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A confidence interval for effect sizes provides a range of plausible population effect sizes 
(ES) that are consistent with data. This article defines an ES as a standardized linear 
contrast of means. The noncentral method, Bonett’s method, and the bias-corrected and 
accelerated bootstrap method are illustrated for constructing the confidence interval for 
such an effect size. Results obtained from the three methods are discussed and 
interpretations of results are offered. 
 
Keywords: Confidence interval, linear contrast, effect size, bootstrap, noncentral 
 

Introduction 

The importance of reporting effect sizes (ESs) and confidence intervals (CIs) has 
been strongly emphasized in the debate over null hypothesis significance testing 
as a methodology in social science research (Cohen, 1994; McCartney & 
Rosenthal, 2000; Nix & Barnette, 1998; Schmidt, 1996, although see Sawilowsky 
& Yoon, 2002, in this journal for a contrary view). Cumming (2012) 
characterized the shift from reliance on null hypothesis significance testing to the 
use of ESs, CIs, and meta-analyses as new statistics. Thompson (2002) stated, 
“An improved quantitative science would emphasize the use of confidence 
intervals (CIs), and especially CIs for effect sizes” (p.25), and constructing CIs 
for ESs facilitates meta-analytic thinking and interpretation. Thompson explained 
that reporting CIs allows future researchers to incorporate prior knowledge into 
the estimation of the same population ES. Furthermore, CI is directly related to 
the precision of ES estimates obtained from different studies. (See Knapp & 
Sawilowsky, 2001a, 2001b for a contrary view.) 

Professional organizations such as the American Psychological Association 
(APA) and the American Educational Research Association (AERA) have both 
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stressed the importance of reporting CIs for ESs, particularly since 1999. 
According to the APA Task Force Report, “Interval estimates should be given for 
any effect sizes involving principal outcomes” (Wilkinson and the Task Force on 
Statistical Inference, 1999, p. 599). The fifth and sixth editions of the APA 
Publication Manual stress that “The inclusion of confidence intervals (for 
estimates of parameters, for functions of parameters such as differences in means, 
and for effect sizes) can be an extremely effective way of reporting results” (APA, 
6th edition, 2010, p.34). In addition, the sixth edition of the APA Publication 
Manual emphasizes, “Whenever possible, provide confidence interval for each 
effect size reported to indicate the precision of estimation of the effect size” (APA, 
6th edition, 2010, p.34). Likewise, the AERA’s Standards for Reporting on 
Empirical Social Science Research suggest that, “For each of the statistical results 
that is crucial to the logic of the design and analysis, there should be included: … 
An indication of the uncertainty of that index of effect size …” (AERA, 2006, p. 
37). According to the sixth edition of the APA Publication Manual, it is crucial to 
report confidence intervals because “confidence intervals combine information on 
location and precision and can often be directly used to infer significance levels, 
they are, in general, the best reporting strategy” (p. 34). For ways to report CIs, 
the same APA manual states, “As a rule, it is best to use a single confidence level, 
specified on an a priori basis (e.g., a 95% or 99% confidence interval), throughout 
the manuscript. Wherever possible, base discussion and interpretation of results 
on point and interval estimates” (p. 34). 

Despite these efforts, the reporting rate of CIs for ESs in empirical studies is 
still low (Odgaard & Fowler, 2010; Peng, Chen, Chiang, & Chiang, 2013). This 
phenomenon may be due to a lack of understanding of the statistical properties of 
CIs for ESs, or a lack of suitable algorithms for the construction of CIs 
implemented in commercial statistic software (e.g., SPSS, SAS). Thus, this article 
aims to present three methods and algorithms for constructing the CI for a 
standardized linear contrast of means in a one-way fixed-effects univariate 
ANOVA design. This article defines a standardized linear contrast of means as a 
measure of ES for fixed-effects ANOVA designs. And the three methods are: the 
noncentral method, Bonett’s method, and the bias-corrected and accelerated 
bootstrap method.  

To facilitate the understanding of standardized linear contrasts of means and 
to illustrate the three methods, a sleep deprivation example from Kirk (1995) is 
used. This example serves as a template for discussing the construction of CI for a 
standardized linear contrast of means using the three methods. 
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A sleep deprivation example 
This example examines the effects of sleep deprivation on hand-steadiness. 
According to Kirk (1995): Assume an interest in the effects of sleep deprivation, 
treatment A, on hand-steadiness. The four levels of sleep deprivation of interest 
are 12, 18, 24, and 30 hours, which are denoted by a1, a2, a3, and a4, respectively. 
An experiment is conducted in which 32 subjects are randomly assigned to the 
four levels of sleep deprivation, with the restriction that eight subjects are 
assigned to each level. The dependent variable is the number of time during a 2-
minute interval that a stylus makes contact with the side of a ½-inch hole (p. 166). 
The independent variable is hours of sleep deprivation and the dependent variable 
is the number of times that a stylus held by a participant makes contact with the 
side of a ½-inch hole. The higher the number, the worse the performance, 
presumably affected by the deprivation of sleep. Data gathered from this study are 
shown in Table 1. 
 
 
Table 1. The number of times that a stylus held by a participant makes contact with a ½-
inch hole during a 2-minute interval from the sleep deprivation sample. 
 
