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One commonly used model to analyze ordinal response data is the proportional odds (PO) model. 
However, if research interest is focused on a particular category and if an individual must pass through 
lower categories before achieving a higher level, the continuation ratio (CR) model is a more appropriate 
choice than the PO model. In addition, statistical software, such as Stata and SAS, may use different 
techniques to estimate the parameters. The CR model is used to illustrate the analysis of ordinal data in 
education using Stata and SAS and compares the results of fitting the CR model between these two 
packages. 
 
Key words: Continuation ratio models, proportional odds models, ordinal regression analysis, 

mathematics proficiency, Stata, SAS, comparison. 
 
 

Introduction 
Ordinal data are abundantly collected in 
educational research. For example, it is common 
for data on student’s SES to be ordered from low 
to high, responses to a survey item scaled from 
strongly disagree to strongly agree, children’s 
reading proficiency scored from level 0 to 5 or 
students’ educational proficiency levels in a 
state test ranging from fail to pass to proficient. 
One commonly used model to analyze ordinal 
data is the proportional odds (PO), or cumulative 
odds, model (Agresti, 1996, 2002, 2007; 
Armstrong & Sloan, 1989; Hilbe, 2009; Liu; 
2009; Long, 1997, Long & Freese, 2006; 
McCullagh, 1980; McCullagh & Nelder, 1989; 
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O’Connell, 2000, 2006; O’Connell & Liu, 2011; 
Powers & Xie, 2000).  

The PO model is used to estimate the 
cumulative probability of being at or below a 
particular level of a response variable, or being 
beyond a particular level, which is the 
complementary direction. However, when 
research is focused on a particular category, 
rather than at or below that category, given that 
an individual has achieved a higher level, the 
continuation ratio (CR) model (Fienberg, 1980; 
Hardin & Hilbe, 2007; Long & Freese, 2006) is 
a more appropriate choice than the PO model. In 
particular, the CR model is more appealing than 
other models when analyzing educational 
attainment data (Allison, 1999). The CR model 
is very useful in analyzing data such as student 
academic proficiency levels that are measured 
annually or frequently using a mastery test as 
under the No Child Left Behind Act (NCLB). 

In a CR model, the ordinal categories 
represent successive stages, or proficiency 
levels, through which an individual can 
progress; for example, faculty ranks from 
assistant professor to associate professor to full 
professor, or educational attainment from high 
school diploma to Bachelor’s degree, Master’s 
degree and to doctorate degree. In both of these 
examples, individuals must pass through lower 
stages or levels in order to reach higher stages or 
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levels. A CR model estimates the odds of being 
in a certain category relative to being beyond 
that category. In terms of probability, this model 
estimates the probability of being in a category, 
given that an individual has been in that 
category or beyond. In addition, because these 
two conditional probabilities are 
complementary, the model estimates the 
conditional probability of being beyond a 
category given a person has attained that 
particular category. 

Although the PO model is commonly 
used, the CR model seems to be overlooked. In 
addition, not all general-purpose statistical 
software packages have developed procedures to 
directly estimate a CR model, and for those 
packages which are capable of conducting a CR 
analysis, they may use different 
parameterizations to estimate the model. 
However, no study has been conducted to 
identify these differences and clarify 
misunderstandings. 

Ignoring these differences may result in 
erroneous interpretations of results. Therefore, it 
is critical for researchers to understand this 
model and apply it correctly. To fill this gap, this 
study was conducted to demonstrate the use of 
the continuation ratio (CR) model to predict the 
mathematics proficiency of high school students 
using Stata and SAS, and to compare the results 
of fitting the continuation ratio model between 
these two packages. Ordinal regression analyses 
were based on the data from the Educational 
Longitudinal Study of 2002 (ELS:2002) in 
which the ordinal outcome of students’ 
mathematics proficiency was predicted from a 
set of students’ classroom activities, such as, 
reviewing work from the previous day in math 
class, listening to teachers’ lectures, copying 
notes from the board, using books besides 
textbooks, doing problem solving in class, using 
general and graphing calculators, using 
computers, explaining work orally and 
participating in student-led discussions. 
 
Theoretical Framework: General Logistic 
Regression Model and the Proportional Odds 
Model 

The binary logistic regression model 
predicts an outcome variable with two 
categories, with 1 = experiencing the event, and 

0 = not experiencing the event. This model 
estimates the log odds of the outcome, and thus 
the probability of success on a set of predictors. 
The logistic regression model has the following 
form: 
 

( )
( )

1 1 2 2 p p

ln(Y´)  logit [π(x)] 

π x
 ln

1 π x

α β X β X  β X

=

 
=   − 
= + + + …+

 

(1) 
 

