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RESEARCH Open Access

Beneficial effects of the nutritional supplements
on the development of diabetic retinopathy
Renu A Kowluru1*, Qing Zhong1, Julia M Santos1, Mangayarkarasi Thandampallayam1, Doug Putt1

and Dennis L Gierhart2

Abstract

Purpose: Increased oxidative stress and inflammatory mediators are implicated in the development of diabetic
retinopathy, and in rats, its development can be prevented by antioxidants. Carotenoids are some of the powerful
antioxidants, and diabetes decreases lutein and zeaxanthin levels in the serum and retina. The aim of this study is
to investigate the effect of carotenoid containing nutritional supplements (Nutr), which is in clinical trials for
‘Diabetes Vision Function’, on diabetic retinopathy.

Methods: Streptozotocin-induced diabetic rats (Wistar, male) were fed Purina 5001 supplemented with nutritional
supplements containing zeaxanthin, lutein, lipoic acid, omega-3 fatty acids and other nutrients, or without any
supplementation. Retinal function was analyzed at ~4 months of diabetes by electroretinography. After 11 months
of diabetes, capillary cell apoptosis (TUNEL-staining) and histopathology (degenerative capillaries) were quantified in
trypsin-digested retinal vasculature. Retina was also analyzed for mitochondrial damage (by quantifying gene
expressions of mtDNA-encoded proteins of the electron transport chain), VEGF and inflammatory mediators,
interleukin-1β and NF-kB.

Results: Diabetes impaired retinal function decreasing the amplitudes of both a- and b-waves. In the same animals,
retinal capillary cell apoptosis and degenerative capillaries were increased by 3–4 fold. Gene expressions of mtDNA
encoded proteins were decreased, and VEGF, interleukin-1β and NF-kB levels were elevated. Supplementation with
the nutrients prevented increased capillary cell apoptosis and vascular pathology, and ameliorated these
diabetes-induced retinal abnormalities.

Conclusions: Nutritional supplementation prevents diabetic retinopathy, and also maintains normal retinal function,
mitochondrial homeostasis and inflammatory mediators. Thus, this supplementation could represent an achievable
and inexpensive adjunct therapy to also inhibit retinopathy, a slow progressing disease feared most by diabetic
patients.

Keywords: Carotenoids, Diabetic retinopathy, Macular pigment, Mitochondria, Nutritional supplements, Zeaxanthin

Introduction
Retinopathy remains one of the most devastating compli-
cations of diabetes. Despite major advances in basic sci-
ence and clinical research to understand the complex
pathophysiology of this blinding disease, the exact mech-
anism remains elusive and effective treatment modalities
unclear. In diabetes, retina and its capillary cells experi-
ence increased oxidative stress, and their mitochondria be-
come dysfunctional and mitochondrial DNA (mtDNA) is

damaged [1-6]. In addition to capillary cells, increased oxi-
dative stress is also observed in other retinal cells, including
photoreceptors and retinal pigment epithelial cells [7,8].
Supplementation of antioxidants to diabetic rats containing
lipoic acid, multi-antioxidants or AREDS-based antioxi-
dants, prevents the onset of diabetic retinopathy [4,9,10].
In addition to oxidative stress, the retina also presents

many abnormalities consistent with other inflammatory
diseases, and animal models have provided promising re-
sults with anti-inflammatory therapies, suggesting that ret-
inopathy is a low-grade chronic inflammatory disease
[11,12]. Vascular endothelial growth factor (VEGF), an
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angiogenic factor important in vascular permeability and
neovascularization, is elevated in the retina and vitreous of
diabetic patients and animals, and this increase is asso-
ciated with the manifestation of diabetic retinopathy
[13-15]. Furthermore, redox-sensitive nuclear transcrip-
tional factor-B, NF-kB, which is important in regulation
of the expression of cytokines and growth factors, is ac-
tivated, and the levels of pro-inflammatory mediators,
such as interleukin-1β (IL-1β) and Intercellular Adhesion
Molecule-1 (ICAM-1) are increased [16,17]. Rodent models
have demonstrated that the antioxidants that inhibit the de-
velopment of diabetic retinopathy, also inhibit increases in
retinal NF-kB and IL-1β [17,18].
The high content of polyunsaturated fatty acids, com-

