure 12. Texture analysis for poly-A and HuR staining. (A) Sample images of NIC, 
1hR, and IPC samples from CA1 neurons stained with poly-A (green) and HuR (red). 
Scale bar in 3rd panel is 10 microns and applies to all three panels. (B) and (D) TA of 
poly-A and HuR, respectively, where individual samples are plotted in MEF coordinates. 
“Balloons” in B and brackets in D illustrate how experimental groups cluster. (C) and (E) 
plot average MEFs (± one standard deviation). ANOVA p values are shown and * 

10 μm 
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indicates post hoc p < 0.05. Red = NIC; green = 1hR; yellow = IPC. 
 

 
Figure 13. Colocalization Analysis. (A) Individual samples were plotted in 1 dimensional 
MEF1 space. The brackets indicate the clustering of the groups. (B) Plots the average 
MEF values (± one standard deviation). (C) The optical density of the yellow channel 
was measured for each group and those densities are plotted. * ANOVA p < 0.05 for 
NIC vs. 1hR. 

3.5 Summary 

The studies above were the first to describe the behavior of mRNA granule and 

HuR staining following IPC.  I hypothesized that IPC would enhance the colocalization 

of mRNA granules with HuR in CA1 neurons following the 2nd ischemic period of 10 min.   

The data described above do not support this hypothesis, given that (1) HuR granules 

were not detected after IPC and (2) no increase was observed in colocalization of 

mRNA granules and HuR in CA1 neurons following IPC, compared to non-IPC 1h 

reperfused rats.  TA of the poly-A, HuR and yellow channels all revealed that a change 
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does take place in which the IPC samples are quantitatively, with respect to image 

texture, intermediate to both the NIC and 1hR groups.  
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CHAPTER 4 

Effect of Cycloheximide on mRNA Granules after IPC 

4.1 Hypothesis Stated 

To date, our knowledge of mRNA granules in post-ischemic neurons is 

descriptive and correlative.  No studies have directly evaluated the functional effect of 

mRNA granules on post-ischemic outcome.  As discussed in Chapter 1, Szymanski et 

al. (2012) showed that cycloheximide (CHX) pre-treatment attenuated the formation of 

mRNA granules.  Thus, CHX provides a tool to manipulate mRNA granules and study 

their effect on outcome.  In this chapter, studies are described where I gave a single 

dose of CHX before administration of the 2nd ischemic insult following IPC, and studied: 

(1) the effect on mRNA granule formation at 1hr reperfusion, and (2) cell survival at 7 

days reperfusion after the 2nd ischemic insult.  The hypothesis of this final chapter is: 

CHX will prevent mRNA granule formation when given after IPC but before the 

2nd ischemic insult, and will eliminate the neuroprotective effect of IPC on CA1 neurons. 

4.2 Experimental Overview 

CHX was administered in a single bolus to two experimental groups: (1) 15 min 

before a 10 min ischemic insult in previously untreated rats, and (2) 15 min before the 

2nd lethal ischemia in rats previously subject to IPC.  For each experimental group, half 

the animals were sacrificed at 1 hr reperfusion and the other half at 7 days reperfusion.  

The former were stained with poly-A FISH/HuR IF and the latter stained with toluidine 

blue.  TA was performed on the 1 hr reperfused samples, and CA1 was inspected for 

cell viability in the 7 day group. 
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4.3 Material and Methods 

4.3.1 Materials 

CHX was purchased from Sigma Chemical Co. (St. Louis, MO).  All other 

reagents were as described in Chapters 2 and 3. 

4.3.2 Animal Model 

The non-IPC and IPC surgeries were exactly as described in Chapters 2 and 3, 

respectively.  CHX (1.5 mg/ml) was administered I.P. in 0.25 ml of sterile saline 15 min 

prior to: (1) the induction of 10 min ischemia in naïve rats (n = 10; 1hR-C), and (2) the 

induction of 10 min ischemia in rats previously subject to IPC of 2 min ischemia plus 2 

days reperfusion (n = 10, IPC-C).    