An ordinal logistic regression model is a 
generalization of a binary logistic regression 
model when the outcome variable has more than 
two ordinal levels. It estimates the probability of 
being at or below a specific outcome level, 
conditional on a collection of explanatory 
variables. The ordinal logistic regression model 
can be expressed as a latent variable model 
(Agresti, 2002; Greene, 2003; Long, 1997, Long 
& Freese, 2006; Powers & Xie, 2000; 
Wooldridge & Jeffrey, 2001). Assuming a latent 
variable, Y* exists, Y* can be defined as a 
function of a set of predictor variables and a 
random error. Let Y* be divided by some cut 
points (thresholds): α1, α2, α3, …, αj, and α1 < α2 
< α3 … < αj. The values of the observed ordinal 
variable, Y, fall within the regions divided by 
these cut points (thresholds). For example, Y = 
0, if Y* ≤ α1. The observed mathematics 
proficiency level is the ordinal outcome, y, 
ranging from 0 to 5, is defined as follows: 
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< ≤ ∞  

              (2) 

 
Therefore, the probability of a student 

achieving each proficiency level and the 
cumulative probabilities as can both be predicted 
by: P(Y≤j) = F (αj − xβ), where j = 1, 2, …, J−1. 
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Because different software packages 
utilize different parameterizations in estimating 
logit coefficients, the ordinal logistic regression 
model can be expressed in different forms (Liu, 
2009). In Stata, it is expressed in logit form as 
follows: 
 

( )
( )

( )

j

j

j

j 1 1 2 2 p p

ln(Y ´)  logit [π(x)] 

π x
 ln

1 π x

α β X β X  β X ,

=

 
=   − 

= + − − − …−

 

(3) 
 
where πj(x) = π(Y ≤ j|x1, x2, …, xp), which is the 
probability of being at or below category j, given 
a set of predictors; j = 1, 2, …,J−1. αj are the cut 
points, and β1, β2, …, βp are logit coefficients. 
To estimate the ln (odds) of being at or below 
the jth category, the PO model can be rewritten 
as: 
 

( )
( )

1 2 p

1 2 p

1 2 p

j 1 1 2 2 p p

logit [π(Y  j | x , x ,..., x )] 

π(Y  j | x , x ,..., x )
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π Y >  j | x , x ,..., x

         α β X β X β X .

≤

 ≤
 =
 
 

= + − − −…−

 

(4) 
 
This is the form of the proportional odds (PO) 
model because it assumes that the logit 
coefficients of any predictor are identical across 
all comparisons; this equal logit slope 
assumption can be assessed by the Brant test 
(Brant, 1990). Similar to the binary logistic 
regression, the PO model estimates the logit, or 
the log of the odds of being at or below a 
particular category versus being beyond that 
category. Thus, this model predicts cumulative 
logits across J−1 response categories. Methods 
of model diagnostics for the ordinal logistic 
regression models are provided by O’Connell 
and Liu (2011).  

Just as Stata, the ordinal logit model is 
also based on the latent continuous outcome 
variable for SPSS PLUM, and it takes the same 
form. However, SAS uses a different ordinal 

logit model for estimating the parameters from 
Stata. For SAS PROC LOGISTIC (the 
ascending option), the ordinal logit model has 
the following form: 
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1 2 p

1 2 p
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logit [π(Y  j | x , x ,..., x )] 

π(Y  j | x , x ,..., x )
         ln

π Y >  j | x , x ,..., x

         α β X β X β X .

≤

 ≤
 =
 
 

= + + +…+

 

(5) 
 
Using SAS with the descending option, the 
ordinal logit model can be expressed as: 
 

( )

1 2 p

1 2 p

1 2 p

j 1 1 2 2 p p

logit [π(Y  j | x , x ,..., x )] 

π(Y  j | x , x ,..., x )
         ln

π Y <  j | x , x ,..., x

         α β X β X β X .

≥

 ≥
 =
 
 

= + + +…+

 

(6) 
 
where, in both equations, αj are the intercepts, 
and β1, β2, βp are logit coefficients. 
 
Theoretical Framework: The Continuation Ratio 
Model 

As notes, statistical software packages, 
such as Stata, SAS and SPSS, use different 
techniques to estimate the parameters in the 
proportional odds (PO) models (Liu, 2009). This 
is also true for the continuation ratio (CR) 
model: they use different formulations, estimate 
parameters differently, and produce different 
output results. When estimating the conditional 
probability of being beyond a category, given 
that individual has attained that particular 
category (e,g., π(Y > j | Y ≥j |), the CR model 
can be expressed as (Allison, 1999; O’Connell, 
2006): 
 

( )
( )

1 2

1 2

j 1 1 2 2 p p

π Y j|x , x ,...
ln

π Y j|x , ,...

                 α β X β X β X ,

p

p

x

x x
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 = 

= + + +…+

 

(7) 
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where π(Y > j |x1,x2, …, xp) is the conditional 
probability of being beyond a category j, 
conditional on being in that category, given a set 
of predictors. j =1, 2, …, J−1 and where αj are 
the cut points and β1, β2, βp are logit 
coefficients. SAS follows this form in estimating 
the continuation ratio model with the PROC 
LOGISTIC command. Before the model is 
fitted, the data set must be restructured 
following a series of steps (Allison, 1999; 
O’Connell, 2006).  