          Hours of Sleep Deprivation 12 hours 18 hours 24 hours 30 hours 
Treatment Level a1 a2 a3 a4 
               
 4 4 5 3 

 6 5 6 5 

 3 4 5 6 

 3 3 4 5 

 1 2 3 6 

 3 3 4 7 

 2 4 3 8 

 2 3 4 10 
               
Group Sizes ( jn ) 8 8 8 8 

Group Means ( jY ) 3 3.5 4.25 6.25 

Standard deviation ( ˆ jσ ) 1.51 0.93 1.04 2.12 
           
 

Consider the hypothesis that a human’s fine motor skill decreases 
dramatically after being deprived of sleep for 24 hours or longer. Thus, interest 
lies in the contrast between the average performance of participants after 24 and 
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30 hours of sleep deprivation versus the average performance of participants after 
12  and 18 hours. The linear contrast of means (ψ) is written as 
 
 ( ) ( )24 hours 30 hours 12 hours 18 hours 10.5 0.5 ,k

j j jcψ µ µ µ µµ == × + − × + =∑   (1) 
 
where μj is the population mean for the jth group, k is the number of independent 
groups (= 4 for the sleep deprivation example), and cj is the coefficient or weight 
assigned to the jth group (= 0.5, 0.5, ̶  0.5, and  ̶ 0.5 for 24 hours, 30 hours, 12 
hours, and 18 hours of sleep deprivation, respectively). Equation 1 and all 
subsequent equations are written specifically to suit the sleep deprivation example 
first, followed by a general formulation (in blue). 

The value obtained from Equation 1 based on sampled data is an estimate of 
the corresponding population ES in original units. If a researcher wishes to 
standardize this ES, he/she needs to divide ψ with a standardizer. Such a 
standardizer is usually the population standard deviation, assumed to be equal and 
expressed as σ. For the specific ψ defined in Equation 1, its standardized form (δ) 
is written as follows: 
 

 ( ) ( )24 hours 30 hours 12 hours 18 o r 1h u s0.5 0.5
.

k
j j jcµ µ µ

δ
σ

ψ
σ σ

µµ =× + − × +
= = = ∑   (2) 

 
Reporting a standardized linear contrast of means is more informative than 

reporting a linear contrast of means in original units, when (1) the original unit of 
the dependent variable is not familiar to readers, or (2) a researcher intends to 
compare ESs obtained from studies that employ different dependent variables.  

The following three sections introduce three methods for constructing CIs 
for standardized linear contrasts of means as ESs. The three methods are the 
noncentral method, Bonett’s method, and the BCa (or the bias-corrected and 
accelerated bootstrap) method. After obtaining CIs results are compared and 
proper interpretations of CIs in this context are discussed. 

Methods 

Noncentral Method 
Within the null hypothesis significance testing framework, a linear contrast ψ 
defined in Equation 1 is tested with a t-statistic defined as: 
 



CONSTRUCTING CONFIDENCE INTERVALS IN ANOVA DESIGNS 

86 

 ( ) ( )
( ) ( ) ( ) ( )

24 hours 30 hours 12 hours 18 hours

2

1

2 2 2 2

1

0.5 0.5
,

0.5 0.5 0.5 0.5ˆ
8

ˆ

k
j j j

jk
j

j

c YY Y Y

c

Y
t

n
σσ

=

=

× + − × +
= =

+ + − + −
× ×

∑

∑
  (3) 

 
where jY  is the sample mean for the jth group (= 4.25, 6.25, 3.00, and 3.50 for 24, 
30, 12, and 18 hours of sleep deprivation, respectively), σ̂  is the pooled standard 
deviation that is used to estimate the equal population standard deviation 

( )2 2 2 2( 1.51 0.93 1.04 2.12 / 4 1.48)= + + + = , and jn  is the sample size for the jth 

group (= 8 for each of the four groups in sleep deprivation example). 
Under the null hypothesis of a 0 linear contrast of means, the t statistic is 

distributed as a symmetric central t distribution with a mean of 0. When the null 
hypothesis is false (meaning the population linear contrast of means does not 
equal 0), the t statistic follows a noncentral t distribution that is centered 
approximately at the noncentrality parameter λ, when the degree of freedom is 
large (see Cumming & Finch, 2001). The noncentral t distribution has two 
parameters: the degrees of freedom (or df = the number of participants  ̶  the 
number of independent groups) and λ. When λ is zero, the noncentral t distribution 
is the central t distribution, or simply the t distribution. 

One way to construct the CI for δ defined in Equation 2, is to use the 
noncentral t distribution. The noncentrality parameter λ of the noncentral t 
distribution is related to δ as follows, 
 

 ( ) ( )2 22 2

1

2 0.5 0.50.5 0.5 .
8 8 8 8

jk
j

j

c
n

λ λδ =

− −
= × + + = ×+ ∑   (4) 

 
And λ is defined as follows, 
 

 

( ) ( )
( ) ( )

( ) ( )

24 hours 30 hours 12 hours 18 hours

2 22 2

2 22 2

1

2

1

0.5 0.5

0.5 0.50.5 0.5
8 8 8 8

.
0.5 0.50.5 0.5

8 8 8 8

k
j j j

jk
j

j

c

c
n

µ µ µ

σ

µ

µ

λ

σ

δ =

=

× + − × +
= =

− −
× + + +

=
− −

+ ×+ +

∑

∑

  (5) 
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Steiger and Fouladi (1997) illustrated how to derive λ from the observed t statistic 
obtained from a sample. From λ, using Equation 4, δ can be derived. To construct 
a 95% confidence interval for δ, first compute the lower and the upper limits of λ 
from the observed t statistic. The lower limit for λ is the noncentrality parameter 
of the noncentral t distribution in which the observed t statistic is at the 97.5th 
percentile. The upper limit for λ is the noncentrality parameter of the noncentral t 
distribution in which the observed t statistic is at the 2.5th percentile. From the two 
limits of λ, the limits for δ can be derived. 