4.3.3 FISH and IF 

Half of the 1hR-C and IPC-C rats were sacrificed at 1 hr reperfusion.  Perfusion 

fixation, brain slicing, costaining with poly-A FISH and HuR IF, and microscope imaging 

were exactly as described in Chapter 2. 

4.3.4 Toluidine Blue Staining 

The other half of the 1hR-C and IPC-C rats were sacrificed at 7 days reperfusion, 

perfusion fixed, and brains sectioned in 50 micron slices through the dorsal 

hippocampus.  Toluidine blue staining was performed as described in DeGracia et al. 

(2007).  Brain slices were washed x3 in 0.1 M PBS, mounted onto glass slides with 

0.05% gelatin, and air-dried overnight.  The following day, the slides were dehydrated 

using a dilution series of graded ethanol and then incubated in toluidine blue (1:1000) 

for 20 sec.  The excess stain was washed off in a second series of graded ethanol 

solutions and then washed in 100% xylene.  Slides were coverslipped with Permount.  

Three slides from each animal, at coronal sections of the anterior, middle and posterior 
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sections of dorsal hippocampus were viewed under a normal bright field microscope 

under the X20 objective.  Each slide was scored in a binary fashion as to whether it did 

(yes) or did not (no) contain dead CA1 neurons. 

4.3.5 Texture Analysis 

TA was performed exactly as described in Chapter 3, using the texture features 

selected by the experimental groups in Table 3, Chapter 3.  This allowed determination 

of the extent to which the CHX-treatment fell on the “smooth” to “granular” spectrum of 

textures.  The TA of CHX-treated groups were compared to the TA of the non-CHX-

treated groups described in Chapter 3. 

4.4 Results 

4.4.1 Qualitative Analysis of Poly-A/HuR Costaining 

Similar to the results for CA3 previously reported by the lab (Szymanski et al., 

2012), treatment with CHX blunted the formation of mRNA granules in CA1 at 1hr 

reperfusion in both IPC and non-IPC samples (Figure 14).  However, variation amongst 

animals prevented clear-cut interpretation, so we again applied TA to determine if 

quantitative differences in cytoplasmic texture could be detected. 

4.4.2 TA of CHX-treated samples 

Using the texture features in Table 4 to compare the 1hR and 1hR-C groups 

again led poly-A staining to reduce to a 3D space after PCA.  When the individual 

samples were plotted in the 3D MEF space, the 1hR-C group fell between the NIC and 

1hR groups (Figure 15A).  When means for MEFs 1-3 were tested against each other 

by ANOVA, only MEF1 for the NIC and 1hR groups were different.  The 1hR-C group 

was not different from either NIC or 1hR, providing quantitative evidence that the 1hR-C 

group was intermediate to NICs and 1hR, consistent with an interpretation that CHX 
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decreased mRNA granule formation at 1 hr reperfusion. 

When plotted in the 3D MEF space against the NIC and 1hR groups, the IPC and 

IPC-C individual samples formed clusters that fell on top of each other, and were also 

intermediate to the NIC and 1hR groups (Figure 15B).  Therefore, by TA quantification, 

IPC + CHX had no effect on the cytoplasmic texture compared to IPC alone. 

 
Figure 14. Representative images of samples with and without CHX treatment. The top 
panels shows the CA1 region following 10 min global ischemia and 1hR without (upper, 
left) and with (upper, right) CHX. The lower panels show CA1 neurons that underwent 
IPC without CHX (lower, left) and with CHX (lower, right) 15 min prior to the 2nd 
ischemic insult.   
 

10 μm
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Figure 15.  Texture analysis for poly-A and HuR staining. (A) and (B) TA of poly-A 
staining where individual samples are plotted in 3D MEF coordinates. Balloons show 
the clustering of the different experimental groups in relation to one another.  (C) Plot of 
the average MEF values for poly-A staining (± one standard deviation). (D) Plot of the 
average MEF values for HuR staining (± one standard deviation) for MEF clusters (not 
shown). *Tukey post hoc p < 0.05 for 1hR vs. NIC in panel C and IPC and IPC-C vs. 
1hR-C in panel D. 

