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Abstract
This paper briefly reviews the physiological components of 
the microcirculation, focusing on its function in homeostasis 
and its central function in the realization of oxygen transport 
to tissue cells. Its pivotal role in the understanding of circula-
tory compromise in states of shock and renal compromise is 
discussed. Our introduction of hand-held vital microscopes 
(HVM) to clinical medicine has revealed the importance of 
the microcirculation as a central target organ in states of crit-
ical illness and inadequate response to therapy. Technical 
and methodological developments have been made in 
hardware and in software including our recent introduction 
and validation of automatic analysis software called Mi-
croTools, which now allows point-of-care use of HVM imag-
ing at the bedside for instant availability of functional micro-
circulatory parameters needed for microcirculatory targeted 
resuscitation procedures to be a reality.

© 2019 The Author(s)
Published by S. Karger AG, Basel

Introduction

Resuscitation from states of shock is conventionally 
achieved by the restoration of systemic hemodynamic 
variables using fluid and vasoactive compounds with the 
aim of promoting tissue perfusion and oxygen transport 
to tissue. However, whether this aim is actually achieved 
is uncertain. This condition leads to inappropriate use of 
drugs, which in turn can cause an increase in organ in-
jury and adverse outcome. The physiological basis of this 
clinical dilemma has been exposed by our clinical intro-
duction of hand-held vital microscopes (HVM) for bed-
side monitoring of the microcirculation. To this end, a 
deeper insight into the functional anatomy and (patho)
physiology of microcirculatory alterations associated 
with disease and therapy is needed.

The Microcirculation

The microcirculation is the terminal vascular network 
of the systemic circulation consisting of microvessels 
with diameters < 20 µm. These microvessels consist of ar-
terioles, post-capillary venules, capillaries, and their (sub) 
cellular constituents (Fig. 1). The microcirculation is the 
final destination of the cardiovascular system and is ulti-
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mately responsible for oxygen transfer from the red blood 
cells (RBC) in the capillaries to the parenchymal cells 
where oxygen is delivered to meet the energy require-
ments of the tissue cells in support of their functional ac-
tivity. Other functions of the microcirculation include the 
regulation of solute exchange between the intravascular 
and tissular space and is responsible for the transport of 
all blood-borne hormones and nutrients to the tissue cells 
including mediating the functional activity of the im-
mune system and hemostasis. It is arguably the most im-
portant compartment of the cardiovascular system, since 
it is in direct contact with the parenchymal cells, which 
rely on its proper function to maintain their viability to 
support organ function.

Oxygen transport by RBC flow in the microcirculation 
to the tissues is accomplished by 2 primary mechanisms. 
These are convection of the oxygen-carrying RBCs and 
diffusion of the oxygen from the RBCs to the respiring 
mitochondria of the tissue cells. The former component 
of oxygen transport to the tissues is described by RBC flux 
or flow, and the diffusional component of oxygen trans-
port can be quantified by the functional capillary density 
(FCD) of the microcirculation [1]. 

Vessels of the microcirculation are almost entirely 
lined by endothelial cells (EC). These cells contain fenes-
trations and pores and are held together by various mol-

ecules, including cadherins as well as current-carrying 
gap junctions, which allow upstream electrical commu-
nication between EC. These endothelial structures can 
vary in density and morphology between the different 
organs and vessels. EC in symbiosis with smooth muscle 
cells regulate the microvascular blood flow predomi-
nantly by regulation of the vasotone of arterioles. There 
are 3 main mechanisms that cause this regulation: myo-
genic, metabolic, and neurohumoral control mecha-
nisms. One of the most important subcellular structures 
of the endothelium mediating its function is the glycoca-
lyx present on the luminal side of the endothelium [2–4]. 
It is a 0.2–0.5 µm gel-like layer synthesized by EC. It is 
composed of 3 major components, proteoglycans, gly-
cosaminoglycans, and plasma proteins, and harbors var-
ious substances such as antithrombin and superoxide 
dismutase. The glycocalyx is responsible for several crit-
ical physiologic processes including homeostasis, solute 
transport, hemostasis, and immunological functions. Al-
though it is generally thought that the glycocalyx integ-
rity is the main determinant of the vascular barrier, we 
showed in a recent study that this is not the case and that 
the glycocalyx can be shed in conditions of shock without 
compromising the vascular barrier function [5]. It is gen-
erally considered that endothelium dysfunction can be 
considered one of the main cellular events responsible 
for hemodynamic collapse seen in states of shock and 
responsible for the ineffectiveness of routine resuscita-
tion procedures [4]. The microcirculation is of key im-
portance for the functioning of the kidney due to its cen-
tral role in delivering oxygen to the renal microcircula-
tion [6, 7]. The majority (> 80%) of oxygen delivered to 
the kidney is utilized for production of ATP needed by 
the Na+/K+ pump whose activity is essential for tubular 
sodium reabsorption [8]. Injury of the renal microcircu-
lation resulting in acute kidney injury (AKI) can be 
caused by hypoxia, oxidative/nitro stress, and/or inflam-
matory mediators, and is thought to be central in the se-
quelae leading to AKI [9]. Experimental models have 
shown that targeting inflammation [10] and microcircu-
latory oxygen delivery [11] can be successful in resolving 
AKI in such models. 