The use of noncentral distributions in constructing the CI for ESs involves 
sequence of iterations. In recent years, the computational difficulty for the 
noncentral t distribution has been overcome by algorithmic improvement. For 
example, the lower and upper limits of λ can be obtained in SAS® with the 
following syntax: 

 
lamda_lower=TNONCT (t_observed, df , .975); 

 
and  

 
lamda_upper=TNONCT (t_observed, df , .025); 
 
The df for the current example is 32  ̶  4 = 28. Once the lower limit and the 

upper limit of λ are obtained from SAS®, the lower limit and the upper limit of δ 
can be computed from the following according to Equation 4: 
 

 ( ) ( )2 22 2

lower lower

2

lower 1

0.5 0.50.5 0.5 , and
8 8 8 8

jk
j

j

c
n

λδ λ ==
− −

= × + + ×+ ∑    (6) 

 

 ( ) ( )2 22 2

upper uppe

2

uppr er 1

0.5 0.50.5 0.5 .
8 8 8 8

jk
j

j

c
n

δ λ λ == ×
− −

= × + + + ∑   (7) 

 
Applying the noncentral method for constructing the CI for a standardized 

linear contrast of means is discussed in the literature (Cumming & Finch, 2001; 
Kline, 2004; Steiger, 2004). Liu (2010) illustrated the geometric meaning of the 
noncentrality parameter for a linear contrast in a Euclidian space. Kelley and 
Rausch (2006) and Lai and Kelley (2012) considered the sample size required to 
achieve the desired accuracy in CI estimations. Readers should note that there are 
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two statistical assumptions associated with the noncentral confidence intervals for 
δ. These two assumptions are (1) normality for each population distribution and 
(2) equal variances for all population distributions. 

The SAS® macro “cinoncentral” (See Appendix A) yields the noncentral CI 
for a standardized linear contrast of means (δ). To execute this SAS® macro, 
readers first create a SAS data set in the DATA step of SAS®, or import the data 
into SAS®. This step is followed by the specification of a level of confidence, 
such as .95, and a coefficient for each group. 

Bonett’s Method 
Bonett (2008) proposed a more general definition of the standardized linear 
contrast of means in order to deal with unequal variances across populations: 
 
 ( ) ( )24 hours 30 hours 12 hours 18 hours

Bonett 2 2 2 2
24 hours 30 hours 12 hours 18 hours

1

2 2
1 1

0.5 0.5
.

4

k
j j j

k k
j j j j

c

k k

µ µ µ µ
δ

σ σ σ σ

µ ψ
σ σ

=

= =

× + − × +
=

+
=

+ +
= ∑
∑ ∑

  (8) 

 
It is worth noting that, when population variances are equal (i.e., 2

24 hoursσ =  
2
30 hoursσ =  2

12 hoursσ =  2
18 hoursσ = 2σ ), 

 

 

( ) ( )

( ) ( )

24 hours 30 hours 12 hours 18 hours
Bonett 2

24 hours 30 hours 12 hours 18 hours 1

0.5 0.5

4
4

0.5 0.5
.

k
j j jc

µ µ µ µ
δ

σ

µ µ µ µ
σ

µ
δ

σ
=

× + − × +
= =

× +
=

+ − ×
=∑

  (9) 

 
In other words, δ is a special case of δBonett when population variances are all 
equal. Based on a large sample approximation, Bonett derived the CI for δBonett as 
follows: 
 

 ( ) 1/2

Bonett critical Bonett
ˆˆ var ,zσ δ ±     (10) 

 
where zcritical is the critical value from the standard normal distribution, Bonettδ̂  is 

the sample estimate for the corresponding population δBonett, and ( )Bonett
ˆvar δ  is 
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the sample variance of Bonettδ̂ . The sample estimate for Bonett’s standardized 

linear contrast of means, i.e., Bonettδ̂ , is obtained from the following equation: 
 

 

( ) ( )24 hours 30 hours 12 hours 18 hours
Bonett 2 2 2 2

24 hours 30 hours 12 hours 18 ho

1 1

ur

2
Bonett1

s

0.5 0.5ˆ
ˆ ˆ ˆ ˆ

4

.
ˆˆ

k k
j j j j j j

k
j j

c Y

Y

Y

Y Y Y

c

k

σσ

δ
σ σ σ σ

= =

=

× + − × +
= =

+ + +

=∑ ∑
∑

  (11) 

 
It is worth noting that when sample sizes are all equal, Bonettˆ ˆσ σ= . And 

( )Bonett
ˆvar δ  is obtained from the following equation: 

 

 

( )
2 4 4 4 4
Bonett 24 hours 30 hours 12 hours 18 hours

Bonett 2 4
Bonett

2 2 2 2 2 2
24 hours 30 hours 12 hours

ˆ ˆ ˆ ˆ ˆˆvar
ˆ4 2 (8 1) 2 (8 1) 2 (8 1) 2 (8 1)

ˆ ˆ ˆ(0.5) (0.5) ( 0.5) ( 0.
(8 1) (8 1) (8 1)

δ σ σ σ σδ
σ

σ σ σ

   
= × + + +     × − × − × − × −  

× × − × −
+ + +

− − −
+

2 2

142
Bonett

12 4 2
Bone

2 2
18 

tt Bon

hours

2
Bo

et

nett

t

ˆ
ˆ ˆ
ˆ ˆ

ˆ5)
(8 1)

ˆ

,
2

j jk
j

j jk
j

j

c
df

k df

σ
σδ

σ σ

σ

σ

=

=

 
= +   × 

 ×
 − 

∑
∑

 (12) 

 
where dfj = the number of participants in the jth group minus 1. 

