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Abstract

The intensive care unit (ICU) is one of the most technically advanced environments in healthcare, using a multitude of

medical devices for drug administration, mechanical ventilation and patient monitoring. However, these technologies

currently come with disadvantages, namely noise pollution, information overload and alarm fatigue—all caused by too

many alarms. Individual medical devices currently generate alarms independently, without any coordination or priori-

tisation with other devices, leading to a cacophony where important alarms can be lost amongst trivial ones, occasionally

with serious or even fatal consequences for patients. We have called this approach to the design of medical devices the

single-device paradigm, and believe it is obsolete in modern hospitals where patients are typically connected to several

devices simultaneously. Alarm rates of one alarm every four minutes for only the physiological monitors (as recorded in

the ICUs of two hospitals contributing to this paper) degrades the quality of the patient’s healing environment and

threatens patient safety by constantly distracting healthcare professionals. We outline a new approach to medical device

design involving the application of human factors principles which have been successful in eliminating alarm fatigue in

commercial aviation. Our approach comprises the networked-device paradigm, comprehensive alarms and humaniform

information displays. Instead of each medical device alarming separately at the patient’s bedside, our proposed approach

will integrate, prioritise and optimise alarms across all devices attached to each patient, display information more

intuitively and hence increase alarm quality while reducing the number of alarms by an order of magnitude below

current levels.
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Introduction

Clinical alarms, patient monitoring systems and other

medical devices are currently based on a single-device

paradigm, in the sense that each device is designed to

operate in isolation and to generate alarms indepen-

dently at the patient’s bedside. In the context of
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modern high technology healthcare, where patients are

typically connected to several devices, the single-device

paradigm is outdated and routinely results in informa-

tion overload, distraction for healthcare professionals
and unnecessary audiovisual disturbances for patients.

At the Academic Medical Centre Utrecht and Erasmus

Medical Centre, the authors are working with equip-

ment manufacturers in order to develop a practical

solution to this problem which will substantially
reduce the total number of alarms and integrate trivial

alarms into comprehensive, more informationally

meaningful ones—and this represents a paradigm

shift in the way alarms in healthcare are currently

organised. Taking the human factors principles which
have been successful in eliminating alarm fatigue in

commercial aviation, our approach involves applying

these principles to the problem of alarm fatigue in

healthcare—yielding the networked-device paradigm,

comprehensive alarms and humaniform display of
patient information. The networked-device paradigm

involves connecting all medical devices in a virtual net-

work for each patient which, in combination with a

comprehensive alarm approach, can then be used to

manage and prioritise all alarm signals issuing from
individual devices. This approach is very different

from the current single-device paradigm, where no

management or prioritisation of alarms is possible

between all the devices connected to each patient.

Achieving such a global solution involves overcoming
a number of technical hurdles, and we outline the

approach we are currently pursuing in collaboration

with equipment manufacturers. We believe this

approach to the design of clinical alarms and medical

devices will yield a system capable of safely catering for
the healthcare needs of patients in modern hospitals.

Our aim is first to implement such an approach in the

intensive care unit (ICU), but the networked-device par-

adigm and comprehensive alarms are also equally appli-

cable in operating theatres, hospital wards and any other
care environment where medical devices are used.

The problem of too many alarms

in the intensive care unit

Audiovisual disturbances due to alarms in the ICU are
well known, adversely affect the psychological well-

being of patients, and significantly increase the work-

load for healthcare providers.1–3 The signalling mode

of alarms is designed to attract the immediate attention

of care providers by interrupting their current activi-
ties, resulting in cognitive stress.4,5 However, studies

demonstrate that 90% of alarms require no action

from healthcare providers.6 Noise levels in hospital

ICUs have been recorded at a mean of 71.9 dBA,

being equivalent to a busy office environment or the
use of a vacuum cleaner in the room,7 with peak noise
levels of 96 dBA,8 which is the equivalent of a propeller
plane flyover at 150 metres. In addition, Darbyshire
et al. reported that a significant proportion of loud
sounds originate from equipment near patients’ ears.4

Technological advancements have transformed
patient care in ICUs over recent decades. These
advancements include complex physiological monitor-
ing, continuous intravenous infusions of medications
and invasive treatments such as mechanical ventilation,
renal replacement therapy and extracorporeal life sup-
port. All these sophisticated technologies require con-
tinuous human oversight to monitor a patient’s
condition, interpret the displayed information and
adjust treatment accordingly. Yet, alarm design has
changed little in this time, and safety and useability
testing are conducted only at the level of the individual
device, rather than considering safety and useability at
the system level, comprising the many devices which
are typically connected to each patient.9

