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a b s t r a c t 

Cross-efficiency measurement is an extension of Data Envelopment Analysis that allows 

for tie-breaking ranking of the Decision Making Units (DMUs) using all the peer evalua- 

tions. In this article we examine the theory of cross-efficiency measurement by compar- 

ing a selection of methods popular in the literature. These methods are applied to per- 

formance measurement of European warehouses. We develop a cross-efficiency method 

based on a rank-order DEA model to accommodate the ordinal nature of some key vari- 

ables characterizing warehouse performance. This is one of the first comparisons of meth- 

ods on a real-life dataset and the first time that a model allowing for qualitative variables 

is included in such a comparison. Our results show that the choice of model matters, as 

one obtains statistically different rankings from each one of them. This holds in particular 

for the multiplicative and game-theoretic methods whose results diverge from the classic 

method. From a managerial perspective, focused on the applicability of the methods, we 

evaluate them through a multidimensional metric which considers their capability to rank 

DMUs, their ease of implementation, and their robustness to sensitivity analyses. We con- 

clude that standard weight-restriction methods, as initiated by Sexton et al. [48] , perform 

as well as recently introduced, more sophisticated alternatives. 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
1. Introduction 

Although Data Envelopment Analysis (DEA) is a powerful method to study productive performance, it has several short- 

comings when it comes to decision making. One of the most important weaknesses from a managerial perspective is that 

the DEA method returns, as virtual benchmarks, processes that employ unrealistic quantities of inputs and outputs. This 

translates into rankings of performance that are meaningless if these underlying benchmarks were considered as valid refer- 

ences without further inspection. This is because, in its multiplier formulation, DEA searches for the most favorable weights 

(shadow prices) when evaluating a production unit, thereby frequently assigning zero values to certain variables when con- 

structing the ‘virtual’ aggregate output to input productivity ratio – each constructed as a linear combination of observed 
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magnitudes. 1 While the original weight flexibility behind this ‘self-appraisal’ is one of the most attractive aspects of the 

method, it often leads to unreasonable results, namely if the optimal weights are not consistent with prior knowledge of 

the production process, or if some inputs or outputs are ignored in the analysis. 

A second consequence of this weight flexibility is that, when searching for the optimal weights, a large number of pro-

duction units are deemed efficient by default. Eventually, any unit using the smallest quantity of any input, or producing the

largest quantity of any output is categorized as efficient, regardless of the use it makes of other inputs, and the level of pro-

duction of other outputs (which are assigned zero weights). A similar reasoning goes for inefficient units whose efficiency 

is overstated because improbable weights are taken into account. This implies that the obtained ranking of production units 

misrepresents best-practice performance, as units whose ‘virtual’ production processes are either implausible from a man- 

agerial perspective, or infeasible from an engineering perspective (e.g., warehouse service production without floor space) 

may be signaled as efficient. Ultimately, the flexibility of DEA may turn against the method itself by hampering its discrim-

inatory power, a problem that is aggravated when the degrees of freedom are limited, as a result of a small number of

observations relative to the number of inputs and outputs. This makes it difficult to draw conclusions on best practices. 

To remedy these shortcomings, several proposals have been developed to improve the discriminatory power of DEA. 

[2] provided a comprehensive review of the literature. Existing methods were classified in ten different categories. The 

first category corresponds to the cross-efficiency methods that are the subject of our study. The second category concerns 

the super-efficiency approach initiated by [4] . In this method, each efficient DMU in turn is removed from the reference set,

thereby obtaining an efficiency score greater than one, which allows to break the tie among the scores. This method will also

be used in our empirical section. The third category ranks DMUs according to their relative importance to inefficient units; 

for instance, how often they serve as reference peers for inefficient units (see [51] ). The fourth category relies on statistical

techniques (such as canonical correlation analysis) directly applied after running a DEA model; see [33] . The fifth category 

focuses on ranking inefficient DMUs rather than efficient ones. This is accomplished in terms of a so-called ‘measure of 

efficiency dominance’, based on the magnitudes of the slacks obtained from an additive model, as proposed by Bardhan 

et al. [13] . The sixth category resorts to multilevel DEA within multicriteria decision making methods, complemented with 

analytic hierarchy processes, as in [34] . The seventh category brings inefficient frontiers into the analysis by solving ‘inverted’ 

DEA models, which measure inefficiency with respect to reference hyperplanes defined by the worst performing DMUs, 

[59] . Within the so-called TOPSIS methods, the eighth category considers virtual DMUs identifying the best (ideal) and 

worst (anti-ideal) performance. The ranking in this case takes into consideration both how close and how far the DMUs are

from these two benchmarks, respectively – see [12,17] . The ninth category contains methods where decision makers bring 

external judgments to the evaluation process in the form of weight restrictions. These weights, imposing bounds on the 

shadow prices of inputs and outputs, are included in the multiplier form of the DEA problem – for successive reviews see

[3,23,49] . The final category is based on fuzzy methods, implying that the input and output multipliers are considered as

fuzzy sets, as well as the final (aggregate) virtual input and output obtained in the standard DEA model, [6] . 

A drawback shared by most of these proposals is that the optimal weights, obtained by solving the DEA models, are

not unique. The existence of an infinite number of solutions besides the one obtained by the simplex method in a given

run creates uncertainty in the evaluation process, and may lead to conflicting prescriptions from a managerial perspective 

(e.g., in the form of multiple rates of substitution between inputs or transformation between outputs). Thus, it is relevant 

to have some criterion for selecting a specific set of weights among all optimal solutions. Ideally, such a criterion should

also solve the ranking arbitrariness and provide a meaningful multilateral comparison of efficiencies among the units. In 

addition, as concluded in our methodological section, this comparison should be consistent with index number theory from 

the perspective of productivity measurement. Ultimately, as the final objective of DEA is to compare performance among 

production units, the more bilateral evaluations are brought into the analysis, the more robust the rankings are to partial 

(mis)representations of the production technology, as well as to extreme or unobserved production units (such as the ideal 

and anti-ideal units). 

Cross-efficiency measurement is an approach based on multilateral comparison of efficiency, yielding a consistent ranking 

without truncated efficiency values, thereby improving discrimination, and based on a specific well-identified criterion with 

a meaningful productivity interpretation. Introduced by Sexton et al. [48] and popularized by Doyle and Green [26] , cross-

efficiency measurement chooses a specific set of weights, making use of a two-stage process. In the first ‘self-appraisal’ 

stage, for each production unit its standard efficiency score is computed. In the second stage, the weights are selected to

globally maximize or minimize the efficiency scores of all the competitors in the industry (the so-called benevolent and 

aggressive approach, respectively), while keeping the efficiency score of the evaluated unit unchanged. The basic idea of 

cross-efficiency measurement is to compare each unit with all its rivals, using all their weights rather than only its own

weights. Finally, the cross-efficiency score of the unit is calculated as the (geometric) mean of all its cross-efficiencies. 

Recent surveys of these methods are those by Cook and Seiford [19] , Cook and Zhu [22] , Zhu [60] . Liu et al. [41] identified

cross-efficiency measurement as one of the four research fronts in DEA. The present study contributes in several method- 

ological, computational, empirical, and managerial dimensions to theory and practice. From a methodological perspective we 

explore the relative merits of alternative cross-efficiency methods by focusing on three areas. 
1 Moreover, as remarked by [23] , zero optimal weights in the multiplier formulation correspond, by duality, to non-zero slacks in the primal envelopment 

form of the DEA model, and therefore the evaluated unit is assessed with respect to a benchmark that does not belong to the Pareto-efficient frontier. On 

this we refer the reader to [54] . 
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First, we compare the results obtained by five representative methods using real-life data. The first class of methods 

can be referred to as ‘weight selection models’ which includes the already mentioned classic approaches of [26,48] . The

benevolent and aggressive secondary goals have been modified by other authors, including the ‘multiplicative DEA approach’ 

by Charnes et al. [15,16] , Cook and Zhu [21] , which constitute the second class of models. In the last decades [39,56] re-

interpreted the second-stage solution from the perspective of non-cooperative and cooperative games, giving rise to the third 

class of ‘game-theoretic’ models. Wu et al. [57] extended this line of research by considering a bargaining game. Ramón et al.

[47] , Wang and Chin [52] determined the weights for each DMU without considering the impact on its rivals. The game-

theoretic cross-efficiency method was further extended and applied by Ma et al. [43] . From each of the above classes we

select one of the core, most representative models for implementation. 

Second, since in many applications some of the input or output variables are qualitative, we link the ordinal model 

introduced by Cook and Zhu [20] to the cross-efficiency measurement literature. Third, by revisiting the definition of cross- 

efficiency, we reinterpret it as a measure comparing the relative productivity of any two observations, and advocate the use 

of the geometric mean as aggregator function for the cross-efficiency scores. 

From a computational perspective , we notice that there does not exist a single set of functions implementing cross- 

efficiency models in a common environment. To fill this gap and provide researchers with a suitable toolbox, we have pro-

grammed the functions solving the various cross-efficiency models. The result is available as free software, under the GNU 

General Public License version 3, which can be downloaded from https://github.com/joselzofio/DEACrossEfficiencyMATLAB , 

with all the supplementary material needed to replicate the results. All models have been coded in MATLAB (release R2019a) 

and solved using the default settings of the ‘linprog’ and ‘fsolve‘ optimization functions. They can be run either in the benev-

olent or aggressive version, and with arithmetic or geometric means as aggregator of the cross-efficiency scores. 

