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a b s t r a c t

This paper proposes a generalization of the class of realized semivariance and semi-
covariance measures introduced by Barndorff-Nielsen et al. (2010) and Bollerslev et al.
(2020a) to allow for a finer decomposition of realized (co)variances. The new ‘‘realized
partial (co)variances’’ allow for multiple thresholds with various locations, rather than
the single fixed threshold of zero used in semi (co)variances. We adopt methods from
machine learning to choose the thresholds to maximize the out-of-sample forecast
performance of time series models based on realized partial (co)variances. We find that
in low dimensional settings it is hard, but not impossible, to improve upon the simple
fixed threshold of zero. In large dimensions, however, the zero threshold embedded in
realized semi covariances emerges as a robust choice.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

We are extremely grateful for the opportunity to contribute to this special issue in honor of Francis X. Diebold.
rank’s wide-ranging seminal contributions have importantly shaped the research frontier in time series and financial
conometrics over the past four decades.
As a case in point, Frank was among a small group of researchers in the 1980s to first embrace the now widely-accepted

mpirical fact that financial market volatility is both time-varying and highly predictable (Diebold, 1986). He was also
mong the first to explicitly recognize that the variation in volatilities are strongly connected across assets and markets,
nd this connectedness has important implications not only for forecasting, but also for financial asset pricing and the
ractice of risk management. The factor ARCH class of models first proposed in Diebold and Nerlove (1989), in particular,
rovides an especially convenient framework for succinctly characterizing these joint dynamic dependencies, and related
arametric GARCH and stochastic volatility type models remained the norm for modeling and forecasting time-varying
ariances and covariances up until the early 2000s (see, e.g., the survey in Andersen et al. (2006)).
Meanwhile, motivated by the increased availability of reliable high-frequency data for a host of financial assets, Ander-

en et al. (2003) proposed the use of traditional ARMA type procedures for directly modeling the dynamic dependencies
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in daily and lower frequency so-called realized volatilities constructed from higher frequency intraday returns (see
also Andersen and Bollerslev (1998), Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002) for additional
motivation and theoretical justification). This idea spurred somewhat of a paradigm shift, and realized volatilities are
now widely-used in both academia and financial practice, with the ‘‘heterogenous autoregressive’’ (HAR) model of Corsi
(2009) having emerged as the most commonly-used specification (see also Andersen et al. (2007) for one of the earliest
uses of the HAR model).

The ‘‘classic’’ realized volatility measure is computed simply as the sum of squared high frequency returns, and thus
oes not contain any information from the signs of these returns. Motivated by the downside risk measures sometimes
mployed in asset pricing (dating back to Roy (1952) and Markowitz (1959)), Barndorff-Nielsen et al. (2010) first proposed
ecomposing the total realized variation into separate up and down semivariance measures defined by the summation
f the squared positive and negative high-frequency returns.
Underscoring the practical usefulness of this decomposition from a volatility forecasting perspective, Patton and Shep-

ard (2015) find that embedding the realized semivariances within the HAR modeling framework results in significantly
mproved volatility forecasts for aggregate equity index returns, albeit only modest gains for individual equities. Bollerslev
t al. (2020a) extend this idea to a multivariate setting, and show how realized covariance matrices may be similarly
ecomposed into four realized semicovariance components based on the signs of the underlying high-frequency returns.
hey also go on to empirically demonstrate how this four-way decomposition may be used in the construction of improved
ovariance matrix and portfolio variance forecasts.
Set against this background, we propose an extension of the realized semivariance and semicovariance measures

reviously considered in the literature. Semi-variances and covariances stratify returns by their sign; that is, using a
‘threshold’’ of zero. Our work in this paper is directly inspired by a July 19th, 2018, post on Frank’s No Hesitation blog.1

fter attending the 2018 NBER Summer Institute, Frank shared his thoughts on the intersection between two of the
resentations: Gu et al. (2020) on the use of machine-learning methods to asses the risk premiums in financial markets,
nd the aforementioned (Bollerslev et al., 2020a) paper on realized semicovariances. Contrasting the agnostic nature of
he machine learning methods used in the former paper with the economically-motivated zero threshold employed in
he second paper, Frank concluded his post with the following musings:

‘‘So here’s a fascinating issue to explore: Hit the Bollerslev et al. realized covariance data with machine learning (in particular,
ree methods like random forests) and see what happens. Does it ‘‘discover’’ the Bollerslev et al. result? If not, why not, and
hat does it discover? Does it improve upon Bollerslev et al.?’’
This special issue in honor of Frank’s many contributions, including those in volatility forecasting, seems to us to be

he perfect opportunity to answer Frank’s challenge.
In so doing, we firstly propose a new class of partial (co)variance measures, which allow for tresholds other than

ero, and for multiple thresholds. We use a data-driven approach to determine the optimal number and location of the
hresholds, based on the out-of-sample forecasting performance of a model using partial covariances with a given set of
hresholds. Our algorithm for determining the thresholds is inspired by tree methods, with the objective of dividing the
upport of the joint return distribution into sub-regions to improve the quality of the forecasts. However, our approach
iffers importantly from off-the-shelf tree methods in the sense that the branching occurs at a different frequency from
he dynamic modeling: the thresholds apply to the high-frequency intraday returns used in constructing the realized
artial covariance measures, while performance is assessed using the resulting daily volatility forecasts.
Our empirical analysis begins with a detailed investigation of the optimal choice of thresholds in univariate volatility