Bonett’s method assumes normality, but not equal variances for the 
population distributions. When population variances are equal, δ becomes a 
special case of δBonett. The SAS® macro “cibonett” (See Appendix B) yields 
Bonett’s CI for a standardized linear contrast of means (δBonett). To execute this 
SAS® macro, readers first create a SAS data set in the DATA step of SAS®, or 
import the data into SAS®. This step is followed by the specification of a level of 
confidence, such as .95, and a coefficient for each group. 
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The BCa Bootstrap Method 
The bootstrap method is a resampling technique that constructs an empirical 
distribution of estimates from data already collected. Thus, the bootstrap method 
does not require assumptions of either normality or equal variances. Nor does it 
rely on a theoretical sampling distribution, such as t or normal, to derive the lower 
or the upper limits of a confidence interval.  

Several methods of constructing CIs based on bootstrapping have been 
developed. These include the symmetric percentile bootstrap method, the bias-
corrected and accelerated (BCa) bootstrap method, and the approximate bootstrap 
confidence (ABC) interval method. The BCa bootstrap method introduced here 
corrects the bias in the symmetric percentile bootstrap method. To provide the 
general idea of bootstrapping technique, the symmetric percentile bootstrap 
method is presented first, followed by the BCa bootstrap method. 

The symmetric percentile bootstrap method constructs the CI by finding the 
α/2×Bth and [1 −  (α/2)]×Bth ranked values of the empirical distribution of the 
sample estimates. Here, α is the Type I error rate, such as .05; B is the number of 
bootstrap samples, such as 1,000. A bootstrap sample is a random sample of size 
n, drawn with replacement from the observed n scores. After a large number of 
bootstrap samples (e.g., 1,000) are formed, an empirical bootstrap distribution of 
the estimated effect sizes is constructed. From the empirical bootstrap distribution, 
the lower and upper confidence limits are derived. If α = 0.05 and B = 1,000, the 
lower limit of a 95% bootstrap confidence interval is the 0.05/2×1,000th ranked 
value of the empirical bootstrap distribution and the upper limit is the [1  ̶(0.05/2)]
×1,000th ranked value. 

Readers can apply the bootstrap technique to construct the CI for either δ 
(Equation 2) or δBonett (Equation 8). A step-by-step instruction for obtaining the CI 
for δBonett using the symmetric percentile bootstrap method is presented. Readers 
can use this instruction to construct the CI for δ as well. Assuming that a 95% CI 
is to be constructed for δBonett, based on the sample estimator Bonettδ̂ . Three steps 

are completed B times (e.g., 1,000) in order to yield B bootstrap estimates, *
Bonettδ̂ . 

The first step is to randomly sample eight scores with replacement from each of 
the four groups, where eight is the number of scores in each group. The second 
step is to compute the mean and the standard deviation of these eight scores from 
each group. The third step is to compute *

Bonettδ̂  by plugging the means and the 
standard deviations obtained from the second step into Equation 11. After 
obtaining the B (e.g., 1,000) bootstrap *

Bonettδ̂ , one lists them in an ascending order. 
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The .025×Bth (=25th) and the .975×Bth (=975th) ranked *
Bonettδ̂ are, respectively, 

the 95% lower and upper confidence limits. When estimates are tied, an average 
rank is assigned to the tied estimates.  

The BCa bootstrap method is an improvement over the symmetric percentile 
bootstrap method. Specifically, it constructs the CI for the standardized linear 
contrast of means (δ or δBonett) using CIlower×Bth and CIupper×Bth ranked values of 
bootstrapped estimates. The values of CIlower and CIupper depend on acceleration 
and bias-correction numbers, â  and 0ẑ , respectively. According to Efron and 
Tibshirani (1993), â  refers to the rate of change in the standard error of the 
estimated parameter (i.e., Bonettδ̂ ) with respect to the true population value (i.e., 
δBonett). The bias-correction number, 0ẑ , is interpreted as the median bias of the 
sample bootstrapped estimates. When exactly 50% of bootstrapped estimates are 
less than or equal to the observed estimate, 0ˆ 0z = . Using the notations described 
above for the symmetric percentile bootstrap method, 
 

 
( )

( )

*
Bonett Bonett1

0

ˆ ˆ#
ˆ ,

1,000
z

B

δ δ
−
 <
 = Φ
 =
 

  (13) 

 
where 1−Φ  is the inverse of the standard normal cumulative function and 

( )*
Bonett Bonett

ˆ ˆ# δ δ<  is the frequency of those bootstrap estimates (i.e., *
Bonettδ̂ ) that 

are less than the observed estimate (i.e., Bonettδ̂ ). The acceleration â  is obtained 
using the jackknife method that takes the form: 
 

 
( )
( )

