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Hominin-specific regulatory elements selectively
emerged in oligodendrocytes and are disrupted
In autism patients
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Speciation is associated with substantial rewiring of the regulatory circuitry underlying the
expression of genes. Determining which changes are relevant and underlie the emergence of
the human brain or its unique susceptibility to neural disease has been challenging. Here we
annotate changes to gene regulatory elements (GREs) at cell type resolution in the brains of
multiple primate species spanning most of primate evolution. We identify a unique set of
regulatory elements that emerged in hominins prior to the separation of humans and
chimpanzees. We demonstrate that these hominin gains perferentially affect oligodendrocyte
function postnatally and are preferentially affected in the brains of autism patients. This
preference is also observed for human-specific GREs suggesting this system is under con-
tinued selective pressure. Our data provide a roadmap of regulatory rewiring across primate
evolution providing insight into the genomic changes that underlie the emergence of the brain
and its susceptibility to neural disease.
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nderstanding the emergence of the human brain and the

unique properties that define our species in evolutionary

history remains a major challenge!. Furthermore, as sev-
eral neuropsychiatric and neurodegenerative diseases are sus-
pected to be linked to genetic changes that recently evolved?—,
unraveling evolution of the human brain may have consequences
beyond a plain understanding of the human condition. However,
as the human brain is the result of a process that spans the
entirety of primate evolution, giving rise to primate brains of
variable sizes and cognitive complexities!-®, its understanding
may also require a broader evolutionary context. This is especially
relevant given the absence of pervasive data on neural disorders
in great apes’ and the challenges in assessing their cognitive
abilitiesS.

The process underlying brain development is controlled by
gene expression programs that dictate cellular identity in a spatio-
temporal manner®10, Gene regulatory elements (GREs) such as
enhancers and promoters function as transcriptional units that
recruit specific transcription factor complexes to control the
expression of genes in a cell-type-dependent manner!!. This cell
specificity as well as functional redundancy of enhancers is likely
linked to an enhanced evolutionary flexibility, avoiding some of
the pleiotropic effects associated with changes in genes!?. As such,
pervasive rewiring of the gene regulatory circuitry has been
observed across mammalian evolution while genes remain mostly
conserved!3. This rewiring includes a host of regulatory changes
that were specific to the human brain!4-16, Despite these efforts,
finding a cause—consequence relationship between important
evolutionary alterations in gene regulatory elements, evolution of
the brain and its susceptibility to neural disorders has remained
difficult. Here we annotate regulatory changes in the brain across
primate evolution. We identify a set of regulatory changes that
emerged after the separation from old world monkeys but prior to
the separation between chimpanzee and human. These elements
are referred to as hominin-specific and are preferentially enriched
in oligodendrocytes in adults and deregulated in the brains of
autism spectrum disorder (ASD) patients. We propose that evo-
lution of regulatory DNA in hominins may have helped set the
stage for the emergence of the human brain and its susceptibility
to disease.

Results

Annotation of hominin-specific regulatory change in brain. To
track relevant genome changes in the brain across primate evo-
lution, we annotated GREs in brain tissue from three healthy
marmoset specimens (Supplementary Data 1). With a common
ancestor living approximately 44 million years ago!”, the diver-
gence of marmosets and humans spans a major part of primate
evolution (Fig. 1a). We analyzed prefrontal cortex (PFC), a key
anatomical region involved in many of the executive processes
that define our species and cerebellum (CB), a neuron dense
structure harboring mainly granule neurons!8. To identify active
GREs, we used ChIP-Seq for histone H3 lysine 27 acetylation
(H3K27ac), a robust assay to identify active GREs on a global
scale!®. In addition, we analyzed trimethylation of histone H3
lysine 4 (H3K4me3), which is specifically associated with active
transcriptional start sites (TSS)2" (Supplementary Data 3). Data
were well within quality standards?! and were reproducible
between biological replicates (r> 0.9, Supplementary Fig. 1a, b).
We identified 33,754 marmoset GREs of which 16,086 were
predicted promoter GREs and 17,668 predicted enhancer GREs
(Supplementary Fig. 1c). Using human annotated promoter
sequences, we observed that the majority (75%) of predicted
promoters in marmoset overlapped with annotated promoters in
humans. Consistent with previous observations, analyses of RNA-

Seq data confirmed that active GREs were more often associated
with active gene expression in marmoset brain (Supplementary
Fig. 1d)?223.