Clinical Measurement of the Microcirculation Using 
HVM

Previously the measurement of the microcirculation 
in vivo was limited to experimental studies where intra-
vital microscopes were used to observe the microcircula-
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Fig. 1. Microvascular anatomy. The microcirculation is the part of 
the vascular system and consists of the small vessels so-called arte-
rioles, capillaries, and venules. The lymphatic capillaries carry the 
extravascular fluid into the venous system. The arterioles are sur-
rounded by vascular smooth muscle cells responsible for the regu-
lation of arteriole tone.
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tion in mainly muscle tissues (cremaster and hind limb 
muscle). In clinical studies, such microscopes were used 
to asses the function of the nail fold capillary bed in pa-
tients with peripheral vascular disease. In the 1990s, how-
ever, our group introduced HVM to the clinics, which 
allowed the first time observation of the microcirculation 
of the brain during surgery [12]. These first-generation 
HVM devices were based on orthogonal polarized spec-
tral imaging and made use of cross-polarized green light 
to image the microcirculation without the need to transil-
luminate the organ surface from below as was needed be-
fore [13]. This methodology allowed clear video observa-
tion of the flowing RBCs of the microcirculation. Due to 
the limited applicability of the bulky apparatus and the 
need for high-powered light sources of orthogonal polar-
ized spectral imaging, we developed a battery-based de-
vice based on sidestream dark field imaging [14]. Later a 
third-generation device with improved image quality was 
introduced based on incident dark field imaging [15]. In 
clinical conditions, these devices were mostly used to ob-
serve the sublingual microcirculation. In a large number 
of studies, sublingual microcirculation proved to be a 
highly clinically relevant location, where alterations were 
found to be highly sensitive and specific, much more than 
alterations in systemic hemodynamic variables, in pre-
dicting morbidity and mortality in various clinical patient 
groups [16–22].

To identify the sublingual microcirculation as a clini-
cally relevant location representative of microcirculatory 
dysfunction in other organ beds, studies were carried out 
showing that sublingual microcirculation alterations par-
alleled microcirculatory alterations in other organs such 
as the intestines and kidneys [23–25]. Addressing this 
question in a clinical study, Boerma et al. [26] looked out 
the correlation between sublingual and intestinal micro-
circulation in patients having developed sepsis as a result 
of stoma surgery. Although they found no correlation 
early on in sepsis, later there was a correlation between 
the intestinal and sublingual microcirculation in these 
septic patients showing how regional microcirculatory al-
terations can develop into a systemic microcirculatory al-
teration in the course of time [26].

HVM studies were carried out in a range of different 
clinical applications including on organ surface during 
surgery [12, 27–29]. Furthermore, methodologies were 
developed to identify other aspects of the microcircula-
tion such as methodologies to identify leucocyte kinetics 
[30] and the presence of the glycocalyx [31] and method-
ologies to identify microcirculatory reserve by topical ap-
plication on the sublingual area of nitroglycerine [32].