To illustrate our comparison of cross-efficiency models from the empirical perspective , we used a new database, con- 

sisting of 102 warehouses operating in the Benelux area during the period 2012–2017. The data, along with accompa- 

nying information on variable codification and survey methods (questionnaire), are available for downloading at https: 

//doi.org/10.25397/eur.8279426 . It is well known that warehouses are undergoing profound changes from technological, op- 

erational, and organizational perspectives. Their success in the market depends on whether they are capable of sustaining 

high levels of absolute and relative productivity against competitors. Although the warehousing and storage industry in the 

EU accounted for 73 billion EUR in 2015 and the sector is growing faster than the EUs GDP ( [29] ), there appears to be a

remarkable research gap in analyzing overall efficiency. Thus, beyond providing an illustration to the theory, our numerical 

exercise is interesting as such. 

Finally, from a managerial perspective , we compare and evaluate the relative merits of the various methods on a number

of dimensions, to provide managerial insights and guidance when choosing among them. The main dimensions are: a) ability 

to discriminate among warehouses; b) ability to provide consistent and credible rankings for managerial decision making; 

that is, proximity across methods in terms of statistical differences across the alternative rankings; c) extendability to real- 

life in-house business applications, implementation ease, and computational requirements; and d) sensitivity of the rankings 

to scale changes, erroneous entries, and removal of efficient peers from the reference frontier. 

The paper unfolds as follows. Section 2 introduces the general idea of cross-efficiency measurement. Section 3 considers 

the case of qualitative variables. Section 4 surveys the various kinds of secondary goals. Section 5 is concerned with the

empirical implementation and comparison of the outcomes of the various cross-efficiency methods. Section 6 contains the 

managerial insights. Section 7 summarizes and concludes. An on-line Appendix provides auxiliary materials. 

2. The basic idea of cross-efficiency measurement 

Given input-output data for a set of decision-making units (DMUs, also called firms or production units), a linear DEA 

program generates for each DMU an efficiency score plus unit-specific weights or shadow prices for all the inputs and 

outputs. These weights can be used to fill a square matrix of so-called cross-efficiency values, where each unit is appraised

by each unit. Averaging those values row- or column-wise delivers aggregate measures for comparing the efficiencies of the 

production units. However, as is well known, the weights may not be unique, and therefore much of the discussion in the

literature is about how appropriate weights can be selected. 

Let there be N inputs, the (positive) quantities of which are measured by a vector x ≡ (x 1 , . . . , x N ) , and M outputs, the

(non-negative) quantities of which are measured by a vector y ≡ (y 1 , . . . , y M 

) . Given K observed production units, we have

a set of data { (x k , y k ) , k = 1 , . . . , K} . 
Using DEA, for each firm k = 1 , . . . , K its radial input technical efficiency (ITE), assuming constant returns to scale (CRS),

is conventionally calculated by the so-called CCR model 2 

IT E ccr (x k , y k ) = min 

δ,λ
{ δ | 

K ∑ 

k ′ =1 

λk ′ x 
k ′ ≤ δx k , y k ≤

K ∑ 

k ′ =1 

λk ′ y 
k ′ , λk ′ ≥ 0 , k ′ = 1 , . . . , K} . (1)
2 Named after [14] . The restriction to the input orientation and CRS is for expository convenience. Under variable returns to scale (VRS), input-orientated 

cross-efficiency scores may become negative; see [40] for a discussion of this problem. Recently, however, [8,9] have overcome this limitation by proposing 

a cross-efficiency method in which the input and output multipliers (u k , v k ) of model (2) below are interpreted as shadow prices of an economic cross- 

efficiency model à la [31] . This proposal prevents the occurrence of negative cross-efficiency scores under VRS, while offering a ranking of DMUs grounded 

in economic theory. 
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As is well known, IT E ccr (x k , y k ) , with values between 0 and 1, is an inverse measure of the distance of firm k to the

frontier ( = the envelopment of the dataset). Such technical efficiencies are therefore used to compare firms. Put otherwise, 

firm k is said to be more efficient than firm � if IT E ccr (x k , y k ) ≥ IT E ccr (x � , y � ) . 

Is the use of IT E ccr (. ) for comparing efficiencies warranted? To judge this we look at the dual LP problem 

3 

IT E ccr (x k , y k ) = max u, v { u · y k | u · y k 
′ − v · x k 

′ ≤ 0 , v · x k = 1 , u ≥ 0 , v ≥ ε, k ′ = 1 , . . . , K} 
= max u, v 

{ 

u ·y k 
v ·x k | u ·y k ′ 

v ·x k ′ ≤ 1 , u ≥ 0 , v ≥ ε, k ′ = 1 , . . . , K 

} 

= 

u k ·y k 
v k ·x k , 

(2) 

where ε represents an infinitesimal lower bound for the multipliers, and (u k , v k ) is a solution of the maximization problem.

It appears that 4 

IT E (x k , y k ) ≥ IT E (x � , y � ) ⇔ 

u 

k · y k 

v k · x k 
≥ u 

� · y � 

v � · x � 
, (3) 

that is, the comparison of the two firms involves not only their input and output quantities, as one would expect, but also

two different vectors of weights, namely (u k , v k ) and (u � , v � ) . These shadow prices are, in general, not unique. However, for

the time being let us abstract from the nonuniqueness. It would make more sense to base the efficiency comparison of the

two firms on the comparison of either 

u 

k · y k 

v k · x k 
and 

u 

k · y � 

v k · x � 
, or 

u 

� · y k 

v � · x k 
and 

u 

� · y � 

v � · x � 
, 

depending on whether the weights of k or � are used. This constitutes the idea behind the concept of cross-efficiency

measurement. 

Thus, the cross input technical efficiency (CITE) (score) of firm � with respect to firm k is defined as 5 

CIT E (x � , y � | k ) ≡ u 

k · y � 

v k · x � 
(�, k = 1 , . . . , K) , (4) 

where (u k , v k ) satisfies Eq. (2) . Notice that CIT E (x � , y � | � ) = IT E (x � , y � ) (� = 1 , . . . , K) . This could be called the self-appraisal

score of firm � . The (arithmetic) mean appraisal score of firm � by all its colleagues is given by 
∑ K 

k =1 ,k � = � CIT E (x � , y � | k ) / (K −
1) (� = 1 , . . . , K) . The (arithmetic) mean overall appraisal score of firm �, called the cross input technical efficiency (CITE)

(score) of firm �, is then given by 

K ∑ 

k =1 

CIT E (x � , y � | k ) /K (� = 1 , . . . , K) , (5) 

which is a weighted mean of self-appraisal and colleague-appraisal scores, with weights 1 /K and (K − 1) /K, respectively. 6 

Firm � is now said to be more efficient than firm � ′ if 
∑ K 

k =1 CIT E (x � , y � | k ) /K ≥ ∑ K 
k =1 CIT E (x � 

′ 
, y � 

′ | k ) /K, or ∑ K 
k =1 CIT E (x � , y � | k ) ∑ K 

k =1 CIT E (x � ′ , y � ′ | k ) ≥ 1 . 

[38] suggest to adjust the CITE scores such that the means of the appraisals by each DMU are the same; that is 

K ∑ 

� =1 

CIT E (x � , y � | k ) /K = 

K ∑ 

� =1 

CIT E (x � , y � | k ′ ) /K (k, k ′ = 1 , . . . , K) . 

Such an adjustment means that the unweighted mean in expression (5) is replaced by a weighted mean.Li et al. [38] in-

terpret those weights as representing some degree of “generosity” from the side of the appraising DMUs. However, this 

interpretation would only be warranted if “appraisal” is a process in which a DMU is actively involved. As long as there is

no explicit relation between the characteristics of a DMU and the shadow prices generated by the LP problem (2) , there is

no reason to insert some weighting in the definition of the overall appraisal score of a firm. 

The interpretation of the measure defined by expression (5) in the single-input (or single-output) case was pointed out by 

Anderson et al. [5] . When N = 1 the vectors x and v become scalars and their inner product reduces to simple multiplication.

Then it appears that 

1 

K 

K ∑ 

k =1 

CIT E (x � , y � | k ) = 

1 

x � 

( 

1 

K 

K ∑ 

k =1 

u 

k 

v k 

) 

· y � (� = 1 , . . . , K) ; (6) 
3 Notation: u and v are vectors of dimension M and N, respectively, and the dot denotes the inner product. From the immediate context it will be clear 

whether the symbols 0 and 1 designate scalars or vectors of 0s and 1s. 
4 From here the subscript “ccr” will be deleted as IT E ccr (. ) may be replaced by IT E rank (. ) as defined below by expression (11) . 
5 The notation is chosen so that the functional structure becomes explicit. 
6 [42] show remarkable differences between self-appraisal and mean colleague-appraisal scores. 
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that is, the outputs of each firm are weighted by the same vector of mean (relative) shadow prices, and then the aggregate

output quantity is divided by the scalar input quantity. This is a measure of productivity. 

In the general case, however, the interpretation is not so straightforward. As mentioned, the inverse of CIT E (x � , y � | � )
measures the distance of firm � to the technological frontier as given by the envelopment of the data. Such a nice interpre-

tation is lacking for CIT E (x � , y � | k ) for k � = �, see [32,45] . Thus, what precisely are we averaging in expression (5) , and is the

arithmetic mean the only option? 