To assess regulatory changes across primate evolution, we
focused on H3K27ac enrichment and compared our data to active
GREs identified in rhesus macaque, chimpanzee and human in
PFC and CB (Supplementary Fig. 2a, b)!4. Only GREs that could
be consistently mapped onto all four genomes were included in
the analyses (Supplementary Fig. 2c—e). While this excludes
species-specific DNA, most GREs that were excluded were
discarded due to poor genome annotation and/or ambiguous
mapping of reads. This is consistent with the observation that
regulatory changes primarily occur in conserved DNA as opposed
to DNA that is evolutionary novel!3. We retained a total of 37,308
GREs that could be mapped on all four species of which 25%
overlapped a TSS in humans (Supplementary Data 4, 5).
Dimension reduction and visualization with t-SNE and hier-
archical clustering revealed a clear separation of the two
anatomical locations as well as the major primate clades, with
high correlation between replicate samples (Fig. 1b, ¢, Supple-
mentary Fig. 2f).

While a prior analysis focused on identifying regulatory
changes specific to the human brain!4, significant differences in
brain size as well as the emergence of complex behavior have also
occurred prior to the separation of humans and chimpanzee in
great apes0. To gain insight into the regulatory changes
occurring prior to human evolution, we first selected elements
that were differentially enriched between human and both
marmoset and rhesus macaque using DESeq2 as demonstrated
previously!* (Supplementary Fig. 3a). The same analysis was
performed using chimpanzee data instead of human data and the
resulting datasets were compared (Supplementary Fig. 3b).
Similar to our prior analysis'4, biological replicates were
generated in separate batches to ameliorate batch-related
effects and no major batch effects were observed (Supplementary
Fig. 3c—e). We found 1398 (713 CB, 685 PFC) regions that were
designated as hominin (humans and chimpanzee)-specific gains
and 532 (374 CB, 158 PFC) that were defined as hominin-specific
losses (Fig. 1d, Supplementary Fig. 4a, Supplementary Data 6).
For instance, several hominin-specific regulatory changes were
found close to the SORCSI gene in CB (Supplementary Fig. 4b),
which is a known regulator of synaptic trafficking and linked to
aggression?2>, Mutations in this gene have been linked to
Alzheimer’s disease (AD) as well as ASD?5. The observed
imbalance between the hominin-specific gains and losses
observed is likely due to hominin losses as defined here require
conservation of activity across a longer evolutionary period (i.e.
conservation between rhesus macaque and marmoset). As such,
these conserved regions are more likely to be biologically relevant
and thus their loss may be selected against. Hominin-specific
gains were less frequently shared with other tissues (Supplemen-
tary Fig. 4c), consistent with previous observations suggesting
that evolutionary changes occur preferentially in tissue-specific
GREs!4. They were also less frequently associated with promoters
consistent with an enhanced evolutionary flexibility at distal
enhancers (Supplementary Data 5)!3. More regions were found
differentially enriched in CB compared to PFC that is consistent
with previous ChIP and gene expression analysis!423 and likely
due to CB being more homogeneous resulting in better resolved
GREs that are easier to compare. Motif analysis did not yield a
clear enrichment for transcription factor binding sites at these
elements, suggesting their change was not directly linked to a
single transcriptional program that was altered (Supplementary
Data 7). This was further supported by an overall reduction in
primate sequence conservation at these elements compared to
elements that did not change activity during primate evolution
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Fig. 1 Identification of hominin-specific regulatory changes in brain tissue. a Schematic representation of the primate phylogenetic tree with time
indication of the major branch points. b t-Distributed Stochastic Neighbor Embedding (t-sne) analysis of all H3K27ac-enriched GREs with orthologs on all
four primate genomes (n=37,308). Axes indicate semantic space (CB cerebellum, PFC prefrontal cortex). € PCA analysis of the same regions as in
(b), shown for the first two principal components. d Heatmap showing H3K27ac enrichment on scaled hominin-specific regulatory changes in both
cerebellum and prefrontal cortex. Heatmap colors indicate H3K27ac enrichment (rpm). CB gains n = 713; CB losses n = 374; PFC gains n = 685; PFC losses
n=158. e Conservation scores (20 mammals) using PhastCon as defined by UCSC for hominin-specific gains and evolutionary stable GREs compared to all
here identified GREs. Dissimilarities between distributions were calculated using a Student's t test. f Analysis as in (e) for hominin-specific nucleotide
changes. Bottom and top of the box plots are the first and third quartile. The line within the boxes represents the median and whiskers denote interval
within 1.5x the interquartile range from the median, outliers are depicted as points. Source data are provided in Source Data file.

