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Fundamental modeling of wave propagation in temporally
relaxing media with applications to cardiac shear wave
elastography

A. Sabbadini,1,a) L. B. H. Keijzer,2 H. J. Vos,2,b) N. de Jong,1,c) and M. D. Verweij1,c,d)

1Applied Sciences, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
2Biomedical Engineering, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40,
Rotterdam, 3015 GD, The Netherlands

ABSTRACT:
Shear wave elastography (SWE) might allow non-invasive assessment of cardiac stiffness by relating shear wave

propagation speed to material properties. However, after aortic valve closure, when natural shear waves occur in the

septal wall, the stiffness of the muscle decreases significantly, and the effects of such temporal variation of medium

properties on shear wave propagation have not been investigated yet. The goal of this work is to fundamentally

investigate these effects. To this aim, qualitative results were first obtained experimentally using a mechanical setup,

and were then combined with quantitative results from finite difference simulations. The results show that the

amplitude and period of the waves increase during propagation, proportional to the relaxation of the medium, and

that reflected waves can originate from the temporal stiffness variation. These general results, applied to literature

data on cardiac stiffness throughout the heart cycle, predict as a major effect a period increase of 20% in waves prop-

agating during a healthy diastolic phase, whereas only a 10% increase would result from the impaired relaxation of

an infarcted heart. Therefore, cardiac relaxation can affect the propagation of waves used for SWE measurements

and might even provide direct information on the correct relaxation of a heart.
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I. INTRODUCTION

Cardiac diseases are a major cause of death in devel-

oped countries. Early diagnoses might help prevent the

development of life-threatening conditions by detecting

signs of deterioration before cardiac functionality becomes

compromised. Such diagnoses may be obtained by monitor-

ing the stiffness of the cardiac muscle, which has been

observed to correlate with the health condition of the

heart.1–3 In order to monitor the material properties of the

heart, however, non-invasive techniques must be employed,

as invasive measurements are highly uncomfortable and

potentially harmful to patients.

Shear wave elastography (SWE) exploits wave propa-

gation phenomena to explore the elastic properties of a

material, and it has already been proven to be a viable tool

in clinical applications.4–7 Its application to cardiac settings,

however, is hindered by a challenge intrinsic to the function-

ing of the heart: the heart cycle.

As the heart performs its pumping function, its stiff-

ness increases and decreases cyclically to allow for the

heart chambers to fill with blood and expel it. Aortic

valve closure, which provides one of the sources of

waves that can be employed for cardiac SWE,8–13 takes

place at the beginning of the isovolumic relaxation of the

muscle; due to the muscle relaxation, the waves gener-

ated at this time could experience a change in propaga-

tion speed of �15% in just 10 ms (estimation based on

the stiffness variation measured in isolated perfused rab-

bit hearts14). While SWE performed on waves naturally

occurring in the heart could be more precisely called

“natural” SWE, we will refer to it simply as SWE,

because the phenomena involved are similar to those of

shear waves from non-natural sources (e.g., acoustic radi-

ation force pushes).

Several models are employed in literature to describe

the mechanical properties of the cardiac tissue,15–18 how-

ever, to the best of our knowledge, all the models employed

for elastography assume the mechanical properties of the

medium to be constant or, at most, slowly varying19 in the

timescales of the propagating wave. This assumption may

hold true for mechanically inactive organs, yet its validity is

questionable in the context of SWE measurements per-

formed during diastolic relaxation.
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In fact, the existence of measurable effects of time-

varying medium properties on propagating waves has

already been established in the field of electromagnetism,

with theoretical descriptions of media changing smoothly

or instantaneously.20–27 These studies predict that a wave

that propagates at varying speed (i.e., in a medium with

temporally varying dielectric or magnetic constant) is

subjected to a variation in amplitude and oscillation

period; additionally, reflected waves are generated at

time-discontinuities of the medium, similar to what hap-

pens at the spatial interface of two media. Experimental

studies20,28 confirmed the predictions regarding amplitude

and frequency changes by observing magnetic waves

propagating in media subjected to an externally modulated

magnetic field. To the best of our knowledge, reflected

waves were not observed experimentally. It remains an

open question whether these effects are also present in

elastic waves, and whether they should be taken into

account while performing cardiac elastography.