bined with the highest oxygen uptake and glucose oxida-
tion relative to any other tissue, makes the retina highly
susceptible to oxidative stress [19,20]. However, to coun-
teract the oxidative stress, carotenoids (organic pigments
with antioxidant properties) are actively concentrated in
the human eye [21]. Among this family of carotenoids, the
macular pigments lutein, and zeaxanthin have been found
to have important antioxidant and photoprotective activ-
ities [22,23]. Although lycopene and beta-carotene are
effective quenchers of singlet oxygen in the plasma, lutein
and zeaxanthin are the only carotenoids that accumulate
in the retina. Epidemiologic studies have shown an inverse
association between the levels of lutein and zeaxanthin
in the eye and age related degenerative diseases such as
macular degeneration and cataracts [24,25]. We have
shown that zeaxanthin administration in diabetic rats pre-
vents increase in retinal oxidative stress and proinflamma-
tory cytokines, VEGF, ICAM-1 [26], and antioxidants
containing vitamin C, vitamin E, β-carotene, N-acetyl cyst-
eine and other micronutrients inhibit the development of
diabetic retinopathy [4,24].
The goal of this study is to investigate the effect of the

nutritional supplementation, which is in ‘Diabetes Vision
Function’ clinical trials to improve the structure and func-
tion of the retina, on the development of diabetic retinop-
athy. Using rodent model of diabetic retinopathy, the
effect of multi-component nutrients was investigated on
the retinal capillary cell apoptosis, degenerative capillaries
and cell function. To examine the effect of this supple-
ment on amelioration of mitochondrial dysfunction and
on inflammatory cytokines, gene expressions of mtDNA-
encoded cytochrome b and ND1, and the levels of VEGF,
IL-1β and NF-kB were quantified.

Methods
Rats: Wistar rats (male, 200-225 g) were made diabetic
with streptozotocin, and divided into two groups. Rats in
group I received powder diet (Purina 5001) supplemented
with multi-nutritional supplements containing carotenoids
(Nutr). This EyePromise-DVS is specifically formulated to

improve the structure and function of the retina, and is
now being used for Diabetes Vision Function Supplement
Study Clinical Trials (Gov Identifier: NCT01646047).
Each kilogram of Nutr Purina diet contained Vitamin C
(as ascorbic acid, 300 mg), Vitamin D3 (Cholecalciferol,
10,000 IU), Vitamin E (d-alpha tocopherol, 300 IU), Fish
Oil EE70% (1.6 g), EPA (eicosapentaenoic acid, 650 mg),
DHA (docosahexaenoic acid, 500 mg), Benfotiamine (1 g),
α lipoic acid (750 mg), tocomin (200 mg), zeaxanthin
(40 mg), lutein (20 mg) and proprietary blend containing
300 polygonium duspidatum SE (resveratrol), green
tea, turmeric root (curcumoids), N-acetyl-cysteine,
Pyconogenol® Pine Bark, grape seed extract, coenzyme
Q10 and zinc (2.65 g), and soybean oil. Rats in group II re-
ceived Purina diet without any supplementation (Diab),
and age matched normal rats were used as control (Nor).
Average daily food consumption of the diabetic rats during
the entire duration of the study (11 months) was ~50 g.
The rats were sacrificed with CO2 ~11 months after initi-
ation of the experiment. One eye was suspended in 10%
formalin for trypsin digestion to prepare retinal microvas-
culature, and the retina from the other eye was isolated to
quantify biochemical parameters as routinely performed
in our laboratory [9,10]. A slice of the liver was removed
to confirm the uptake of some of the major constituents
by HPLC. Treatment of rats was carried out as per the
guidelines of National Institute of Health principles of la-
boratory animal care and the Association for Research in
Vision and Ophthalmology resolution on the use of ani-
mals in research, and the institutional guidelines.