orecasting models. We use high frequency data on a set of highly liquid Dow Jones Industrial Average (DJIA) individual
tocks, as well as the S&P 500 aggregate market index. We find that when restricting partial variances to a single threshold,
ero does indeed emerge as the hero: models based on semivariances tend to do as well or better than more flexible
artial variance-based models. However, allowing for two or more thresholds leads to significant forecast improvements.
he locations of the optimal thresholds in the two-threshold case are typically in the left and right tails of the distribution
f the high-frequency returns, suggesting that optimally chosen partial variances do not simplify to semivariances.
We next look at multivariate volatility forecasting, with dimensions ranging from two to fifty. To accommodate the

ncreased dimension, we rely on a much wider set of S&P 500 constituent stocks. As in the univariate case, when the
artial covariances are restricted to a single threshold, zero emerges as the optimal choice. When allowing for multiple
resholds, we find that an ‘‘enhanced’’ semicovariance model emerges as the winner: this model has one threshold at zero,
s in semicovariances, and another flexibly-chosen threshold, which tends to be in the left tail of the intraday return
istribution. Applying partial covariances to returns with jumps removed, we find that a semicovariance-based model
e-emerges as the preferred specification.

The plan for the rest of the paper is as follows. Section 2 introduces partial variances and covariances, and relates
hem to semivariances and covariances. The univariate and multivariate volatility forecasting results are presented in

1 https://fxdiebold.blogspot.com/2018/07/machine-learning-volatility-and.html.
2
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Sections 3 and 4, respectively. Section 5 concludes. The online Supplemental Appendix contains additional details and
empirical results.

2. Partial variances and covariances

The realized semivariances of Barndorff-Nielsen et al. (2010) decompose realized variance into two separate parts
ssociated with positive and negative high-frequency returns. These measures naturally link to up- and down-side
ariances, and the long history of these types of measures in finance (e.g., Hogan and Warren (1972, 1974), Fishburn
1977) and Ang et al. (2006)). Bollerslev et al. (2020a) extend the univariate semivariance measures to the multivariate
ontext with the notion of realized semicovariances.
To help fix ideas, let rt,k,i denote the return over the kth intradaily time-interval on day t for asset i. Denote the N × 1

ector of returns, over equally-spaced intra-daily intervals, for the set of N assets by rt,k ≡
[
rt,k,1, . . . , rt,k,N

]′. Further, let
(x) ≡ min{x, 0} and p(x) ≡ max{0, x} denote the element-wise positive and negative elements of the real vector x, so
hat rt,k = n(rt,k) + p(rt,k). The three N × N daily realized semicovariance matrices are then defined by:

Nt ≡

m∑
k=1

n(rt,k) n(rt,k)′,

Mt ≡

m∑
k=1

n(rt,k) p(rt,k)′ + p(rt,k) n(rt,k)′,

Pt ≡

m∑
k=1

p(rt,k) p(rt,k)′ ,

(1)

where m denotes the total number of intradaily return observations available per day. It follows readily that,

RCOVt ≡

m∑
k=1

rt,kr′t,k = Nt + Mt + Pt . (2)

Thus, the semicovariances provide an exact, additive decomposition of the conventional daily realized covariance matrix
into ‘‘negative’’, ‘‘positive’’, and ‘‘mixed’’ semicovariance matrices. Since RCOVt , Nt and Pt are all defined as sums of vector
outer-products, these matrices are all positive semidefinite. On the other hand, since the diagonal elements of Mt are zero
by definition, this matrix is necessarily indefinite.2 Note also that for a single asset (N = 1), Pt and Nt are the positive
and negative (scalar) realized semivariance measures, while Mt ≡ 0.

The threshold at zero that underlies the semivariation measures may seem somewhat arbitrary from a statistical per-
spective. However, from an economic perspective the choice of zero is naturally motivated by notions of loss aversion and
prospect theory (Kahneman and Tversky, 1979), which have been extensively studied in the empirical finance literature,
see, e.g., Ang et al. (2006) and Bollerslev et al. (2020c) and the many references therein. Correspondingly, econometric
volatility forecasts based on zero-threshold semi(co)variation type measures have also been found to outperform the
forecasts from otherwise comparable forecasting models that do not exploit such measures, see, e.g., Kroner and Ng
(1998), Cappiello et al. (2006), Patton and Sheppard (2015) and Bollerslev et al. (2020b).

We generalize semi(co)variances to partial (co)variances by considering the use of multiple thresholds, rather than a
single threshold at zero. In particular, we use the fact that

rt,k =

G∑
g=1

fg (rt,k) (3)

represents an exact decomposition of the kth intradaily return vector rt,k into G components based on the partition
functions fg :

fg (x) = x ◦ 1{cg < x ≤ cg+1}, (4)

i where the tresholds satisfy c1 = −∞, cG+1 = ∞, and cg−1 ≤ cg ∀ g . Analogous to the realized semicovariances presented
in Eq. (1), realized partial covariances are then defined by:

PCOV (g,g ′)
t ≡

m∑
k=1

fg (rt,k)fg ′ (rt,k)′ (5)

2 Since the two matrices that define Mt are each other’s transpose, we combine them into a single ‘‘mixed’’ component. In situations where the
ordering of the assets matter, these two terms could be treated differently resulting in two different ‘‘mixed’’ components.
3
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Combining Eqs. (2), (3) and (5) we easily see that realized partial covariances provide a finer decomposition of the realized
covariance matrix:

RCOV t ≡

m∑
k=1

rt,kr′t,k

=

m∑
k=1

f1(rt,k)f1(rt,k)′ + f1(rt,k)f2(rt,k)′ + · · · + fG(rt,k)fG(rt,k)′ (6)

=

G∑
g=1

G∑
g ′=1

PCOV (g,g ′)
t

When the ordering of the assets is arbitrary, as in our empirical analysis below, it may again make sense to combine
the ‘‘mixed’’ partial covariances (where g ̸= g ′), leading to a decomposition of RCOV into G(G + 1)/2 partial covariance
matrices rather than G2 such matrices. This, of course, is completely analogous to the definition of M in Eq. (1).

