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RESEARCH Open Access

Transcranial sonothrombolysis using
high-intensity focused ultrasound: impact of
increasing output power on clot fragmentation
Golnaz Ahadi1,5, Christian S Welch2, Michele J Grimm5, David J Fisher1,2, Eyal Zadicario6, Karin Ernström3,
Arne H Voie1,2 and Thilo Hölscher1,2,4*

Abstract

Background: The primary goal of this study was to investigate the relationship between increasing output power
levels and clot fragmentation during high-intensity focused ultrasound (HIFU)-induced thrombolysis.

Methods: A HIFU headsystem, designed for brain applications in humans, was used for this project. A human
calvarium was mounted inside the water-filled hemispheric transducer. Artificial thrombi were placed inside the
skull and located at the natural focus point of the transducer. Clots were exposed to a range of acoustic output
power levels from 0 to 400 W. The other HIFU operating parameters remained constant. To assess clot
fragmentation, three filters of different mesh pore sizes were used. To assess sonothrombolysis efficacy, the clot
weight loss was measured.

Results: No evidence of increasing clot fragmentation was found with increasing acoustic intensities in the majority
of the study groups of less than 400 W. Increasing clot lysis could be observed with increasing acoustic output
powers.

Conclusion: Transcranial sonothrombolysis could be achieved in vitro within seconds in the absence of tPA and
without producing relevant clot fragmentation, using acoustic output powers of <400 W.

Keywords: Thrombolysis, High-intensity focused ultrasound, Stroke, Clot fragmentation, Clot debris

Background
The majority of strokes are ischemic, caused by intracra-
nial thrombo-embolic arterial occlusion. Vessel recanali-
zation is the primary goal of all acute stroke treatment
approaches. Achieving vessel recanalization without
causing further damage is a key objective in effective
treatment. Innovative recanalization strategies or options
to improve tPA efficacy are of high interest. Mechanical
(i.e., mechanical embolism removal cerebral ischemia,
MERCI) and chemical (i.e., tPA) methods to achieve
successful thrombolysis have been evaluated with regard
to efficacy and safety. With mechanical removal of a
thrombotic occlusion, an undesirable side effect has

been the potential harmful effects caused by clot frag-
ments [1]. Clot fragments may lead to secondary vessel
occlusion further downstream in the supply area of the
affected vessel. This is a safety concern because of the
potential risk of secondary strokes [2].
Basic principles using ultrasound (US) to enhance

thrombolysis have been described [3-8], and first clinical
studies on transcranial sonothrombolysis in stroke pa-
tients using diagnostic US devices are promising [9-12].
Current research in thrombolysis has been focused
mainly on clot lysis feasibility [13-17], but only to a lim-
ited extent on clot fragmentation or other potential side
effects, such as unwanted temperature elevation in the
tissue. To date, only a few publications are available
describing the impact of mechanical versus pharmaco-
logical recanalization strategies on clot fragmentation
[18], the concomitant effects of potential heating [19], or
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the specific effects of focused ultrasound in this regard
[20,21].
The goal of this study was to investigate the impact of

increasing acoustic output powers on potential clot
fragmentation, using a novel transcranial high-intensity
focused ultrasound (HIFU) headsystem.

Methods
Description of the HIFU headsystem
For all studies, a HIFU headsystem (ExAblate™ 4000,
InSightec, Inc., Tirat Carmel, Israel) equipped with a
hemispheric transducer was used. Due to its design, the
multi-element array produces a sharp focus in the geo-
metrical center of the hemispheric transducer, which can
be steered electronically as well as mechanically. A de-
tailed description of the device is available in a contribu-
tion recently published by the same group [22].

Experimental setup
A human cadaveric skull was degassed for 72 h prior to
being mounted upside down to the bottom of an acrylic
plate, which covered the hemispheric transducer. The
plate had a hole in its center (∅16 cm). The hemispheric
transducer was filled with molecular grade (distilled and
deionized) water that was degassed for a period of 2 h
immediately prior to use. A human cadaveric skull was
provided by the University of California, San Diego
(UCSD) Division of Anatomy. Venous whole blood was

drawn from healthy unmedicated donors, per UCSD-
approved IRB protocol, into vacutainer citrate tubes.
Clots were generated around a silk thread after adding
CaCl2 and incubated for 3.0 h at 37°C. The average clot
weight was 0.2652 g ± 6%. A detailed description of the
clot preparation has been published by the same group
recently [22]. The experimental setup is displayed in
Figure 1.