When performing ANOVA on all five experimental groups for poly-A TA – NIC, 

1hR, 1hR-C, IPC and IPC-C, the only statistically significant difference was for MEF1 

between the NIC and 1hR group (Figure 15C).  Interpreting this in conjunction with 

qualitative inspection of the microscope images indicates that 1hR-C, IPC and IPC-C all 

result in cytoplasmic textures intermediate between NIC and 1hR groups.  In terms of 

HuR staining, results from ANOVA on the single MEF1 obtained from PCA, showed that 

only the 1hR-C group was statistically different from the IPC and IPC-C groups (Figure 

15D).   
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Thus, TA of the microscopic images gives us a quantitative justification to 

conclude that CHX blunted poly-A mRNA granules in the 1hR group, but had no effect 

on the IPC group.  With respect to the HuR cytoplasmic texture, IPC was not different 

from the 1hR group, but was different from the 1hR-C group, and there was no texture 

difference in HuR staining after IPC with or without CHX. 

4.4.3 Cell Viability 

At 3 days reperfusion after 10 min ischemia, 100% of CA1 neurons die (Figure 

16, left).  After 7 days reperfusion following IPC plus 10 min ischemia, CA1 completely 

survives (Figure 16, center).  When CHX was administered to the IPC-treated rats, it 

had no effect on survival and all CA1 neurons survived (Figure 16, right). 

 
Figure 16. Images showing cell viability with and without IPC. Left: Toluidine blue 
staining demonstrates dying CA1 neurons following 10 min ischemia, 1 hr reperfusion. 
Center: Robust, viable CA1 neurons subject to IPC prior to subsequent 10I, 7DR (7 day 
reperfusion). Right: CA1 neurons following IPC with CHX treatment demonstrate no 
effect of CHX on cell viability. 

4.5 Summary 

Administration of CHX 15 min before a lethal 10 min ischemia blunted mRNA 

granule formation.  However, CHX did not alter poly-A or HuR staining when 

administered 15 min before 10 min ischemia in animals that previously underwent IPC, 

nor did it have any effect on IPC-induced neuroprotection in CA1 neurons. 

100 μm
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CHAPTER 5 

Discussion 

5.1 Summary of Results 

The studies described above were the first ever investigations of mRNA granules 

following various durations of ischemia and following IPC.  A synopsis of the main 

findings is that, in CA1 neurons: 

A. Chapter 2: 

a. mRNA granules formed at 1 hr reperfusion after ischemia durations from 

2-10 min. 

b. HuR colocalized with mRNA granules at 1 hr reperfusion following 4 min 

ischemia, but, as previously shown (Jamison et al., 2008), not after 10 min 

ischemia. 

B. Chapter 3: 

a. By quantitative TA, poly-A mRNA granules at 1 hr reperfusion after IPC 

were intermediate in texture to the NIC and 1hR groups. 

b. HuR staining did not differ between 1hR and IPC groups. 

c. IPC did not lead to an increase in poly-A mRNA granule colocalization 

with HuR. 

C. Chapter 4: 

a. CHX attenuated mRNA granule formation at 1 hr after 10 min ischemia. 

b. CHX had no effect on mRNA granules formed after IPC. 

c. A single bolus of CHX given 15 min prior to the 2nd 10 min ischemia after 

IPC did not eliminate the neuroprotective effect of IPC. 

These results do not necessarily contradict the main hypothesis of my thesis, that 
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mRNA granules are a protective response of reperfused neurons.  But the results do 

suggest a more complex picture because some of the specific hypotheses were shown 

to be wrong.  For example, IPC did not enhance HuR colocalization with mRNA 

granules, and CHX did not decrease the protective effect of IPC.  I now discuss how 

these findings are consistent with the main hypothesis, but at the same time qualify our 

understanding of the role of mRNA granules in the neuronal response to ischemic 

injury.  In each of the specific discussions, I will also propose future directions relevant 

to that specific topic. 