Note that when the cross-sectional dimension is one, i.e., we only consider a single asset, the G(G − 1)/2 ‘‘mixed’’
partial covariance terms reduce to zeros and we have only G realized partial variances:

RVt =

m∑
k=1

f1(rt,k)2 + · · · + fG(rt,k)2 =

G∑
g=1

PV (g)
t (7)

In both the univariate and multivariate cases, when G = 2 and f1(x) = n(x) and f2(x) = p(x), realized partial (co)variances
reduce to realized semi (co)variances. When G = 1, realized partial (co)variances trivially reduce to the standard realized
(co)variances.

The freedom to choose the number and location of the thresholds in the realized partial covariances affords a great deal
of flexibility. Inspired by the widespread adoption of machine learning techniques in many areas of empirical economics,
in our empirical work below we rely on algorithms rooted in regression trees to determine the number and locations of
the thresholds. A key difference, however, between off-the-shelf tree methods as in Breiman et al. (1984) and the approach
that we use here is that our approach operates on two different time scales, i.e., the forecasting model is estimated at
the daily frequency, while the thresholds are determined at the high-frequency intraday level. By contrast, traditional
regression tree models are estimated with data sampled at a single frequency. Moreover, the forecasting models estimated
here are all linear in the parameters, while off-the-shelf tree-based methods are inherently non-linear. Modern regression-
based tree methods, such as random forests, also typically combine a large number of different trees to construct the
forecasts, rendering the interpretability of the branches difficult, while we purposely rely on a single ‘‘tree’’ thereby
affording easier interpretation of the results.

3. Optimal partial variances for volatility forecasting

We begin our empirical investigations with an analysis of the optimal choice of threshold in univariate volatility
forecasting models. This analysis helps guide our analysis in the next section of larger dimensional partial covariance
matrices.

All of the empirical results in this section are based on high-frequency returns for the S&P 500 SPY ETF and the Dow
Jones Industrial Average constituent stocks. The sample period starts on April 21, 1997, one thousand trading days before
the April 9, 2001 decimalization of the NASDAQ, and ends on December 31, 2013, for a total of 4202 observations. The
raw tick-by-tick data was obtained from the TAQ database. To help guard against complications associated with market
microstructure ‘‘noise’’, we follow the advice of Liu et al. (2015) and rely on a 5-min sampling frequency in the construction
of the daily realized measures.3 The same data and 5-min sampling frequency was also previously used in Bollerslev et al.
(2016), and we refer to that article for additional justification and details about our ‘‘cleaning’’ of the data.

To accommodate any large persistent movements in return volatility, we rely time-varying, asset-specific quantiles of
the volatility-standardized return distributions as thresholds when actually implementing the realized partial variation
measures. Specifically, for each asset, we obtain the quantiles as

ct,g = RV 1/2
t · Q̂

(
rt,k

RV 1/2
t

; qg

)
, for g = 2, 3, . . . ,G, (8)

where Q̂
(
z ; qg

)
returns the sample qg quantile of z.

Since the median of almost all high-frequency return distributions is nearly indistinguishable from zero, when qg = 0.5
partial (co)variances effectively correspond to semi(co)variances. The use of other and/or additional quantiles will, of

3 Diebold and Strasser (2013) discusses various underlying economic mechanisms that may possibly account for this ‘‘noise’’.
4
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Fig. 1. PV(2)-HAR forecasting performance. Note: The figure shows the out-of-sample MSE of the PV(2)-HAR model for the S&P 500 SPY ETF relative
to the MSE for the RV-HAR model as a function of the quantile threshold used in the definition of the partial variances.

course, result in distinctly different partial variation measures emphasizing other parts of the time-varying joint return
distributions.

The Heterogeneous Autoregressive (HAR) model of Corsi (2009) has arguably emerged as the benchmark model for
realized volatility-based forecasting, see, e.g., Bollerslev et al. (2018) and the many references therein. The basic RV-HAR
model relies on the lagged daily, weekly and monthly realized volatilities to linearly forecast the future volatility:

RVt = φ0 + φ1RVt−1 + φ2RVt−1|t−5 + φ3RVt−1|t−22 + ϵt , (9)

where RVt−1|t−h = h−1∑h
i=1 RVt−i. An important extension of the RV-HAR model, due to Patton and Sheppard (2015),

decomposes the lagged daily realized variance into the two semivariances.4 We term this the SV-HAR model:

RVt = φ0 + φ+

1 SV+

t−1 + φ−

1 SV−

t−1 + φ2RVt−1|t−5 + φ3RVt−1|t−22 + ϵt , (10)

where SV+

t =
∑m

k=1 p(rt,k)
2 and SV−

t =
∑m

k=1 n(rt,k)
2. In empirical applications of the SV-HAR model, the SV−

t typically
appears relatively more important than the SV+

t term.
In a direct extension of the SV-HAR model, we define the class of PV(G)-HAR models based on the realized partial

variances:

RVt = φ0 +

G∑
g=1

φ
g
1PV

(g)
t−1 + φ2RVt−1|t−5 + φ3RVt−1|t−22 + ϵt . (11)

In parallel to the SV-HAR model in (10) we only decompose the daily lag to allow for more clear-cut comparisons
concerning the choice of threshold(s) and the forecast gains from freely choosing the thresholds.