Retinal capillary cell apoptosis and histopathology
Retina was isolated from the formalin-fixed eye, and rinsed
overnight with the running water. The microvasculature
was isolated by incubating the retina with 3% crude trypsin
(Invitrogen-Gibco, Grand Island, NY) containing 200 mM
sodium fluoride for 45 to 70 minutes at 37°C, and the
neuro-retinal tissue was gently brushed away. The apoptotic
vascular cells were detected by incubating the preparation
with terminal deoxyribonucleotide transferase (TdT)-medi-
ated dUTP nick end labeling stain (TUNEL; In Situ Cell
Death kit; Roche Molecular Biochemicals, Indianapolis, IN).
In each experiment, a positive control was run by exposing
the retinal vessels to DNAse before initiation of the TUNEL
reaction [9,10]. TUNEL positive cells were identified in a
masked fashion, and each trypsin digest was surveyed sys-
tematically under a Zeiss Axiophot photomicroscope.
After TUNEL staining, the microvasculature was

stained with periodic acid-Schiff and hematoxylin for
histologic evaluation. The number of acellular capillar-
ies was counted in multiple mid-retinal fields (one field
adjacent to each of the 5–7 retinal arterioles radiating
out from the optic disc) and expressed as total acellular
capillaries per retina [9,10].
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Functional assay
Retinal function was determined at ~4 months of diabetes
in rats by measuring electroretinogram (ERG) responses
using Ocuscience HMsERG system. The rats were dark-
adapted overnight, anesthetized with ketamine and xyla-
zine, and their pupils were dilated with 1.0% tropicamide,
1.0% cyclopentalate hydrochloride, and 2.5% phenyleph-
rine hydrochloride. The rats were placed on a heating plat-
form and body temperature was monitored by a rectal
thermometer. The amplitudes of a- and b-waves were
measured by placing a silver embedded thread eye elec-
trode at the corneal surface through a thin layer of 1%
methylcellulose. Needle electrodes placed in the tail and
cheek served as ground and reference electrodes, respect-
ively. A dark-adapted intensity-response series was re-
corded using a series of Ganzfeld flashes with intensities
ranging from 100–25,000 mcd.s/m^2, and the amplitudes
of a- wave (initial negative deflection, the trough of the
a-wave) and b-wave (positive deflection, trough of the
a-wave to the peak of the b-wave) were analyzed [27,28].
Reactive oxygen species (ROS) were quantified by fluor-

escence spectroscopy using 2′,7′- dichlorofluorescein dia-
cetate (DCFDA; Sigma-Aldrich, St. Louis, MO). Protein
(5-10 μg) was incubated in PBS with 2 μM of DCHFDA
for 10 minutes and fluorescence was measured at 485 nm
excitation and 530 nm emission wavelengths [29].
Antioxidant capacity of the retina was measured using

an assay which is based on the ability of the sample to
inhibit oxidation of 2,2′-Azino-di-[3-ethylbenzthiazoline
sulfonate]+ (ABTS) by metmyoglobin. The amount of
ABTS+ produced was measured by decrease in absorb-
ance caused by the antioxidants in the sample cause.
The samples were measured in duplicate [15].
Mitochondrial DNA damage was determined by mito-

chondrial genome-specific quantitative extended-length
PCR with the GeneAmp XL PCR kit. Products were re-
solved on an agarose gel and relative amplification was
quantified by normalizing the intensity of the long product
to the short product (mtDNA = 13.4 kb/210 bp). To
confirm mtDNA damage, gene expressions of mtDNA-
encoded proteins of the electron transport chain complex
I (ND1 & ND6) and complex III (cytochrome b, Cytb) were
quantified by real time PCR using the methods routinely
employed in our laboratory [6,29].
Quantification of VEGF, NF-kB and IL-1β: The amount

of VEGF was quantified by an ELISA method using a kit
from the R&D Systems, Minneapolis, MN, as routinely
performed in our laboratory [15,26].
Activation of NF-kB was estimated by ELISA using a