The goal of the present study is to observe and describe

the effects that a temporally varying propagation speed has

on mechanical waves in order to assess their relevance to

shear wave elastography of the heart. While a live heart

itself could be, in principle, used as a medium to perform

these studies, it would be impractical, since its complicated

geometry and material properties would make it hard to

reliably isolate and identify the specific effects of temporal

variations. For this reason, we have chosen to model a sim-

plified setting in which speed variations represent the only

complication to one dimensional (1D) wave propagation.

We have developed an experimental setup consisting of

rotating metal rods suspended by nylon wires (a wave

machine) in which the tension can be controlled in real time

to alter propagation speed. The rotational displacement of

the rods can then travel through the setup as a 1D torsional

wave with varying speed. Moreover, we developed finite

difference simulations that describe these phenomena

numerically. We employed the setup to obtain a first, quali-

tative confirmation that mechanical waves can also be

affected over time by variations of medium properties. The

simulation, on the other hand, allowed us to investigate

quantitatively how the time-dependent effects are related to

the dynamical parameters of the system, i.e., the amount of

speed variation and the rate at which this happens.

We apply our findings to data on rabbit hearts14 to pre-

dict the effects of muscle relaxation on cardiac elastography

measurements, and we discuss their relevance and possible

applications as a new diagnostic tool.

II. SETUP

A. The wave machine

We have built a modified wave machine29 in which the

speed of the wave can be controlled during propagation by

means of tension variations. As shown in Fig. 1, the setup

consists of two wooden frames, placed at 3.63 m from each

other, that support three wires on which 32 aluminum rods

are suspended. Each rod is 60 cm long and has a 1 cm

� 1 cm square cross-section. The central wire is made of

steel and runs through a hole in the midpoint of the long

side of the rod, providing a pivot around which the rods can

rotate freely; bolts are fixed to the central wire before and

after each rod, to prevent them from translational move-

ments. The other two wires, symmetrically placed at both

sides of the steel wire, are made of nylon and can freely

slide through their holes in the rods, so that stretching of

these wires does not cause translation of the rods. The nylon

wires provide the restoration force that opposes rotational

displacements from the mutual angular position of the rods.

During experiments, the amplitude of the applied perturba-

tion had a Gaussian-like shape, as this was the easiest to pro-

duce by hand. When a rotational perturbation is applied to

one of the rods, it propagates along the setup through the

nylon wires, effectively creating a discretized 1D torsional

wave. This system can be seen as a discrete approximation

of the continuous case in which the distance between two

consecutive rods approaches zero. For our case the propaga-

tion of the torsional wave can approximately be described

by the wave equation

FIG. 1. (Color online) Experimental setup: the central wire (red) provides the pivot around which the bars rotate; the two nylon wires (blue) provide the res-

toration force to enable waves. The lever can be used to control tension in the wires.
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2r2FL

IN

@2h
@z2
¼ @

2h
@t2

; (1)

where r ¼ 0:060 6 0:001 m is the distance between steel

and nylon wires, F is the variable tension in each wire, L
¼ 3:410 6 0:005 m is the distance between the two extremal

rods, I ¼ 0:0049 6 0:0004 kg � m2 is the moment of inertia

of a rod, N¼ 32 is the total number of rods and h is their

angular displacement. This yields a torsional wave speed

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2r2FL

IN

r
: (2)

B. Tension control

The tension in the wires could be manually controlled,

during experiments, by means of a mechanical lever con-

nected to the nylon wires: pulling the lever would result

in stretching of the wires, with a consequent increase in

tension. Relaxation of a muscle can be mimicked by pre-

stretching the wires, then releasing the lever over a transi-

tion time s during wave propagation; with a framerate of 60

frames per second, it was not possible to determine s from

the video recordings.

To verify the reliability of Eq. (2), a first experiment

was run with a force gauge (Force Gauge TMT-5020,

OCS.tec GmbH & Co. KG, Neuching, Germany) connected

to one end of the nylon wire, so as to compare the values of

c derived from the equation and those measured directly.