We begin our empirical analyses with a simple question: Do the forecasts from any PV(2)-HAR model beat the forecasts
from the semivariance-based SV-HAR model? The PV(2)-HAR model, of course, collapses to the SV-HAR model when the
threshold is fixed at zero, corresponding approximately to choosing the median as the partial variance threshold. Fig. 1
plots the out-of-sample MSEs for the one-day-ahead forecasts for the S&P 500 portfolio, based on daily-updated rolling
sample estimation windows of 1000 observation, as a function of the quantile used in the construction of the partial
variances. As the figure shows, the lowest MSE is obtained close to the median threshold, corresponding to the SV-HAR
model. Hence, for a PV(G)-HAR type model to convincingly outperform the SV-HAR model, it must involve more than one
threshold (G > 2), or a dynamically varying choice of threshold(s).

To further investigate this, we next extend the models underlying Fig. 1 to accommodate time-varying threshold(s).
As above, we rely on rolling estimation windows of 1000 observations for forecasting the one-day-ahead volatility. We
allow the grid of quantiles to range from 0.05 to 0.95 in increments of 0.05. We select the threshold, or combination of
thresholds, as the quantiles that minimize the average of the MSE based on 5-fold cross-validation (CV).5 More specifically,
for each model, we estimate the model based on four of the five sub-samples and compute the MSE for the fifth subsample.

4 The weekly and monthly realized variances can, of course, be decomponsed into their positive and negative semivariance components in a
similar manner. However, Patton and Sheppard (2015) report the largest gains came from decomposing only the daily lag.
5 k-fold CV methods are widely used for model selection in statistics and machine learning (Arlot and Celisse, 2010; Cerqueira et al.,

2020). Bergmeir et al. (2018) provide compelling evidence that CV can also be effectively used to evaluate time-series models. Additional details on
the specific CV procedure that we use here are provided in the Supplemental Appendix S1.
5
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Table 1
Univariate models: Unconditional forecasting performance.

RV SV PV(2) PV(3) PV(4) PV(G∗)

Panel A: S&P500

MSE 2.5186 2.4345 2.4388 2.3923 2.8534 2.3923
p-val. dmRV 0.164 0.176 0.049 0.674 0.050
p-val. dmSV 0.821 0.011 0.715 0.011
p-val. MCS 0.404 0.132 0.198 1.000 0.587 0.892

QLIKE 0.1387 0.1361 0.1360 0.1347 0.2017 0.1348
p-val. dmRV 0.005 0.003 0.001 0.994 0.001
p-val. dmSV 0.345 0.072 0.996 0.079
p-val. MCS 0.041 0.396 0.396 1.000 0.082 0.753

Panel B: Individual stocks

MSE 14.982 14.886 14.888 14.421 15.600 14.421
#sig. dmRV 10 13 24 0 24
#sig. dmSV 4 20 0 20
#sig. MCS 11 11 9 27 2 27

QLIKE 0.1547 0.1532 0.1529 0.1494 0.1828 0.1494
#sig. dmRV 18 19 26 0 26
#sig. dmSV 5 21 0 21
#sig. MCS 3 7 7 27 0 27

Note: The table reports the forecasting performance of the different models. The top panel shows the results for the S&P 500. The bottom panel
reports the average loss and 5% rejection frequencies of the Diebold–Mariano tests for each of the individual stocks. The one-sided tests between
PV-HAR against RV-HAR and SV-HAR are denoted by dmRV and dmSV , respectively. MCS denotes the p-value of that model being in the Model
Confidence Set, or the number of times that model is in the 80% Model Confidence Set. PV(G∗) dynamically chooses the best among the RV-HAR,
SV-HAR and HAR-PV(G) models with 2, 3 or 4 thresholds.

We then choose the quantile(s) that minimize the average MSE over the five different sub-samples. We consider four
versions of the PV(G)-HAR model: three using a fixed number of thresholds (G=1,2,3,4), and a version (denoted G∗) in
hich we allow for a varying number of thresholds determined through CV. The latter model thus uses between zero and
hree thresholds, such that it nests all the fixed threshold variants, as well as the basic RV-HAR and SV-HAR models.

Table 1 summarizes the forecasting results for the S&P 500 portfolio and the results obtained across all of the individual
JIA stocks.6 In addition to the PV(G)-HAR models, we also report the results for the benchmark RV-HAR and SV-HAR
odels. First consider the model performance in terms of MSE and QLIKE.7 For both the S&P500 and the individual stocks,

he PV(G)-HAR models with 2, 3 or a variable number of thresholds (G∗) outperform the basic HAR model. Compared
o the SV-HAR however, the PV(2)-HAR tends to perform slightly worse, while the PV(3)-HAR and PV(G∗)-HAR offer
lear improvements. The PV(4)-HAR performs extremely poorly, both for the S&P500 and the individual stocks, indicating
ver-fitting and too fine a partition of the realized variance.
To formally assess the performance of the models, each of the panels presents results of Diebold and Mariano (1995)

ests between the RV-HAR, the SV-HAR and the remaining models. For the S&P500, we present the p-values, while for
he 28 individual DJIA stocks, we present the number of rejections at the 5% level. While the SV-HAR clearly improves
ver RV-HAR based on the numerical losses, statistical significance is often lacking. The improvements is not significant
or the S&P500 and 18 out of 28 stocks, based on MSE, while the results based on QLIKE are stronger, being significant
or the S&P500 and 18 stocks. On the other hand, the PV(3) and PV(G∗) models significantly outperform the RV-HAR in
lmost all cases. They also tend to significantly improve over the SV-HAR. This is further corroborated by the final row of
ach panel, which presents p-values and frequency of inclusion of the 80% Model Confidence Set (MCS) of Hansen et al.
2011). For the S&P500, the PV(3) and PV(G∗) are both quite convincingly included in the MCS, as evidenced by their high
-values. Across the individual stocks, we also observe that these same two models are almost always included in the
CS. By comparison, the RV-HAR and SV-HAR models are included in the MCS for less than half of the firms.8
The forecasting performance of the PV-HAR models discussed above demonstrated two main points. First, improving

over SV-HAR is difficult. When restricted to a single threshold, consistently beating the zero threshold is very challenging.
Rather, to get close to the performance of the SV-HAR, we need two thresholds, with further improvements available by
dynamically selecting the thresholds using cross-validation. To help understand these findings, it is instructive to consider
the models that were actually selected by the PV(G∗)-HAR approach. Table 2 presents summary statistics on the number
and locations of the quantiles selected. The first set of columns show that for the vast majority of stocks and most of