All the appraisers are using different, incommensurable, measuring rods. In expression (5) the arithmetic mean serves 

as merging function. One could ask whether this is the “best” one. Let F (a 1 , . . . , a K ) be a (positive, real-valued) merging

function; that is, a function that combines all the appraisal scores into a summary score. The following properties seem 

required: 

• Agreement: F (a, . . . , a ) = a . 
• Symmetry: F (a 1 , . . . , a K ) = F (a π(1) , . . . , a π(K) ) for any permutation π of { 1 , . . . , K} . 

We further notice that the scores of each appraiser k = 1 , . . . , K constitute a (different) ratio scale, because each ratio

IT E (x � , y � | k ) / CIT E (x � 
′ 
, y � 

′ | k ) for �, � ′ = 1 , . . . , K admits a meaningful interpretation, namely as a productivity index ( = ratio

of output quantity index over input quantity index) of firm � relative to � ′ . Then [1] (Corollary 3.1) show that each ratio of

merged scores 

F ( CIT E (x � , y � | 1) , . . . , CIT E (x � , y � | K)) 

F ( CIT E (x � ′ , y � ′ | 1) , . . . , CIT E (x � ′ , y � ′ | K)) 
(�, � ′ = 1 , . . . , K) 

is meaningful if and only if F (. ) is the geometric mean. Thus, instead of expression (5) one should use 

K ∏ 

k =1 

( CIT E (x � , y � | k )) 1 /K . (7) 

Then firm � is more efficient than firm � ′ if 
∏ K 

k =1 ( CIT E (x � , y � | k )) 1 /K ≥ ∏ K 
k =1 ( CIT E (x � 

′ 
, y � 

′ | k )) 1 /K , or 

K ∏ 

k =1 

(
CIT E (x � , y � | k ) 
CIT E (x � ′ , y � ′ | k ) 

)
1 /K ≥ 1 . 

At the left-hand side of this inequality we see an unweighted geometric mean of (Lowe-type) productivity indices. 7 

It is interesting to compare this to what happens when the arithmetic mean (5) is used. The ratio of arithmetic mean

overall scores can be expressed in two ways, as ∑ K 
k =1 CIT E 

(
x � , y � | k )∑ K 

k =1 CIT E 
(
x � ’ , y � ’ | k ) = 

K ∑ 

k =1 

( 

CIT E 
(
x � 

’ 
, y � 

’ | k )∑ K 
k =1 CIT E 

(
x � ’ , y � ’ | k ) CIT E 

(
x � , y � | k )

CIT E 
(
x � ’ , y � ’ | k )

) 

= 

⎛ 

⎝ 

K ∑ 

k =1 

CIT E 
(
x � , y � | k )∑ K 

k =1 CIT E ( x � , y � | k ) 

( 

CIT E 
(
x � , y � | k )

CIT E 
(
x � ’ , y � ’ | k )

) −1 
⎞ 

⎠ 

−1 

, 

thus, as a weighted arithmetic or harmonic mean of (Lowe-type) productivity indices. Now we know that a (weighted) 

arithmetic mean is greater than or equal to a (weighted) geometric mean, and a (weighted) harmonic mean is less than

or equal to a (weighted) geometric mean, but the relation between weighted and unweighted means is uncertain, as being 

dependent on the covariance between relative efficiencies and productivity changes. 

Summarizing, we advocate the geometric mean, expression (7) , as a meaningful aggregator of cross-efficiency scores 

given the properties it satisfies and the fact that, by adopting this functional form, the ratio of cross-efficiency scores of two

DMUs can be interpreted as a measure of relative productivity. 8 Hence, in the empirical application we report geometric 

means. The MATLAB code accompanying this study, however, calculates also arithmetic means. 

3. Dealing with ordinal variables 

In the foregoing section it has tacitly been assumed that all the variables are cardinal. In practice this is not always the

case. Qualitative inputs or outputs result in variables measured according to some rank order or Likert scale; e.g., ‘priority’ or

‘customer satisfaction’ could be ‘high’, ‘medium’, or ‘low’. While such variables are easily understood by management, they 

cannot immediately be ascribed a cardinal meaning in the standard DEA framework. We are following here the approach by 

Cook and Zhu [20] . 9 
7 See [10] for the definition of Lowe quantity indices. A productivity index is defined as an output quantity index divided by an input quantity index. 
8 In terms of [53] expression (7) is the geometric mean of optimistic cross-efficiency scores. The focus of this paper is on efficiency rather than cross- 

efficiency scores. The paper distinguishes between optimistic and pessimistic efficiency scores, and proposes the geometric mean of the two as a ranking 

device. 
9 This selection is based on [19] (Section 5.4). Performing DEA on non-cardinally measured variables is an area of ongoing research, for which the reader 

is referred to [60] (Chapter 18) and the literature review in the introductory section of [28] . 
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Without loss of generality, let the vectors of input and output quantities be partitioned in the following way: x =
(x c , x o ) ≡ (x c1 , . . . , x cP , x o1 , . . . , x oQ ) , and y = (y c , y o ) ≡ (y c1 , . . . , y cR , y o1 , . . . , y oS ) , with N = P + Q and M = R + S, where the

subscripts c and o denote cardinal and ordinal, respectively. Then the LP program in expression (2) becomes 

IT E ccr (x k , y k ) = max 
u c , v c ,u o , v o 

{
u c · y k c + u o · y k o 

v c · x k c + v o · x k o 

| u c · y k 
′ 

c + u o · y k 
′ 

o 

v c · x k 
′ 

c + v o · x k 
′ 

o 

≤ 1 , u c , u o ≥ 0 , v c , v o ≥ ε, k ′ = 1 , . . . , K 

}
= 

u 

k 
c · y k c + u 

k 
o · y k o 

v k c · x k c + v k o · x k o 

, (8)

where now (u k c , v k c , u 
k 
o , v k o ) is a solution to the maximization problem. 

The first step is to code each qualitative variable numerically in such a way that the various rank positions are assigned

scores following the rule ‘the higher the better’ for outputs and ‘the higher the worst’ for inputs; e.g., the score 3 is assigned

to ‘high’, the score 2 to ‘medium’, and the score 1 to ‘low’. It is tempting to use these scores as quantities and then solve

the LP program (8) . We call this ‘simple cardinalization’. 

Though this is routinely practised, it basically constitutes a neglect of the ordinal character of the scores. The point is

that the differences between two scores of the same variable are not in any way commensurable; e.g., 4 − 3 is not ‘the

same’ as 2 − 1 . And the same score on two different variables is not commensurable either. 

The procedure to cardinalize ordinal variables is to split each qualitative variable in as many subvariables as there are 

rank positions and to assign a certain, as yet undetermined, ‘worth’ to each of those subvariables. Formally, the ‘worth’ 

for rank position � of output variable oj is denoted by y oj� ( j = 1 , . . . , S; � = 1 , . . . , L j ) , and the ‘worth’ for rank position � of

input variable oi is denoted by x oi� (i = 1 , . . . , Q; � = 1 , . . . , L i ) . Finally, dummy variables are created such that γ k 
oj� 

= 1 if DMU

k has qualitative output attribute j with rank greater than or equal to �, and = 0 otherwise (k = 1 , . . . , K) , ( j = 1 , . . . , S; � =
1 , . . . , L j ) , and γ k 

oi� 
= 1 if DMU k has qualitative input attribute i with rank greater than or equal to �, and = 0 otherwise

(k = 1 , . . . , K) , (i = 1 , . . . , Q; � = 1 , . . . , L i ) . 

Output and input quantities are then defined by 

y k oj ≡
L j ∑ 

� =1 

γ k 
oj� y oj� (k = 1 , . . . , K, j = 1 , . . . , S) (9) 

x k oi ≡
L i ∑ 

� =1 

γ k 
oi� x oi� (k = 1 , . . . , K, i = 1 , . . . , Q ) . (10) 

Notice that by setting all the ‘worth’s’ equal to 1 we are back to the simple cardinalization mentioned above. Substituting

the quantities defined by expressions (9) and (10) into expression (8) , and defining new weights by 

θoj� ≡ u oj y oj� ( j = 1 , . . . , S; � = 1 , . . . , L j ) 

φoi� ≡ v oi x oi� (i = 1 , . . . , Q; � = 1 , . . . , L i ) , 

we obtain 

T E rank (x k , y k ) = max u c , v c ,θo ,φo 

{∑ R 
j=1 u c j y 

k 
c j 

+ ∑ S 
j=1 

∑ 

L j 
� =1 

θoj� γ
k 

oj� ∑ P 
i =1 v ci x 

k 
ci 
+ ∑ Q 

i =1 

∑ L i 
� =1 

φoi� γ
k 

oi� 

| 
∑ R 

j=1 u c j y 
k ′ 
c j 

+ ∑ S 
j=1 

∑ 

L j 
� =1 

θoj� γ
k ′ 

oj� ∑ P 
i =1 v ci x 

k ′ 
ci 

+ ∑ Q 
i =1 

∑ L i 
� =1 

φoi� γ
k ′ 

oi� 

≤ 1 , u c , v c ≥ εc , θo , φo ≥ εo , k 
′ = 1 , . . . , K 

}
= 

∑ R 
j=1 u 

k 
c j 

y k 
c j 

+ ∑ S 
j=1 

∑ 

L j 
� =1 

θ k 
oj� 

γ k 
oj� ∑ P 

i =1 v k ci 
x k 

ci 
+ ∑ Q 

i =1 

∑ L i 
� =1 

φk 
oi� 

γ k 
oi� 

. 