During this experimental validation, the tension read by the

force gauge was F ¼ 13:75 6 0:2 N, corresponding to a cal-

culated speed of c ¼ 1:50 6 0:14 m/s, a value comparable,

within the experimental tolerance, with the speed measured

directly from the video recordings, c ¼ 1:65 6 0:02 m/s.

While the value of speed determined from the tension mea-

surement suffered from a relatively high experimental

uncertainty, the uncertainty of the direct speed measure-

ment depends essentially on the framerate of the recording,

allowing for more precise measurements. In our experi-

ments, therefore, the propagation speed was measured by

acquiring and analysing video-recordings of the wave.

Although not necessary, the tension of the pre-stretched

nylon wires could be estimated from the speed measure-

ments via Eq. (2): with a speed c1 ¼ 3:00 6 0:02 m/s, the

tension was estimated to be 57.0 6 0.1 N. With the lever in

its rest position, on the other hand, the wave traveled at a

measured speed of c2 ¼ 1:40 6 0:02 m/s, corresponding to

a tension of F ¼ 12:4 6 0:1 N.

C. Data acquisition

A digital single lens reflex camera (Nikon D5300,

Nikon Corporation, Tokyo, Japan) with framerate of 60

frames per second, facing the cross section of the rods, was

used to record the propagating wave from one side, with a

field of view of approximately 2 m that allowed the imaging

of 18 rods in the center of the setup. In order to increase the

contrast between the setup and the background, the tips of

the rods were painted with an orange phosphorescent paint

that reacts to ultraviolet (UV) light. We performed the

experiments in a dark room illuminated only by 5 UV 60-W

lamps, so that the bright orange glow of the extremities of

the rods would be easily distinguishable from the back-

ground. This allowed us to isolate and track their motion in

post-processing, using the software ImageJ (National

Institute of Health, Bethesda, Maryland, U.S.) to isolate the

motion of each individual bar, and then importing all data in

Matlab (version r2016b, MathWorks, Natick, MA). Frames

of the recorded propagating wave are shown in Fig. 2, while

Fig. 3 shows a single videoframe and its numerical

reconstruction.

III. RESULTS

During the experiments, the nylon wires were first pre-

stretched to the maximum tension of 57 N. A single unipolar

wave pulse was then manually generated by perturbing the

first metal rod, and the tension was subsequently dropped to

12.4 N by releasing the lever during propagation. In order to

avoid the superposition of boundary reflections with the

waves we wanted to study, the release of the lever was timed

so that the waveform would always be in the center of the

system when the tension dropped. The tension drop happens

in a fraction of a period. Figure 4 shows the propagation

measured during an experiment: the axes represent the time

elapsed and the spatial coordinates of each rod expressed by

rod number; due to the limited field of view of the camera,

the extremal rods were not imaged and therefore do not

appear in the plot. The color scheme represents the ampli-

tude of rotation of each bar, so that the bright yellow

“bands” essentially correspond to the positive forward trav-

eling wave. At time t � 1:5 s the effects of the tension drop

can be seen. A reflected wave appears as the broad band that

moves backwards from right to left, with its negative ampli-

tude represented in dark blue. In addition, broadening of the

FIG. 2. (Color online) Snapshots in time of a wave propagating in the

experimental setup. From t¼ 1730 ms onwards, a reflected wave can also

be seen propagating backwards.
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waves in the vertical (time) direction represent an increased

time-period, and their increased brightness indicates a

growth in amplitude.

We note a remarkable similitude with the behaviour of

waves crossing the spatial discontinuity between two media,

the main difference being that, in the case of a temporal dis-

continuity, it is wavelength that is conserved, while the

period changes. In order to better understand the parallelism,

let us look at a wave equation in which the wave speed

depends on the spatial coordinate

c2ðzÞ @
2h
@z2
¼ @

2h
@t2

: (3)

Next, we consider the current situation, in which the wave

speed depends on time, giving the equation

c2ðtÞ @
2h
@z2
¼ @

2h
@t2

: (4)

By defining a new parameter sðtÞ ¼ 1=cðtÞ called slowness,

we can rewrite the equation as

s2ðtÞ @
2h
@t2
¼ @

2h
@z2

: (5)

This resembles Eq. (3), but with the roles of z and t being

interchanged.