6 Parameter estimates for the different models are summarized in Supplemental Appendix S3
7 QLIKE loss is computed as QLIKEt ≡ RVt/ht − log(RVt/ht ) − 1, where ht denotes the forecast.
8 As a robustness check, we repeated the entire analysis minimizing QLIKE in the CV step, resulting in very similar findings and forecasting
erformance. These results are reported in Supplemental Appendix S2.
6
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Table 2
Univariate models: Quantile selection.

PV(G∗) Model Unc. Threshold Cond. Threshold
Selection Selection Selection

SV PV(2) PV(3) PV(4) PV(2) PV(3) PV(2) PV(3)

q̄2 q̄2 q̄3 q̄2 q̄2 q̄3
S&P 500

0.000 0.001 0.999 0.000 0.78 0.14 0.70 0.67 0.14 0.70
Stocks
5% Quantile 0.000 0.000 0.980 0.000 0.43 0.06 0.69 0.73 0.06 0.69
Mean 0.001 0.004 0.995 0.000 0.64 0.09 0.75 0.86 0.08 0.75
Median 0.000 0.000 0.998 0.000 0.64 0.08 0.76 0.95 0.08 0.76
95% Quantile 0.007 0.019 1.000 0.000 0.85 0.15 0.85 0.95 0.14 0.85

Note: The table reports the quantile selection of the PV(G) models. The first set of columns show how often each number of thresholds are selected
in the PV(G∗) model. The second set of columns summarizes the thresholds for the PV(2) and PV(3) models. The final set of columns show the same
descriptives, conditional on the specific model being selected by the PV(G∗) model.

the time, the model is simply the PV(3) model. However, for a few of the stocks and certain time periods, only a single
thresholds is selected. The second set of columns provide summary statistics on the time-series averages of the selected
threshold, as well as their distributions across stocks. For the single threshold model, the threshold is typically above
the median, with an average of around 0.80 for the market index, and 0.66 for the individual stocks. When allowing
for two thresholds, as in the PV(3) model, the high thresholds are typically accompanied by an additional threshold in
the lower tail of the distribution, ranging roughly between the 0.05 and 0.15 quantiles. The final set of columns report
the average quantile, conditional on PV(G∗) selecting the single or double threshold model. As these results show, for
the individual stocks the single threshold model is almost exclusive chosen during times when the optimally selected
threshold is relatively high.

The time-series averages of the selected quantiles reported in Table 2 only tell part of the story. Going one step further,
Fig. 2 plots the cross-sectional averages and distributions over time. The top row presents the results for the S&P 500 SPY
ETF, while the bottom row presents the results averaged across the individual stocks. In the single threshold case, the
quantiles selected for the market index are typically fairly high. However, they are closer to the median around times
of financial difficulties, starting with the recession in the early 2000 s and subsequently during the financial crisis of
2008. Interestingly, the value of the cross-validated threshold for the market already dropped in early 2007, preceding
the financial crisis and the subsequent dramatic rise in the overall level of volatility. The results for the PV(3) model
(with two thresholds) shown in the top-right panel reveal similar dynamics, with both the upper and lower thresholds
converging to the median during the financial crisis. Compared to the results for the S&P 500, the values of the selected
quantiles averaged across the DJIA stocks appear quite stable through time. In the single threshold setting, the average
quantile is typically around 0.65. When allowing for two thresholds, a very low quantile combined with a fairly high
quantile emerge as the best choice.

The selection of two thresholds, one high and one low, is reminiscent of the HAR-J model of Andersen et al. (2007),
which decomposes the realized variance into separate continuous- and jump-variation components. However, whereas
the HAR-J model is based on the separately estimated continuous and jump components, where the latter combines the
variation stemming from both positive and negative jumps, our empirical results suggest that the direction of the jumps
actually matters, and that it is primarily the variation stemming from especially large negative jumps that should be
‘‘filtered out’’ and treated differently in the construction of the forecasts.9

Meanwhile, the challenge posed by Frank in his No Hesitation blog relates explicitly to the forecast improvements
afforded by the use of the semicovariance measures reported in Bollerslev et al. (2020a). Hence, to directly address Frank’s
questions, we next extend the above univariate analyses to a multivariate context.

4. Multivariate partial covariance models

To allow for the construction of large dimensional portfolios, we expand our previous sample of DJIA stocks to all
stocks that were part of the S&P 500 index during the 1993–2014 sample period. Removing stocks with fewer than 2,000
daily observations, this results in a total of 749 unique firms. We consider equally portfolios comprised of up to 50 stocks,
with all of the results reported below based on 100 such randomly selected portfolios of a given size. Since the use of
more extreme thresholds may easily result in many zero-valued realized partial covariances, we reduce our grid search
in the multivariate setting to thresholds ranging between the {0.1,0.2, . . . ,0.9} volatility-standardized quantiles.

9 The Supplemental Appendix S6 contains a more thorough analysis of the forecast performance of the PV(G)-HAR model based on the Conditional
Superior Predictive Ability (CSPA) test of Li et al. (2021). As that analysis also shows, the improved performance can only be partly attributed to
the model isolating jumps.
7
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Fig. 2. Univariate models: The time-series of selected threshold quantiles. Note: The top row presents the selected quantiles in the PV(2)- and
PV(3)-HAR models for the S&P 500 SPY ETF realized variance series. The bottom row shows the average selected threshold across the DJIA stocks
for the same two models. The time-series are smoothed using a [t − 25 : t + 25]-moving average.