3
32

1 Bonett Bonett

3
2 232

1 Bonett Bonett

ˆ ˆ
ˆ ,

ˆ ˆ6

i i

i i

a
δ δ

δ δ

= −

= −

−
=

 − 
 

∑

∑
  (14) 

 
where Bonett

ˆ
iδ −  is the value of Bonettδ̂  with the ith score removed from the entire 

data (i = 1,…,32 in the sleep deprivation example), and Bonettδ̂  is the average of all 

possible Bonett
ˆ

iδ − . The CIlower and CIupper for a 95% confidence interval are given 
by 
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.025

2
0

lower 0
.025

2
0

ˆˆCI ,  and
ˆ ˆ1

z zz

a z z

α

α

 = 
 

 = 
 

 
 
 +

= Φ +   − +   
  

  (15) 

 

 
1 .975

2
0

upper 0
1 .975

2
0

ˆˆCI .
ˆ ˆ1

z zz

a z z

α

α

 − = 
 

 − = 
 

 
 
 +

= Φ +   − +   
  

  (16) 

 

Here, 2z
α 
 
   is the (100

2
α

× )th percentile of a standard normal distribution. 

For a 95% confidence interval, 
.025

2z
α = 
  = −1.96 and 

1 .975
2z
α − = 

  = 1.96. The BCa 
confidence intervals yield the same results as the symmetric percentile bootstrap 
confidence intervals, when 0ẑ  and â  both equal 0. In other words, CIlower = Φ(‒
1.96) = .025 and CIupper = Φ(1.96) = .975, when 0ẑ  and â  both equal 0. The BCa 
method is superior to the symmetric percentile bootstrap method because it leads 
to better approximations to the lower and upper limits. However, Efron and 
Tibshirani (1993) stated, “their [the BCa] coverage accuracy can still be erratic 
for small sample sizes” (p.178). Chen’s dissertation (2013) uncovered that the 
coverage probability produced by the BCa method was satisfactory when each 
group size was 30. Kelley’s (2005) simulation found that BCa method’s coverage 
probability was poor when each group size was eight. 

The process for constructing the BCa CI for δBonett may appear complex to 
some readers. However, a SAS® macro “cibca” (See Appendix C) based on the 
SAS program written by Barker (2005) is provided here to assist researchers in 
constructing BCa CIs for δBonett, of which δ is a special case. To execute this 
SAS® macro, readers first create a SAS data set in the DATA step of SAS®, or 
import the data into SAS®. This step is followed by the specification of a number 
of bootstrap estimates (e.g., 1,000), a coefficient for each group, and a level of 
confidence, such as .95. 
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Results 

Given the standardized linear contrast of means (δ in Equation 2) from the sleep 
deprivation example, the 95% noncentral CI was computed to be [0.56758, 
2.12318]. Likewise, given the standardized linear contrast of means (δBonett in 
Equation 8), the 95% Bonett’s CI was computed to be [0.50045, 2.20958] and the 
BCa bootstrap CI to be [0.51967, 2.13941]. Thus, the CIs constructed by the three 
methods are slightly different from each other. The noncentral CI is the narrowest 
(= 2.12318  ̶  0.56758 = 1.55560) or most precise, followed by the BCa bootstrap 
CI (= 2.13941 ̶  0.51967 = 1.61973), and the Bonett’s CI (= 2.20958  ̶ 0.50045 = 
1.70913). These results are consistent with findings obtained by Chen (2013) in a 
thorough investigation of these three methods under a variety of conditions. 

In actuality, it is not necessary to compute more than one CI for a 
standardized ES. It is however necessary for researchers to be informed of the 
optimal method for a particular research context. For the purpose of 
demonstration, the correct interpretation of the noncentral CI for the contrast of 
interest (i.e., δ in Equation 2) is described. 

How to interpret confidence intervals for a standardized linear 
contrast of means? 
The 95% noncentral CI ranges from 0.56758 (or 0.57) to 2.12318 (or 2.12). 
Derived from the data presented in Table 1, all values contained in this interval 
cannot be rejected with a Type I error rate of 5%, if they are placed in a null 
hypothesis. Furthermore, all values in this interval are greater than 0. Thus, a null 
hypothesis of 0 standardized mean difference should be rejected at an α level 
of .05. Based on the data and the noncentral CI, readers can conclude that the 
difference in the number of times that a stylus touched the sides of a ½ hole 
between people deprived of sleep for 24 hours or longer and people deprived of 
sleep less than 24 hours can be as large as twice of the standard deviation of the 
data, or as small as a half of the standard deviation. 

Discussion 

A measure of an ES gives a point estimate of a treatment effect, whereas a CI of 
such an ES provides the precision of the estimation. Although both the APA and 
the AERA have encouraged researchers to report CIs for ESs, Odgaard and 
Fowler’s (2010) study found that the reporting rate of CIs for ESs was only 40% 
in the Journal of Consulting and Clinical Psychology—the first APA journal that 
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required the reporting of CIs for ESs for primary results. A similar finding is 
reported by Peng et al. (2013) across a variety of psychology and education 
journals. The reporting of CI can be encouraged through accessible and reliable 
computing algorithms. 