From the wave behaviour at a spatial discontinuity, it is

known that the spatial period of the wave (i.e., the wave-

length) varies proportionally to c, whereas its temporal

period remains constant. By considering Eq. (5) and per-

forming the same reasoning as above, that is inverting the

roles of space and time, we can expect that at a temporal dis-

continuity the time period will vary proportionally to s,

whereas the spatial period will remain constant.

We then proceeded to implement in Matlab a 1D first

order explicit finite difference scheme to solve Eq. (1)

FIG. 3. (Color online) Snapshot of the wave propagating in the setup (above) and reconstructed points after image processing (below).

FIG. 4. (Color online) Experimental (left) and simulated (right) wave propagation in space-time. The color map represents the amplitude of the rotation of

the bars: the bright yellow ‘band’ shows the waves with positive amplitude, the darker areas correspond to reflected waves with negative amplitude, while

the brightening and the broadening in the vertical direction, starting around t¼ 1.5 s, represent the period and amplitude increase, respectively. The dotted

line shows the time at which the tension in the system is suddenly dropped.
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numerically and simulate the behavior of the setup in differ-

ent circumstances. In order to test the viability of the simula-

tion to investigate these phenomena, we compared its results

with experimental data: the parameters of the wave function,

the space, and the time discretizations were all chosen to

match those of the experimental setup, i.e., spatial steps of

11 cm (the distance between rods) and time steps of 16 ms

(the time between video-frames). The wave was simulated

as a Gaussian pulse with an e�1 width of 0.3 s. A compari-

son between this function and the excursion of the third rod

(the first one to be imaged in our measurements) is shown in

Fig. 5.

Figure 6 shows a comparison between simulation and

experiment, by plotting the amplitude over time of two rods.

The rods were chosen so that one would oscillate once

before the tension lever was released, while the other would

be crossed by the wave only after the sudden tension drop,

which was simulated to happen in 16 ms, i.e., one time-step.

The results of the simulation (solid line in Fig. 6) are in

qualitative agreement with the experiment in terms of

amplitudes and period of the incident, transmitted and

reflected wave around the transition phase. This validates

our numerical approach. Having thus established its reliabil-

ity, we continued our study by performing simulations only,

in order to perform a systematic, quantitative study.

First, we ran simulations to determine the relation

between the deceleration of the wave and the formation of

transmitted and reflected waves. We computed the behavior

of a one-cycle, sinusoidal wave as could be generated on a

1D string. The spatial discretization was refined to a spacing

of 0.01 m to increase spatial sampling of the waves, and the

time discretization was shortened to steps of 0.1 ms, ensur-

ing stability of the numerical scheme (Courant number

Cnum � 0:028) as well as correct sampling of all phenomena.

Figure 7 shows how the amplitude and period of the trans-

mitted and the reflected waves change as a function of

c1=c2, for fixed duration s ¼ 10 ms of the deceleration. We

can see that both amplitude and period increase linearly

with the ratio between the initial and final propagation speed

(c1 and c2, respectively), in agreement with the relations

AT=AI ¼ ðc2 þ c1Þ=2c2 and AR=AI ¼ ðc2 � c1Þ=2c2 detailed

in the Appendix, and the relation T ¼ c=k with constant

wavelength k; here, A represents the amplitude of the wave,

T the period, and the subscripts I, R, and T represent the ini-

tial, reflected, and transmitted waves, respectively. When

referring to the period of the wave before and after the

tension drop, the subscripts 1 and 2 will be used, so that the

two periods will be indicated by T1 and T2, respectively.

Furthermore, we investigated the effects of a decelera-

tion taking place over longer spans of time, up to about

twice the period of the wave. In our numerical model, for

t < t1 the speed was 3 m/s; the speed then decreased linearly

from 3 to 1 m/s, between t1 and t2 ¼ t1 þ s, and was conse-

quently kept at a constant value of 1 m/s for t > t2. As

shown in Fig. 8, as the ratio s=T1 between transition time

and wave period increases, the amplitude of transmitted and

reflected wave decreases; the phase of the reflected wave

appears to be opposite of that of the incident wave.