The complications associated with market microstructure ‘‘noise’’ is further compounded in the multivariate setting
due to asynchronous prices, and the so-called Epps effect. To address this issue, for the stoicks analyzed here, which
includes some smaller-cap and less liquid stocks, Bollerslev et al. (2020a) advocated the use of a coarse 15-min sampling
frequency in the calculation of their realized semicovariance measures. While this sparse sampling effectively alleviates
the biases stemming frommarket microstructure ‘‘noise’’, it obviously also reduces the accuracy of the estimates compared
to the estimates that would obtain with more finely sampled returns in the absence of any ‘‘noise’’. The literature
has proposed a number of alternative procedures to more efficiently address these issues, including the kernel-based
approach (Barndorff-Nielsen et al., 2011), pre-averaging (Christensen et al., 2010), and subsampling (Zhang et al., 2005).
Out of these, the multivariate realized kernel has arguably emerged as the most popular ‘‘noise’’ robust approach for
realized covariance matrix estimation. Accordingly, we rely on realized kernel-based estimates constructed from 1-min
returns, denoted MK t below, as our object of interest and multivariate measure appearing on the ‘‘left-hand-side’’ in the
various forecasting models.

The smoothing out of the ‘‘noise’’ in the high-frequency returns that underlie the realized kernel estimates is at odds
with the intuition and motivation for the high-frequency return-based decompositions of the covariance matrix that
underlie the definitions of the semicovariance and new partial covariance measures. Hence, to maintain interpretability of
the new realized measures that we use as explanatory variables on ‘‘right-hand-side’’ in our forecasting models, we instead
rely on a subsampling scheme, in which we subsample 15-min returns at the 1-min frequency: the 15-min returns used
in determining the thresholds for the partial covariance being effectively void of the detrimental impact of microstructure
‘‘noise’’, while averaging over the 15 different subsampled estimates increase the precision.

More formally, let m denote the total number of high-frequency returns available per day at the highest sampling
frequency. Define M ≡ m/S, where S refers to the accumulation factor, or number of subgrids (for simplicity assume that
M is an integer). Let rst,k denote the sequence of k = 1, . . . ,M − 1, lower-frequency intraday returns originating at the
sth subgrid; i.e., rst,k =

∑S
i=1 rt,kS+s+i. The subsampled realized partial covariances are then simply defined by:

P̃COV
(g,g ′)

t ≡
1
S

S∑
s=1

[
M

M − 1

M−1∑
k=1

fg (rst,k)fg ′ (rst,k)
′

]
, (12)

here the partion functions fg are applied grid-by-grid. Effectively, this is simply the average of the previously defined
ealized partial covariances estimated on each of the S overlapping time grids. For notational convenience, we will drop
he explicit use of tilde in the sequel, and simply refer to the subsampled estimates by PCOV t . Similarly, we will refer
o the subsampled versions of the realized covariance and semicovariance matrices obtanied as special cases of (12) by
COV and SCOV for short.
t t

8
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Table 3
Multivariate models: PCOV(G∗)-HAR model selection.
N 1 2 5 10 20 50

RCOV 0 0 0 0 0 0
SCOV 6 4 0 0 0 0
PCOV(2) 0 0 0 0 0 0
SCOV+ 30 36 38 80 95 100
PCOV(3) 64 60 62 20 5 0

Note: The table reports the frequency, out of 100 random portfolios, with which various threshold
combinations are selected, as a function of the portfolio dimension N . RCOV implies no threshold, SCOV is
the single zero threshold, PCOV(2) indicates a single non-zero threshold, SCOV+ refers to two thresholds,
one of which is zero, while PCOV(3) denotes two thresholds, none of which equal zero.

Mirroring our univariate forecast analyses, we take the basic multivariate HAR model applied to the vech of the
ovariance matrices as our benchmark model,

vech(MK t ) = φ0 + φ1vech(RCOV t−1) (13)
+ φ2vech(RCOV t−1|t−5) + φ3vech(RCOV t−1|t−22) + ϵt ,

here φ0 is an N(N + 1)/2−vector, and the remaining coefficients are assumed to be scalar. We will refer to this as the
COV-HAR model. The SCOV-HAR model extends the benchmark model to allow for different influences of the three daily
emicovariance matrices:10

vech(MK t ) = φ0 + φN
1 vech(N t−1) + φM

1 vech(M t−1) + φP
1vech(P t−1) (14)

+ φ2vech(RCOV t−1|t−5) + φ3vech(RCOV t−1|t−22) + ϵt .

Finally, in a parallel to the univariate models defined in (11), we consider new multivariate PCOV(G)-HAR partial
ovariance-based models. Guided by the univariate results, we allow for up to three partitions, resulting in a maximum
f nine partial covariances, regardless of the cross-sectional dimension. Given that the ordering of our assets is arbitrary,
e combine the ‘‘mixed’’ partial covariances, leaving us with a maximum of six partial covariances:

vech(MK t ) = φ0 +

G∑
g=1

G∑
g ′=g

φ
(g,g ′)
1 vech(PCOV

(g,g ′)
t−1 ) (15)

+ φ2vech(RCOV t−1|t−5) + φ3vech(RCOV t−1|t−22) + ϵt ,

where

PCOV
(g,g ′)
t ≡

{
PCOV (g,g)

t for g = g ′

PCOV (g,g ′)
t + PCOV (g ′,g)

t , for g ̸= g ′.
(16)

We rely on the same 5-fold CV procedure to optimally select the number and values of the time-varying thresholds. We
do so by optimizing the multivariate MSE, or Frobenius norm, defined as:

MSEt ≡ Tr((MK t − H t )′(MK t − H t ))/N2,

where H t denotes the model forecast.
Table 3 provides a summary of the different models that were selected for the different portfolio dimensions N .