5.2 Ischemia Duration and mRNA Granules 

It is a significant observation that all durations of ischemia from 2-8 min 

generated mRNA granules in the CA1 and CA3 neurons of individual rats.  It is not 

unreasonable to postulate that the presence of mRNA granules would manifest in a 

graded response as a function of ischemia duration.  However this was not the case, as 

we did not observe a graded response in the morphology of the mRNA granules.  

Instead, we observed a binary response where a given experimental animal either did 

or did not have mRNA granules in their neuronal cytoplasms.  However, what did show 

a graded response was the frequency by which this binary relationship increased as a 

function of ischemia duration (Figure 8).  Meaning, a greater duration of ischemia, would 

yield a greater number of animals in that particular group with mRNA granules in their 

cytoplasms. 

5.2.1 Curve Fitting 

We fit the frequency of mRNA granule formation to both straight lines and the Hill 

equation, and found the Hill equation to be a better fit (Figure 9).  This confirms that 

mRNA granule formation by itself is not a graded function of ischemic duration and 
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further justifies interpreting the data in terms of a threshold duration of ischemia at 

which 50% of mRNA granules form in the experimental animals.  By thinking this way, 

we are comparing to the concept of lethal dose 50% (LD50) used to measure drug 

responses, where one seeks to find the concentration of a drug that kills 50% of animals 

exposed to that concentration.   

The Hill equation fitting had two free parameters: n, the Hill coefficient, and b, the 

50% threshold.  When we used the corrected CA3 data, both CA1 and CA3 gave the 

same value for b = 1.4 min of ischemia and the Gaussian curves for b lay directly on top 

of each other, although CA1 was wider, indicating larger variance among samples.  

However, the fit gave slightly different values for the Hill coefficient, n: 1.8 for CA1 and 

2.1 for CA3.  Although, these did not clear statistically, the Gaussian curves were not in 

perfect alignment, indicating that the difference might indicate something real. 

One avenue for future studies would be to measure these curves in a more 

precise manner and determine if the differences in n are real or just a statistical artifact.  

This could be accomplished by adding more rats to improve statistical power, and 

sampling along a tighter time course of ischemia duration, focusing on durations even 

shorter than 2 min; i.e. 30 sec, 60 sec, 90 sec, and 120 sec.  Furthermore, since the 

current studies were focused solely on the hippocampal CA1 and CA3 neurons, it would 

be worthwhile to make similar curves for other brain regions and investigate how these 

neurons respond to varying durations of ischemia.  Obtaining values for b and n would 

provide a more complete picture regarding the threshold of ischemia at which different 

regions form mRNA granules, if in the same manner at all.  

Although the difference in n in the present study was not statistically significant, 

there is good rationale for investigating it further.  The reason why CA1 behaves 



79 

 

differently from CA3 after 10 min ischemia, the former dying and the latter surviving, is 

currently unknown in spite of years of intense investigation (Lipton, 1999).  Dr. DeGracia 

has recently invented a mathematical model of cell injury (DeGracia et al., 2012) that 

makes the assumption that the molecular changes inside the injured cells form a 

network of bimolecular interactions.  Since the molecules form a network, the 

interactions connecting the elements hooked together in the network, in principle, can 

be more or less tightly coupled.  We can interpret the value of n in the Hill coefficient to 

reflect the coupling of the molecules in the network.  Given our result that the value for n 

was less in CA1 compared to CA3, suggests too that the coupling of interactions is less 

in CA1 than in CA3.  This would indicate that CA3 has a more coordinated response to 

the injury than does CA1.  While these ideas are speculative at the moment, they do 

provide significance to the present result and motivation to follow it through in future 

studies. 

5.2.2 Implications of a “Discreet” Response to mRNA Granule Formation 

The observation that mRNA granules formed in a binary fashion, e.g. that an 

animal either did or did not contain them in its neurons, even in the 2I group, merits 

further discussion.  One implication of this observation is that translation should be 

almost completely inhibited during the first 1 hr of reperfusion, even after only 2 min 

ischemia.  This suggests a future direction to measure in vivo translation at every 

duration of ischemia and see if there is a graded decrease in translation or not.  