The prevalence of the HVM devices and the growth 
in the number of studies showing adverse outcome to 
be linked to the persistence of microcirculatory altera-
tions independent of alterations in systemic hemody-
namic variables led the publication of an international 
consensus paper under the auspices of a task force of the 
European Society for Intensive Care Medicine on the 
measurement of sublingual microcirculation in critical-
ly ill patients using HVM [33]. One of the most impor-
tant recommendations of their consensus guidelines 
was the need for the development of a validated auto-
matic software analysis platform. At the time, the only 
validated software analysis platform was the semi-auto-
matic AVA software developed by us [34] requiring 
time-consuming offline analyzing of images to produce 
functional microcirculatory parameters. Several auto-
matic software platforms have been attempted, but 
these were either inadequate or not validated with suf-
ficient rigor to allow these to be used in a reliable point-
of-care application. Especially the quantitative mea-
surement of capillary flow was found to be a major chal-
lenge in the automatic analysis of microcirculatory 
images. This changed with our recent development of 
an experimentally and clinically validated automatic 
software platform, called MicroTools, which allowed an 
almost 500 × faster automatic analysis of HVM gener-
ated microcirculatory than the previous AVA software 
[35] (website: [36]). This software platform calculates 
all the relevant parameters identified by the consensus 
paper as necessary for describing the functional state of 
the microcirculation, including quantitative velocity 
measurements of each vessel in the field of view. Mi-
croTools thereby allowed a quantitative measure of the 
convective (RBC velocity and flow) and diffusive capac-
ity (FCD) of the microcirculation instantaneously at the 
bedside. This important development has now made in-
tegrating the monitoring of the microcirculation using 
HVM into conventional systemic hemodynamic moni-
toring at the bedside as a point-of-care modality a real-
ity.

Microvasculatory Shock and Renal Compromise

Sepsis is associated with profound changes in micro-
circulation due to several mechanisms including endo-
thelial dysfunction, glycocalyx degradation, altered blood 
cell rheology (reduced RBC deformability), and dysbal-
ance between the levels of vasodilating and vasoconstrict-
ing substances [37] (Fig. 2). An oxygen extraction deficit 
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by the tissues is considered a main characteristic hemo-
dynamic defect in sepsis. This defect was found to be un-
resolved by therapeutic increases in systemic oxygen de-
livery [38]. This property in sepsis has made it difficult to 
choose an effective resuscitation target for its hemody-
namic resolution. The underlying mechanism of the re-
duced capacity of the tissues to extract oxygen from the 
circulation was identified in a series of experimental stud-
ies to be caused by microcirculatory dysfunction resulting 
in functional oxygen shunting of the microcirculation 
[39]. This condition manifests itself clinically as a reduc-
tion in the oxygen extraction capacity of the tissues, a 
condition that can occur in the presence of normalized 
systemic hemodynamic variables following resuscitation. 
The clinical introduction of HVM to the study of criti-
cally ill patients verified this mechanism by the observa-
tion of persistent RBC plugging of capillaries next to cap-
illaries with normal RBC flow despite apparent adequate 
resuscitation based on the normalization of systemic he-
modynamic variables. Studies using HVM in states of 
sepsis and shock showed these microcirculatory altera-
tions to be related to adverse outcome and organ failure 
independent of systemic hemodynamic conditions [17, 
18, 40, 41]. 

During states of cardiovascular compromise, resusci-
tation-induced improvement in systemic hemodynamic 
parameters does not necessarily result in a parallel im-
provement in the microcirculation. Such a condition, 
which is expected to occur under normal physiology, we 

termed as there being a “loss of hemodynamic coherence” 
between the macrocirculation and microcirculation. If 
persistent it has been shown to be an independent predic-
tor of adverse patient outcome despite macrocirculatory 
normalization [36].

The loss of hemodynamic coherence has been found 
to be associated with 4 main types of hemodynamic mi-
crocirculatory alterations, all associated with a loss of 
oxygen extraction capacity of the tissues (Fig. 3). Type 
1 alteration is characterized by heterogeneity in capil-
lary density and blood flow and shunts in microvascular 
blood flow (as seen in sepsis). Type 2 alteration is asso-
ciated with inadequate transport of oxygen to the mi-
crocirculation due to dilutional anemia caused, for ex-
ample by hemodilution. Type 3 alteration is seen as a 
stasis of microcirculatory blood flow, for example, by 
the use of too much vasopressors [42] or tamponade 
caused by an increase in venous pressure [43]. Type 4 
alteration is typically seen in states of edema where FCD 
is low. 

The observations of states of microcirculatory shock 
using HVM despite normalized systemic hemodynamics 
achieved by resuscitation have led to many studies being 
carried out to investigate the efficacy of various therapeu-
tic interventions to resuscitate the microcirculation. The 
response of the microcirculation to vasoactive com-
pounds have generally been shown that vasopressors tar-
geting increases in blood pressure to have a limited effect 
on improving microcirculation unless there was initial 
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Fig. 2. Microvascular dysfunction and vas-
cular endothelial damage. a The structure 
of a healthy microvessel is shown. EC and 
glycocalyx cover the lumen of the microves-
sel. The blood cells (leukocytes, RBC, 
thrombocytes) flow together with plasma 
inside the microvessels. b Microcirculatory 
damage can be caused by ischemia, reperfu-
sion, inflammation, and hypoxia, resulting 
in endothelial and glycocalyx and RBC 
damage. Activation of leukocytes induces 
rolling, adhesion, and ultimately extravasa-
tion to the tissue, which further accelerates 
the inflammation. Decreased vascular per-
meability causes vascular leakage and ede-
ma formation. RBC,  red blood cell; EC, en-
dothelial cells.
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microcirculatory hypoperfusion; otherwise, vasopressors 
could actually decrease microcirculatory flow [42, 44, 45]. 
Vasoactive compounds having dilatory effects such as do-
butamine, enoximone, and nitroglycerin, on the other 
hand, were much more effective in recruiting the micro-
circulation [40, 46, 47]. 