(Fig. le). Furthermore, we observed an increase of hominin-
specific nucleotide changes at these GREs, suggesting that the
observed regulatory changes are sequence based (Fig. 1f). Thus,
our analysis has uncovered a unique set of regulatory elements
that were conserved in monkeys but changed activity in
hominins.

Hominin PFC gains preferentially emerged in oligoden-
drocytes. As the cortex is highly heterogeneous, containing a
variety of neural and glial cell types, we asked whether GREs that

recently evolved in hominins were spatially confined to the
frontal cortex or rather restricted to a particular cell type. We
therefore analyzed single-cell ATAC-Seq data generated in
human PFC2%, and found that hominin-specific gains were
overwhelmingly overrepresented in oligodendrocyte-specific open
chromatin domains in PFC (Fig. 2a). To independently confirm
this observation, we analyzed H3K27ac data derived from FANS
sorted NeuN* glutamatergic neurons, Sox6T GABAergic neurons
and Sox10" oligodendrocytes?’, FACS sorted CD11b*+ CD45low
CD64" CXCRI1Mgh microglia?® as well as primary astrocytes
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Fig. 2 Hominin-specific gains are oligodendrocyte-specific. a Bar plot showing cell-type-specific ATAC peaks in hominin-specific gains in PFC and CB and
stable GREs. Difference in oligodendrocyte-specific open chromatin frequency was calculated using a Fisher's exact test. b Heatmap showing H3K27ac
enrichment for 685 scaled hominin-specific PFC gains, analyzed in different cell types as indicated. Heatmap colors indicate H3K27ac enrichment (rpm).
¢ Metaplot analysis showing the average H3K27ac enrichment profile in different cell types for hominin-specific PFC gains, stable and all GREs. d Box plot
showing normalized ATAC signal for hominin-specific gains and stable GREs in nuclei FANS sorted for NeuN. Dissimilarities between distributions were
calculated using a Student'’s t test. e Box plots showing normalized H3K27ac enrichment for hominin-specific gains and stable GREs in prefrontal cortex in
both human and rhesus macaque. Dissimilarities between distributions were calculated using a Student's t test. f Box plots showing normalized H3K27ac
enrichment for hominin-specific PFC gains in white matter tissue per species. Dissimilarity between distributions was calculated using a Student's t test.
g Box plots as in (f) but for normalized H3K27ac enrichment on hominin-specific CB gains. Bottom and top of all box plots are the first and third quartile.
The line within the boxes represents the median and whiskers denote interval within 1.5x the interquartile range from the median, outlier are depicted as

points. Source data are provided in Source Data file.

isolated from adult brain?® (Supplementary Fig. 5a). We found
that most of the GREs that evolved in the PFC of hominins were
selectively enriched in Sox10™ oligodendrocytes and not in other
neural or glial cell types (Fig. 2b, ¢, Supplementary Fig. 5b).
Hominin-specific gains in cerebellum did not show strong
enrichment for cell-type-specific regions consistent with granule
neurons not being represented by these data (Supplementary
Fig. 5¢). As oligodendrocytes represent the main constituent of
glial cells in the brain, we used a third independent dataset®
separating neurons and glial cells in PFC based on the expression
of NeuN which selectively labels neural nuclei on the nuclear
membrane and not glial nuclei. We confirmed that hominin-
specific gains in PFC were selectively enriched in glial cells
(Supplementary Fig. 5d, e).