Manufacturers of these technologies currently meet
their legal and regulatory requirements by displaying as
much of the information considered useful to health-
care providers as possible on each device, and creating
the option to alarm every single parameter.10–12

Unfortunately, such sophisticated devices typically
operate independently from each other. Without any
coordination or prioritisation between devices, they
collectively issue a stream of alerts and alarms that
results in a cacophony where important alarms can
be lost amongst trivial ones, as many alarms are
caused by artifacts or are non-actionable. This quickly
leads to alarm fatigue and the habit of switching off
alarms in an attempt to manage them.13,14 Sampling
the alarms from only the physiological monitors in
the adult ICUs at the University Medical Centre
Utrecht and Erasmus Medical Centre resulted in the
recording of between 100 and 120 alarms per nurse
per eight-hour shift—or an average of one alarm
every four minutes. Adding the additional alarms of
the ventilator, infusion pumps, renal replacement ther-
apy or extracorporeal life-support devices would sub-
stantially increase this total. A recent study of this
problem reported from a single hospital in the USA,
with 77 intensive care beds, recorded the occurrence of
an astonishing 2,558,760 unique physiological alarms
during intensive care in a single month.15 Both the
Joint Commission and the Emergency Care Research
Institute (ECRI) have repeatedly identified alarm
safety issues, including alarm fatigue, as patient safety
hazards, which are known to be regularly associated
with patient deaths. Between 2005 and 2010, 566
alarm-related patient deaths were reported to the US
Food and Drug Administration.16–18
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Human factors design and the aviation industry

Alarm fatigue is a form of information overload, which
is a well-studied topic in aviation.19,20 This problem has
been dealt with in the aviation industry through many
iterations of system redesign over the years in the pur-
suit of safety and reliability. At the beginning of the
20th century, the many sensors, clocks and displays in
large aircraft required multiple personnel (pilots, a nav-
igator and a flight engineer) to monitor and operate
aircraft systems. In contrast, the cockpits of modern
aircraft are now sufficiently automated and the infor-
mation is structured in such a way that the cognitive
load can be handled by the pilots alone without a flight
engineer or navigator on the aeroplane.21,22 In modern
aviation, the alarm fatigue problem is carefully man-
aged by engineers and pilots working cooperatively to
agree upon exactly what needs to be alerted to the pilot
from all aircraft systems and what does not. Agreed
alarms are then placed in a hierarchy, with many
events being reported only as ‘cautions’ or ‘advisories’
on a screen, but without any auditory alert. This allows
pilots to deal with the fundamental needs of flying the
plane, rather than being continuously distracted by
alarms. Crews are typically able to manage one issue
at a time—the one with the currently highest priority—
and determine their mitigation strategy. Even an event
as apparently serious as an engine failure in a modern
commercial multi-engine aircraft does not result in a
top-level alarm with an auditory alert, but only a cau-
tion. This is in stark contrast to the multitude of trivial
alarms that constantly sound in the ICU.10

The healthcare literature contains ongoing efforts to
improve the quality of clinical alarms and how they are
presented. However, the great majority of these efforts
remain consistent with the single-device paradigm, as
they typically involve signal and algorithm optimisa-
tion within individual devices or for specific sets of
parameters.23,24 While improved specificity and artifact
reduction in a number of areas have been achieved with
these approaches, they offer little ability to manage or
prioritise alarms between devices for all devices
attached to a patient.24–26 By ignoring the information
from other devices and systems, these approaches can
only attempt to perfect the nature and presentation of
alarms from within the single device, rather than
understanding the alarm within the wider clinical con-
text associated with a particular patient. This implies a
false dichotomy in alarm processing: an alarm is either
wrong (no priority) or right (highest priority), rather
than considering the alarm as information with a par-
ticular priority relative to many other alarms.
Nonetheless, such approaches are important steps to
achieve our shared goal of higher-quality alarms and
should be considered, but we believe that the total

number of auditory alarms in the ICU must be reduced

by at least one order of magnitude from current levels,

and this is not possible under the single-device para-

digm. The networked-device paradigm, by contrast,
considers alarm design from a systems perspective,

which looks beyond individual devices. The same

alarm signals can be issued by individual medical devi-

ces, but rather than alarming at the bedside, alarm

signals will be passed to the network, which will then
manage and prioritise alarms across the entire network,

thus having the ability to reduce spurious audible

alarms significantly.9,27,28 Many medical devices

already have Wi-Fi capability and some capacity for

sharing information, and industry frameworks for inte-
grating medical devices have been developed.29,30 Even