FIG. 5. (Color online) Comparison between the experimentally measured

excursion of the third metal rod and the Gaussian pulse used in the simula-

tion as source of the wave.

FIG. 6. (Color online) Comparison between simulation and experiment in

the oscillation of two rods, reached by the wavefront, respectively, before

and after the tension drop. The drop occurs at the time indicated by the ver-

tical dotted line.

FIG. 7. (Color online) Amplitude ratios AR;T=AI and period ratios T2=T1 as

function of c1=c2. Both amplitude and period can be seen to increase line-

arly with the decrease in speed. The blue curve shows the absolute value of

the amplitude of the reflected wave, which, for a decelerating propagation,

would be negative.
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Moreover, we can also notice that two reflected waves are

actually present when s=T1 � 1, whereas for shorter transi-

tion times there appears to be only one, albeit distorted,

reflected wave. The variation in period of the wave does not

seem to be affected by s, as shown in Fig. 9. Based on the

results of these simulations, we conclude that reflected

waves are generated at points in time when the acceleration

of the wave is discontinuous; if two such points are sepa-

rated by less than T1, two reflected waves will be generated,

but they will partially overlap with each other, appearing to

be a single, distorted waveform. On the other hand, if the

distance in time between the two points is greater than T1,

both distinct waveforms will be visible.

The results of the simulations detailed above offer an

overview of the general effects that the temporal variation

of a medium has on a propagating wave. In order to assess

the relevance of these effects for cardiac SWE, we can input

in our model realistic values of stiffness variation of the car-

diac muscle to predict how the relaxation would affect a

propagating shear wave. Let us first consider the diastolic

phase of a heart in which the muscle isovolumic relaxation

phase can be modeled by an exponential decrease in stiff-

ness with time constant a ¼ 50 ms, as was measured in

Langendorff perfused rabbit hearts.14 Let us further consider

that a shear wave traveling through the muscle is imaged

(e.g., by means of ultrasound scanners) for a duration of d
¼ 10 ms during this phase. Figures 7 and 9 showed that the

variation in period of the wave depends only on the ratio

between initial and final speed, T2=T1 ¼ c1=c2. The ratio

itself can be easily computed knowing a and the d, since

c1=c2 ¼ ed=2a. Considering a ¼ 50 ms and d ¼ 10 ms, one

could expect to observe an increase in wave period of 20%.

On the other hand, an infarcted heart might have a relaxation

constant a ¼ 100 ms14; under the same measuring condi-

tions, one would then observe an increase in wave period of

just 10%. Therefore, when reconstruction of the shear wave

in space-time domain is possible, the broadening of the

tracked shear wave in time could be used as an indirect mea-

sure of the relaxation that took place. The amplitude varia-

tion, however, being in the order of 3% and 2% for healthy

and unhealthy hearts, respectively, would be unlikely to be

detected in realistic measurements.

IV. DISCUSSION

Our results confirm that mechanical waves show a

response to temporal variations of the medium comparable

to the behavior of electromagnetic waves detailed in litera-

ture: the amplitude and the period of the traveling wave

increase proportionally to the decrease in propagation speed,

the wavelength is unaffected, and reflected waves can be

generated at points of discontinuity in the acceleration.

Based on our numerical results, the predicted effects of

cardiac relaxation are of particular interest: in fact, not only

would a measured wave be affected by the relaxation of the

muscle, it would actually be affected by the specific relaxa-

tion curve within the measurement. In other words, if two

muscles relax at different rates, they may in principle be

told apart by observing the variation in amplitude and period

of waves traveling through them. The variations in period,

in particular, could potentially be employed to directly help

diagnoses of diastolic impairment (i.e., reduced muscle

relaxation), which is connected to diastolic heart failure. It

should be noted that these results show a relation between

initial and final period (or frequency), without any assump-

tion about the initial value itself; therefore, the results are

independent of the frequencies involved, and can apply to

the frequency ranges typical of naturally occurring shear

waves, as well as artificially induced ones.