As a modest increase in glia to neuron ratio, scaling with brain
volume, was observed in larger primates®!-33, we wondered
whether the link between regulatory gains and oligodendrocytes
was the result of an altered glial content in the cortex. To address

this, we generated ATAC-Seq data from human, chimpanzee,
rhesus macaque and marmoset frontal cortex resolved between
neuronal and glial cells by FANS sorting for NeuN (Supplemen-
tary Fig. 6a—c, Supplementary Data 3). Consistent with cell-type-
specific H3K27ac enrichment and the single-cell ATAC-Seq
data®*, hominin-specific PFC gains were enriched for open
chromatin in NeuN— nuclei compared to NeuN+ nuclei in
humans (Fig. 2d). The opposite was observed for hominin-
specific CB gains, which is consistent with an overwhelming
neural content in CB (Fig. 2d). In addition, we found that ATAC-
Seq signal at hominin-specific PFC gains was enhanced in
humans and chimpanzee only in NeuN— nuclei and not in
NeuN+ nuclei (Supplementary Fig. 6d). Moreover, we observed
a slight increase in H3K27ac enrichment in regions specific to
NeuN— nuclei in humans compared to rhesus macaque; however,
this was substantially less pronounced than the differences
observed for the regions identified as hominin-specific gains
(Supplementary Fig. 6e). This demonstrates that regions that gain
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Fig. 3 Hominin-specific gains emerge postnatally. a Box plots showing normalized H3K27ac enrichment in PFC or CB samples across different
developmental timepoints for hominin-specific gains, stable GREs and all primate GREs. Dissimilarities between distributions were calculated using a
Student's t test. b Box plots showing normalized gene expression values of genes linked to hominin-specific PFC gains across developmental time, for both
human and rhesus macaque. Dissimilarities between distributions were calculated using a Student's t test. ¢ Box plots showing normalized gene expression
values in the white matter tissue of different primates for genes linked to hominin-specific PFC changes. Dissimilarities between distributions were
calculated using a Student's t test. d Gene-ontology analysis using GREAT for hominin-specific PFC gains. P values represent significance of enrichment for
stated biological process. Bottom and top of all box plots are the first and third quartile. The line within the boxes represents the median and whiskers
denote interval within 1.5x the interquartile range from the median, outliers are depicted as points.

H3K27ac enrichment in hominins are also preferentially in an
open configuration in hominins. Furthermore, these data suggest
that the skewing of hominin-specific gains towards oligodendro-
cytes is not solely due to an altered neural to glial ratio. To further
exclude altered glial content as a factor in our analysis, we
generated and analyzed H3K27ac ChIP-Seq data in white matter
(WM) for all four primate species (Supplementary Fig. 6f—g,
Supplementary Data 3). WM lacks neural content and consists
primarily (~75%) of oligodendrocytes®2. Hominin-specific gains in
PEC also gained of activity in human and chimpanzee WM
compared to rhesus and marmoset, further excluding glial content
as the main factor in our analysis (Fig. 2f). Hominin-specific gains
identified in CB were not differentially enriched in WM (Fig. 2g).
This strongly argues against these results emerging from an altered
neural to glial ratio in PFC. Furthermore, it also suggests that the
differences at these GREs are not spatially confined to the PFC.
Thus, our data demonstrate that hominin-specific regulatory
changes associate with hominin-specific sequence changes,
preferentially affecting GREs in oligodendrocytes.

Hominin gains activate postnatally and link to myelination. To
analyze whether there was temporal skewing of hominin-specific
gains towards a particular developmental stage, we analyzed
H3K27ac data from distinct developmental timepoints covering
prenatal, postnatal and adult stages in humans®>. We found that
hominin-specific PFC gains preferentially associate with regulatory

DNA that activates between the postnatal and adult stages (Fig. 3a,
Supplementary Fig. 7a) which, given their enrichment in oligo-
dendrocytes, is consistent with increased myelination during
this developmental stage!. This was not due to our initial analysis
being limited to adult tissue, as GREs identified here were overall
not differentially enriched between the postnatal and adult stages
(Fig. 3a).

To link hominin-specific gains to their target genes, we used a
combination of proximity-based gene linkage as well as HiC-
derived enhancer—promoters links from analysis in PFC3°. We
used promoter locations based on the human genome to link
GRE:s to genes for all primates as it the best annotated genome
and promoter locations are largely conserved throughout primate
evolution (Supplementary Fig. 7b, ¢). Using independent RNA-
Seq data generated in PFC and CB for humans and rhesus
macaque!>23, we found that the expression changes of genes
linked to hominin-specific gains correlated with H3K27ac gains
in CB and PFC in humans (Supplementary Fig. 7d). In addition,
we observed that these gene expression differences also
predominantly occurred postnatally in both PFC and CB (Fig. 3b,
Supplementary Fig. 7e) supporting the postnatal selectivity of
hominin-specific gains. To verify that the expression changes for
genes linked to hominin-specific PFC gains were consistent in
glial cells, further excluding changes in glia to neural content as a
factor in these observations, we generated WM RNA-Seq data
from the four primate species (Supplementary Fig. 7f, g,
Supplementary Data 3). In agreement with the changes at GREs,
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hominin-specific gains at regulatory DNA were mirrored by gene
expression changes in WM (Fig. 3¢, Supplementary Fig. 7h).