without hardware changes, many of these devices are

capable of being networked and integrated further,

only requiring relatively straightforward software

changes. As the networked-device paradigm includes
devices from various manufacturers, international

communication standards and protocols are necessary

to ensure a safe and reliable network.31 Hence, we are

working with equipment manufacturers to align com-

munication protocols and make use of existing interop-
erability standards.32

Fundamental needs: Maintaining

situational awareness

However, creating virtual networks of devices is not

enough—an effective strategy for the management

and prioritisation of alarm data is critical within the

networked-device paradigm—since if done poorly, a

network of devices could lead to just as many if not

more alarms than the conventional approach.33 In
applying a similar design strategy as used in the avia-

tion industry to manage alarms, we have to consider

what information is necessary to understand what is

happening to our patients so that we can keep them

safe and guide them towards recovery. However, avia-
tion is a different industry from healthcare. Pilots have

almost full control over a single airplane from within

the cockpit, whereas ICU work processes are more

fragmented between devices, locations and different

team members. Although the designed solution in avi-
ation cannot be directly adopted by the ICU, the

underlying design principles can be. In other words,

we need to identify the fundamental needs to maintain

situational awareness in healthcare providers during

patient care. An overload of information will result in
a loss of situational awareness. So, we need to prioritise

the available information and then restrict it to an

amount that can be dealt with by the healthcare pro-

vider. All other information should be available only
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on demand or via notifications on a screen without

auditory alerts. For example, seeing the multiple elec-

trocardiograph (ECG) lead traces might be a high pri-

ority in a patient with ischaemic heart disease.

However, for someone with a respiratory problem,

the second ECG lead may be of less importance to

maintain situational awareness. Similarly, a septic

patient may initially suffer from severe haemodynamic

instability, whereas that same patient may be much

more stable after several days. We thus need to

design a system-wide solution which allows for deci-

sions to be made about what information has what

priority in which situation.

Hide secondary information: Automate

monitoring and alarming

Information can be hidden, or reported by silent noti-

fications, if ICU nurses and physicians know that it is

safe to do so, creating a healing and quiet patient envi-

ronment. A computer system may provide such safety

when it continuously monitors clinical information,

and produces an auditory alarm in a timely way only

when patients cross a threshold and deteriorate. The

monitored data can be hidden until the threshold is

crossed because the healthcare providers can consider

it to be safe by default. For example, when lung-

protective tidal volumes are achieved with acceptable

ventilatory pressures, CO2 levels and SpO2 levels, there

may be no need to display this information. However,

we need to consider the safety at a system level rather

than at the level of individual devices. Current solu-

tions use simple alarm thresholds within individual

devices; a parameter that goes out of bounds on each

device will trigger an alarm to which a healthcare pro-

vider needs to respond. This results in most alarms in

an ICU being either false or non-actionable, thus great-

ly increasing the number of alarms and alarm

fatigue.34,35 Widening alarm thresholds—or even filter-

ing particular alarms completely—may at first appear

to be an obvious approach to reduce the number of

false positive alarms. Unfortunately, a system with

wider alarm thresholds is likely to be less safe due to

the system being less sensitive to changes in the

patient’s condition. ICU nurses and physicians may

thus feel less comfortable with information not being

in direct sight if alarm thresholds are widened without

any other safeguards being in place.35

An alternative approach would be to find the optimal

set of alarm thresholds for all individual parameters of

ICU devices. This may be reasonably straightforward in

healthy patients, as the normal range of their physiolog-

ical parameters will be far from that of a diseased

patient, thus allowing differentiation of normal from

diseased states. This approach is analogous to the set-

ting of thresholds in aviation; the flight crew starts out

with a well maintained or ‘healthy’ aircraft for which

clear alarm thresholds can reasonably be inferred.

However, the situation in healthcare is much more com-

plex, and a more subtle variation on the aviation alarm-

setting approachmust be taken. Critically ill patients are

continuously in a diseased state which changes in its

Figure 1. The green line indicates the mean blood pressure of a theoretical healthy patient, who requires only a single threshold set
over the full time span (yellow dashed line indicates moderate severity threshold, and the red dashed line the severe alarm
threshold for each trace). The blue trace indicates the blood pressure of a theoretical diseased patient with multiple alarm thresholds
set over time.
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severity over time. The physiological values that can be
considered safe will greatly depend on the diagnosis, the
clinical condition of the patient and his or her comor-
bidities.26,36,37 The safety limits of an automated patient
monitoring system must therefore be dynamic, not
static, and need to adapt or be able to be adjusted to
an alternative set of thresholds to suit the clinical con-
dition of the patient (Figure 1) in collaboration with
healthcare providers.