TransAM NF-kB kit from Active Motif (Carlsbad, CA) as
previously reported by us [10,30]. The assay is based on
the principle that only the active form of NF-kB in the
sample binds to oligonucleotide containing NF-kB consen-
sus site (5′−GGGACTTTCC–3′) that is immobilized onto

the microtiter plate, and the primary antibody (against p65
subunit of NF-kB) is accessible to the activated NF-kB
which is bound to its target DNA. The concentration of
IL-1β in the retina was quantified by an ELISA method
using a rat-specific kit from R&D Systems, as previously re-
ported by us [31]. Each sample was analyzed in duplicate.

Statistical analysis
Results are presented as mean ± SD, and were analyzed
using Sigma Stat software. The Shapiro-Wilk test was used
to test for normal distribution of the data, and the data
that did not present normal distribution, Kruskal-Wallis
test followed by Dunn’s test was applied. P value <0.05
was considered as statistically significant.

Results
Nutritional supplements containing carotenoids prevent
accelerated capillary cell apoptosis and histopathology
associated with diabetic retinopathy
As expected, at ~11 months of diabetes in rats, the retinal
vasculature had 3–4 fold increase in TUNEL-positive cells
and degenerative capillaries. However, the nutritional sup-
plements containing carotenoids ameliorated diabetes-
induced increase in capillary cell apoptosis, the number of
TUNEL-positive capillary cells was similar in diabetic rats
treated with the nutrients and normal rats (Figure 1a). In
the same Nutr-treated diabetic rats, the number of degen-
erative capillaries in the retinal vasculature was signifi-
cantly decreased compared with the age-matched diabetic
rats without any supplementation (Figure 1b). Figure 1c is
included to show the quantification of the degenerative ca-
pillaries in the retina.
Retinal function was assessed by performing ERG mea-

surements. Figure 2 shows significant decrease in the am-
plitudes of a- and b- waves at 10,000 mcd.s/m^2 in
diabetic rats (>25%), and this was accompanied by delayed
ERG response. Similar results were observed at 3,000
mcd.s/m^2 light fluxes (data not shown). These decreases
in the amplitudes of a- and b- waves, however, were atten-
uated in diabetic rats receiving diet supplemented with
Nutr (Figure 2b).

Increase in retinal oxidative stress and mitochondrial
damage are ameliorated in diabetic rats receiving the
nutritional supplementation
Retinal ROS levels were significantly higher in diabetic
rats, and the total antioxidant capacity, which includes
the sum of antioxidant enzyme activities, macromole-
cules and small molecules, was significantly decreased
compared with age-matched normal rats. However, dia-
betic rats receiving the supplement had significantly
lower ROS levels and higher antioxidant capacity com-
pared with diabetic rats without any supplementation
(Figure 3a & 3b).
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In the same nutrient-supplemented diabetic rats, dam-
age to mtDNA was also prevented, and this was further
confirmed by significantly higher gene expressions of
mtDNA-encoded proteins of the electron transport chain
compared to the values from diabetic rats receiving no
supplementation (Figure 4a & b). The levels of ND1 and
ND6 of complex I and cytb of complex III in the retina
were decreased by 40-80% in diabetic rats compared to
normal rats, however, supplementation with the nutrients
prevented such decreases, and the values obtained from

the rats in the Nutr group were significantly higher com-
pared to diabetic rats without any treatment.

Administration of the nutritional supplements protects
the retina from increase in inflammatory mediators
Diabetes in rats increased retinal VEGF levels by 50% com-
pared to normal rats, and this increase in retinal VEGF was
ameliorated by the nutrient supplementation (Figure 5a).
Since inflammation is also recognized as one of the