(11) 

This program has the same structure as the program in expression (8) , but with a much larger number of variables and

hence dimensions. Thus the computational burden is higher, which is why, despite its shortcomings, simple cardinalization 

is usually preferred to the more complex rank-order model outlined above. To assess the empirical impact of the cardinal- 

ization choice, in Section 5 we juxtapose the scores obtained by simple cardinalization implementations and those based on 

a rank-order model. Notice that in expression (11) different lower bounds have been introduced for the cardinal and ordinal

variables, εc and εo , respectively. This is to accommodate the importance of the various ordinal variables — in the empirical 

section about warehouse performance we comment on the values that have been adopted. 

4. The nonuniqueness problem 

As noted below expression (2) , the weight vectors (u k , v k ) (k = 1 , . . . , K) are not unique. For instance, all the extreme

efficient units have an infinite number of optimal weights, as do all the inefficient units belonging to or projected onto the

weak efficiency frontier, for which the optimal solution involves positive slacks. Retracing the steps taken in the previous 

section, this means that neither the cross-efficiencies CIT E (x � , y � | k ) (�, k = 1 , . . . , K) nor their means 
∑ K 

k =1 CIT E (x � , y � | k ) /K

or 
∏ K 

k =1 ( CIT E (x � , y � | k )) 1 /K (� = 1 , . . . , K) are unique. 

The literature provides us with a number of approaches to obtain (approximately) unique scores. We discuss them under 

three headings, roughly corresponding to their genesis in time. 
6 
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4.1. Weight selection approaches: aggressive and benevolent 

The idea behind the first approach is to select those vectors from the set of all the optimal weights solving the LP

problem (2) which have the greatest discriminatory power. Based on [48] , [26,27] considered a number of options. The

most natural is based on the CIT E (x � , y � | k ) ratio formulation in expression (4) : 

(u 

k ∗, v k ∗) ≡ arg min 

u k , v k 

{ 

1 

K − 1 

K ∑ 

k ′ =1 ,k ′ � = k 
CIT E (x k 

′ 
, y k 

′ | k ) | IT E (x k , y k ) = 

u 

k · y k 

v k · x k 

} 

. (12) 

For each k = 1 , . . . , K the pair (u k ∗, v k ∗) is then used to compute cross input technical efficiencies according to expression

(4) . 

The secondary goal set by the minimization problem in expression (12) is to obtain the greatest difference between 

the self-appraisal score of firm k and the mean of the appraisals by k of all its rivals. This is a highly nonlinear, fractional

problem, which at the end of the previous century was still deemed unsolvable. 

As a feasible alternative [48] had already considered 

(u 

k ∗, v k ∗) ≡ arg min 

u k , v k 

{
u 

k · ȳ k − v k · x̄ k | IT E (x k , y k ) = 

u 

k · y k 

v k · x k 

}
, (13) 

where ( ̄x k , ̄y k ) ≡ ∑ K 
k ′ =1 ,k ′ � = k (x k 

′ 
, y k 

′ 
) . Thus, from all the pairs of shadow price vectors generated by the LP problem (2) the

pair is selected which minimizes the profit of the aggregate, k -excluded, production unit. Given the linear objective function, 

this approach has become the preferred method in cross-efficiency applications. 

The outcome, however, does depend on the size distribution of the firms. This can be seen by noticing that in expression

(13) above u k · ȳ k − v k · x̄ k = v k · x̄ k ×
(
CIT E ( ̄x k , ̄y k | k ) − 1 

)
. To overcome this problem, Doyle and Green [26,27] considered 

(u 

k ∗, v k ∗) ≡ arg min 

u k , v k 

{
CIT E ( ̄x k , ȳ k | k ) | IT E (x k , y k ) = 

u 

k · y k 

v k · x k 

}
. (14) 

Here, from all the pairs of weights generated by the LP problem (2) the pair is selected which minimizes the cross-

efficiency of the aggregate, k -excluded, production unit. Put otherwise, the mean of ratios in problem (12) is replaced by the

ratio of means in problem (14) . 

Because of the minimization operator in the above three expressions the methods were classified as ‘aggressive’. Replac- 

ing the min by the max operator turns the ‘aggressive’ methods into ‘benevolent’ ones. 

Finally, as mentioned in the Introduction, there are more recent proposals within the weight selection approach. Among 

these, in chronological order, those proposed by Contreras [18] , Jahanshahloo et al. [35] , Maddahi et al. [44] , Wu et al.

[54] , [58] ], Zohrehbandian and Gavgani [61] . All these models represent alternative secondary goals that place different

restrictions on the weights. For the purpose of our paper, we let the entire class of models be represented by the initial

proposals of [48] : the classic model of expression (12) , and the linear model of expression (13) . 

4.2. The multiplicative approach 

[14] introduced the multiplicative variant of the LP problem (2) : 

IT E ′ (x k , y k ) ≡ max 
u, v 

{∏ M 

m =1 (y k m 

) u m ∏ N 
n =1 (x k n ) 

v n 
| 
∏ M 

m =1 (y k 
′ 

m 

) u m ∏ N 
n =1 (x k 

′ 
n ) 

v n 
≤ 1 , u ≥ 1 , v ≥ 1 , k ′ = 1 , . . . , K 

}
= 

∏ M 

m =1 ( y 
k 
m 

) u 
k 
m ∏ N 

n =1 ( x 
k 
n ) 

v k n 

(15) 

where (u k , v k ) is a solution of the maximization problem. By taking logarithms, this appears to be a CRS additive DEA model.

The counterpart of expression (4) then becomes 

CIT E ′ (x � , y � | k ) ≡
∏ M 

m =1 (y � m 

) u 
k 
m ∏ N 

n =1 (x � n ) 
v k n 

(�, k = 1 , . . . , K) , (16) 

where (u k , v k ) satisfies Eq. (15) . Cook and Zhu [21] , [22] proposed to merge these scores by a geometric mean, and defined

max 
u k , v k 

{ 

K ∏ 

k =1 

( CIT E ′ (x � , y � | k )) 1 /K | IT E ′ (x k , y k ) = 

∏ M 

m =1 (y k m 

) u 
k 
m ∏ N 

n =1 (x k n ) 
v k n 

, k = 1 , . . . , K 

} 

(17) 

as the final efficiency score of DMU � = 1 , . . . , K. By taking logarithms this maximization problem becomes linear, though its

number of constraints may be considerable (namely K 

2 ). 

The fact that the function defined by expression (15) is not invariant to changes in the units of measurement of the

inputs and outputs might be seen as a problem. Charnes et al. [14] provided a solution by considering a slight modification

of the foregoing maximization problem, namely by inserting a scalar ω so that 

IT E ′′ (x k , y k ) ≡ max 
u, v ,ω 

{
e ω 

∏ M 

m =1 (y k m 

) u m ∏ N (x k n ) 
v n 

| e ω 
∏ M 

m =1 (y k 
′ 

m 

) u m ∏ N (x k 
′ 

n ) 
v n 

≤ 1 , u ≥ 1 , v ≥ 1 , k ′ = 1 , . . . , K 

}
= e ω 

k 

∏ M 

m =1 ( y 
k 
m 

) u 
k 
m ∏ N ( x k n ) 

v k n 

, (18) 

n =1 n =1 n =1 

7 
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where (u k , v k , ω 

k ) is a solution of the maximization problem. By taking logarithms, this appears to be a VRS additive DEA

model [50] . pointed out an additional benefit of this model: there is “no longer any fear of zero (or infinitesimal epsilon)

weights.”

4.3. The game-theoretic approach 

The three Doyle and Green variants as well as the multiplicative Cook and Zhu method are essentially two-step al- 

gorithms, as appears from the definitional equations. Liang et al. [39] took another route. These authors considered the 

following modification of the LP problem (2) : 

max 
u, v 

{
u · y k 

v · x k 
| u · y k 

′ 

v · x k ′ 
≤ 1 , 

u · y d 

v · x d 
≥ αdt , u ≥ 0 , v ≥ 0 , k ′ = 1 , . . . , K 

}
= 

u 

k (αdt ) · y k 

v k (αdt ) · x k 
, (19) 

where the shadow price vectors (u k (αdt ) , v k (αdt )) solve the maximization problem, d = 1 , . . . , K, and t is some auxiliary

label. The additional constraint means that the cross input technical efficiency of firm d with respect to firm k should be

above some level αdt . Obviously, all the weights are then functions of this level. Notice that the constraints imply that

αdt ≤ 1 (d = 1 , . . . , K) . 

If the vector pair (u k (αdt ) , v k (αdt )) solves the maximization problem (19) then 

u 

k (αdt ) · y d 

v k (αdt ) · x d 
≥ αdt and 

u 

k (αdt ) · y k 
′ 

v k (αdt ) · x k ′ 
≤ 1 (k ′ = 1 , . . . , K) . 

The second inequality, however, implies that (u k (αdt ) , v k (αdt )) satisfies the conditions defining the maximization prob- 

lem (2) for IT E (x d , y d ) , and thus 

u 

k (αdt ) · y d 

v k (αdt ) · x d 
≤ IT E (x d , y d ) . 

Combining this with the first of the previous two inequalities leads to the conclusion that feasibility of the maximization 

problem (19) implies that αdt ≤ IT E (x d , y d ) . 