This article (1) illustrates the need to report CIs for ESs, (2) addresses the 
importance of reporting the CIs for ESs, (3) introduces, demonstrates, and 
compares three methods (the noncentral method, Bonett’s method, and the BCa 
bootstrap method) for constructing the CI for a standardized linear contrast of 
means (a measure of the ES), and (4) provides SAS programming codes for these 
methods. The readers should note that the SAS programming codes provided in 
Appendices A – C are applicable for unequal sample sizes as well. It is hoped that 
this paper facilitates researchers’ understanding of these three methods and 
enables them to report the CIs for ESs, defined as standardized linear contrasts of 
means in fixed-effects ANOVA designs. 
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Appendix A 

SAS® Macro “cinoncentral” 
***************************************************************************; 
*   format for data set: first variable = group, second variable = scores  ; 
*   data = data set name                                                   ; 
*   nominal = nominal confidence level                                     ; 
*   contrast = a coefficient for each group, e.g., {.5 .5 -.5 -.5}         ; 
***************************************************************************; 
%MACRO cinoncentral(data,nominal,contrast); 

PROC IML; 
USE &data; 
READ ALL INTO datain; 
nn=NROW(datain); 
groups = UNIQUE(datain[,1]);  *get group information of the data; 
ngroups = NCOL(groups);  *get number of groups of the data;      
CALL SYMPUTX("n_groups",ngroups); *set the macro variable n_groups to be the 

 number of groups; 
%DO i = 1 %TO &n_groups;  *loop for groups; 
group&i = datain[LOC(datain[,1]=&i),2]; /*obtain all the scores for each group*/  
mu&i=mean(group&i); 
sum&i = sum(group&i); 
v_sum&i =(sum&i)**2;  
n&i = nrow(group&i); 
v_sum_n&i=v_sum&i/ n&i; 
%END; 
mu=mu1; 
v_sum=v_sum1; 
n=n1; 
v_sum_n=v_sum1/n1; 
%DO i=2 %TO &n_groups; 
mu=mu//mu&i; 
v_sum = v_sum//v_sum&i; 
n = n//n&i; 
v_sum_n=v_sum_n//v_sum_n&i; 
contrast = t(&contrast); 
%END; 
df=n-1; 
numerator=(contrast)`*mu; 
mse1=(datain[,2])`*(datain[,2]); *squared values of all scores; 
mse2=sum(v_sum_n); 
mse=(mse1-mse2)/(nn-ngroups); 
contrast_square=(contrast)##2; 
n_1=1/n; 
nu=(contrast_square)`*(n_1); 
t=numerator/(SQRT(mse*nu)); 
lamda_lower = TNONCT(t,nn-ngroups,1-(1-&nominal)/2);  /*compute the lower 
        noncentrality*/ 
lamda_upper = TNONCT(t,nn-ngroups,(1-&nominal)/2);  /*compute the upper 
        noncentrality*/ 
coe = sqrt(nu); 
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NCt_lower=lamda_lower*coe;        /*Lower limit of noncentral ES*/ 
NCt_upper=lamda_upper*coe;        /*Upper limit of noncentral ES*/ 
Width= NCt_upper- NCt_lower; 
TITLE "The confidence interval based on the noncentral method"; 
TITLE2 "Coefficient=&contrast Confidence level=&nominal"; 
PRINT NCt_lower NCt_upper Width; 
QUIT; 
%MEND; 
data a; 
input group y @@; 
cards; 
1  3 2 5 3 4 4 4 
1  5 2 6 3 5 4 6 
1  6 2 5 3 4 4 3 
1  5 2 4 3 3 4 3 
1  6 2 3 3 2 4 1 
1  7 2 4 3 3 4 3 
1  8 2 3 3 4 4 2 
1 10 2 4 3 3 4 2 
; 
run; 

%cinoncentral(a,.95,{.5 .5 -.5 -.5}); 

Appendix B 

SAS® Macro “cibonett” 
***************************************************************************; 
*   format for data set: first variable = group, second variable = scores  ; 
*   data = data set name                                                   ; 
*   nominal = nominal confidence level                                     ; 
*   contrast = a coefficient for each group, e.g., {.5 .5 -.5 -.5}         ; 
***************************************************************************; 
 
%macro cibonett(data,nominal,contrast); 
TITLE "Bonett &nominal confidence interval"; 
proc IML; 
use &data; 
read all into datain; 
groups = UNIQUE(datain[,1]);  *get group information of the data; 
ngroups = NCOL(groups);  *get number of groups of the data;      
CALL SYMPUTX("n_groups",ngroups); *set the macro variable n_groups to be the 
      number of groups; 
%DO i = 1 %TO &n_groups;  *loop for groups; 
group&i = datain[LOC(datain[,1]=&i),2]; /*obtain all the scores for each group*/ 
mu&i = mean(group&i); 
var&i = var(group&i); 
n&i = nrow(group&i); 
%END; 
mu=mu1; 
var=var1; 
n=n1; 
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%DO i=2 %TO &n_groups; 
mu = mu//mu&i; 
var = var//var&i; 
n = n//n&i; 
contrast = t(&contrast); 
%END; 
df=n-1; 
delta_bonett=sum(mu#contrast)/sqrt(mean(var)); 
k = ngroups; 
v1=(delta_bonett**2/(k**2*(mean(var))**2)); 
v2=sum((var##2)/(2*df)); 
v3=sum(((contrast##2)#var)/df)/mean(var); 
var_delta_bonett=v1*v2+v3; 
bonett_upper = delta_bonett + PROBIT(1-(1-&nominal)/2)*SQRT(var_delta_bonett); 
bonett_lower = delta_bonett - PROBIT(1-(1-&nominal)/2)*SQRT(var_delta_bonett); 
width=bonett_upper-bonett_lower; 
PRINT delta_bonett bonett_lower bonett_upper width; 
quit; 
%mend; 
data a; 
input group y @@; 
cards; 
1  3 2 5 3 4 4 4 
1  5 2 6 3 5 4 6 
1  6 2 5 3 4 4 3 
1  5 2 4 3 3 4 3 
1  6 2 3 3 2 4 1 
1  7 2 4 3 3 4 3 
1  8 2 3 3 4 4 2 
1 10 2 4 3 3 4 2 
; 
run;  