First, separate sub-data set must be 
constructed with the binary outcome variable 
being beyond a category coded as 1 and 0 
otherwise. Individuals who have not advanced to 
a particular proficiency level are dropped at each 
stage. If the ordinal dependent variable has j 
categories, J−1 sub-data sets should be created, 
these data sets are then combined into one data 
set with a new binary outcome variable with 1 = 
beyond a particular category. Finally, the CR 
model is fitted using the SAS PROC 
LOGISTICS with the descending option.  

The CR models also estimates the odds 
of being in a particular category j relative to 
being beyond that category. In this situation, the 
CR model can be formulated as (Ananth & 
Kleinbaum, 1997; Armstrong & Sloan, 1989; 
Fienberg, 1980; Long & Freese, 2006): 
 

( )
( )

( )

1 2

1 2

j 1 1 2 2 p p

π Y j|x , x ,...
ln

π Y j|x , ,...

                α β X β X β X

p

p

x

x x

 =
 
 > 

= + − − −…−
(8) 

 
where π(Y = j |x1,x2, …, xp) is the conditional 
probability of being in category j, conditional on 
being that category or beyond, given a set of 
predictors, and j =1, 2, …, J−1, αj are the cut 
points, and β1, β2 …βp are logit coefficients. 
Different from SAS, Stata follows this form to 
fit the CR model, which is known as the forward 
CR model (Bender & Bender, 2000). Another 
distinctive difference is that Stata does not 
require data restructuring before model fitting; 
this makes data analysis of the CR model much 
easier. The following analyses demonstrate how 
to fit a CR model using Stata; results of model 

fitting between Stata and SAS are also 
compared. 
 

Methodology 
Sample 

Data were from the Educational 
Longitudinal Study (ELS, 2002). The ELS:2002 
study was conducted by the National Center for 
Educational Statistics (NCES) and was designed 
to provide longitudinal data regarding the 
transitions of high school sophomores in 2002 to 
postsecondary school education and their future 
careers. In the 2002 base year of the study, more 
than 15,000 high school sophomores from a 
national sample of 752 public and private high 
schools participated in the study by taking 
cognitive tests and responding to surveys. 

The outcome variable of interest was 
students’ mathematics proficiency levels in high 
school, which was an ordinal categorical 
variable with five levels (1 = students can do 
simple arithmetical operations on whole 
numbers; 2 = students can do simple operations 
with decimals, fractions, powers and root; 3 = 
students can do simple problem solving; 4 = 
students can understand intermediate-level 
mathematical concepts and/or find multi-step 
solutions to word problems; and 5 = students can 
solve complex multiple-step word problems 
and/or understand advanced mathematical 
material) (Ingels, Pratt, Roger, Siegel & Stutts, 
2004, 2005). The five proficiency domains were 
hierarchically structured: mastery of higher 
proficiency level indicated mastery of all 
previous levels. Students had to pass through the 
first four levels of proficiency before achieving 
the final fifth level; those students who failed to 
pass through level 1 were assigned to level 0. 
Table 1 shows the frequency of the six 
mathematics proficiency levels. 
 
Data Analysis  

The continuation ratio model is first 
fitted with a single explanatory variable using 
the Stata ocratio command (Wolfe, 1998) with 
the link functions of logit and CLOG-LOG, a 
proportional odds (PO) model was fitted next, 
and finally, a full-model with all 11 explanatory 
variables was fitted. The eform option was used 
to estimate the odds ratios and corresponding 
standard errors and the confidence intervals. The 
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ologit command in Stata was used to fit the 
proportional odds models. The results from both 
the CR models and the PO models were 
compared and interpreted. For comparison, the 
same model was fitted using SAS (V. 9.1.3).  

Model fit statistics in the CR model, 
such as likelihood ratio test and Pseudo R2, were 
reported. Other fit statistics, such as Hosmer-
Lemeshow GoF test, and Pulkstenis-Robinson 
(2004) modification, are currently unavailable in 
the CR model. Following a suggestion by Hilbe 
(2009), the Stata AIC command was also used to 
compare model fit. 

The log likelihood ratio Chi-Square test 
with 1 degree of freedom, LR χ2

(1) = 38.90, p < 
0.001, indicated that the logit regression 
coefficient of the predictor, gender was 
statistically different from 0, therefore, the 
model with one predictor provides a better fit  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

than the null model with no independent 
variables in predicting conditional probabilities 
for mathematics proficiency level. The Pseudo 
R2=.0008, which is the likelihood ratio R2

L, 
suggested that the relationship between the 
response variable, mathematics proficiency and 
the predictor (gender) was small: the AIC 
statistic was 0.922. 
 