Thus, let αdt ≤ IT E (x d , y d ) for d = 1 , . . . , K. Expression (2) then tells us that there exist (u d , v d ) such that 

αdt ≤ u 

d · y d 

v d · x d 
and 

u 

d · y k 
′ 

v d · x k ′ 
≤ 1 (k ′ = 1 , . . . , K) . 

This, however, means that (u d , v d ) satisfies the conditions defining the maximization problem (19) , and hence 

u 

k (αdt ) · y k 

v k (αdt ) · x k 
≥ u 

d · y k 

v d · x k 
= CIT E (x k , y k | d) (k = 1 , . . . , K) , 

where the last step rests on definition (4) . Taking the arithmetic mean over both sides of this inequality leads to 

1 

K 

K ∑ 

d=1 

u 

k (αdt ) · y k 

v k (αdt ) · x k 
≥ 1 

K 

K ∑ 

d=1 

CIT E (x k , y k | d) (k = 1 , . . . , K) . 

Now, given a set of levels { αdt ; d = 1 , . . . , K} it is rather natural to define for each k = 1 , . . . , K the next level as 

αk,t+1 ≡ 1 

K 

K ∑ 

d=1 

u 

k (αdt ) · y k 

v k (αdt ) · x k 
(k = 1 , . . . , K) ; (20) 

that is, as the mean input technical efficiency of DMU k such that the cross efficiency of each DMU d does not drop below

the level αdt . 

Basically, expression (20) defines a mapping from the set [0 , 1] K to [0 , 1] K . For αdt ∈ [ 
∑ K 

k =1 CIT E (x d , y d | k ) /K, IT E (x d , y d )]

(d = 1 , . . . , K) [39] showed that this mapping is continuous. Thus, by Brouwer’s Fixed Point Theorem, there exists a vector

of α’s such that 

αk = 

1 

K 

K ∑ 

d=1 

u 

k (αd ) · y k 

v k (αd ) · x k 
(k = 1 , . . . , K) . 

Liang et al. [39] also showed that the iterative system built on expression (20) converges. Initially, the levels are thereby

chosen as 

α� 0 = 

K ∑ 

k =1 

CIT E (x � , y � | k ) /K (� = 1 , . . . , K) ; (21) 

that is, the mean cross input technical efficiencies generated by the original DEA problems (2) . Then the levels α� 1 (� =
1 , . . . , K) are generated by applying expression (20) , etcetera , until convergence is reached. 
8 
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Table 1 

Descriptive statistics of input and output variables, 2017. 

Input Output 

FTEs Floor space (m 

2 ) SKUs Automation score Order lines Special processes Error free % Order flexibility 

Minimum 5 500 100 2 54 2 1 12 

Median 30 9250 4600 6 1200 6 7 22 

Average 59 18,244 21,088 7 4931 6 6 21 

Maximum 350 275,000 400,000 16 55,000 10 9 30 

Standard 74 32,414 57,393 3 9815 2 2 4 

deviation 

Growth rate 14.2 37.2 11.8 38.1 34.2 24.5 39.6 18.2 

2012-17 (%) 

 

 

 

 

 

 

 

 

 

 

 

 

Though the final levels cannot be considered as DEA-based mean cross-efficiencies, they can be considered as Nash 

equilibrium outcomes of a non-cooperative game in which the firms are the players. Hence the name ‘Game Cross Efficiency’, 

as coined by Liang et al. [39] . As already remarked in the Introduction, Wu et al. [56] developed an alternative model from

the perspective of cooperative games, while Wu et al. [57] went further by using the perspective of a bargaining game. Later

on, Ramón et al. [47] , Wang and Chin [52] let the weights for each unit be determined without considering the impact on

its rivals. Finally, the game-theoretic approach has been further extended and applied by Ma et al. [43] . 

5. Comparing the methods on warehouse data 

5.1. Survey methods and variable selection 

For DEA models to have sufficient discriminatory power and provide meaningful rankings, high degrees of freedom are 

necessary, with the balance between observations and variables playing a pivotal role. To illustrate our comparison of cross- 

efficiency methods we used a database consisting of 102 warehouses, whose operations are characterized in terms of four 

inputs and four outputs. As [24,25,30] extensively surveyed and analyzed warehouses, we rely on their choice of input and 

output variables to characterize the warehouse processes. 

The database is the result of a comprehensive online outreach and response collection process executed in 2012 and 

2017. A detailed discussion of the survey methods, the data collection, and the input and output variables can be found

in [11] . 10 Input variables are: 1) Number of full time equivalent employees (FTEs); 2) Warehouse size in m 

2 (Floor space); 3)

Number of stock keeping units (SKUs); and 4) Level of automation (Automation score). The last variable captures the stock 

of automation technology implemented in the warehouse and is defined as the sum of several hardware and software 

automation technologies. Output variables are: 1) Number of daily order lines (Order lines); 2) Number of special processes ; 

3) Error-free order line percentage (Error free %), measured on an increasing nine-point ordinal scale; and 4) Order flexibility , 

measured on a thirty-point ordinal scale. 

The last two output variables are of qualitative nature. Hence, there is sufficient reason to not only apply the conventional

CCR model, expression (2) , after the qualitative variables have undergone simple cardinalization, but also to apply the full 

rank-order model, expression (11) , on all the variables as they are. A comparison of their outcomes allows us to study

whether these models yield results that are statistically different. 

Table 1 presents the descriptive statistics for the input and the output variables in 2017. The last row shows the growth

rate from 2012 to 2017, portraying a significant increase in the scale of operations as the average number of SKUs increased

by more than 10%, and floor space and automation by almost 40%. These trends show that growth goes hand-in-hand with

both hardware and software investments, and with the substitution of labor by capital (e.g., robotics). The growth is also 

observed on the output side. To the extent that on average output quantities have increased more than input quantities we

may conclude that the industry has shown productivity growth. Notice that order lines as well as the percentage of error

free order lines increased by almost 40%. 

5.2. Results 

We now present the results of applying the cross-efficiency methods discussed in the foregoing section. Using simple 

cardinalization of the qualitative variables, we implemented the Sexton-classic method as formulated by expression (12) , 

the Sexton-linear method as formulated by expression (13) , 11 the multiplicative method as formulated in expression (17) , 
10 Appendices A and B provide a summary. The data, along with accompanying information on variable codification and survey methods (questionnaire), 

are available for downloading at https://doi.org/10.25397/eur.8279426 . 
11 We also implemented the Sexton-ratio method as defined by expression (14) , and obtained minor differences with the Sexton-linear method. For this 

reason the ratio-method results are not reported. Also, throughout the text we make reference to the 2017 results, while their 2012 counterparts are 

recalled whenever necessary for temporal comparisons. All the individual results of the methods in both years are available upon request. 

9 
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Table 2 

Cross-efficiency scores, 2017. 

Classic Linear Multiplicative Game Classic on 

rank-order model 
on simple cardinalization 

Minimum 0.063 0.055 0.000 0.155 0.044 

Average 0.309 0.309 0.025 0.506 0.311 

Maximum 0.856 0.848 0.911 1.000 0.925 

Standard deviation 0.177 0.183 0.110 0.219 0.209 

Fig. 1. Cross-efficiency score distribution per method, 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the game-theoretic method as represented by expression (21) . Our fifth set of results corresponds to the Sexton-classic 

method after the standard model (2) was replaced by the rank-order model (11) . All the models were run in their benevolent

version, maximizing the peer-appraisal scores, which makes results comparable and in accordance with the market intuition 

that competitors maximize their own efficiency given a set of weights and constraints. Table 2 reports the summary statistics

of the cross-efficiency scores. Following the discussion in Section 2 , geometric means are reported. However, we have also 

calculated the arithmetic means. The correlations between geometric and arithmetic means are between 0.97-1.00 for 2012 

and 2017 for all methods except the rank-order based method, where the correlations are 0.69 and 0.72. 

While the two Sexton-based methods result in scores of the same order of magnitude per warehouse (as expected given 

the similarity of the models), the cross-efficiency scores obtained by the multiplicative method are significantly lower (av- 

erage equal to 0.309 for the first two models and 0.025 for the multiplicative method, with standard deviations 0.177, 0.183,

and 0.110, respectively). The game-theoretic method resulted in the highest average score of 0.506 (standard deviation 0.219), 

and finished after 32 iterations. The scores obtained from the classic method applied to the rank-order model come close 

to the Sexton-based scores but are consistently higher as a result of the much larger number of variables included in ex-

pression (11) . Specifically, for Error-free order line percentage as many as 8 variables are added, corresponding to the ranking

positions between the minimum and maximum values of 1 and 9, respectively. For Order flexibility as many as 18 variables

are added to the model, corresponding to a range between 12 and 30. 

Regarding the rank-order model, we have tried alternative lower bounds for the multipliers corresponding to the set of 

binary restrictions associated with the ordinal variables, εo . Feasible and stable solutions yielding sensible rankings when 

compared to their cardinal counterparts (and preventing that most of the warehouses are deemed efficient) are obtained 

for values as low as 1e7, which is reassuring as it does not impose large values on the multipliers. However, the method

is sensitive to the specification of the bounds and may require re-scaling of inputs or outputs. For our unscaled 2017 data,

a bound of 1e5 appears infeasible, and the results of 1e10 appear not stable with current MATLAB solvers. In addition, the

existence of lower bounds may lead to many fully efficient DMUs in models with a larger number of ordinal levels. See

[20] (1031) for more information on the choice of weight restrictions. 

Using the one-sample Kolmogorov-Smirnov (KS) test, the normal distribution assumption could be rejected at p < 0 . 01 .