However, this has already been done: older studies from the 1980s showed that 

translation is inhibited almost 100% after brief ischemia durations, but that the length of 

time it took for translation to recover increased with ischemia duration (Dienel et al., 

1980).  Therefore, it can be seen that our result is consistent with these older studies 



80 

 

and is further supporting evidence that mRNA granules are indicators of TA.    

In the present study, we confined the parameters of reperfusion to the 1 hr time 

point.  A possibility for future studies would be to investigate a time course of 

reperfusion, at each ischemia duration, and evaluate the time it takes for mRNA 

granules to decay from the cytoplasm.  We predict these would parallel protein 

synthesis rates.  The converse would be to look at super-lethal ischemia durations, for 

example, 20 or 30 min.  Such durations of ischemia do not cause DND but cause 

necrosis.  In these cases, we predict no mRNA granules would form because the insult 

is so great that the resulting damage would overwhelm the neurons to the point they 

would be incapable of mounting stress responses.  Confirmation of these predictions 

would support the notion that mRNA granules are an intrinsic phase in the neuronal 

stress response to ischemia. 

5.3 HuR/mRNA Granule Colocalization at 4 min Ischemia 

Perhaps the most significant finding presented in this thesis is the observation 

that at low durations of ischemia, HuR colocalized with the poly-A mRNA granules.  

Although colocalization occurred in the 2I group, we chose to systematically investigate 

the 4I time point since mRNA granules occurred more frequently in 4I samples than in 

2I samples. 

Jamison et al. (2008) showed a strict correlation with HuR colocalization to the 

mRNA granules, and translation of HSP70 protein.  It is well-established that CA1 

translates HSP70 at sublethal durations of ischemia (Kirino et al., 1991; Sharp et al., 

2004; Zhao et al., 2006).  Thus, the present findings coupled with those of HSP70 

translation reinforce the correlation between HuR colocalization in the mRNA granules 

and translation of HSP70. 
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HuR is an mRNA binding protein that binds mRNAs containing an adenine and 

uridine rich element (ARE) in the 3’ untranslated region (Keene, 2007).  The hsp70 

mRNA is an ARE-containing mRNA (Gallouzi et al., 2003).  Thus, the present data 

supports the protective role of the mRNA granules, and the idea that they may act as 

RNA operons to carry out mRNA regulation of stress response programs in the injured 

neurons. 

One important future direction revealed by the present studies is to perform 

systematic analysis of colocalization at multiple ischemia durations, as opposed to just 

the 4I and 10I groups studied here.  From that point, it would be possible to determine 

the duration of ischemia at which 50% of animals lack colocalization of HuR in the 

mRNA granules of CA1 neurons.  Given the relationship between colocalization and 

translation of HSP70, it would follow that at ischemic durations where there is no 

HuR/mRNA granule colocalization, the neurons would fail to translate heat shock 

proteins necessary for survival.  Thus, it is expected that this information would reveal 

the threshold duration of ischemia that is lethal to the CA1 neurons, and may ultimately 

provide an experimental system with which to study the underlying molecular events. 

Regarding the questions, “How is the colocalization of HuR and mRNA granules 

protective?”  And “Why is the lack of colocalization associated with a lethal condition?”, 

studies are currently underway in Dr. DeGracia’s laboratory by Jeff Szymanski to 

evaluate patterns of gene expression during reperfusion.  He has already shown that 

there is a predominance of mRNA transcripts that contain AREs upregulated during 

reperfusion.  This suggests regulation of ARE-containing mRNAs is important to post-

ischemic outcome.  In order to show a causal role of HuR in regulating stress gene 

transcription, one could do experiments where HuR is knocked out in vivo by siRNA, 



82 

 

and then measure cell survival outcome.  If the proposed role of HuR in stress gene 

regulation was in fact valid, it would be expected that knocking out HuR would increase 

lethality and prevent the translation of intrinsically protective mRNAs after brain I/R. 

5.4 Effect of IPC on mRNA Granules 

Given that HuR colocalization in mRNA granules is associated with a survival 

outcome, we were surprised to observe that IPC did not enhance this colocalization.  