critical drivers of diabetic retinopathy, we measured the
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Figure 1 Nutrient administration inhibits retinal capillary cell apoptosis and degeneration in diabetic rats. Trypsin digested retinal
microvasculature was (a) analyzed for capillary cell apoptosis by TUNEL staining. (b) After TUNEL staining, the microvessels were stained with
periodic acid-Schiff-hematoxylin; the arrow indicates a capillary which has lost endothelial cell. (c) The number of acellular capillaries was counted
in the entire retinal vasculature, and represented as number of acellular capillaries/retina. Results are expressed as mean ± SD of 7–8 rats each in
normal (Nor), diabetic (Diab) and diabetic rats receiving the nutrients (Nutr) groups. *p < 0.05 compared to age-matched normal, and #p < 0.05
compared to diabetes.
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effect of this nutritional supplementation on NF-kB, a
redox-sensitive transcription factor which controls the ex-
pression of many genes involved with inflammation. As
shown in Figure 5b, the supplementation with the nutri-
ents protected diabetes-induced activation of retinal
NF-kB, the values obtained from rats in the Nutr group
were not different from those obtained from age-matched
normal rats. Consistent with this, diabetes-induced in-
crease in the levels of inflammatory cytokine IL-1β, was
also ameliorated by the nutrients (Figure 5c).

Supplementation with the nutrients does not ameliorate
the severity of hyperglycemia in diabetic rats
Analysis of the liver samples for some of the major nu-
trients showed that the levels of α-tocopherol increased
by 2 fold (36 μg/g to 74 μg/g), lutein by 3 fold (0.02 to
0.06 μg) and zeaxanthin by ~9 fold (0.008 to 0.07 μg/g)
in the liver of diabetic rats receiving the nutritional sup-
plements compared to diabetic rats without any supple-
mentation. Our previous work has shown that the
supplementation of rodent diet with 0.1% zeaxanthin
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Figure 2 Retinal dysfunction is ameliorated by the nutritional supplementation. ERG was performed in dark-adapted rats at ~4 months of
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Black = diabetic rats receiving the nutrients. *p < 0.05 compared to age-matched normal, and #p < 0.05 compared to diabetes.
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increased zeaxanthin levels in the retina by almost 10
fold [26]. Collectively, this suggests that the regimen
used in this study was successful in raising the levels of
these nutrients in the retina. However, the severity of
hyperglycemia, as measured by body weight, glycated
hemoglobin (GHb) and average 24 hour urine volumes,
was increased in diabetic rats compared with the nor-
mal rats, but, as shown in Table 1, the values obtained
from the rats in Nutr group were not statistically differ-
ent from those in diabetes group. This clearly implies
that the beneficial effects of this nutritional supplemen-
tation on diabetes-induced retinal pathology and metab-
olism were not due to the amelioration in the severity of
hyperglycemia.

Discussion
In the pathogenesis of diabetic retinopathy, accelerated
apoptosis of retinal capillary cells precedes the formation
of degenerative capillaries, and increased degenerative ca-
pillaries represent one of the features of retinopathy seen
in diabetic rodents [32,33]. Our previous work has shown
that the supplementation with antioxidants containing
β-carotene in rodent model of diabetic retinopathy pro-
tects the retina from the development of degenerative
capillaries. Furthermore, we have shown that AREDS-
based antioxidants also protect the retina from pathology
associated with diabetic retinopathy [9]. Carotenoids are
not synthesized in animals, but are generally obtained
from the diet. Among this group, α-, β- and γ-carotene,
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lycopene, lutein and zeaxanthin are some of the most
abundant carotenoids in the North American diet, and
luetin and zeaxanthin preferentially concentrate in the ret-
ina [21]. Diabetes is shown to decrease the macular pig-
ment optical density and also retinal zeaxanthin levels
[22,26]. Here, we show that administration of micronutri-
ents containing carotenoids prevents accelerated loss of ret-
inal capillary cells and the onset of diabetic retinopathy in a
rodent model. This is accompanied by protection of the ret-
inal dysfunction, which precedes the capillary cell apoptosis.
This nutritional supplementation reduces oxidative stress
and damage to the retinal mitochondria, and regulates
VEGF and inflammatory mediators increased in diabetes.
Thus, the supplementation, which is now being tested for
diabetes-related visual dysfunction, appears to have poten-
tial to inhibit the development of diabetic retinopathy.
In diabetic retinopathy, increase in capillary cell apop-