The score distributions are visually depicted in Fig. 1 . Most scores of the multiplicative method are below 0.01 (92 out of 102

observations). This is probably due to the exponential nature of the calculation, heavily emphasizing efficient warehouses 

over inefficient ones, which leads to stark score differences compared to additive DEA formulations. We also observe that 

the game-theoretic method identifies several warehouses as (almost) efficient. 

Next we tested whether the five methods yield the same or different distributions from a statistical perspective. Based 

on the Wilcoxon signed rank test, the hypotheses that the 2017 scores are from the same distribution were rejected for all
10 
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Table 3 

Top 10 warehouses, by cross-efficiency score and method, 2017. 

Classic Linear Multiplicative Game Classic on 

rank-order model 
on simple cardinalization 

1 #098 #098 #067 #049 #098 

2 #050 #050 #050 #098 #050 

3 #028 #028 #028 #050 #123 

4 #104 #066 #027 #028 #058 

5 #066 #104 #098 #104 #028 

6 #049 #067 #066 #066 #115 

7 #067 #049 #104 #027 #049 

8 #027 #027 #006 #067 #067 

9 #041 #041 #115 #107 #059 

10 #107 #107 #040 #041 #041 

Table 4 

Kendall’s τ for cross-efficiency rankings, 2017. 

Classic Linear Multiplicative Game Classic on 

rank-order model 

IT E Super 

Efficiency 
on simple cardinalization 

Classic 1 

Linear 0.97 1 

Multiplicative 0.67 0.66 1 

Game 0.76 0.76 0.65 1 

Classic ∗ 0.56 0.56 0.52 0.46 1 

IT E 0.49 0.49 0.52 0.71 0.32 1 

Super Efficiency 0.49 0.49 0.53 0.71 0.32 0.94 1 

Note: All p -values are < 0 . 01 . Classic ∗ = Classic based on rank-order model. 

 

 

 

 

 

 

pairs except the two Sexton-based methods. It is then clear that the choice of method is not neutral, leading to different

rankings and presentations of warehouse performance within the industry. 

Of course, the most critical question is whether the various methods result in comparable rankings. After all, managers 

are less interested in particular cross-efficiency scores, but rather in how their facilities behave comparatively, and who is 

best-in-class. Table 3 reports the ranking of the top 10 warehouses by cross-efficiency score for the five methods. Ware- 

houses in bold signify that they are in the top 10 by all five methods. 

It is noteworthy that the top 3 are not identical among the five methods and that only four warehouses in 2017 and five

in 2012 were ranked in the top 10 by all the methods. Still, the two Sexton-based methods exhibit very similar rankings.

The game-theoretic method ranks the top 10 similar to the Sexton-based methods (nine out of ten facilities in the top 10

are the same), whereas the ranking by the multiplicative and the classic-based-on-rank-order-model methods differ already 

in the first warehouses. 

Kendall’s τ correlations were calculated for all method pairs. The two Sexton-based methods show correlations of over 

0.93 in both years, indicating almost identical rankings. Similarly, the Sexton-based methods and the game-theoretic method 

correlate by more than 0.73 in both years. The correlations between the multiplicative method and the other four methods 

are considerably lower, namely in the range 0.52–0.67. The correlation between the cross-efficiency rankings and the first- 

stage IT E(. ) ranking according to expression (2) is also presented. As the latter yields 26 efficient warehouses, an additional

ranking was compiled, based on super-efficiency scores, following [4] . The correlations with these two rankings follow a 

similar pattern. The lowest corresponds to the classic-based-on-rank-order-model method (0.32), followed by the relatively 

low multiplicative and Sexton-based methods (0.53, 0.49, 0.49), and then by the moderately large game-theoretic method. 

6. Managerial insights 

This section focuses on the relative merits of the five cross-efficiency measurement methods from a managerial perspec- 

tive. We hope to facilitate a wider audience’s engagement with these methods by summarizing our experience in dealing 

with the various approaches. With this in mind, we appraised every method with a score from 1 (worst) to 5 (best) on each

of the dimensions in Table 5 . 

This procedure is useful for comparing methods across single dimensions, but is not intended for computing an aggregate 

score per method, as different situations may lead to different choices. Although fairly standard, we acknowledge that other 

dimensions can be considered and that our evaluation scores are necessarily subjective. Nevertheless we believe they form 

a sensible starting point, and we invite practitioners to carry forward this endeavor through their own analyses. Before 

performing the evaluation we emphasize that the comparison is meaningful since we have executed Wilcoxon signed rank 

tests to determine whether the sets of results, obtained through the various methods, are significantly different. 
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Table 5 

Comparison dimensions for the cross-efficiency methods. 

Dimension Description 

Methodological 

proximity to 

standard DEA 

Tests how close a cross-efficiency method follows the logic of the familiar 

first-stage DEA model. As the DEA scores are a natural upper limit for the 

cross-efficiency scores, methodological proximity makes the results more 

reliable. 

Implementational 

ease 

Tests how easily a method can be implemented and assesses the degree of 

computational strain when handling a large dataset. Especially for 

application in non-academic fields, easy implementation and swift 

calculation in case of automated or frequent application are relevant. 

Extendability Tests how many modifications to the basic model are proposed in the 

literature, which allows tailoring the method to individual project 

requirements. 

Discriminatory 

properties 

Tests how large the relative differences in cross-efficiency scores are across 

methods, for those observations that are signaled as efficient at the first DEA 

stage. As a cross-efficiency method is mainly applied to break ties between 

efficient observations, this is of great relevance for practitioners. 

Sensitivity to 

changes of scale 

Tests how robust the results of a particular method are to scale changes of 

input and output variables. In volatile environments a low sensitivity to 

scale changes increases the validity of the results. 

Sensitivity to 

erroneous data 

Tests how robust the results of a particular method are to (random) changes 

in the magnitudes of some inputs and outputs. A low sensitivity to 

erroneous data increases the reliability of the results, especially when the 

data is subjective/opinion-dependent, based on estimates, or exposed to 

human error. 

Sensitivity to peers 

deletion 

Tests how robust the results of a particular method are to deleting 

observations lying on a DEA frontier hyperplane. A low sensitivity to 

deleting such benchmarks increases the reliability of the results, especially 

for industrial comparisons, when extreme observations might be part of the 

sample. 

Table 6 

Ratings of cross-efficiency methods across dimensions. 

Classic Linear Multiplicative Game Classic on 

rank-order model 
on simple cardinalization 

Proximity to plain DEA 4 3 2 5 3 

Implementational ease 4 5 4 2 3 

Extendability 4 4 2 3 2 

Discriminatory properties 5 5 2 4 2 

Sensitivity to changes of scale 5 5 2 5 4 

Sensitivity to erroneous data 5 5 3 5 5 

Sensitivity to peers deletion 4 4 1 3 4 

 

 

 

Table 6 contains the results. Explanatory notes can be found in Appendix C. Our conclusion is that the two Sexton-

based methods (employing simple cardinalization of the qualitative variables) appeared to perform best from a cost-benefit 

perspective; i.e., the ability to benchmark firms in a straightforward and reliable manner. This evaluation is based mainly 

on implementation ease, discriminatory (and therefore ranking) properties, and robustness. Also, despite its computational 

difficulties, as the rank-order method is the only one accounting for ordinal variables, we recommend its calculation to 

complement the results obtained with the other methods. 

7. Summary and conclusions 

In this article we examined cross-efficiency measurement from the perspective of index number theory. Cross-efficiency 

scores represent measures of relative performance that can be confidently used for bilateral comparisons of productivity. 

We made the case for the aggregation of elementary cross-efficiency scores by geometric rather than arithmetic means. 

Based on reviews of the main cross-efficiency methods, we identified four representatives for a study of warehouse perfor- 

mance. Our dataset consists of a sample of 102 warehouses operating in the Benelux area in 2012–2017, whose technology 

is characterized by four inputs and four outputs. As two of the output variables are essentially qualitative, we extended the

rank-order DEA model introduced by Cook and Zhu [20] to be employed in cross-efficiency methods. 

We found that the choice of cross-efficiency methods results in statistically different distributions of the efficiency scores 

as well as different rankings of the warehouses. Indeed there are differences of an order of magnitude between the scores of

the two Sexton-based methods (that exhibit the same average value at 0.309) and those of the multiplicative method (where 

the average is 0.025). The game-theoretic method results in the highest average score of 0.506. Although the rank-order 

model based on the classic approach stands aside from a methodological perspective, its scores are comparable with those 
12 
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obtained through the Sexton-based methods, though consistently higher. This result is expected given the larger number of 

variables included in expression (11) . 

Focusing on the possibility of managers actually implementing these methods for benchmarking, our findings show that 

the Sexton-based methods, followed by the game-theoretic method, are superior to the multiplicative method across almost 

all dimensions of comparison. Choosing between the two Sexton-based methods depends on the preference of the user 

and the context of the application. Although the ratio and linear methods are slightly more quickly solvable, the classic 

framework approximates the first-stage DEA program methodologically closest. The game-theoretic method is disadvanta- 

geous mainly in terms of required computational time; it also occasionally identifies more than one DMU as fully efficient, 

which results in ties at the top position. However, growing computer power should be able to compensate for this in the

coming years. The rank-order model methodologically differs from the rest by accommodating qualitative variables. Using 

this model adds robustness to the results obtained with other methods, though the sensitivity to the multiplier bounds is a

matter of concern. Overall, given the complexity of implementing the model and its numerical unreliability, we discourage 

practitioners from resorting to this specific proposal, and explore alternatives such as those considered in [28] . 