%cibonett(a,.95,{.5 .5 -.5 -.5}); 

Appendix C 

SAS® Macro “cibca” 
***************************************************************************; 
*   format for data set: first variable = group, second variable = scores  ; 
*   data = data set name                                                   ; 
*   b = the number of bootstrap sample                                     ; 
*   con = a coefficient for each group, e.g., {.5 .5 -.5 -.5}              ; 
*   nominal = nominal confidence level                                     ; 
***************************************************************************; 
%MACRO cibca(data=,b=,con=,nominal=); 
/******************************************************************************/ 
/*This section of IML do the bootstrap resampling with B replications and     */ 
/*save the samples into zboots&i data sets (&i = 1 to number of groups)       */ 
/*It also calculate the delta_bonett for the original data set                */ 
/******************************************************************************/ 
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PROC IML;   
USE &data; 
READ ALL INTO datain; 
groups = UNIQUE(datain[,1]);  *get group information of the data; 
ngroups = NCOL(groups);  *get number of groups of the data;      
CALL SYMPUTX("n_groups",ngroups); *set the macro variable n_groups to be 

 the number of groups; 
%DO i = 1 %TO &n_groups;  *loop for groups; 
group&i = datain[LOC(datain[,1]=&i),2]; *obtain all the scores for each group; 
mu&i = mean(group&i); 
var&i = var(group&i); 
group_n=NROW(group&i); 
CALL SYMPUTX("n",group_n); 
z&i = j(1,2,.); *obtain the b times bootstrap sample for each group; 
%DO m = 1 %TO &b; *loop for the bootstrap samples; 

y = group&i; /*This part of code (bootstrap) is adapted from     */ 
z = j(&n, 1, 0) ; /*http://www.biostat.umn.edu/~john-c/5421/notes.016b*/  
ite = J(&n,1,&m); /*Identify the nth bootstrap sample */ 

do j = 1 to &n ;      
yrandindex = 1 + int(&n * ranuni(-1)) ; 
z[j] = y[yrandindex] ; 

end ; 
z = ite||z; 

z&i=z&i//z ; 
%END; 
CREATE zboots&i FROM z&i; /*Put matrices to data sets the first column 

 is the index for boot sample*/; 
APPEND FROM z&i;  *the second column is the boot sample data; 

*Save the matrices from IML to SAS data set; 
%END; 
mu=mu1;   *do the delta_bonett for original data; /*for jackknife*/ 
var=var1; 
%DO i=2 %TO &n_groups; 
mu = mu||mu&i; 
var = var||var&i; 
%END; 
o_delta_bonett=j(&b,1,(mu#&con)[,+]/sqrt((var[,+])/&n_groups)); 

CREATE origbonett FROM o_delta_bonett ; 
APPEND FROM o_delta_bonett; /* save the delta_bonett for original data 

   to origbonett data*/ 
QUIT; 
 
/******************************************************************************/ 
/* Below loop calculate the means and variances by each  
   boot index for each groups */ 
/******************************************************************************/ 
%DO i = 1 %TO &n_groups; 
proc means data = zboots&i noprint; /*Compute the group means and vars for each 
      bootstrap sample*/ 
class COL1; 
var COL2; 
output out=meanvar&i mean=mu var=sigmasq; 
run; 
data meanvar&i;set meanvar&i;  *delete unused information; 



CHEN & PENG 

101 

if _type_=1; 
drop _type_ _freq_; 
run; 
%END; 
/******************************************************************************/ 
/*Below IML calculate the delta_bonett for the bootstrap data set*/ 
/******************************************************************************/ 
PROC IML; 
%DO i = 1 %TO &n_groups; 
USE meanvar&i; 
READ ALL INTO mv&i; 
%END; 
mu = mv1[,2];    *assign the means of first group to mu; 
var = mv1[,3];    *assign the vars of first group to var; 
%DO i = 2 %TO &n_groups; /*this loop add means and vars of other groups 

  to mu and var*/ 
mu = mu||mv&i[,2]; 
var = var||mv&i[,3]; 
%END; 
con=repeat(&con,&b,1);  *make the contrast to a matrix for calculation; 
delta_bonett=mv1[,1]||(mu#&con)[,+]/sqrt((var[,+])/&n_groups); 

/*calculate delta_bonett for each bootstrap sample 
  and then add the bootstrap index to the first 
  column for later use*/; 

CREATE delta_bonett FROM delta_bonett ; 
APPEND FROM delta_bonett; 
QUIT; 
/*COMPUTE BIAS*/ 
data bonett  /* data set containing bootstrap values */ 
bias (keep=bias); /* data set containing bias correction value */ 
merge delta_bonett(rename=(COL1=sample COL2=delta_bonett)) 
origbonett(rename=(COL1=origbonett)) end=eof; 
if delta_bonett lt origbonett then lessthan=1; /*flag if bootstrap sample 
         gives lower */ 
else lessthan=0; /*value than original sample */ 
retain nless 0; /*retain variable nless with starting value 0, 

  the second value of nless will be 0 add to the 
  first value of lessthan*/ 

if sample gt 0 then nless=nless+lessthan; /* count samples with flag lessthan */ 
if sample ne 0 then output bonett; /* output only bootstrap sample statistics */ 
if eof then do; /* for the last value calculate: */ 
propless=nless/sample; /* 1. proportion of values below original estimate */ 
bias=probit(propless); /* 2. inverse normal of that proportion */ 
output bias;   /* 3. output only that record to new data set */ 
end; 
run; 
/*JACKKNIFING ACCELERATION*/ 
data origjack;  /* create a new data set which contains observation */ 
set &data end=eof; /* numbers 1 to &nobs (no. obs in data set) */ 
obsnum=_n_; 
if eof then call symput('nobs', put(obsnum, 2.)); /*assign the characterstring 