As promising as these results may be, however, their

practical implementation still presents challenges. First of

all, the amplitude increase caused by diastolic relaxation is

expected to be small and could be hard to measure during

in vivo experiments, due to signal attenuation and noise.

Moreover, because the relaxation of the muscle happens

smoothly, there are no discontinuities to give rise to clearly

observable reflected waves. Therefore, the only effect of

temporal variations to be visible in clinical measurements

may be the shift in wave period, and measurements with

high time-resolution could be necessary to distinguish the

different shifts of a healthy and a diseased heart. For exam-

ple, for an initial frequency of 50 Hz, the time difference

FIG. 8. (Color online) Snapshots of a wave after having propagated in a

slowly relaxing medium, for different relaxation times s. We can observe

that the amplitudes decrease with increasing s, and that a second reflected

wave appears when s=T1 > 1. The arrows point at the two reflected waves.

FIG. 9. (Color online) T2=T1 as function of deceleration time s=T1. The

period of the wave is unaffected by the relaxation time s.
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between an increase in the period by 10% and 20% is 2 ms,

corresponding to a minimum imaging framerate of 500 Hz,

while an initial frequency of 100 Hz would require a mini-

mum framerate of 1000 Hz to discern the different period

increases. Finally, due to the anisotropic, viscoelastic, three-

dimensional nature of the heart, additional effects will com-

pound to those produced by muscle relaxation, so that more

complex models will be required in order to analyze data

accurately.

Another matter to be noted is that the results presented in

this study only show explicitly the effects of a wave that is gen-

erated before the relaxation begins; the relaxation of the

medium takes place entirely during the propagation of the

wave, and the effects are determined after the entire process has

ended. However, when the closure of the aortic valve generates

a wave, the cardiac muscle has already started relaxing; more-

over, a SWE measurement based on such a wave would be

over well before the cardiac relaxation process ended.

Therefore, one could question whether the predictions formu-

lated for real hearts can truly be trusted based solely on our

numerical study. We argue that this is indeed the case: Figs. 7

and 9 show that the variation in period of the wave depends

only on the ratio between initial and final speeds c1=c2, where

c1 and c2 correspond the speed of the wave at the beginning and

at the end of a measurement; this means that for fixed c1=c2,

the variation in period will always be the same, regardless of

whether the speed varies with a step function or a smooth curve.

As mentioned above, the difference with our simulations, intro-

duced by the smoothness of the diastolic relaxation, lies in the

absence of reflected waves, which are generated at discontinu-

ities. It is important to notice that, during a fixed measuring

time, different relaxation curves (as could characterize healthy

and diseased hearts) will result in different values of c1=c2,

therefore affecting the propagating wave differently.

Finally, we consider a wave produced by mitral valve

closure, which may also be used to perform SWE. The

mitral valve closes at the onset of systole, the contracting

phase of the heart cycle, and, due to the stiffening of the

muscle, waves traveling during this phase experience an

increase in propagation speed. Based on our results, we

expect that the amplitude and period of an accelerating

wave will decrease proportionally to the increase in speed,

and reflected waves will be once again generated at disconti-

nuities in the acceleration.

From an experimental point of view, compared with

other approaches proposed in literature to investigate waves

in temporally varying media, the use of our setup shows sev-

eral advantages. To begin with, the setup allows us to

observe the full phenomenon in its complexity, including

not only the initial and final state of the wave, but its transi-

tion phase as well. Moreover, it can be easily built and mod-

ified so as to tailor the wave parameters (speed, amplitude)

to specific needs, and the tension can be varied directly and

in real time during an experiment; thanks to these features,

more complex interactions (e.g., combining temporal varia-

tions with viscous behaviors) could be investigated with

minor modifications of the setup.

There are a few limitations in our choice of setup as

well: in particular, non-ideal matching of wires and rods,

non-ideal fixed boundaries, and friction, are all factors that

play a role in altering the behavior of the wave, degrading

the match between experiment and idealized numerical sim-

ulation, as can be observed, e.g., for the reflected wave in

Fig. 6 at times greater than 1.5 s. Moreover, due to the lim-

ited resolution and spatial window with which the motion of

the bars can be detected by the camera, only wave ampli-

tudes between 3 and 20 cm could be reliably detected.