The logic that led us to propose this experimental design was the following.  When 10 

min ischemia is induced without IPC, HuR and mRNA granules colocalize in CA3 

neurons that survive, but do not colocalize in CA1 neurons which inevitably die.  

Underlying our hypothesis was a model whereby IPC would prevent the intrinsic defect 

that CA1 suffers from following 10 min ischemia.  It is believed that this primary defect 

prevents the colocalization of HuR in the mRNA granules; a defect which ultimately 

prevents the translation of HSP70 or other stress proteins.  However, our result gives 

rise to an alternative interpretation.  It may be that the IPC stimulus is sufficient to 

initiate translation of stress genes during the intervening 48 hr period following the initial 

2 min ischemia.  Effectively, there will be a buildup of stress genes which can then 

“buffer” the CA1 neurons such that the subsequent 10 min insult no longer delivers the 

same degree of damage to the CA1 neuron.  If the 2nd, 10 min ischemia is less 

damaging, there is less need for the mRNA granule response, and hence would justify 

the graded, intermediate response that we observed in the IPC samples, where TA 

showed them to be intermediate between the NIC and 1hR staining patterns.  Taken 

together, the results suggest that the mRNA granule response in reperfused CA1 

neurons may not be such a crucial event following IPC like it is in cells that do not 

undergo IPC.   
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It is interesting to note however, based solely on the degree of poly-A granulation 

as measured by TA, there appears to be more mRNA granulation in the 4I sample, than 

in the IPC samples, the latter of which had experienced 10 min ischemia.  Again, this 

suggests even the 4 min ischemic insult is experienced as more damaging to the CA1 

neurons than a 10 min insult after prior IPC. 

A serious limitation that prevents us from over-interpreting this data is the fact 

that it is based solely upon microscope evidence. Although it is quantified by TA, there 

is no supporting biochemical data.  Thus, to seriously test the ideas entertained here 

would require biochemical measurements to show: (1) there is less cellular damage in 

CA1 following IPC plus 10 min ischemia.  This could be measured by assaying for lipid 

peroxidation products or protein aggregates, and (2) upregulation of stress gene 

proteins already exists at the time the 10 min insult is induced after IPC, which could be 

measured by Western blot or IH. 

Another important future direction to pursue would be to closely investigate the 

time course of mRNA granule formation during the 48 hr reperfusion period following 2 

min ischemia.  It is evident that some change is occurring during this critical period, and 

it ultimately affects how the cell responds to a subsequent 10 min insult.  If mRNA 

granules are shown to form early on within the 48 hr period, it may validate the reason 

why mRNA granule formation takes on an intermediate profile later when subjected to 

10I+1hR following IPC.  

The finding that HuR staining was not different between the 1hR and IPC groups, 

as compared to the NICs, is a significant observation that warrants further discussion.  

This is a complex issue because, even though the lack of HuR was shown to be 

constant across these experimental groups, it was not due to the same reasons.  In the 
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case of 1hR samples following a single 10 min ischemic insult, the reason why HuR 

cannot colocalize with mRNA granules is likely because the cells are so badly 

damaged, making colocalization impossible.  With no colocalization, there can be no 

translation of HSP70. This is supported by the observation that these neurons invariably 

die by 72 hrs reperfusion (Jamison et al., 2008).  

On the other hand, the CA1 neurons following IPC, may still possess the ability 

for HuR to colocalize, but perhaps it is simply not necessary because the cells, as 

discussed earlier, have already been buffered against the damage.  Therefore, in this 

case the HuR colocalization that is necessary to initiate the translation of stress genes 

is pointless.  As such, an essential future direction stemming from this observation 

would be to systematically investigate the colocalizaton of HuR with mRNA granules 

during multiple time points within the 48 hr reperfusion period after IPC.  Perhaps, if the 

cell mounts a stress response early on, i.e. following the first 2 min ischemic insult, it 

would follow that there be colocalization to some extent during this period.  As observed 

in the first experiment, HuR colocalization with mRNA is robust following 4I+1hR. 