Functional analysis of genes linked to hominin-specific PFC
changes revealed that they were enriched for genes involved
Schwann cell differentiation, a myelinating cell of the nervous
system further supporting oligodendrocyte identity (Fig. 3d,
Supplementary Data 8). Furthermore, we found hominin-specific
H3K27ac enrichment near genes involved in the regulation of
axon guidance and sialylation while this was not observed for
hominin-specific gains in cerebellum (Fig. 3d, Supplementary
Fig. 7i). For instance, hominin-specific PFC gains were located
near the sialyltransferase ST3GAL5 (Supplementary Fig. 7)),
which causes intellectual disability when mutated®’. Sialic acid is
a key monosaccharide for the synthesis of brain gangliosides and
sialylated glycoproteins (NCAMS), both of which are essential for
cognitive stability and brain development3s. While sialic acid is
especially enriched in brain tissue, it is also found in high
concentrations in human milk and believed to play a role in
postnatal synaptic plasticity and memory formation3®. Indeed,
defects in these biosynthesis pathways have been linked to axon
instability, altered nerve excitability and psychiatric disorders
including schizophrenia and ASD38. This may suggest that some
regulatory features of these disorders link to evolutionary changes
that emerged in great apes and predates the separation of humans
and chimpanzees.

PFC hominin gains are deregulated in ASD patient brain. As a
link between the evolution of the human brain and the emergence
of several neural disorders was proposed previously?->, we further
explored the potential link between regulatory changes emerging
in hominins and disorders of the brain. We first compared
hominin-specific regulatory changes to genome-wide association
(GWAS) data, to link nucleotide variants associated with AD40,
ASD#1, Parkinson’s disease??, bipolar disorder and schizo-
phrenia®3 using stratified LD score regression on the summary
statistics of these variants*3. While enrichment for heritability to
schizophrenia was observed at GREs, particularly those that were
evolutionary stable and promoters (Supplementary Fig. 8a), we
did not observe a significant enrichment for disease-associated
variants in GREs that were gained or lost in hominins (Supple-
mentary Fig. 8a, b).

To contrast our data to more direct evidence for GRE
deregulation in neural disease, we also analyzed H3K27ac
ChIP-Seq data across 45 autism patient brains and 49 control
samples, similarly covering PFC and CB** as well as H3K27ac
ChIP-seq data from the entorhinal cortex of 47 Alzheimer’s
disease patients*>. In agreement with previous analysis we found
a correlation between regions that were deregulated in ASD
patients and GWAS variants linked to schizophrenia (Supple-
mentary Fig. 8a). Surprisingly, we also found strong evidence for
a link between hominin-specific regulatory gains in the PFC and
regions that lose H3K27ac enrichment specifically in ASD patient
brains (p = 1.5e726, Fisher’s exact test, Fig. 4a, Supplementary
Data 9). These include changes in GREs linked to genes
previously proposed to play a role in ASD such as ¢-MET%,
CITED4*, NLK*’, CAMK2A%7, and DNMT3A%7-48, For example,
two hominin-specific PFC gains that were reduced in ASD brains
were linked to DNMT3A and CAMK2A by HiC data (Fig. 4d, c,
Supplementary Fig. 8c, d), the latter of which was shown to
regulate dendritic morphology and synaptic transmission#® and is
found mutated in autism patients®®, In addition, two
oligodendrocyte-specific GREs emerged in the c-MET locus
(Fig. 4d, Supplementary Fig. 8e), a region proposed to play a role
in ASD?, with both of these elements showing a significant
reduction of H3K27ac enrichment in ASD patients?4. Enrichment

of H3K27ac at these GREs positively correlated with both ¢-MET
expression levels and H3K27ac enrichment on the promoter
(Fig. 4e, H)** and both GREs contact the c-MET promoter when
assessed in 4C experiments using white matter tissue (Fig. 4g).