Fluids are a mainstay therapeutic option for states of 
hypovolemia and shock, and many studies have been 
conducted investigating various aspects of the response 
of the microcirculation to fluid administration. Studies in 
sepsis have shown fluid resuscitation to be effective in 
promoting microcirculatory flow only when such micro-
circulatory flow was initially low in value [48]. Such a 
condition was shown to occur independently of normally 

used surrogates of hypovolemia as indicative of fluid need 
such as oliguria, stroke volume, tachycardia, and low lac-
tate [49]. In abdominal surgical patients, Bouattour et al. 
[50] found pulse pressure variation to identify preload 
dependence to be associated with reduced sublingual mi-
crocirculation, which was successfully improved by fluid 
administration. A consistent finding especially in cardiac 
surgery patients is that fluid administration leads to a 
Type 2 loss of hemodynamic coherence (Fig. 3) where an 
RBC dilution quantified by a decrease in FCD indicated 
a reduction in oxygen extraction capacity of the microcir-
culation [51], whereas a de-escalation by use of diuretic 
therapy leads to an increase in FCD [52]. These consistent 
findings of the presence of dilution anemia being caused 
by excessive use of fluid therapy, identified in the micro-
circulation as a reduction in FCD, let us to identify ane-
mic shock as a possible fifth category of shock, which 
should be added to the classic four states of circulatory 
shock (cardiogenic, hypovolemic, obstructive, and dis-
tributive) described by Weil [53]. Blood transfusions have 
been shown to be an effective option for recruiting the 
microcirculation [54], especially in improving the diffu-
sional component of microcirculatory oxygen transport 
by an increase in FCD [55]. 

Heart failure and cardiogenic shock have been found 
in a number of studies to be associated with a decrease in 
the microcirculatory convective flow [41, 47]. Mechanical 
support of the circulation by use of VA-ECMO in adult 
and pediatric patients has shown that the inability of VA-
ECMO to improve the microcirculation was associated 
with adverse outcome [16, 21, 56, 57]. It is clear from the 
above studies that the next phase in the study of the mi-
crocirculation must be to investigate the efficacy of mi-
crocirculatory-guided resuscitation strategies. For such 
studies to be effective, however, a point-of-care analysis 
of methodology for instant bedside evaluation of micro-
circulatory alterations is needed.

Microcirculatory alterations and hypoxemia have 
been reported in patients with chronic kidney disease 
and patients on hemodialysis. Studies using the BOLD 
technique for measuring renal tissue oxygenation 
showed that chronic kidney disease patients with renal 
hypoxemia had a 3 times more likely chance to develop 
the need for renal replacement therapy or show a 30% 
or more increase in serum creatinine [58]. During the 
course of hemodialysis and fluid withdrawal, microcir-
culatory flow is reduced as shown in several HVM stud-
ies [59, 60]. This effect could be reversed following renal 
transplantation [59]. In a large cohort of hemodialysis 
patients, Meyring-Wosten et al. [61] identified, by mea-

Type 1: heterogeneity Type 2: hemodilution

Type 3: constriction/tamponade Type 4: edema

R P

Fig. 3. Condition of microcirculatory alterations associated with 
loss of hemodynamic coherence and reduced oxygen capacity of 
the tissues. Type 1: Heterogenous RBC flow caused by RBC and 
endothelial cell injury induced for example by sepsis results in 
RBC stagnant capillaries next to perfused capillaries resulting in 
microcirculatory shunts and a reduction of tissue oxygen extrac-
tion capacity. Type 2: A decrease in the oxygen-carrying potential 
of the microcirculation due to hemodilution induced anemia re-
sulting from a low FCD. Type 3: A stasis in the RBC flow due to 
increased vascular resistance (R) [37] and/or elevated venous 
pressure (P) [38]. Type 4: Increased oxygen diffusion distances 
due to edema caused by capillary leak syndrome. Adapted from 
Ince [67].
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surement of arterial and venous oxygen saturation, 
states of “prolonged intradialysis hypoxemia,” a condi-
tion they found to be associated with all-cause hospital-
ization and mortality. De-escalation following volume 
overload can be accomplished by hemodialysis or by di-
uretic therapy. Campos et al. [62] showed how arterial 
saturation can improve upon volume removal during 
hemodialysis. In an HVM study volume overloaded 
post-cardiac surgery patients receiving diuretic therapy 
were shown to be successful in increasing sublingual 
FCD, thereby improving the diffusive capacity of the 
microcirculation [52].