This meant that only a restricted parameter space could be

practically investigated with the experimental setup.

Nevertheless, the setup provided useful qualitative informa-

tion, as well as a validation of our numerical approach;

together, experiments and simulations proved to be a robust

tool to investigate waves in time-dependent media.

V. CONCLUSIONS

We conclude that the variation over time of the stiffness

of a medium, such as the beating heart, produces an

inversely proportional variation in amplitude and period of a

wave traveling through it. Furthermore, if the stiffness varia-

tion presented discontinuities, reflected waves would be

generated. Based on the results of our numerical simulations

and literature data, we predict that a healthy diastolic relaxa-

tion will affect propagating waves differently than an

impaired process, producing a wave period increase twice as

large as the one that might be observed in a dysfunctional

organ. This difference may potentially be exploited to

directly obtain information on diastolic functionality with

one SWE measurement.

ACKNOWLEDGMENTS

This work is part of the STW–Dutch Heart Foundation

partnership program “Earlier recognition of cardiovascular

diseases” with project number 14740, which is financed (in

part) by The Netherlands Organization for Scientific

Research (NWO). Moreover, the authors would like to

thank Henry Den Bok, from the Delft University of

Technology, and Geert Springeling, from the Erasmus MC,

University Medical Center Rotterdam, for technical support

with the construction of the experimental setup.

APPENDIX: REFLECTION AND TRANSMISSION
COEFFICIENTS

We show here how the reflection and transmission coef-

ficients can be calculated for a 1D transverse wave travelling

on a string that undergoes an instantaneous material prop-

erty variation (e.g., a decrease in tension). This situation can

be considered to be the temporal equivalent of a wave trav-

elling across the interface between two different, ideally

bonded, strings. Let us assume that the instantaneous varia-

tion happens at time t0 ¼ 0, and let us consider an initial

wave function wi ¼ fIðx� c1tÞ for all t < 0. As we have

seen, after the temporal discontinuity, in the setup two
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waves are present, a transmitted wave wT ¼ fTðx� c2tÞ and

a reflected wave wR ¼ fRðxþ c2tÞ. Notice that the transmit-

ted and reflected waves travel at the same speed c2, with

opposite signs. We can then consider two instants in time,

before (B) and after (A) the discontinuity, and define two

waveforms

wB ¼ wi ¼ fIðx� c1tÞ (A1)

and

wA ¼ wT þ wR ¼ fTðx� c2tÞ þ fRðxþ c2tÞ; (A2)

representing the deformation of the string in these two

instants. Let us now make two considerations:

(1) The deformation of the string has to evolve continuously

from wB to wA at all coordinates x (a discontinuity of w
between two consecutive instants requires movements at

infinite speeds). Therefore, it follows that for all x:

wBðx; 0Þ ¼ wAðx; 0Þ
) fIðxÞ ¼ fRðxÞ þ fTðxÞ: (A3)

(2) The vertical speed of each individual particle in the

string also needs to be continuous over time (a disconti-

nuity of @wðx; tÞ=@t in time would require infinite accel-

eration). We can write this condition as

@wBðx; tÞ
@t

����
t¼0

¼ @wAðx; tÞ
@t

����
t¼0

)�c1f 0IðxÞ¼�c2f 0TðxÞþc2f 0RðxÞ: (A4)

Integrating the equation above and setting the integration

constant to 0, we find that

c1fIðxÞ ¼ c2ðfTðxÞ � fRðxÞÞ: (A5)

We can then solve Eqs. (A3) and (A5) for fR and fT in terms

of fI, finding

fRðxÞ ¼
c2 � c1

2c2

fIðxÞ; (A6)

fTðxÞ ¼
c2 þ c1

2c2

fIðxÞ: (A7)

We have thus shown that the ratios of the amplitudes of ini-

tial, reflected and transmitted waves (AI, AR, and AT, respec-

tively) are equal to

AR=AI ¼
c2 � c1

2c2

(A8)

and

AT=AI ¼
c2 þ c1

2c2

: (A9)
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