Results 
Continuation Ratio Model with a Single 
Explanatory Variable 

A continuation ratio model with a single 
predictor, gender, was fitted first. The Stata 
ocratio command with the logit function as 
default was used. Figure 1 displays the Stata 
output for the single predictor continuation ratio 
model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Proficiency Categories and Frequencies (Proportions) for the Study Sample, ELS 2002 
(N = 15,976) 

 

Proficiency Category Description Frequency 

0 Did not pass level 1 842 (5.27%) 

1 
Can do simple arithmetical operations on 

whole numbers 
3882 (24.30%) 

2 
Can do simple operations with decimals, 

fractions, powers, and root 
3422 (21.42%) 

3 Can do simple problem solving 4521 (28.30%) 

4 
Can understand intermediate-level 

mathematical concepts and/or find multi-
step solutions to word problems 

3196 (20.01%) 

5 
Can solve complex multiple-step word 
problems and/or understand advanced 

mathematical material 
113 (0.71%) 
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Figure 1: Stata Continuation Ratio Model with Logit Link: Single Predictor, Gender 
 

. ocratio Profmath BYGENDER, link (logit) 
 
Continuation-ratio logit Estimates                     Number of obs =   51353 
                                                       chi2(1)       =   38.90 
                                                       Prob > chi2   =  0.0000 
Log Likelihood =  -23683.4                             Pseudo R2     =  0.0008 
 
------------------------------------------------------------------------------ 
    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    BYGENDER |   .1416361   .0227235     6.23   0.000     .0970989    .1861732 
------------------------------------------------------------------------------ 
 _cut1   |  -2.790613   .0372137             (Ancillary parameters) 
 _cut2   |  -.9961043   .0219305 
 _cut3   |  -.7736138   .0238228 
 _cut4   |    .368887    .026111 
 _cut5   |   3.392331   .0966743 
------------------------------------------------------------------------------

 
 
 

. ocratio Profmath BYGENDER, link (logit) eform 
 
Continuation-ratio logit Estimates                     Number of obs =   51353 
                                                       chi2(1)       =   38.90 
                                                       Prob > chi2   =  0.0000 
Log Likelihood =  -23683.4                             Pseudo R2     =  0.0008 
 
------------------------------------------------------------------------------ 
    Profmath | Odds ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    BYGENDER |   1.152157    .026181     6.23   0.000     1.101969    1.204631 
------------------------------------------------------------------------------ 
 _cut1   |  -2.790613   .0372137             (Ancillary parameters) 
 _cut2   |  -.9961043   .0219305 
 _cut3   |  -.7736138   .0238228 
 _cut4   |    .368887    .026111 
 _cut5   |   3.392331   .0966743 
------------------------------------------------------------------------------ 
. aic 
AIC Statistic =   .9224153 
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The estimated logit regression 
coefficient, β = 0.1416, z = 6.23, p < 0.001, 
indicated that gender had a significant effect on 
mathematics proficiency. Substituting the value 
of the coefficient into the formula (8), logit 
[π(Y= j | Y ≥ j, gender)] = αj + (−β1X1), the logit 
[π(Y= j | Y ≥ j, gender)] = αj −0.1416 (gender), 
OR = e(-.1416) = 0.8680, was calculated indicating 
that male students were 0.8680 times the odds 
for female students of being in any category 
compared to being in higher categories, that is, 
female students were more likely than male 
students to drop out in a particular category, 
because males are coded as 1 and females are 
coded as 0.  

To estimate the conditional probability 
of being beyond a category of mathematics 
proficiency, which is the complement of the 
conditional probability of being at a category, 
the signs before the cutpoints and the estimated 
logits in the equation (8) are changed and the 
logit [π(Y>j | Y≥j, gender)] = −αj +0.1416 
(gender) calculated. Exponentiating 0.1416, 
results in the OR = 1.152, which indicated that 
male students were 1.152 times more likely to be 
beyond a particular mathematics proficiency 
level than female students. 

The CR model could also be fitted using 
the complementary log-log link (clog-log) with 
the cumulative option within the Stata ocratio 
command. The CR model with the 
complementary log-log link is actually the 
discrete-time proportional hazards model for the 
event history analysis or survival analysis 
(Allison, 1999; O’Connell, 2006). It estimates 
the hazard ratio (HR) rather than the odds ratio 
(OR) of being in a particular category relative to 
advancing to a higher category. Figure 2 
displays the Stata output for the clog-log 
continuation model. 

The log likelihood ratio Chi-Square test 
with 1 degree of freedom, LR χ2

(1) = 51.38, p < 
0.001, indicating that the full model with one 
predictor provides a better fit than the null 
model with no independent variables. The 
Pseudo R2=0.0011, suggested that the 
relationship between the response variable, 
mathematics proficiency, and the predictor, 
gender was small. The AIC statistic was 0.922 

The estimated clog-log coefficient, β = 
0.1257, z = 7.17, p < 0.001, indicating that 

gender had a significant effect on mathematics 
proficiency. Since Clog-log [π(Y=j | Y≥j, 
gender)] = log(−log(1−π)) = αj + (−β1X1), we 
calculated log(−log(1−π))  = αj −0.1257 
(gender). By exponentiating −0.1257, the hazard 
ratio, HR = e(-.1257) = 0.8819 was obtained, 
indicating that the hazard of being in a particular 
proficiency level rather than beyond for male 
students was 0.8819 times the hazard for female 
students, that is, the hazard for female students 
of stopping out in a particular category was 
1.134 times as great as that for male students.  
 