However, extended time points of reperfusion were not tested beyond 1 hr.  Following 

that logic, it is important to look into the entire reperfusion window to get a better sense 

of exactly when the colocalization occurs and for how long.  Moreover, the fact the IPC 

did not enhance HuR/poly-A colocalization following 10I + 1hR suggests again that the 

colocalization simply was not needed, or it may have been enhanced at a time point 

during the 48 hr reperfusion and then dissipated before the subsequent 10I insult.  

From my results, it is not accurate to conclude that HuR colocalization behaves 

the same, meaning it does not occur, following 10I +1hR in animals with and without 

IPC.  In fact if this were the case, the IPC stimulus would not be expected to be 
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protective.  Yet, it is possible that the time point at which HuR colocalizes with mRNA 

granules is unknown because the reperfusion picture is incomplete.  Again, this 

reinforces the need to further study colocalization during the 48 hr period following the 

preconditioning stimulus.  

5.5 Effect of CHX on mRNA Granules 

Based on the TA quantification, CHX blunted mRNA granules in CA1 in the 1hR 

group, but did not have an effect in the IPC group.  Furthermore, the single bolus 

injection could not block the protective effect of IPC.  Similar to the discussion in the 

previous section, these results suggest that the role of mRNA granules is less important 

to neuronal outcome following IPC compared to when IPC is absent. 

The lab previously showed that CHX attenuated mRNA granules in CA3 following 

10 min ischemia and 1 hr reperfusion (Szymanski et al., 2012), and I showed here that 

the same result held for CA1 neurons after 10 min ischemia without IPC.  The response 

of both CA1 and CA3 to CHX supports the idea that polysome dissociation is upstream 

from mRNA granule formation since CHX “freezes” polysomes and prevents their 

dissociation.  A confirmatory study would be to measure polysome profiles from CA1 

and CA3 in the presence and absence of CHX after 10 min ischemia and 1 hr 

reperfusion, and show that there are more polysomes in CHX-administered animals. 

In contrast to the above results, following exposure to ischemic preconditioning, 

CHX appeared to have no effect at 1 hr reperfusion after 10 min ischemia.  The same 

logic used in the previous section may also be used to explain this result.  If the CA1 

neurons are “buffered” as a result of IPC, the subsequent 10 min ischemia should elicit 

a level of damage that is much less than that of the non-IPC group.  Thus, if the insult is 

less damaging, the formation of protective mRNA granules in neurons will also be less 
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compared to their counterparts exposed to the full amount of damage.  It should follow 

that in neurons primed with IPC, less mRNA granules would be needed by the cell, and 

so the effect of CHX at blunting their formation would be less noticeable. Such logic also 

explains why CHX had no bearing on the protective effect of IPC.  If mRNA granules 

play less of a role in survival outcome after IPC, inhibiting them would not necessarily 

affect the outcome either.  Another interpretation is that the stress responses have 

already been activated from the preceding 48 hr reperfusion following the initial 2 min 

insult. If the mRNA granules already formed and set the protective processes in motion, 

it would make sense that they do not need to form a second time (i.e. following the 2nd 

ischemic insult).  Thus, if they do not form during this period, it is completely irrelevant 

to administer CHX in the first place because there will be nothing to inhibit. 

Thus, in hindsight, which is always 20:20, our results suggest that using IPC with 

and without CHX turned out not to be an optimal system to study the role of mRNA 

granules in post-ischemic neuronal outcome.  Our results indicate that mRNA granules 

play a smaller role in determining outcome following the 2nd, usually lethal, ischemic 

episode after IPC.  Or more generally, our results suggest that the 10 min ischemic 

insult following IPC is experienced and reacted to in a much different fashion by the 

CA1 neuron, than it is in the absence of prior IPC.  However, this insight in itself is 

relatively novel, for it is commonly thought that the 10 min insult is the same in both 

instances.  The recent demonstration that the patterns of gene expression are different 

after the 10 min ischemia with and without IPC (Stenzel-Poore et al., 2004; Simon et al., 

2007) also points in the same direction of our result.  Thus, the work described here 

deepens the general insight about cell behavior following IPC. 