tosis is considered as a surrogate marker which precedes
the pathology characteristic of diabetic retinopathy [32].
Data presented here show that the nutritional supplemen-
tation protects the retina from both accelerated apoptosis
of retinal capillary cells and from the formation of degen-
erative capillaries.
Although the pathology associated with diabetic retin-

opathy is observed in the retinal vasculature, several

physiologic and functional abnormalities are observed be-
fore this histopathology appears. These functional abnor-
malities are mainly neuronal in origin; and neuronal cell
apoptosis can be seen as early as one month after induction
of diabetes [34,35]. Abnormal ERG responses appear before
vascular lesions begin to appear; streptozotocin-induced
diabetic rats present delayed ERG responses within one
month of induction of diabetes [36], while retinal capillary
cell apoptosis and histopathology are not observed till the
duration is extended to at least 6 months [32]. Similarly, al-
terations in multifocal ERG are considered to predict the
onset and progression of retinopathy in diabetic patients
[37,38]. Furthermore, recent studies have implicated photo-
receptors in the development of early stages of diabetic ret-
inopathy, and the possible mechanism appears to be
increase in oxidative stress [8]. The results presented here
clearly show that the supplementation with the nutrients,
in addition to protecting the retina from vascular abnor-
malities, also helps in the neuronal function as demon-
strated by amelioration of deficits in the amplitudes of
both a- and b- waves. These results demonstrate that this
supplementation, in addition to protecting the retinal vas-
culature, also protects the non-vascular cells, including
photoreceptors, bipolar, amacrine and Muller cells. Thus,
this nutritional supplementation has potential to inhibit
abnormalities associated with the early stages of diabetic
retinopathy before the capillary cells of the retina begin to
die and histopathology starts to appear.
Diabetes increases oxidative stress in the retina and its

capillary cells, and impairs the antioxidant defense mech-
anism. Mitochondrial superoxide radicals are increased,
and mitochondria become dysfunctional, their copy num-
bers are decreased and mtDNA is damaged. The damaged
mtDNA results in decreased mtDNA-encoded proteins
important in the electron transport chain, and this initiates
a continuous cycle of free radicals [1-6]. Carotenoids are
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Figure 5 Diabetes-induced increase in the retinal inflammatory cytokines is prevented in rats receiving nutritional supplementation.
Levels of (a) VEGF, (b) NF-kB and (c) IL-1β were quantified in the retina by using their specific ELISA kits. Each measurement was made in duplicate
using retina from 5–6 rats in each of the four groups, and the values are represented as mean ± SD. *p < 0.05 and #p < 0.05 compared to normal and
diabetes respectively.

Table 1 Effect of the nutritional supplementation on the
severity of hyperglycemia

Body weight (g) GHb (%) Urine volume
(ml/24 hours)

Normal 618 ± 71 5.7 ± 0.6 9 ± 8

Diabetes 369 ± 65 11.1 ± 2.1* 106 ± 20*

Diab + Nutr 354 ± 63 9.8 ± 2.4* 92 ± 42*

Body weights were measured 2 times/week, GHb every 3 months, and 24
hours urine volumes every 15 days. The values are mean ± SD of 8–10 rats
each in normal, diabetes and diabetes + Nutr groups. *p < 0.02 compared
to normal.
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powerful antioxidants, and by scavenging free radicals,
they protect the cells from the damage caused by free radi-
cals [39,40]. Antioxidant properties of carotenoids are rou-
tinely linked with their beneficial effects on chronic
diseases including diabetes, and the uptake of lutein and
zeaxanthin in the retina is decreased in diabetes [22]. Fur-
thermore, diets rich in carotenoids have shown protective
effects against some of the chronic eye diseases, including
age-related macular degeneration [21-23]. Our results sug-
gest that the nutrient supplementation containing carot-
enoid prevents the development of diabetic retinopathy by
protecting mtDNA from undergoing damage, and thus
preventing the initiation of the self-propagating cycle. In
support, dietary wolfberry supplementation (which con-
tains zeaxanthin) has been shown to protect from de-
crease in TFAM and mitochondria copy number [41,42],
which the retina experiences in diabetes [29,43].
VEGF, a hypoxia-induced factor is considered as one of