In states of inflammation and infection, such as in sep-
sis, blood purification of inflammatory mediators can be 
accomplished by the use of specialized cytokine removal 
filters, such as Cytosorb, in line with continuous replace-
ment therapy. In a propensity score weighted retrospec-
tive clinical trial, we showed that such an approach was 
successful in improving 28 day mortality in severely ill 
septic ICU patients [63]. In an HVM study, Zuccari et al. 
[64] showed that the use of such Cytosorb filters were as-
sociated with a reduction in cytokine levels in parallel 
with a recovery of microcirculatory alterations associated 
with sepsis.

New Directions in the Clinical Monitoring of the 
Microcirculation

There is general agreement in the literature that the 
ultimate expectation of achieving an adequate hemody-
namic resuscitation target is when there is a normaliza-
tion of tissue perfusion (e.g., [65]). However, there is no 
clarity about what is precisely meant by “tissue perfu-
sion.” It is presumed that tissue perfusion must be equiv-
alent to the promotion of the flow of RBCs in the micro-
circulation with the aim of promoting tissue oxygenation 
to sustain cell viability needed to support organ function. 
However, the most common resuscitation procedure be-
ing fluid resuscitation may increase convection but at the 
expense of diffusion of oxygen due to the increase in dif-
fusion distance between the RBCs reducing the oxygen 
extraction capacity of the tissues [66, 67]. Thus, a tech-
nique such as a laser Doppler is inadequate in measuring 
these variables because it only measured the flux. Near-
infrared spectroscopy is equally inadequate because it 
only measures approximate hemoglobin oxygen satura-
tion instead of actual delivery of oxygen availability. Thus, 
what is needed is a metric combining cellular RBC trans-
port as well as RBC availability which represent the 2 pri-

mary determinants of microcirculatory oxygen transport: 
RBC convection and diffusion capacity, the latter consist-
ing of the density of RBC-filled capillaries (FCD) and the 
capillary hematocrit [1]. To measure both microcircula-
tory convection and diffusion capacity, direct visualiza-
tion of the microcirculation is mandatory (for identifica-
tion of single RBC). In addition, these functional micro-
circulatory parameter values have to be directly calculated 
at the bedside in a point-of-care manner. Only then can 
clinicians titrate resuscitation compounds to optimize 
microcirculatory perfusion and oxygen transport values. 
HVM meets the requirements to allow clear visualization 
of flowing RBCs in the microcirculation and our recently 
introduced clinically validated automatic analysis soft-
ware called MicroTools [35] allows instant calculation of 
all of the required parameters to quantify microcircula-
tory oxygen transport values thus fusing capillary hema-
tocrit, FCD, and the flow of RBC into one parameter de-
fining the determinants of microcirculatory oxygen 
transport variables has led us to introduce a new resusci-
tation target variable we call tissue “RBC perfusion”. We 
expect this parameter, which can be instantaneously mea-
sured using HVM in conjunction with MicroTools, to 
provide a gold standard as a microcirculatory resuscita-
tion target. A current research in our group in a large in-
ternational multicenter database has gathered microcir-
culatory measurements in various patient categories, and 
therapeutic interventions will provide the validation of 
the use of tissue RBC perfusion as this new resuscitation 
target.

Conclusion

Over the last several decades, much progress has been 
made in our understanding of microcirculatory (dys-) 
function in various clinical conditions due to the intro-
duction of HVM for bedside observations of the micro-
circulation. Over the years, technological advances have 
led to improvements in the development of hardware re-
lated to HVM as well as development of fully automated 
software (MicroTools) for analysis of images to provide 
functional microcirculatory parameters. It is expected 
that direct visualization of the microcirculation and per-
forming point-of-care analysis of functional parameters 
will identify patients at risk where apparent resuscitation 
targets have been met based on the normalization of sys-
temic hemodynamic variables and possibly provide new 
microcirculatory-based resuscitation targets in conjunc-
tion with systemic hemodynamic targets [68]. 
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