Ultrasound parameter settings
A multi-location insonation pattern was used in all
experiments. First, the thrombus was positioned in such
a way that its center was aligned with the natural focus
of the HIFU system (X/Y/Z, 0/0/150 mm). For all
sonothrombolysis experiments, the HIFU focus was then
electronically steered along the longitudinal axis of the
thrombus, aiming at nine different locations with a
stepwidth of 2.0 mm to cover the entire length of the
thrombus (start at −10/0/150 mm; stop at +10/0/150
mm). The insonation duration for all experiments, re-
gardless of acoustic output power, was limited to 30 s.
The ultrasound parameters were chosen for efficacious

clot lysis obtained based on previous first data on
in vitro HIFU sonothrombolysis using the ExAblate™
4000 headsystem [22]. Accordingly, the duty cycle and
pulse length were kept constant at 50% and 200 ms, re-
spectively, for all data collection points. The only varying
factor of the HIFU setup was the change of the acoustic

Figure 1 Schematic display of the in vitro HIFU thrombolysis and clot fragmentation experimental setup. The hydrophone position
describes the location of the natural focus beam, in the center of the blood clot.
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power, ranging from 0 to 400 W (0, 50, 100, 125, 150,
200, 235, 270, and 400 W). The varying acoustic powers
were used to evaluate the relation between insonation
intensities and effect on clot lysis and fragmentation.

Assessment of clot lysis efficacy and fragmentation
After the 30 s of insonation, the flow was continued for
an additional 2 min, and the solution was collected in a
beaker. The thrombi were weighed pre- and post-
insonation. After incubation, the pre-weight was
assessed by placing the clot, attached to the string, on a
precision scale (model ML303E, Mettler Toledo, Inc.,
Greifensee, Switzerland). After insonation the post-
weight was assessed by pulling the string to remove the
attached thrombus out of the test tube. The clot includ-
ing the string was then placed on the scale and weighed
again. Subtracting the post-weight from the pre-weight,
the percentage weight loss for each individual clot and
the average percentage weight loss for each study group
were calculated and recorded. Before placing the solu-
tion in the beaker, it passed three differently sized mesh
filters (Millipore, Tullagreen Carrigtwohill, County Cork,
Ireland) with mesh widths of 180, 60, and 11 μm to cap-
ture the clot fragments. The serial filtration with de-
scending mesh size filters was set up to represent small
arteries as well as the microvasculature. The microvas-
culature of the human brain varies in its cross-sectional
diameter, usually with a diameter of <10 μm, which is
reported to be subcapillary [23-25]. The reason why 11-
μm mesh size was chosen in the present study was
mainly due to accessibility and the pore size being close
enough to emulate the size of the vessels in the capillary
range. The amount of clot fragmentation per filter size
was calculated by subtracting the pre-wet filter weights
from the post-wet filter weights with the difference doc-
umented in percent clot weight. To do so, the filters
were soaked in degassed deionized water for 2.5 min
prior to the experiment. To remove the entrapped water
drops, the filter's edge was tapped twice on gauze. After
tapping, the filter's weight was assessed and defined as
the pre-wet filter weight. Following the ultrasound ex-
posure, the filters were tapped again in the same manner
and the post-wet filter weight was assessed. If the sum of
the post-wet filter weight minus the pre-wet filter weight
was greater than ‘0’, an assumption was made that the
clot fragmentation occurred.

Acoustic measurements
Without the test tubing in place, for all experimental
groups, the acoustic parameters spatial peak, temporal
average intensity (ISPTA), peak negative pressure (Pneg),
and peak positive pressure (Ppos) were measured first
using a HIFU hydrophone (model Y120, Sonic Concepts,
Seattle, WA, USA), calibrated for the frequency of 220

kHz. To account for the interference of the tubing itself,
the acoustic measurements were repeated by placing the
hydrophone at focus inside the tubing.

Statistical analysis
For efficacy, the aim was to establish if weight loss (in
percent and gram) was different among groups. A linear
regression model was used to examine if there is a differ-
ence in the mean weight loss among groups (primarily,
is each group is different from the 0 W group).
For fragmentation, the aim was to establish if the clot

fragmentation (post-/pre-filter weight) was different
among groups for each separate filter size (11, 60, and
180 μm). Wilcoxon rank-sum tests were used to exam-
ine if the clot fragmentation in each group (50, 100, 150,
200, 235, 270, and 400 W) is different from the clot frag-
mentation in the 0 W group. The p values were adjusted
using the Holm's procedure to correct for multiple com-
parisons. Descriptive statistics and boxplots for overall
and group clot fragmentation were provided.