The complementarity of humans
and machines

Healthcare providers understand the context of clinical
events very well but, like all human beings, have a lim-
ited attention span and workload capacity. Alarm sys-
tems can monitor many variables closely and
continuously and without fatigue but have no under-
standing of the context of events. The solution is to

Figure 2. Mock-up of handheld app which could help the healthcare provider to focus attention on the current points at risk using a
humaniform display.
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integrate and prioritise the information from the vari-

ous devices in order to reduce the total number of

alarms and have only the most relevant alarms sound

at any given time.

Comprehensive information

If we integrate the information from all devices in the

ICU, we could design systems that display the informa-

tion to healthcare providers in a much more efficient and

intuitive way, not only by hiding parameters with a lower

priority, but also by combining parameters and integrat-

ing these data into more comprehensive and meaningful

sets of information. For example, all respiratory and ven-

tilatory parameters—including laboratory values, radiol-

ogy reports and even breath sounds—could be integrated

into a summary status of the clinical condition of the

lungs (see an exemplar tablet interface with body over-

view or humaniform display; Figure 2). In a recent study,

physicians and nurse anaesthetists recalled significantly

more patient vital signs and reported a reduction inwork-

load when parameters were presented in a humaniform

visual representation compared with conventional dis-

play methods.38

Comprehensive alarms

The alarms in current ICU devices are generated by

each device when their values pass either the moderate

threshold (yellow alarm) or the severe threshold (red

alarm; Figure 1). The message of the alarm seems

simple, for example ‘red alarm: blood pressure low’.

However, the message does not necessarily reflect the

impact on the patient: a red alarm for low blood pres-

sure may not reflect a similar impact as a red alarm for

the detection of asystole on the ECG. Alarm notifica-

tions need to be more comprehensive, better prioritised

and clinically informed in order to support the situa-

tional awareness and decision-making of healthcare

professionals. Other work has attempted to suppress

alarms and combine data streams but without engaging
with clinicians on how this should occur.39 Under the

networked-device paradigm, new smarter algorithms,

operating across individual devices at the system

level, are needed to achieve this. These smarter algo-

rithms are currently being created through consultation

with clinical experts.40 However, in the future, such

algorithms could also include approaches using

machine learning and artificial intelligence techniques,

making use of real patient data in offline big datasets

and then applied to live patient devices, but only after

appropriate safety testing.20,25,27

When all available parameters from all available

devices are combined into a system of comprehensive

alarms, these can be better prioritised within the work
process of the healthcare provider, resulting in substan-

tially fewer but more meaningful alarms (see Figures 2

and 3). Appropriate assignment of priority will result in

many alarms being reduced to simple notifications

without auditory alerts (theoretical case 3; Figure 3),

Figure 3. Three theoretical patient case timelines visualising the notifications that are being sent to the healthcare provider in both
the current alarm system and in a future comprehensive alarm system. Case 1: An accidental disconnection from the ventilator (a
potentially life-threatening event). Within the current system, the patient monitor and ventilator would generate a series of alarms
that are not more informative than a single disconnection alarm. A comprehensive alarm system would generate only a single
disconnection alarm unless the clinical condition deteriorates. Case 2: A blocked intravenous line due to a distal occlusion. As multiple
inotropes are connected to the same line, the inotrope infusion will be reduced. Rather than alarming for each individual drug, the
comprehensive system will inform the nurse that the inotropes line is blocked and will escalate that alarm to a higher priority when
the patient is affected (a drop in blood pressure). Case 3: In the current system, all infusion pump alarms are communicated with
medium to high priority. A comprehensive system would understand that the end of the infusion of paracetamol is not an alarm and
should not have priority in demanding attention from the nurse with an auditory alarm.
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or to a single auditory alarm instead of many (theoret-
ical case 2; Figure 3). The system will be able to be
more informative in its messages and may even be
able to suggest an appropriate course of action to the
healthcare professional in various circumstances, since
integrated patient data yield a more reliable overall
picture of the state of the patient’s health (Figure 2).
A system that accurately prioritises information across
the network of devices attached to the patient is a
system that can not only send notifications at appro-
priate times, but also knows when to withhold unnec-
essary information and be silent. Such an approach for
the settings of the priority for the alarms and alerts of
individual patients can also be applied across a net-
work of many patients while still considering the clin-
ical specifics of each. A system of comprehensive
alarms could also be able to set alarm thresholds
dynamically (Figure 1).37 Furthermore, notifications
should be sent directly to the correct provider.
Sounding an alarm in a patient room when no health-
care professional is present is an unnecessary distur-
bance for patients and their families—and device
standards already exist which allow alarm information
to be forwarded elsewhere in this way.41