Proportional Odds Model with a Single 
Explanatory Variable 

Next, for comparison purposes, a 
proportional odds model analysis with the same 
single predictor, gender was conducted using the 
Stata ologit procedure. Figure 3 displays the 
Stata output for the one-predictor proportional 
odds model. 

LR χ2
(1) = 28.13, p < 0.001, indicating 

that the one-predictor PO model provided a 
better fit than the null model with no 
independent variables in predicting cumulative 
probabilities for mathematics proficiency level. 
The Pseudo R2 = 0.0006, which was as small as 
that in the continuation ratio model. 

The estimated logit regression 
coefficient, β = 0.1527, z = 5.30, p < 0.001. 
Because the PO model estimates the cumulative 
odds and cumulative probabilities of being at or 
below a particular category of the ordinal 
response outcome, logit [π(Y≤j | gender)] = 
αj −0.1527 (gender) was calculated. By 
exponentiating the logit, −0.1527, the odds ratio 
(OR), e(-.1527) = 0.8584 was obtained, indicating 
that the odds of being at or below a mathematics 
proficiency level were 0.8584 times as great for 
male students as they were for female students, 
thus, female students were more likely than male 
students to be at or below a particular 
proficiency level. 

The PO model can estimate J−1 
cumulative probabilities of being at or below a 
category of the ordinal response variable with j 
levels. When the ordinal response variable, 
mathematics proficiency, has six levels from 0 
to 5, the proportional odds model estimates five 
cumulative probabilities: P(Y ≤ 0), P(Y ≤ 1),  
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Figure 2: Stata Continuation Ratio Model with Clog-log Link: Single Predictor, Gender 
 
. ocratio Profmath BYGENDER, link (cloglog) cumulative 
 
Ordered cloglog Estimates                              Number of obs =   51353 
                                                       chi2(1)       =   51.38 
                                                       Prob > chi2   =  0.0000 
Log Likelihood = -23677.16                             Pseudo R2     =  0.0011 
 
------------------------------------------------------------------------------ 
    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    BYGENDER |   .1256615   .0175265     7.17   0.000     .0913103    .1600128 
------------------------------------------------------------------------------ 
 _cut1   |  -2.826367   .0356499             (Ancillary parameters) 
 _cut2   |  -.9834265    .022463 
 _cut3   |  -.2817271   .0217445 
 _cut4   |   .5087509   .0202158 
 _cut5   |   1.663668   .0274349 
------------------------------------------------------------------------------ 
 
. aic 
AIC Statistic =   .9221723 
 

 
 

. ocratio Profmath BYGENDER, link (cloglog) eform cumulative 
 
Ordered cloglog Estimates                              Number of obs =   51353 
                                                       chi2(1)       =   51.38 
                                                       Prob > chi2   =  0.0000 
Log Likelihood = -23677.16                             Pseudo R2     =  0.0011 
 
------------------------------------------------------------------------------ 
    Profmath | Haz. ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    BYGENDER |   1.133898   .0198732     7.17   0.000     1.095609    1.173526 
------------------------------------------------------------------------------ 
 _cut1   |  -2.826367   .0356499             (Ancillary parameters) 
 _cut2   |  -.9834265    .022463 
 _cut3   |  -.2817271   .0217445 
 _cut4   |   .5087509   .0202158 
 _cut5   |   1.663668   .0274349 
------------------------------------------------------------------------------ 
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P(Y ≤ 2), P(Y ≤ 3) and P(Y ≤ 4). The 
cumulative probabilities of being beyond a 
category can also be estimated because they are 
the complementary probabilities of the being at 
or below a particular category. 

Different from cumulative probabilities 
in the PO model, the logit CR model estimates 
conditional probabilities. In the gender-only CR 
model, it estimates conditional probabilities of 
being in category j, conditional on being at or 
beyond that category, that is, P (Y = j | Y ≥ j, 
gender). This CR model can also estimate the 
conditional probability of being beyond a 
category given that individual has achieved that 
particular category, because P (Y > j | Y ≥ j, 
gender) is the complementary form of P (Y = j | 
Y ≥ j, gender). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Another difference between the CR 
model and the PO model is the change in sample 
size. In the gender-only PO model, the sample 
size was 15,325, however, the number of 
observations increased to 51,353 in the CR 
model due to different comparisons between 
proficiency levels, which included level 0 versus 
levels 1, 2, 3, 4 and 5; level 1 versus levels 2, 3, 
4 and 5; level 2 versus 3, 4 and 5; level 3 versus 
4 and 5; and level 4 versus level 5 (Table 2 
shows the comparisons between the six 
proficiency levels). Fitting the CR model using 
SAS required a restructured data set from the 
J−1concatenated sub-data sets from the 
comparisons between proficiency levels 
(Allison, 1999; O’Connell, 2006), though Stata 
can fit the CR model directly without the data 
restructuring procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Stata Proportional Odds Model: Single Predictor, Gender 
 

ologit Profmath BYGENDER 
 
Iteration 0:   log likelihood = -23702.845 
Iteration 1:   log likelihood = -23688.779 
Iteration 2:   log likelihood = -23688.778 
 