Results
Clot fragmentation
A total of N = 352 clots were studied, divided into nine
subgroups of increasing acoustic output powers. To test
for clot fragmentation, three different filter sizes were
used. For the 400 W as well as for the 150-W acoustic
output power group, a statistical significant clot fragmen-
tation could be observed for the 180-μm filter size. For 60
and 11 μm groups, as well as for any other study group or
filter size, no statistical significant clot fragmentation was
observed when compared to the control group (0 W). De-
tailed statistical findings of all intensity groups and pore
sizes are given in Tables 1, 2, and 3, respectively.

Sonothrombolysis efficacy
A total of N = 561 clots were studied. For groups 4 to 9,
a statistically significant (p < 0.001) weight loss could be
achieved (Table 4). For groups 1 to 3, no significant (p >
0.05) weight loss could be seen. A visual presentation of
the efficacy results is given in Figure 2.

Ultrasound parameters/acoustic properties
For each acoustic output power value, the Ispta, the peak
negative pressure (Pneg), the peak positive pressure
(Ppos), and the total energy in kilojoules were measured
at focus with the tubing in place. In comparison to the
acoustic measurements without the tubing in place, we
measured the Ispta and subsequently the energy to be
89.8% while the Pneg and Ppos values were 93.1%. Table 5
provides an overview of the acoustic data with the test
tubing in place.
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Discussion
Clot fragmentation during thrombolytic therapy using
ultrasound is a safety concern. It could be demonstrated
in the present study that sonothrombolysis using HIFU
can be achieved with great efficiency without causing
significant clot fragmentation using acoustic output
powers of less than 400 W.
An undesirable side effect of sonothrombolysis has

been the potential harmful effects caused by clot frag-
ments, which may lead to secondary vessel occlusion. If
the fragments produced from successful US-induced re-
canalization are large in size, they may limit the blood
flow farther downstream, causing secondary embolic
strokes. To date, the knowledge about sonothrombolysis
strategies and resulting clot fragmentation is sparse. The
goals of the present work were to collect data on clot
fragments that were produced subsequent to thromboly-
sis using HIFU and in absence of tPA and to quantita-
tively evaluate the resultant fragment size distribution.
Current literature addresses clot fragmentation as it
relates to vessel size. During their in vitro sonothrom-
bolysis experiments, Rosenschein et al. [20] examined

clot fragmentation by performing post-insonation, a uni-
directional saline flush through a segment of an ex vivo
bovine artery and three differently pore-sized filters. The
group could demonstrate that irrelevant of the Ispta de-
livered by their HIFU system, 93% of the fragment ma-
terial was subcapillary. In this study, subcapillary was
defined to be a material smaller than 8 μm in size.
A similar serial filtration setup was used in the present

in vitro study to examine clot fragmentation as a result
of HIFU-induced sonothrombolysis. Using three differ-
ently sized mesh filters (180, 60, and 11 μm), pre-/post-
filter weights were assessed. Given the slightly different
filter sizes used in the present study, relevant clot frag-
mentation was found at elevated acoustic energies and
for the large filter size only, confirming to a great extent
the findings of Rosenschein et al. For the 180-μm filter
size, a statistically significant p value (>0.05) was found
for 150- and the 400-W experimental groups, suggesting
that clot fragmentation was significantly greater than the
control for this specific filter size. For the 11- and
60-μm-sized filters, no statistically significant clot frag-
mentation occurred in the experimental groups when

Table 1 Clot fragmentation (post-/pre-wet filter weight) 180-μm filter

Group Acoustic output power (W) Number Mean weight (mg) Standard deviation Min (mg) Median (mg) Max (mg) P Value

1 0 60 −4.2 0.01 −18.5 −5.5 8.5 -

2 50 62 −2.6 0.01 −13.5 −3 15.5 0.6666

3 100 20 −1 0.01 −10.5 0 7.5 0.1285

4 125 63 −1.7 0.01 −15.5 −1.5 14.5 0.1134

5 150 65 −1.2 0.01 −12.5 −1.5 10.5 0.0266

6 200 20 18.3 0.1 −17.5 −3 433.5 0.6666

7 235 20 −2.8 0.01 −10.5 −3.5 6.5 0.6666

8 270 22 −1.3 0.01 −12.5 1.5 15.5 0.2868

9 400 20 2 0.01 −17.5 0 18.5 0.0048

Overall - 352 0 0.02 20 0 0.43 -

p Values reflect comparison to the 0 W group, adjusted for multiple comparison.