Furthermore, these results are important in that they help widen our perspective 
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and provide us with future directions to pursue.  Biochemical techniques, specifically 

polysome profiles, will be an important component in moving forward with this work.  It 

was observed that CHX had no effect on the formation of mRNA granules following IPC.  

This needs to be validated with the use of polysome profiles.  Given that the microscope 

data did not find a quantitative difference in the formation of mRNA granules with and 

without CHX after IPC, it should follow that, the amount of intact polysomes is also the 

same between groups with and without CHX in IPC animals.  

Finally, another future study following from this experiment would be to repeat 

the IPC protocol but administer the CHX prior to the 2 min ischemic insult.  While this 

experiment has been done before, and showed that CHX prior to IPC eliminates 

neuroprotection, the present studies offer a potential explanation for this finding.  The 

current data suggest that translation itself may not be shut off by CHX, because I/R will 

do that anyway, but instead, the formation of mRNA granules may be prevented. 

Without the presence of mRNA granules to house the normal mRNA transcripts during 

stress, the RNA operons will be unable to efficiently carry out their role in expressing the 

stress responses required for survival.  Taken together, it will be essential to further 

investigate how mRNA granules behave during the 48 hr reperfusion period.  Once that 

role can be established, we will be one step closer to uncovering the mechanism by 

which ischemic preconditioning confers neuroprotection.  

5.6 Summary and Conclusion 

Here I described the first studies of mRNA granules following sub-lethal ischemia 

durations and following IPC.  I discovered that mRNA granules behave differently 

following sub-lethal ischemia than they do following lethal ischemia preceded by IPC.  

After sublethal ischemia, CA1 behaves much like CA3 does after 10 min ischemia, by 
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showing colocalization of HuR with the mRNA granules.  This is a significant finding 

since the colocalization correlates to stress gene translation and a survival outcome.  

The neurons subject to IPC do not show the same behavior as non-IPC neurons, 

indicating that the prior preconditioning stimulus altered the CA1 neurons so that they 

do not experience or respond to the 10 min ischemic insult in the same way.  The 

results described here are important for opening up new avenues of investigation on the 

response of post-ischemic neurons and for deepening our insight about the complexity 

of this response.  Only by a thorough understanding of this complexity will we have a 

chance to develop clinically effective therapies to halt cardiac arrest and stroke induced 

brain damage, which to the present, have stubbornly resisted all such efforts. 
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Brain ischemia and reperfusion that occurs after stroke and cardiac arrest, 

causes translation arrest (TA) in neurons which is irreversible in neurons that will 

undergo delayed neuronal death.  TA is linked to mRNA granules, which are involved in 

ischemia-induced stress genes translation.  Ischemic preconditioning (IPC) is the most 

protective response known that protects neurons from a lethal ischemic insult.  In this 

thesis I studied the effects of (1) sublethal durations of ischemia, (2) IPC and (3) 

cycloheximide (CHX) on the formation of mRNA granules at 1 hour of reperfusion and 

the colocalization of HuR in the mRNA granules.  All durations tested, from 2 to 8 min 

ischemia caused formation of mRNA granules, and HuR colocalized in the mRNA 

granules at lower ischemia durations in CA1 neurons.  However, IPC appeared to 

attenuate the formation of mRNA granules at 1 hour reperfusion and did not enhance 

HuR colocalization.  CHX inhibited mRNA granules at 1 hour reperfusion, but had no 

effect in animals subjected to prior IPC.  These results show that sublethal durations of 

ischemia cause CA1 neurons to behave similarly to CA3 neurons.  However, the mRNA 

granule response appears to be less important after a 10 min ischemia in 

preconditioned animals.  These results show that the 10 min ischemia period is 
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perceived differently by the preconditioned CA1 neuron compared to a non-

preconditioned neuron.  Moreover, these results shed important light on the post-

ischemic neuronal response, and will help in the effort to develop effective therapies to 

protect against stroke and cardiac arrest brain damage. 
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