Let us conclude by identifying some empirical limitations of this study and by indicating areas for further research. From 

the methodological perspective, our conclusions suggest that rather than making further refinements in complex elabora- 

tions of secondary goals, academics interested in cross-efficiency methods should shift their attention to some of the funda- 

mental limitations of the methodology. One of the current challenges is the relaxation of the assumption of CRS, which in

many situations is an unwarranted technological assumption. The problem is that extending the basic CRS model, as consid- 

ered in this study, to its VRS counterpart, see [22] , may result in negative cross-efficiency scores. Lim and Zhu [40] , Wu et al.

[55] proposed different work-arounds to this problem. The first authors restrict the value of the numerator of the VRS mul-

tiplier formulation of the traditional input-orientated BCC model to be positive, which ensures that cross-efficiencies cannot 

be negative. The second rely on a gemetrical solution and implement a Cartesian coordinate-system translation before solv- 

ing the model. Aparicio and Zofío (AZ) [8,9] , propose an innovative approach to calculate cross-efficiencies, departing from 

the optimal input weights. These multipliers are interpreted as shadow prices, and it is shown that, under input homoth- 

eticity, the bilateral VRS cross-efficiency model is equivalent to the cost-efficiency model of Farrell [31] . In this approach VRS

cross-efficiency can be reinterpreted as the cost efficiency of the DMU under evaluation, considering the set of optimal mul- 

tipliers of the remaining DMUs as reference prices. AZ coin the term Farrell cross-efficiency and extend their results to the

notion of Nerlovian cross-inefficiency, where the directional distance function is used as efficiency measure. Besides solving 

the problem of negative scores under VRS, AZ’s approach allows to decompose economic cross-efficiency into technical and 

allocative efficiency components Overall, the most salient feature of AZ’s proposal, which brings together the cross-efficiency 

and economic efficiency literatures, is that cross-efficiency is provided with a solid foundation in economic theory. A com- 

parison of methods like those reported in this paper, both under CRS and VRS, would shed light on the role that scale

efficiency and allocative efficiency play in the cross-efficiency performance of DMUs. 

A further topic is the introduction of the temporal dimension in cross-efficiency measurement. For a first definition 

of cross-productivity Malmquist indices and Luenberger indicators, to disentangle the role of efficiency change and tech- 

nological change, see [7] . Future studies could also follow new frameworks which allow more realistic representations of 

warehouse processes, such as network DEA (see [37] , or [46] ), in which some variables (for instance, automation) may be

treated as an intermediate rather than an input or output. 

From an empirical perspective, the degree (‘quantity’) of automation remains an elusive variable, normally defined by an 

ordinal scale. A combination of available questions, experience, and expert judgment was used to develop the automation 

section of our questionnaire. Finally, although a dataset of over 100 warehouses fulfills all minimum requirements for DEA 

(and exceeds the numbers one sees in other studies of the industry), a larger dataset would be preferable to assess the

computational performance of the different cross-efficiency models. Here, a web-hosted solution like the one proposed by 

Johnson and McGinnis [36] would provide warehouse stakeholders with an interface to submit operational data and have 

their warehouse ranked through a cross-efficiency computer code to incentivize submission. 

Acknowledgements 

José L. Zofío thanks the financial support from the Spanish Ministry of Science and Innovation (Ministerio de Ciencia 

e Innovación), the State Research Agency (Agencia Estatal de Investigación) and the European Regional Development Fund 

(Fondo Europeo de Desarrollo Regional) under grants EIN2020-112260 and PID2019-105952GB-I00 (AEI/FEDER, UE). 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.amc.2021.126261 . 

References 

[1] J. Aczél , F.S. Roberts , On the possible merging functions, Math. Soc. Sci. 17 (1989) 205–243 . 

[2] A. Aldamak , S. Zolfaghari , Review of efficiency ranking methods in data envelopment analysis, Measurement 102 (2017) 161–172 . 
[3] R. Allen , A. Athanassopoulos , R.D. Dyson , E. Thanassoulis , Weights restrictions and value judgments in data envelopment analysis: evolution, develop-

ment and future directions, Ann. Oper. Res. 73 (1997) 13–34 . 
[4] P. Andersen , N.C. Petersen , A procedure for ranking efficient units in data envelopment analysis, Manag. Sci. 39 (1993) 1261–1264 . 
13 

https://doi.org/10.13039/501100008530
https://doi.org/10.1016/j.amc.2021.126261
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0001
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0001
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0001
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0002
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0002
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0002
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0003
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0003
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0003
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0003
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0003
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0004
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0004
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0004


B.M. Balk, M.B.M. (René) De Koster, C. Kaps et al. Applied Mathematics and Computation 406 (2021) 126261 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[5] T.R. Anderson , K. Hollingsworth , L. Inman , The fixed-weighting nature of a cross-evaluation model, J. Prod. Anal. 17 (2002) 249–255 . 
[6] M.Z. Angiz , A. Mustafa , M.J. Kamali , Cross-ranking of decision making units in data envelopment analysis, Appl. Math. Model. 37 (2013) 398–405 . 

[7] J. Aparicio , L. Ortiz , J.T. Pastor , J.M. Zabala-Iturriagagoitia , Introducing cross-productivity: a new approach for ranking productive units over time in
data envelopment analysis, Comput. Ind. Eng. 144 (2020) 106456 . 

[8] J. Aparicio , J.L. Zofío , Economic cross-efficiency, Omega 100 (2020) 102374 . 
[9] J. Aparicio , J.L. Zofío , New definitions of economic cross-efficiency. Aparicio J., Lovell C.A.K., Pastor J.T., Zhu J. (eds), in: Advances in Efficiency and

Productivity II, International Series in Operations Research & Management Science 281, (eds), Springer Science+Business Media, New York, 2020, 

pp. 11–32 . 
[10] B.M. Balk , Price and Quantity Index Numbers: Models for Measuring Aggregate Change and Difference, Cambridge University Press, New York, 2008 . 

[11] B.M. Balk , M.B.M. de Koster , C. Kaps , J.L. Zofío , An evaluation of cross-efficiency methods, applied to measuring warehouse performance, ERIM Report
Series in Management ERS-2017-015-LIS., Erasmus University Rotterdam. The Netherlands, 2017 . 

[12] J. Barbero, J.M. Zabala-Iturriagagoitia, Z.J. L., Benchmarking innovation systems with DEA-TOPSIS : on the relevance of decreasing returns on waning
performance, Forthcoming in Technovation(2021). 

[13] I. Bardhan , W.F. Bowlin , W.W. Cooper , T. Sueyoshi , Models and measures for efficiency dominance in DEA part I: additive models and MED measures,
J. Oper. Res. Soc.Jpn. 39 (1996) 322–332 . 

[14] A. Charnes , W.W. Cooper , E. Rhodes , Measuring efficiency of decision making units, Eur. J. Oper. Res. 2 (1978) 429–4 4 4 . 

[15] A. Charnes , W.W. Cooper , L. Seiford , J. Stutz , A multiplicative model for efficiency analysis, Socio-econ. Plan. Sci. 16 (1982) 223–224 . 
[16] A. Charnes , W.W. Cooper , L. Seiford , J. Stutz , Invariant multiplicative efficiency and piecewise cobb-douglas envelopments, Oper. Res. Lett. 2 (1983)

101–103 . 
[17] J.X. Chen , A comment on DEA efficiency assessment using ideal and anti-ideal decision making units, Appl. Math. Comput. 219 (2012) 583–591 . 

[18] I. Contreras , Optimizing the rank position of the DMU as secondary goal in DEA cross-evaluation, Appl. Math. Model. 36 (2012) 2642–2648 . 
[19] W.D. Cook , L.M. Seiford , Data envelopment analysis (DEA) – thirty years on, Eur. J. Oper. Res. 192 (2009) 1–17 . 

[20] W.D. Cook , J. Zhu , Rank order data in DEA: a general framework, Eur. J. Oper. Res. 174 (2006) 1021–1038 . 

[21] W.D. Cook , J. Zhu , DEA Cobb-Douglas frontier and cross efficiency, J. Oper. Res. Soc. 65 (2014) 265–268 . 
[22] W.D. Cook , J. Zhu , DEA cross-efficiency, in: J. Zhu (Ed.), Data Envelopment Analysis, International Series in Operations Research & Management Science

221, Springer Science+Business Media, New York, 2015 . 
[23] W.W. Cooper , J.L. Ruiz , I. Sirvent , Choices and uses of DEA weights. Cooper W.W., Seiford L.M., Zhu J. (eds), Handbook On Data Envelopment Analysis.

New York, (eds.), Springer Science+Business Media, 2011 . 
[24] M.B.M. De Koster , B.M. Balk , Benchmarking and monitoring international warehouse operations in europe, Prod. Oper. Manag. 17 (2008) 175–183 . 

[25] M.B.M. De Koster , P.M.J. Warffemius , American, asian and third-party international warehouse operations in europe: a performance comparison, Int. J.

Oper. Prod.Manag. 25 (8) (2005) 762–780 . 
[26] J.R. Doyle , R.H. Green , Efficiency and cross-efficiency in DEA: derivations, meanings, and uses, J. Oper. Res. Soc. 45 (1994) 567–578 . 