the major growth factors in the development of diabetic
retinopathy [13,14]; Diabetes-induced increase in VEGF
plays a pivotal role in the increased cell permeability dur-
ing the early stages of diabetic retinopathy, and in later
stages of the disease VEGF is implicated in the angiogen-
esis. Antioxidants administration protects the retina
from increases in VEGF [44], and we have shown that
zeaxanthin or curcumin supplementation for 2 months in
diabetic rats attenuates increase in retinal VEGF [15].
Here, we provide data showing that the long-term admin-
istration is also protective, retinal VEGF remains normal
in diabetic rats treated with the nutrients. This clearly im-
plies that the carotenoids protect increase in VEGF, both
in the early stages of the disease, and also during the later
stages of diabetic retinopathy when the capillary cells are
being lost and the capillaries are degenerating.
Diabetic retinopathy is also considered as a low-grade

chronic inflammatory disease, and sub-clinical inflamma-
tion is responsible for many of the vascular lesions seen in
patients with diabetic retinopathy. The levels of inflamma-
tory mediators (NF-kB, IL-1β, tumor necrosis factor α,
and ICAM-1 etc.) are elevated in the retina in diabetes
and leukostasis is increased [11,12]. NF-kB, a redox-
sensitive transcriptional factor, controls the transcription
of DNA, and also plays a central role in activating pro-
inflammatory genes. Diabetes activates NF-kB in the retina
and its vascular cells, and in the pathogenesis of retinop-
athy, activation of NF-kB is considered to act as pro-
apoptotic [18,45]. Furthermore, activation of NF-kB elevates
IL-1β, and IL-1β plays an important role in retinal capillary
cell death and the formation of acellular capillaries, the
microvascular pathology that is characteristic of retinopathy
in diabetes, and the antioxidants, which inhibit the develop-
ment of diabetic retinopathy in rodent models, also in-
hibit diabetes-induced increases in retinal IL-1β
[17,31,46]. We have shown that one of the key events

via which inflammation could contribute to the activa-
tion of the apoptotic machinery resulting in the devel-
opment of diabetic retinopathy, could be the damage
to the mitochondria [17,31]. Here, we show that the
this supplementation also prevents diabetes-induced
activation of NF-kB in the retina. These data further
strengthen the hypothesis that the beneficial effects of the
nutrients on diabetic retinopathy are mediated via inhib-
ition of both inflammation and mitochondrial damage.
However, with the encouraging results of these nutrients
on inflammatory mediators and VEGF, the possibility that
this supplementation also protects blood-retina barrier, an
abnormality which can be seen during early stages of dia-
betic retinopathy [47], cannot be ruled out.
In summary, our data demonstrate that the nutritional

supplementation, which is now in preclinical trials for
maintaining the structure and function of the retina of hu-
man subjects with long term diabetes, also protects neur-
onal cells and vascular cells, and inhibits the development
of retinopathy. This is achieved, possibly, via ameliorating
increase in inflammatory mediators and maintaining mito-
chondria homeostasis, thus protecting the retina from the
self-propagating vicious cycle of mitochondrial damage.
Along with other experimental data demonstrating the
beneficial effects of strategies to ameliorate oxidative stress,
and prevent/retard diabetic retinopathy [9,10,15,26], sup-
plementation with this micronutrients appears as an inex-
pensive adjunct therapy to inhibit retinal dysfunction, and
the onset of this blinding disease. We believe that with the
shortcomings of the clinical studies presenting inconclusive
results with the antioxidants [48,49], results from a con-
trolled clinical trial with this supplementation, which is
already being tested for preserving retinal structural and
functional abnormalities associated with diabetes, could
help diabetic patients inhibit retinopathy, and spare them
from losing their vision.
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