To further explore the link between hominin-specific gains and
ASD losses, we analyzed whether ASD losses could be assigned to
a specific cell type. Analyzing human NeuN— and NeuN+-
specific open chromatin regions, we observed a slight reduction in
glia-specific open chromatin and a gain in neuron-specific signal
in PFC samples from patients compared to controls (Supple-
mentary Fig. 9a). In contrast, AD brains showed a loss of NeuN-+
signal that is consistent with a loss in neurons in the entorhinal
cortex®!. This was also observed using H3K27ac FANS data
(Supplementary Fig. 9b). While the reduction in glia-specific
signal in ASD patients could underlie a shift in cellular
composition, they could also be related to cell-type-specific
transcriptional programs that are changed. This is more likely as
consistent changes in glial cell content in the PFC of adult autism
patients were not observed previously”?~>4, Independent data
from single-cell ATAC-Seq data confirmed enrichment for
oligodendrocyte-specific open chromatin at regions that were
lost in ASD (Fig. 4g). Nevertheless, regions that are specifically
gained in hominins are substantially more often oligodendrocyte-
specific compared to the regions lost in autism brains (Fig. 4g,
Supplementary Fig. 9b). Moreover, LLM3D analysis> suggests
that, while a part of the interaction between ASD and hominin
changes may be driven by both of these preferentially affecting
oligodendrocytes or a subtype thereof, the specificity of these
regions is higher than expected based on a random interaction
between the two sets (p < 10e~16, LLM3D). Thus oligodendrocyte
overrepresentation in the two sets is not the sole explanation for
the interaction between hominin gains and ASD.

To analyze whether the link between evolution of novel GREs
and ASD was specific to hominin-specific gains, we repeated the
analysis for human and chimpanzee-specific regulatory changes.
We defined these as consistent gains or losses of activity
compared to all three other primate species (Supplementary
Fig. 9¢c). We found that both human and chimpanzee-specific
gains were also enriched for GREs depleted in ASD (p = 4.0e 3
and p=1.2e™* respectively, Fisher’s exact test, Supplementary
Fig. 9d). Cell-type analysis of these regions showed that both
preferentially originate from oligodendrocyte (Supplementary
Fig. 9¢). Nevertheless, we observed a reduction in oligodendrocyte
specificity for chimpanzee-specific regions that are lost in ASD
compared to human-specific GREs, the latter being similar to
hominin-specific gains (Supplementary Fig. 9e, f). Thus, the
skewing of regions that evolved in hominins towards oligoden-
drocytes and ASD persisted during human but not chimpanzee
evolution. Therefore, we propose that a regulatory program
affecting oligodendrocytes past the postnatal stage, which is
preferentially disrupted in ADS, first emerged in hominins and
continued to change in the human lineage.