Table 2 Clot fragmentation (post-/pre-wet filter weight) 60-μm filter

Group Acoustic output power (W) Number Mean weight (mg) Standard deviation min (mg) Median (mg) Max (mg) p Value

1 0 60 3.7 0 −1.1 2.9 21.9 -

2 50 62 3.5 0 −1.1 2.4 10.9 >0.9999

3 100 20 1.3 0.04 1.9 3.9 18.1 >0.9999

4 125 63 3.3 0 −4.1 2.9 11.9 >0.9999

5 150 65 3.2 0 −12.1 2.9 15.9 >0.9999

6 200 20 21.2 0.06 −2.1 3.4 19.1 >0.9999

7 235 20 2.6 0 −2.1 1.9 6.9 >0.9999

8 270 22 10.6 0.04 −6.1 3.4 180.9 >0.9999

9 400 20 13.4 0.04 −1.1 3.9 190.9 >0.9999

Overall - 352 0.01 0.02 −10 0 0.19 -

p Values reflect comparison to the 0 W group, adjusted for multiple comparison.
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compared to the control groups. For the 150 W group,
the median value for the 180-μm filter size was negative
(post-wet filter weight − pre-wet filter weight). Negative
median values would imply that the filter weight prior to
the experiment would have been higher than the post-
filter weight. Since the filters cannot lose weight during
the experiment, the most reasonable explanation for this
might have been the relative inaccuracy of the procedure
itself. Prior to the experiment, each filter was soaked in
water. In preparation for the actual experiment, the edge
of the filters was tapped twice on gauze using blunt for-
ceps to remove larger drops of water. Post insonation,
the filters were tapped again in the same manner. This
appeared to be the most reasonable procedure to
equalize the conditions of filter weight assessment pre-/
post-insonation. The procedure itself, however, bares a
limited sensitivity. This might explain why ‘negative’ fil-
ter weights were seen. Due to this, and although for-
mally statistically significant, the findings in the 150 W
group were interpreted as most likely to be not of poten-
tial clinical relevance. Aside from this, the median filter
weight for the 400 W group was found to be signifi-
cantly greater for the 180-μm filter size in comparison

to the median filter weight of either the control or any
other group. Therefore, this finding was found to be sig-
nificant and was most likely clinically relevant. The fact
that clot fragmentation was seen only in the highest inten-
sity group and with the largest filter size suggests that lar-
ger pieces of the clot were torn apart most likely due to
the visible and vigorous displacement of the clot inside the
test tube during insonation. Similar observations regarding
pulsed focused ultrasound-induced displacements of
in vitro blood clots were recently described by Wright
et al. [26]. For the two smaller mesh filter sizes, no statisti-
cally significant differences in pre-/post-filter weights
could be seen, independent from the acoustic output
power or thrombolytic efficacy. This finding suggests that
if clot fragmentation might have occurred, the fragments
were smaller than 11 μm. A possible reason for the small
amount of detectable clot fragmentation with regard to
HIFU thrombolysis was given by Maxwell et al. [27]. The
group suggested the creation of cavitation clouds at focus
in which the clot fragments might be entrapped and fur-
ther fractionated even in the presence of directional flow.
Despite the promising findings of the present work

with regard to clot fragmentation and clot lysis, the data

Table 3 Clot fragmentation (post-/pre-wet filter weight) 11-μm filter

Group Acoustic output power (W) Number Mean weight (mg) Standard deviation Min (mg) Median (mg) Max (mg) P Value

1 0 60 2.4 0 −8.2 1.8 11.8 -

2 50 62 3.3 0 −8.2 2.8 19.8 >0.9999

3 100 20 18.5 0.07 −2.2 3.3 310.8 >0.9999

4 125 63 2.7 0 −6.2 2.8 13.8 >0.9999

5 150 65 4.2 0.01 −6.2 2.8 50.8 >0.9999

6 200 20 3 0 −3.2 2.8 12.8 >0.9999

7 235 20 2.2 0 −2.2 1.8 5.8 >0.9999

8 270 22 2.2 0 −3.2 2.3 9.8 >0.9999

9 400 20 2.7 0 −1.2 1.8 9.8 >0.9999

Overall - 352 3.9 0.02 −8.2 2.8 310.8 -

p Values reflect comparison to the 0 W group, adjusted for multiple comparison.