Specifically, the columns titled RCOV and SCOV show the number of times out of 100 for which the CV procedure selected
the model in (13) or (15), respectively. The row labelled SCOV+ refers to a model that adds one additional threshold to
the SCOV model (recall the SCOV model already contains a threshold at zero), while PCOV(2) and PCOV(3) denote one-
or two-threshold models, where all of the thresholds differ from zero. As in the univariate case, the preferred number
of thresholds is generally two: one of PCOV(3) or SCOV+ is selected for between 94% and 100% of the portfolios across
all values of N . Interestingly, the basic RCOV model is never selected, while the SCOV model is only selected for 6% of
the randomly selected individual stocks (N = 1) and never for any of portfolios involving 5 or more stocks. Taken as a
hole, the SCOV+ model, which involves zero plus one additional flexibly-chosen threshold, emerges as the clear winner,
specially for larger dimensions (N ≥ 10) where it is nearly always the preferred model.11
The emergence of the SCOV+ model as the preferred specification is further underscored by Fig. 3, which reports the

istributions of the selected quantiles for the PCOV models across the 100 random portfolios for different portfolio sizes

10 This model differs slightly from the specific model recommended in Bollerslev et al. (2020a), which involves a complete HAR-structure on N t ,
along with the monthly lag of M t . However, it more closely resembles the SV-HAR models analyzed in the previous section. It also provides a more
natural benchmark against which to assess the general PCOV(G)-HAR partial covariance class of models.
11 The actual parameter estimates for the SCOV+ models, reported in Supplemental Appendix S3, further reveal that the joint most-negative partial
covariance component typically stands out as the most important.
9
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r

Fig. 3. Multivariate models: Quantile selection. Note: The figures shows the frequency with which the different quantiles are selected as the optimal
threshold(s). Each column corresponds to a different cross-sectional dimension N . The shaded bar at 0.5 denotes the semicovariance threshold.

Table 4
Multivariate models: Forecasting results.
N MSE QLIKE

RCOV SCOV PCOV(G∗) RCOV SCOV PCOV(G∗)

1 22.943 22.590 21.429 0.178 0.168 0.155
(0.80) (0.85) (0.83) (0.65) (0.72) (0.72)

2 15.987 15.619 15.350 0.425 0.465 0.439
(0.77) (0.83) (0.93) (0.44) (0.33) (0.81)

5 7.314 7.121 6.987 1.293 1.242 1.248
(0.37) (0.49) (0.99) (0.22) (0.16) (0.97)

10 4.881 4.686 4.552 3.414 3.349 2.760
(0.13) (0.32) (0.98) (0.21) (0.21) (0.98)

20 3.702 3.574 3.461 9.541 9.275 8.726
(0.00) (0.25) (1.00) (0.00) (0.00) (1.00)

50 2.896 2.837 2.821 36.478 35.824 34.454
(0.00) (0.00) (1.00) (0.00) (0.00) (1.00)

Note: The table provides the MSE and QLIKE for the three HAR-based models, for various
cross-sectional dimensions N . The reported number is the average loss over 100 random
portfolios, while the number in parentheses presents the fraction of portfolios for which
the model is included in the 80% Model Confidence Set.

N . As in the univariate case, the two thresholds typically selected are zero and a low threshold. In fact, as Table 3 shows,
for N = 50 that is the only model and set of thresholds selected.

The previous results all pertain to in-sample model selection and threshold estimation. We next consider out-of-sample
multivariate forecasting. In parallel to the univariate analysis, we rely on rolling estimation windows of 1000 days for
recursively forecasting the covariance matrices one-day-ahead.12 Because of the high computational costs associated with
the calculation of the multivariate forecasts, we select the thresholds for the PCOV models only once, using the initial
training sample of the first 2000 days. Note, this differs from the univariate analysis, where we allowed for optimally
chosen thresholds in each of the rolling estimation windows.

Table 4 reports the average MSE and QLIKE loss for the different models, together with their prevalence in the
corresponding 80% MCSs.13 While the average losses for the SCOV and PCOV models are typically lower than the losses
for the benchmark RCOV model, the MCS does not appear to be able to convincingly discriminate between the models for
portfolios of size N ≤ 10. However, consistent with the earlier findings, the reductions in loss obtained by the threshold
models, and the partial covariation-based models in particular, appear to be increasing in the cross-sectional dimension
N . In fact, the RCOV model is never included in any of the MCSs for the N ≥ 20 dimensional forecasts. Recalling the earlier
esults discussed in Table 3 and Fig. 3, N = 20 also coincides with the dimension for which the PCOV(G∗)-HAR model
consistently selects the SCOV+ model with a low second threshold. Thus, while a variety of stock-specific thresholds
appear to be optimal for the smaller dimensional portfolios, the choice of zero, possibly augmented with a low additional
threshold, emerges as a ‘‘robust’’ best choice in large dimensions.14

Our findings that the PCOV(G∗) models tend to select at least one threshold in the tails, suggests that the success of
the partial covariance-based forecasting models may be related to ‘‘jumps’’. In order to further investigate this interplay
between the optimal choice of threshold(s) and jumps, we consider a collection of alternative models, where in the spirit

12 Supplemental Appendix S5 contains complementary results for forecasting the variance of portfolios using the partial covariances of the individual
stocks included in the portfolios.
13 Multivariate QLIKE loss is computed as QLIKEt ≡ Tr(H−1

t MK t ) − log |H−1
t MK t | − N , where H t denotes the covariance matrix forecast.