Ordered logistic regression                       Number of obs   =      15325
                                                  LR chi2(1)      =      28.13
                                                  Prob > chi2     =     0.0000
Log likelihood = -23688.778                       Pseudo R2       =     0.0006
 
------------------------------------------------------------------------------
    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    BYGENDER |   .1527419   .0288057     5.30   0.000     .0962839       .2092
-------------+----------------------------------------------------------------
       /cut1 |  -2.785918   .0381689                     -2.860728   -2.711108
       /cut2 |  -.7893203   .0224898                     -.8333995   -.7452411
       /cut3 |   .1072826   .0214844                       .065174    .1493911
       /cut4 |   1.402499   .0246227                      1.354239    1.450758
       /cut5 |   4.981085    .095611                      4.793691    5.168479
------------------------------------------------------------------------------
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Continuation Ratio Model with 11 Explanatory 
Variables 

A CR model was fitted with 11 
explanatory variables; this was referred to as the 
full model. Table 3 displays the results for the 
fitting of the full model with all the predictors. 

The log likelihood ratio Chi-Square test, 
LR χ2

(11) = 3069.32, p < 0.001, indicating that 
the full model with 11 predictor provides a 
better fit than the null model with no 
independent variables in predicting conditional 
probability for mathematics proficiency. 
Although the likelihood ratio R2

L = 0.0777, was 
much larger than that of the gender-only model, 
it was still fairly small, suggesting that the 
relationship between the response variable, 
mathematics proficiency and 11 predictors, was 
small. AIC Goodness-of-fit statistics were used 
for model comparisons using the AIC command 
(Hilbe, 2009). Compared with the gender-only 
model (0.9224), the AIC statistic indicated that 
the full-model fit the data better (0.8483). 

Using the eform option, odds ratios 
could be obtained for all the predictors. Overall, 
these predictors, such as, being male students 
(gender), reviewing work from the previous day 
in math class (review), listening to teachers’ 
lectures (listen), doing problem solving in class 
(probsolv), using general calculators (usecalcu), 
using graphing calculators (usegraph), and 
explaining work orally (explain), were positively 
associated with the odds of being beyond a 
particular mathematics proficiency level. 
Copying notes from board in class (copynote), 
using books besides textbooks (usebooks), using 
computers (usecompu), and participating in 
student-lead discussions (participate) were less 
likely to advance to a higher proficiency level, 
that is, they were more likely to stop out in a 
particular proficiency level. 

In terms of odds ratios, male students 
had 1.359 times greater odds than female 
students to be beyond a given proficiency level 
(OR = 1.359), after controlling for the effects of 
other predictors in the full model. The odds of 
being beyond a particular proficiency level 
relative to being in that level were 1.166 times 
greater with one unit increase in the frequency 
of reviewing work from the previous day (OR = 
1.166). Similarly, listening to teachers’ lectures 
(OR = 1.192), doing problem solving in class 

(OR = 1.077), using general calculators (OR = 
1.179), using graphing calculators (OR = 1.173), 
and explaining work orally (OR =1.066) were 
more likely to be in a higher proficiency level. 
Conversely, for every one unit increase in 
copying notes from board in class, the odds of 
being beyond a particular category decreased by 
a factor of 0.96 (OR = 0.96). In other words, the 
more the students copied notes from board, the 
more likely they would stop out in a 
mathematics proficiency level. Similarly, the 
odds decreased by a factor of 0.785 (OR = 
0.785), for a unit increase in using textbooks 
besides the mathematics textbook, they 
decreased by a factor of 0.833 for a unit increase 
in using computers in math classes, and they 
decreased by a factor of 0.892 in participating in 
student-led discussions, holding the effects of 
the other variables constant. 

Table 3 also provides the results of the 
multiple regression (MR) analysis. Although the 
results of MR analysis looked similar to those 
estimated by the CR model, they were different 
in nature: the former estimates the linear effects 
the classroom practices on mathematics 
proficiency level, while the latter estimates the 
conditional probability of being in a proficiency 
level relative to being beyond, or its 
complement, the probability of advancing to a 
higher proficiency level rather than being in that 
particular level. The MR analysis could be used 
as a preliminary analysis before the CR model 
fitting. 
 
Comparison of Results of a Single Variable CR 
Logit Model Using Stata and SAS 

When fitting CR models with logit link, 
Stata and SAS use different procedures to 
restructure data, estimate parameters differently 
and produce different outputs. It is, therefore, 
important to understand how data sets are 
restructured and how to interpret these estimates. 
Before using the LOGISTIC procedure, SAS 
requires a process of data restructuring in order 
to estimate conditional probabilities of not 
advancing to a higher proficiency level. If there 
are j categories, J−1 sub-data sets are needed. 
Because the mathematics proficiency includes 
six levels, five sub-data sets are created. 
Corresponding to the category comparisons 
indicated in Table 2 (i.e., level 0 versus level 1  
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Table 2: Category Comparisons for the Continuation Odds Model with Six Mathematics 
Proficiency Levels (j = 0, 1, 2, …, 5). 