Table 4 Percent clot weight loss - clot lysis in relation to intensity

Group Acoustic output
power (W)

Number Mean weight loss (mg) Standard deviation Mean weight loss (%) Standard deviation P Value

1 0 60 0.0 0.01 1.75 4.01 >0.05

2 50 62 10.0 0.01 4.55 4.62 >0.05

3 100 66 10.0 0.01 5.63 3.22 >0.05

4 125 63 20.0 0.02 8.97 6.3 <0.001

5 150 65 30.0 0.02 12.9 9.75 <0.001

6 200 61 70.0 0.05 28.22 18.70 <0.001

7 235 61 100.0 0.05 41.41 20.3 <0.001

8 270 62 150.0 0.04 61.04 14.56 <0.001

9 400 61 180.0 0.03 74.83 10.12 <0.001
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has to be interpreted with great care. Whether or not the
potential of using HIFU for transcranial sonothrombolysis
without causing adverse side effects due to clot fragmenta-
tion would suggest a rather safe vessel recanalizing
method has to be verified in appropriate animal models
first before it might be considered for human application.
From current sonothrombolysis trials, we have learned
that mainly secondary hemorrhage is a safety concern and
might diminish the potential of early recanalization using
transcranial ultrasound. Secondary hemorrhage has been
described mainly in combination with low-frequency
ultrasound and to lesser extent with diagnostic range
frequencies of 1.0 MHz or above [9,10,12,28]. It should
be mentioned that the majority of the present
sonothrombolysis trials have been performed with diag-
nostic range ultrasound devices and in combination with

tPA. Clinical trial data using focused ultrasound devices
and in absence of tPA does not exist.

Limitations of the present study and future outlook
The experimental setup represents an in vitro sonoth-
rombolysis model of efficacy assessment and resultant clot
fragmentation. Thus, future sonothrombolysis efficacy
studies will have to be performed in an appropriate in vivo
model, providing quantitative analysis of potential clot
fragmentation postmortem. The blood clots used in this
study were artificially made using blood from healthy
human volunteers. Accordingly, these blood clots are a
limiting element for adequate demonstration of results for
thrombolysis efficiency and clot fragmentation. Future ex-
periments should incorporate the use of ex vivo thrombi
taken from sufferers of an occluded vessel (harvested dur-
ing neurointerventional procedures in actual stroke pa-
tients) [2]. Furthermore, besides fragmentation, cavitation
and thermal effects have to be studied in depth due to the
safety concerns. It has been shown that cavitation may
lead to microvessel disruption, causing potential intracra-
nial hemorrhages [29]. Thermal effects are of concern with
regard to heat-related tissue damage. Future safety experi-
ments will have to focus on the effects of stable and iner-
tial cavitation both inside and outside the vessel as well as
thermal effects of transcranial sonothrombolysis.
The ultimate goal is to move the in vitro and animal

model studies to the clinical application in humans. In
order to do so, the HIFU system will have to be com-
bined with a magnetic resonance imaging (MRI) system
for neuronavigation. Since the HIFU brain system does

Figure 2 Percent clot weight loss for each acoustic output power group.

Table 5 Acoustic parameters at the focus with tubing

Ac power (W) Ispta (W/cm2) Pneg (MPa) Ppos (MPa) Energy (kJ)

0 0.00 0.00 0.00 0.00

50 29.71 1.45 1.32 0.14

100 59.27 2.07 1.93 0.28

125 75.57 2.34 2.11 0.35

150 92.05 2.55 2.34 0.42

200 121.05 2.95 2.73 0.57

235 144.22 3.27 2.91 0.66

270 130.43 3.81 3.09 0.76

400 193.24 4.32 3.76 1.13
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not provide imaging capabilities, it is - in the clinical
setup - an integrative part of an MRI scanner to navigate
the focus beam towards the target structure. The time to
prepare the patient and the high cost to use these two de-
vices on stroke sufferers might be the current limiting fac-
tors for therapeutic clinical use of this technology on a
broader scale, except in very specialized comprehensive
stroke centers. However, the potential impact of MRI-
guided HIFU in clinical use for the treatment of ischemic
stroke in the absence of therapeutic lytic agents is signifi-
cant. Not using lytic agents in combination with US will
result in avoidance of the side effects of these therapeutics,
such as tPA-induced hemorrhages. Of great importance as
well is the fact that a much larger stroke population who
are not eligible for tPA therapy might benefit from
sonothrombolytic treatment using transcranial HIFU.

Conclusion
Using a first clinical transcranial HIFU headsystem, it
has been demonstrated in vitro that transcranial sonoth-
rombolysis using HIFU can be achieved within seconds
in the absence of tPA and without significant clot frag-
mentation, except for high acoustic output powers be-
yond 400 W. Future research in this field would have to
demonstrate the translation of this potential new thera-
peutic approach and the reproducibility of transcranial
HIFU sonothrombolysis in vivo. More importantly, the
safety of HIFU has to be shown with the optimized pa-
rameters in an appropriate in vivo model.
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