14 Supplemental Appendix S4 reports the results from forecasting the covariance matrices of stocks within the same industry. Consistent with
the idea of stock-specific thresholds, the relative performance of the PCOV(G∗) models appears marginally better in that context, and the selected
thresholds also differ from the SCOV+ thresholds, suggesting that there is indeed some commonality in the choice of thresholds for related stocks.
10
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Table 5
Multivariate models: PCOV(G∗)†-HAR model selection.
N 1 2 5 10 20 50

RCOV† 0 0 0 0 0 0
SCOV† 6 4 10 15 21 32
PCOV(2)† 0 0 0 0 0 0
SCOV+† 45 33 57 78 79 68
PCOV(3)† 49 63 33 7 0 0

Note: The table reports the frequency, out of 100 random portfolios, with which various
threshold combinations are selected, as a function of the portfolio dimension N , for the
HAR models using continuous (partial) covariance on the right-hand side. RCOV† implies
no threshold, SCOV† is the single zero threshold, PCOV(2)† indicates a single non-zero
threshold, SCOV†+ refers to two thresholds, one of which is zero, while PCOV(3)† denotes
two thresholds, none of which equal zero.

Table 6
Multivariate models: Forecasting results continuous (Partial) covariances.
N MSE QLIKE

RCOV† SCOV† PCOV(G∗)† RCOV† SCOV† PCOV(G∗)†

1 24.431 23.975 23.915 0.184 0.194 0.178
(0.94) (0.86) (0.89) (0.68) (0.57) (0.61)

2 14.994 14.751 14.480 0.434 0.434 0.411
(0.83) (0.88) (0.93) (0.58) (0.25) (0.77)

5 7.494 7.225 7.119 1.447 1.390 1.210
(0.53) (0.64) (0.96) (0.40) (0.18) (0.90)

10 5.029 4.867 4.800 3.478 3.292 3.207
(0.36) (0.53) (0.98) (0.17) (0.36) (0.92)

20 3.959 3.809 3.743 9.905 9.400 9.165
(0.09) (0.34) (1.00) (0.09) (0.39) (1.00)

50 2.970 2.946 2.938 36.796 36.404 35.861
(0.10) (0.42) (1.00) (0.00) (0.12) (1.00)

Note: The table provides the MSE and QLIKE for the three HAR-based models, for various
cross-sectional dimensions N , using jump-robust right-hand side variables. The reported
number is the average loss over 100 random portfolios, while the number in brackets
presents the fraction of portfolios for which the model is included in the 80% Model
Confidence Set.

of the C-HAR model of Andersen et al. (2007), we replace the different realized measures used in predicting the future
realized covariance matrices with the same measures constructed from high-frequency returns void of jumps. Following
the commonly used approach in the literature, we rely on dynamic thresholds of three times the trailing scaled bipower
variation, further adjusted for the strong intraday periodicity in volatility, to identify the jumps (see Bollerslev and Todorov
(2011) for additional details). We refer to these ‘‘continuous’’ realized variation measures and versions of the different
models by the † symbol, as in, e.g., PCOV†. As above, we also make use of subsampling techinques to further enhance the
efficiency of all the estimates.

Looking at the resulting models selected by the 5-fold CV criteria reported in Table 5, the basic SCOV† model is selected
much more frequently than the SCOV model based on the conventional measures that do not filter out jumps reported in
Table 3.15 Meanwhile, the same convergence towards the SCOV+† model evident for the conventional measures remains
true, although the removal of the variation stemming from jumps does negate the necessity of an additional threshold
for around 20%–30% of the randomly selected larger portfolios.

Further elaborating on this, Table 6 shows the corresponding forecasting results, analogous to Table 4 where the jumps
were not removed in the calculation of the different measures.

Taken together, the results show that it is the form of the selected model that changes when jumps are excluded,
not the predictive fit. In particular, when estimating the partial covariances with high-frequency returns void of jumps,
the simpler semicovariance-based models are preferable, while when jumps are not removed, a partial covariance-based
model with a threshold that effectively separates the negative jumps improves forecast performance.

5. Conclusion: Is zero optimal?

Motivated by a question posed by Frank Diebold in a 2018 blog post, this paper proposes a generalization of the class
of realized semi (co)variance measures introduced by Barndorff-Nielsen et al. (2010) and Bollerslev et al. (2020a) to allow

15 Recall that the results for the conventional measures in Table 3 showed that the combination of the zero threshold with one additional (typically
negative) threshold was the preferred choice in the majority of cases, especially for larger dimensions.
11
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for a finer decomposition of realized (co)variances. The new realized partial (co)variances allow for multiple thresholds,
rather than the single fixed threshold of zero used in semi (co)variances. The number and values of the thresholds used to
construct the partial (co)variances can be freely chosen by the researcher. In this paper, we adopt methods from machine
learning to optimally choose the threshold(s) so as to maximize the out-of-sample forecast performance of simple time
series forecasting models based on the realized partial (co)variances.

Overall we find that it is hard, but not impossible, to improve upon the simple fixed threshold of zero embedded in
ealized semi (co)variances. In particular, when restricting attention to partial (co)variances with a single threshold, the
ero threshold cannot be consistently beaten. However, when multiple thresholds are allowed for, a univariate model
ased on partial variances with two optimally-chosen thresholds significantly improve upon existing semivariance-based
odels. In our multivariate analyses, an ‘‘enhanced’’ semicovariance-based model, with one threshold at zero and another

lexibly-chosen threshold, typically in the left tail, emerges as the winner. Meanwhile, applying the same partial covariance
odels to variation measures constructed from high-frequency returns void of jumps, a semicovariance-based model

e-emerges as the preferred specification.
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