 

Proficiency 
Category 

Conditional Probability 
P(Y= j | Y≥j) 

Odds Ratio Probability Comparisons 

0 P(Y= 0 | Y≥ 0) Category 0 vs. all categories above 

1 P(Y= 1 | Y≥ 1) Category 1 vs. Categories 2 through 5 

2 P(Y= 2 | Y≥ 2) Category 2 vs. Categories 3 - 5 

3 P(Y= 3 | Y≥ 3) Category 3 vs. Categories 4 and 5 

4 P(Y= 4 | Y≥ 4) Category 4 vs. 5 

 
Table 3: Results of the Continuation Ratio Model and the OLS Regression Model (Full Model), n = 42,992 

 

Variable 
Continuation Ratio Model 

(logit) 
 OLS Model 

 b (se(b)) OR  

α1 −1.50 (0.08)  1.15 (0.06) 

α2 0.49 (0.08)   

α3 0.89 (0.08)   

α4 2.27 (0.08)   

α5 5.64 (0.13)   

Genderδ 0.31 (0.03) ** 1.36 0.21 (0.02) ** 

Review 0.15 (0.01) ** 1.17 0.12 (0.01) ** 

Listen 0.18 (0.01) ** 1.19 0.13 (0.01) ** 

Copynote −0.04 (0.01) ** 0.96 −0.02 (0.01) * 

Usebooks −0.24 (0.01) ** 0.79 −0.18 (0.01) ** 

Probsolv 0.07 (0.01) ** 1.08 0.05 (0.01) ** 

Usecalcu 0.16 (0.01)** 1.18 0.12 (0.01)** 

Usegraph 0.16 (0.01)** 1.17 0.11 (0.01)** 

Usecompu −0.18 (0.01)** 0.83 −0.14 (0.01)** 

Explain 0.06 (0.01)** 1.06 0.05 (0.01)** 

Participate −0.11 (0.01)** 0.89 −0.09 (0.01)** 

R2
 R2

L = 0.078  R2 = 0.221 

Model Fita χ2
11 = 3039.32 (p < 0.0001)  F(11, 12768) = 329.24** 

δ gender: male=1; a Likelihood ratio test; *Significant at p<0.05; ** p<0.01 
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and above; level 1 versus level 2, and above; 
level 2 versus 3, 4 and 5; level 3 versus 4 and 5; 
and level 4 versus level 5), observations for 
students who did not make to the given 
proficiency level were dropped out of the 
concatenated data sets. These sub-data sets were 
merged into one data set with each individual 
having as many observations as the number of 
proficiency levels to which she/her could 
advance. A new binary variable was created in 
each data set with being beyond a category 
coded as 1 and 0 otherwise (see O’Connell, 2006 
for details on data restructuring). Different from 
SAS, the Stata ocratio procedure does not 
require the above process because it restructures 
the data internally and produces the same sample 
size as that of the restructured data in SAS. 

Table 4 presents a comparison of the 
results of fitting the single-variable CR model 
with logit link using both Stata ocratio and SAS 
PROC LOGISTIC with the descending option. 
In Stata, the CR model estimates the odds of 
being a particular category versus beyond; while 
this model in SAS with the descending option 
estimates the odds of being beyond a given 
category relative to being in that category, which 
are the reciprocal. Using Stata and SAS 
descending, the estimated coefficients are the 
same in both magnitude and sign. Using the 
Stata CR model equation (8), logit [π(Y= j | Y ≥ 
j, gender)] = αj + (−β1X1), logit [π(Y= j | Y ≥ j, 
gender)] = αj - 0.1416 (gender) was calculated, 
and OR = e(-.1416) = 0.8680, indicating that male 
students were 0.8680 times the odds for female 
students of being in any category compared to 
being in higher categories. 

To estimate the conditional probability 
of being beyond a category of mathematics 
proficiency using Stata, it is necessary to negate 
the signs before the cutpoints and the estimated 
logits in the equation (8) to get the 
complementary probability of being in a 
category conditional on being beyond, i.e., logit 
[π(Y>j | Y≥j, gender)] = −αj + β1X1. 
Substituting the coefficient into the equation 
results in logit [π(Y>j | Y≥j, gender)] = −αj + 
0.1416 (gender). Exponentiating 0.1416, 
resulted in the OR of 1.152, which indicated that  
 

male students were 1.152 times more likely to be 
beyond a particular mathematics proficiency 
level than female students. Using equation (7) 
for the SAS CR logit model, it was found that 
logit [π(Y>j | Y≥j, gender)] = αj + 0.1416 
(gender). Exponentiating the logit coefficient 
0.1416 resulted in the same odds ratio, 1.152. 