[27] J.R. Doyle , R.H. Green , Cross-evaluation in DEA: improving discrimination among DMUs, Inf. Syst. Oper. Res. 33 (1995) 205–222 . 
[28] B. Ebrahimi , A. Dellnitz , A. Kleine , M. Tavana , A novel method for solving data envelopment analysis problems with weak ordinal data using robust

measures, Expert Syst. Appl. 164 (2021) 113835 . 
[29] Eurostat, Annual detailed enterprise statistics for services (NACERev. 2 h-n and s95), Luxemburg (2017). https://ec.europa.eu/eurostat/web/ 

products-datasets/-/SBS _ NA _ 1A _ SE _ R2 . 

[30] N. Faber , M.B.M. de Koster , A. Smidts , Survival of the fittest: the impact of fit between warehouse management structure and warehouse context on
warehouse performance, Int. J. Prod. Res. 56 (2018) 120–139 . 

[31] M.J. Farrell , The measurement of productive efficiency, J. R. Stat. Soc. Ser. A 120 (1957) 253–281 . 
[32] F.R. Førsund , Cross-efficiency: a critique, Data Envelop. Anal. J. 4 (2018) 1–25 . 

[33] L. Friedman , Z. Sinuany-Stern , Scaling units via the canonical correlation analysis in the DEA context, Eur. J. Oper. Res. 100 (1997) 629–637 . 
[34] J. Jablonsky , Measuring the efficiency of production units by AHP models, Math. Comput. Model. 46 (2007) 1091–1098 . 

[35] G.R. Jahanshahloo , M. Khodabakhshi , F.H. Lotfi, M.M. Goudarzi , A cross-efficiency model based on super-efficiency for ranking units through the TOPSIS

approach and its extension to the interval case, Math. Comput. Model. 53 (2011) 1946–1955 . 
[36] A. Johnson , L.F. McGinnis , Performance measurement in the warehousing industry, IIE Trans. 43 (2011) 220–230 . 

[37] C. Kao , S.T. Liu , Cross efficiency measurement and decomposition in two basic network systems, Omega 83 (2019) 70–79 . 
[38] F. Li , Q. Zhu , Z. Chen , H. Xue , A balanced data envelopment analysis cross-efficiency evaluation approach, Expert Syst. Appl. 106 (2018) 154–168 . 

[39] L. Liang , J. Wu , W.D. Cook , J. Zhu , The DEA game cross efficiency model and its Nash equilibrium, Oper. Res. 56 (2008) 1278–1288 . 
[40] S. Lim , J. Zhu , DEA cross-efficiency evaluation under variable returns to scale, J. Oper. Res. Soc. 66 (2015) 476–487 . 

[41] J.S. Liu , L.Y. Lu , W.M. Lu , Research fronts in data envelopment analysis, Omega 58 (2016) 33–45 . 

[42] W.-M. Lu , S.E. Lo , A benchmark-learning roadmap for regional sustainable development in China, J. Oper. Res. Soc. 58 (2007) 841–849 . 
[43] R. Ma , L. Yao , M. Jin , P. Ren , The DEA game cross-efficiency model for supplier selection problem under competition, Appl. Math. 8 (2014) 811–818 . 

[44] R. Maddahi , G.R. Jahanshahloo , F.H. Hosseinzadeh , A. Ebrahimnejad , Optimising proportional weights as a secondary goal in DEA cross-efficiency
evaluation, Int. J. Oper. Res. 19 (2014) 234–245 . 

[45] O.B. Olesen , Cross efficiency analysis and extended facets, Data Envelop. Anal. J. 4 (2018) 27–65 . 
[46] H.H. Örkcü, V.S. Özsoy , M. Örkcü, H. Bal , A neutral cross efficiency approach for basic two stage production systems, Expert Syst. Appl. 125 (1) (2019)

333–344 . 
[47] N. Ramón , J.L. Ruiz , I. Sirvent , On the choice of weights profiles in cross-efficiency evaluations, Eur. J. Oper. Res. 207 (2010) 1564–1572 . 

[48] T.R. Sexton , R.H. Silkman , A.J. Hogan , Data envelopment analysis: Critique and extensions, in: R.H. Silkman (Ed.), Measuring Efficiency: An Assessment

of Data Envelopment Analysis, New Directions for Program Evaluation 32, San Francisco/London: Jossey-Bass, 1986 . 
[49] E. Thanassoulis , M.C.S. Portela , R. Allen , Incorporating value judgements in DEA, in: W. Cooper, L.W. Seiford, J. Zhu (Eds.), Handbook on Data Envelop-

ment Analysis, Kluwer Academic Publishers, Boston, 2004 . 
[50] C. Tofallis , On constructing a composite indicator with multiplicative aggregation and the avoidance of zero weights in DEA, J. Oper. Res. Soc. 65 (2014)

791–792 . 
[51] A.M. Torgersen , F.R. Førsund , S.A.C. Kittelsen , Slack-adjusted efficiency measures and ranking of efficient units, J. Prod. Anal. 7 (1996) 379–398 . 

[52] Y.M. Wang , K.S. Chin , Some alternative models for DEA cross-efficiency evaluation, Int. J. Prod. Econ. 128 (2010) 332–338 . 

[53] Y.M. Wang , K.S. Chin , J.B. Yang , Measuring the performance of decision-making units using geometric average efficiency, J. Oper. Res. Soc. 58 (2007)
929–937 . 

[54] J. Wu , J. Chu , J. Sun , Q. Zhu , DEA cross-efficiency evaluation based on Pareto improvement, Eur. J. Oper. Res. 248 (2) (2016) 571–579 . 
[55] J. Wu , L. Liang , Y. Chen , DEA game cross-efficiency approach to olympic rankings, Omega 37 (2009) 909–918 . 

[56] J. Wu , L. Liang , F. Yang , Determination of the weights for the ultimate cross-efficiency using shapley value in cooperative game, Expert Syst. Appl. 36
(2009) 872–876 . 

[57] J. Wu , L. Liang , F. Yang , H. Yan , Bargaining game model in the evaluation of decision making units, Expert Syst. Appl. 36 (2009) 4357–4362 . 

[58] J. Wu , J.S. Sun , L. Liang , Cross efficiency evaluation method based on weight-balanced data envelopment analysis model, Comput. Ind. Eng. 63 (2012)
513–519 . 

[59] Y. Yamada , T. Matsui , M. Sugiyama , An inefficiency measurement method for management systems, J. Oper. Res. Soc. Jpn. 37 (1994) 158–168 . 
[60] J. Zhu , Quantitative Models for Performance Evaluation and Benchmarking, Springer International Publishing Switzerland, 2014 . 

[61] M. Zohrehbandian , S.S. Gavgani , Cross-efficiency evaluation under the principle of rank priority of DMUs”, World Appl. Sci. J. 21 (2013) 46–49 . 
14 

http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0005
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0005
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0005
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0005
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0006
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0006
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0006
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0006
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0007
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0007
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0007
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0007
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0007
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0008
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0008
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0008
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0009
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0009
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0009
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0010
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0010
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0011
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0011
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0011
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0011
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0011
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0013
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0013
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0013
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0013
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0013
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0014
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0014
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0014
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0014
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0015
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0015
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0015
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0015
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0015
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0016
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0016
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0016
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0016
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0016
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0017
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0017
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0018
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0018
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0019
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0019
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0019
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0020
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0020
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0020
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0021
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0021
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0021
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0022
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0022
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0022
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0023
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0023
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0023
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0023
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0024
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0024
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0024
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0025
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0025
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0025
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0026
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0026
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0026
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0027
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0027
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0027
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0028
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0028
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0028
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0028
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0028
https://ec.europa.eu/eurostat/web/products-datasets/-/SBS_NA_1A_SE_R2
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0030
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0030
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0030
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0030
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0031
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0031
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0032
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0032
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0033
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0033
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0033
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0034
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0034
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0035
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0035
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0035
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0035
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0035
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0036
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0036
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0036
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0037
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0037
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0037
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0038
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0038
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0038
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0038
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0038
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0039
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0039
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0039
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0039
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0039
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0040
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0040
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0040
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0041
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0041
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0041
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0041
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0043
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0043
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0043
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0044
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0044
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0044
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0044
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0044
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0045
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0045
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0045
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0045
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0045
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0046
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0046
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0047
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0047
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0047
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0047
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0047
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0048
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0048
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0048
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0048
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0050
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0050
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0050
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0050
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0051
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0051
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0051
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0051
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0052
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0052
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0053
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0053
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0053
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0053
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0054
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0054
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0054
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0055
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0055
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0055
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0055
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0056
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0056
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0056
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0056
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0056
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0057
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0057
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0057
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0057
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0058
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0058
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0058
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0058
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0059
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0059
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0059
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0059
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0059
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0060
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0060
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0060
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0060
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0061
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0061
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0061
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0061
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0062
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0062
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0063
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0063
http://refhub.elsevier.com/S0096-3003(21)00350-7/sbref0063

	An evaluation of cross-efficiency methods: With an application to warehouse performance
	1 Introduction
	2 The basic idea of cross-efficiency measurement
	3 Dealing with ordinal variables
	4 The nonuniqueness problem
	4.1 Weight selection approaches: aggressive and benevolent
	4.2 The multiplicative approach
	4.3 The game-theoretic approach

	5 Comparing the methods on warehouse data
	5.1 Survey methods and variable selection
	5.2 Results

	6 Managerial insights
	7 Summary and conclusions
	Acknowledgements
	Supplementary material
	References