_n_ to macro variable nobs"*/ 
run; 
%macro jackdata;  /* use macro for %do processing utility */ 
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data jackdata; 
set 
%do i=1 %to &nobs;  /* do loop to create all samples */ 
origjack (in = in&i 
where=(obsnum ne &i))  /* remove a different value each time */ 
%end;; 
%do i=1 %to &nobs; 
if in&i then repeat=&i; /* add repeat number for each sample */ 
%end; 
run; 
%mend; 
%jackdata; 
proc means data=jackdata noprint nway; /*Group means for each JACKKNIFE sample*/ 
class repeat group; 
var Y; 
output out=jackmeanvar mean=mu var=sigmasq; 
run; 
data jackmeanvar;set jackmeanvar;  /*delete unused information*/ 
if _type_=3; 
drop _type_ _freq_; 
run; 
proc transpose data=jackmeanvar out=jackmeanvar let; /*data restructure*/ 
by repeat; 
id group; 
run; 
data jackmean ; set jackmeanvar; 
if _NAME_="mu"; 
drop repeat _NAME_; 
run; 
data jackvar ; set jackmeanvar; /*Group variance for each JACKKNIF sample*/ 
if _NAME_="sigmasq"; 
drop repeat _NAME_; 
run; 
/******************************************************************************/ 
/*Below IML calculate the delta_bonett for JACKKNIFING ACCELERATION*/ 
/*****************************************************************************/ 
PROC IML; 
USE jackmean; 
READ ALL INTO jackmean; 
USE jackvar; 
READ ALL INTO jackvar; 
n_jack=NROW(jackmean); 
CALL SYMPUTX("n_j",n_jack); 
con=repeat(&con,&n_j,1); 
delta_bonett=(jackmean#&con)[,+]/sqrt((jackvar[,+])/&n_groups); 
CREATE jackbonett FROM delta_bonett ; 
APPEND FROM delta_bonett; 
QUIT; 
DATA jackbonett (rename=(COL1 = delta_bonett)); 
SET jackbonett;  
PROC SQL NOPRINT; 
select mean(delta_bonett) /* put mean of jackknifed values 

   into macro variable */ 
into :mean_delta_bonett 
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from jackbonett; 
quit; 
data meanbonett; 
set jackbonett; 
cubed=(&mean_delta_bonett - delta_bonett)**3; /* create cubed value of 
          difference */ 
squared=(&mean_delta_bonett - delta_bonett)**2; /* create squared value of 
          difference */ 
run; 
proc means data=meanbonett noprint; 
output out=sumbonett 
sum(cubed)=sumcube  /* find sum of cubed values */ 
sum(squared)=sumsquar; /* find sum of squared values */ 
run; 
data accel; 
set sumbonett; 
accel=sumcube / (6 * (sumsquar**1.5)); /* plug values into equation for */ 
keep accel;      /* the acceleration statistic */ 
run; 
data ciends; 
merge accel 
bias; 
part1=(bias + probit((1-&nominal)/2))  / (1 - (accel*(bias + probit((1- 
 &nominal)/2)))); 
part2=(bias + probit(1-(1-&nominal)/2))  / (1 - (accel*(bias + probit(1-(1- 
 &nominal)/2)))); 
alpha1=probnorm(bias + part1); 
alpha2=probnorm(bias + part2); 
n1=alpha1*&b; 
n2=alpha2*&b; 
if n1 < 1 then n1 = 1; 
call symput('n1', put(floor(n1), 5.)); /* Create macro variables with values */ 
call symput('n2', put(ceil(n2), 5.));  /* of N1 and N2 for later use */ 
run; 
proc sort 
data=bonett; 
by delta_bonett; 
run; 
data ci_bca; 
set bonett end=eof; 
retain conf_lo conf_hi width; 
if _n_=&n1 then conf_lo=delta_bonett; /* select values for upper and lower */ 
if _n_=&n2 then conf_hi=delta_bonett; /* limits using N1 and N2 values */ 
if eof then output; 
width=conf_hi-conf_lo; 
run; 
proc print data=ci_bca; 
title "The Confidence interval based on BCa bootstrap method"; 
title2 "B=&b Coefficeint=&con Confidence level=&nominal"; 
var conf_lo conf_hi width; 
run; 
%MEND; 
Data BCa; 
INPUT group y @@; 
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DATALINES; 
1  3 2 5 3 4 4 4 
1  5 2 6 3 5 4 6 
1  6 2 5 3 4 4 3 
1  5 2 4 3 3 4 3 
1  6 2 3 3 2 4 1 
1  7 2 4 3 3 4 3 
1  8 2 3 3 4 4 2 
1 10 2 4 3 3 4 2 
; 
%cibca(data=Bca,b=1000,con={.5 .5 -.5 -.5},nominal=.95); /*con is the  
         coefficient  

 for contrast*/ 
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