The CR model using Stata also 
estimates the cutpoints based on different logit 
comparisons; these are useful to calculate the 
conditional probabilities. From the left to the 
right direction, five cutpoints were −2.791, 
−0.996, −0.774, 0.369, and 3.392. The results of 
the CR model using SAS descending as shown 
in Table 4 provide the estimated intercept, and 
dumcr0 through dumcr3, which are dummy 
coded variables for logit comparisons with the 
final comparison as the reference group. The 
intercept, −3.392, was the fifth cutpoint, α5 , 
because it was used to find the odds of being 
beyond the proficiency level 4 relative to being 
in that level. The first cutpoint = intercept + 
dumcr0 = −3.392 + 6.182 = 2.790. The second 
cutpoint = intercept + dumcr1 = −3.392 +4.388 
= 0.996. Using the same method resulted in the 
third, 0.773, and the fourth cutpoints, −0.369, 
respectively. Comparing the results of the 
cutpoints estimated by the CR model using Stata 
and SAS descending, it was found that they were 
the same in magnitude but had opposite signs. 
SAS does not provide direct estimates of these 
cutpoints, but they can be calculated from the 
estimated intercept and dummy variables. 

Although the omnibus likelihood ratio 
tests for the CR model using Stata and SAS 
indicated that the single-variable model had 
better fit than the null model, their degrees of 
freedom (df) were different because SAS 
estimated four extra parameters: an intercept and 
three dummy variables. Accordingly, the log 
likelihood R2

L = 0.254 estimated using SAS, was 
much larger than that using Stata, R2

L = .0008. 
Both CR models had the same sample size when 
SAS restructured the data (N = 51,353). Feature 
comparisons of fitting the CR model with the 
logit link are provided in Table 5. 
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Table 4: Results of the CR Logit Models with a Single Variable Using Stata and SAS: 
A Comparison, n = 51,353 (Restructured Data 

Model Estimates 
STATA 

SAS 
(Descending) 

P(Y= j | Y≥j) P(Y> j | Y≥j) 

Cutpoints (Stata)/ 
Intercept (SAS) 

α1 = −2.791 Intercept= −3.392 

α2 = −0.996 Dumcr0 = 6.182 

α3 = −0.774 Dumcr1 = 4.388 

α4 = 0.369 Dumcr2 = 4.165 

α5 = 3.392 Dumcr3 = 3.023 

BYGENDERδ 0.142 (0.023) ** 0.142 (0.023) ** 

LR R2
 R2

L = 0.0008 R2
L = 0.254 

Model Fita χ2
1 = 38.90 (p < 0.0001)** χ2

5 = 15040.557 (p < 0.0001)** 

δBYGENDER: male=1; aLikelihood ratio test; Results are incomparable due to data restructuring 
using SAS; *Significant at p<0.05; ** p<0.01 

 
Table 5: Feature Comparisons of the CR Model with Logit Link Using Stata and SAS 

 STATA SAS 

Model Specification 

Cutpoints/ thresholds √  

Intercept  √ 

Test hypotheses of logit coefficients √ √ 

Maximum Likelihood Estimates 

Odds Ratio √ √ 

z-statistic or Wald test for Parameter Estimate √  

Chi-square Statistic for Parameter Estimate  √ 

Confidence Interval for Parameter Estimate √  

Fit Statistics 

Log likelihood √ √ 

Goodness-of-fit Test √ √ 

Pseudo R-Square √ √ 

Association of Predicted Probabilities and Observed Responses  √ 
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Conclusion 
This article illustrated the use of continuation 
ratio models to estimate high school students’ 
mathematics proficiency from a set of predictors 
of classroom practices. Model fitting started 
from a single-variable CR with both logit and 
clog-log links and then progressed to a PO 
model, and finally a full CR logit model with 11 
predictor variables.  

Results from the CR models suggested 
that some classroom practices, such as reviewing 
work from the previous day in math class, 
listening to teachers’ lectures, doing problem 
solving in class, using general calculators, using 
graphing calculators and explaining work orally, 
had positive effects on the odds of being beyond 
a particular mathematics proficiency level 
relative to being in that level; while other 
classroom practices, such as, copying notes from 
board, using books besides textbooks, using 
computers in class and participating in student-
led discussions were associated with odds of 
stopping out in a particular proficiency level 
rather than advancing to a higher proficiency 
level.  

Comparing Stata and SAS, it was found 
that both packages used different formulations to 
estimate the CR model and the requirements for 
data restructuring were also different. Compared 
to SAS, Stata could estimate the CR model 
directly without data restructuring. Compared to 
Stata, SAS produced different model fit 
statistics, because it estimated more parameters 
in the CR model, such as dummy coding 
variables. The estimated logit coefficients were 
the same using both packages. However, 
regarding the CR cutpoints, SAS provided 
different results in the output from those 
estimated by Stata. Equivalent cutpoints in 
magnitude could be obtained after further 
calculations, but they were reversed in sign, 
because the conditional probabilities estimated 
by the CR model using Stata and SAS with the 
descending option were complementary. 

In educational research, the demand for 
ordinal response data analysis is increasing 
tremendously, it is therefore crucial for 
researchers to understand different statistical 
methods for analyzing ordinal response 
variables. Although comparisons have been 
made between statistical software packages, a 

preference of one package over the other is not 
suggested; this is left to researchers to choose. It 
is our hope that this article will help researchers 
become familiar with continuation ratio models 
and utilize them correctly in their research. 
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