Safe systems not only safe devices

A systems approach to the design of ICU safety
requires that we view the various medical devices as a
network of sensors or an Internet of Things, instead of
an arbitrary collection of isolated devices.9,26,33,42,43

The current legal standards in Europe—the Medical
Device Directive and the Medical Device
Regulations—remain based on the old paradigm of
single-device safety.11,44 For example, these standards
dictate that an infusion pump alarm should be gener-
ated by the device at the bedside of the patient and
needs to be at least 45 dBA for one minute.45 This
technically prohibits a systems approach to patient
safety and alarm design, as it views the medical devices
as independent alarm generators rather than sensors
connected to a network. By contrast, under the
networked-device paradigm, alarms should be generat-
ed only after data integration from all devices and if the
event is warranted as sufficiently high priority, and this
will require a chain of devices and steps (Figure 4). This
requires the manufacturers of the different medical
devices to cooperate and accept that there has to be
bidirectional communication between the devices to
create distributed alarm systems and the possibility of
remote control of devices (consistent with existing ini-
tiatives such as Service Oriented Connectivity and
Integrating the Healthcare Enterprise).46,47 Current
regulations lag behind these more progressive connec-
tivity initiatives and so represent a challenge for device

manufacturers. However, hospital purchasers who
require such safe system features to be in their devices
will apply market pressure to manufacturers to make
such changes. The alarm features of individual devices
could be kept once they have been networked. In the
short term, this could be done for regulatory expedien-
cy, but in the longer term, this could act as a fail-safe in
the unlikely case of network failure, or for the less
likely situation where the device is indeed used in iso-
lation. In the longer term, regulatory changes will occur

Figure 4. Patient-centred care must be organised around the
patient. Safety is critically important and under the networked-
device paradigm, the whole chain of devices acts together
like an Internet of Things. EMR: electronic medical record;
PDMS: patient data management system; UI: user interface.
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to reflect better the needs of patients and clinicians in
modern hospitals and of medical device design. Full
compatibility between medical devices is technically
possible, even when devices are made by different man-
ufacturers, as is the case in aviation where components
of an aircraft cockpit can be made by various manu-
facturers to exacting specifications in order to maintain
compatibility.

Cooperative redesign

Ultimately, a departure from the single-device para-
digm implies that all involved parties—patients, health-
care professionals, device manufacturers, vendors and
the regulatory bodies—need to work together to design
safe patient alarms at a systems level. This requires
cooperation similar to that which occurred between
pilots and engineers during the design process that
led to the creation of the modern commercial aircraft
cockpit. Such a cooperative process in healthcare will
ultimately require a shift in the roles and responsibili-
ties of many individual parties.

The second and more major shift of the networked-
device paradigm involves changes in the assignment of the
responsibility for safety. The current process of safe design
and legislation predominately places the technical respon-
sibility with the medical device manufacturers. The
responsibility of using such medical devices to deliver
safe healthcare lies with the healthcare professionals.
However, in order to design safe alarms at a systems
level, technical and medical safety become much more
intertwined. In our aviation example, the redesign of the
cockpit has been accompanied by operational safety ini-
tiatives, such as briefings, checklists and crew resource
management.19,48–50 Also, the medical expert needs to
take a greater responsibility for understanding the
output of the entire chain of integrated devices. This is
only a small extension of what clinicians already do in
terms of accounting for the medical context and consid-
ering possible artifacts when several medical devices are in
use.

Conclusion

Our current clinical alarm and patient monitoring sys-
tems are outdated, and routinely result in information
overload for healthcare professionals and unnecessary
audiovisual disturbances for patients. A paradigm shift
in the way medical device alarms are designed is over-
due, and healthcare professionals, device manufac-
turers, vendors and policymakers need to appreciate
that our current patient data infrastructure is still
based on a single-device safety paradigm which is
now obsolete in modern hospitals. As healthcare pro-
fessionals, we need to work together with patient

organisations, suppliers of medical devices and infor-

mation technology infrastructure staff. This process

has begun at the Academic Medical Centre Utrecht

and Erasmus Medical Centre. We believe the future

of all clinical alarms, patient monitoring systems and

medical devices lies in the networked-device paradigm,

comprising comprehensive alarm notification systems

and the integration, prioritisation and optimisation of

patient information across multiple devices. Such an

approach has substantial potential to improve the qual-

ity and safety of patient care and the working condi-

tions of healthcare personnel.
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