Discussion

A connection between human evolution and the emergence of
neural disease has long been suspected*, with several genetic
elements that recently evolved in humans or in great apes
showing evidence for disease-related changes>3>°°. For instance,
several human accelerated regions (HARs) were linked to both
ASD and schizophrenia supporting a role for human-specific
regulatory changes near neural genes in these psychiatric
disorders>°®, As an increased susceptibility to neural disease is
unlikely to have evolved in isolation without an added benefit,
connecting human evolution to neural disorders may lead to
unraveling of the key genetic changes that underlie the emergence
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of the human brain. However, data on great apes are rare and as
such human evolution is often inferred based on comparison of
human and rhesus macaque!. Furthermore, it is far from clear
what the defining features are that make the human brain special
and to what extent these may or may not be shared with larger
primates8. Our data demonstrate that the regulatory changes that
set the stage for the human condition as well as some of their
associated disorders may have emerged earlier, prior to the
separation of human and chimpanzee. These changes correlate
with hominin-specific sequence changes and selectively affect
GRE:s in oligodendrocytes, key regulators of synaptic plasticity
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throughout life and essential for higher executive function®’.
Furthermore, these regulatory elements are specifically employed
between postnatal life and adulthood. Indeed, protracted myeli-
nation during postnatal development has been proposed as one of
the hallmarks of human brain development compared to other
primates®8. Moreover, expression analysis suggests that regulatory
programs affecting myelination recently changed in the human
lineage!®. Our data suggest that, while oligodendrocytes were
selectively altered during hominin evolution, changes in oligo-
dendrocytes continued to occur in the human lineage in elements
that are relevant in ASD. This suggests that changes in this
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Fig. 4 Hominin-specific gains are selectively deregulated in autism patient brains. a Heatmap showing enrichment of disease-associated GREs
deregulated in ASD and AD patient brains correlating with hominin-specific changes found in cerebellum (CB) and prefrontal cortex (PFC). Color indicates
odds ratio of enrichment compared to all identified GREs. P values were determined using a Fisher's exact test. b Chip-seq track showing rpm normalized
H3K27ac enrichment across regions containing the CAMK2A (left panel) and DNMT3A (right panel) gene in human PFC. Hominin-specific PFC gains are
highlighted in green. Chromosomal interactions are indicated by the boxes below the panel. € ChIP-seq tracks as in (a), for the DNMT3A gene in human
PFC and different isolated cell types. A hominin-specific PFC gain is highlighted in green. PFC prefrontal cortex, Olig oligodendrocytes, Glut glutamatergic
neurons, Gaba GABAergic neurons, Astr astrocytes, Micgl microglia. d ChIP-seq tracks as in (b) for a region containing the c-MET gene in human PFC and
different isolated cell types. Two hominin-specific PFC gains are highlighted in green. e Correlation of H3K27ac enrichment in the 5’ and 3’ GRE with
expression of the c-MET gene in autism patients. Black dots represent samples, blue line represents linear regression through the samples, gray area
highlights the 95% confidence interval. f As in (e), correlation of H3K27ac enrichment on the 5’ and 3’ GRE with H3K27ac enrichment on the promoter.
Dots represent the different samples, colors indicate species. g 4C-seq and rpkm normalized H3K27ac ChlIP-seq tracks of human white matter in a region
containing the c-MET gene. The c-MET-promoter was used as viewpoint for the 4C analysis. The green highlighted areas indicate the location of hominin-
specific PFC gains as shown in (d). h Bar plot showing the cell-type specificity of regions based on single-cell ATAC-Seq data, on regions identified in ASD
patients and control brains, regions specifically downregulated in ASD patients and those that are down in ASD as well as hominin-specific gain in PFC.
Difference in oligodendrocyte-specific frequency was calculated using a Fisher's exact test. Source data are provided in Source Data file.

regulatory program may have been important both during the
evolution of hominins as well as the emergence of humans.
Defects in oligodendrocyte function are gaining attention as a
contributing factor to a variety of neurodegenerative and neu-
ropsychiatric diseases®”. While the evolutionary changes in oli-
godendrocytes were linked to hominin-specific sequence changes,
and not due to changes in oligodendrocyte content, it is unlikely
that parallel mutations in sets of recently evolved regulatory
elements in oligodendrocytes occur at the same time in ASD
patients. Thus, the link between hominin evolution and ASD
presented here may reflect a recently evolved oligodendrocyte-
specific transcriptional program that is driven by the regulatory
elements identified and that is preferentially affected in ASD or a
specific oligodendrocyte subtype®®. As such, analysis of oligo-
dendrocyte subpopulations as well as regulatory changes linked to
ASD risk genes such as CAMK2A and DNMT3A*748 may further
our understanding of oligodendrocyte function in ASD. In
addition, c-MET?9, a gene previously proposed to play a role in
ASD, is of interest as it codes for a receptor tyrosine kinase that is
targeted by hepatocyte growth factor (HGF), which can enhance
the proliferation and migration of oligodendrocyte progenitors
and delay their differentiation®. A single nucleotide variation in
the ¢-MET promoter reduces c-MET expression and protein levels
and was associated with an increased ASD risk and altered con-
nectivity in ASD patient brains®!62, Furthermore c-MET protein
levels were found reduced in autism brain samples®. Interest-
ingly, both HGF expression as well as ¢-MET expression were
shown to also increase the migration and proliferation of oligo-
dendrocyte progenitor cells in tissue culture®® and expression of
HGEF by oligodendrocyte precursors was shown to enhance neural
survival®4. In line with these observations, neural growth and
dendrite and synapse maturation is dependent on MET receptor
signaling®. Nonetheless, levels of c-MET expression were not
significantly altered in a recent study analyzing the PFC of autism
patients®®. Thus the potential role of this gene and its control of
oligodendrocyte differentiation in ASD requires further study. As
such our data provide important insight into the regulatory
changes that have contributed to the emergence of the human
brain, while prioritizing a new set of regulatory elements that
could underlie some of the pathology observed in ASD patients.

Methods

Sample and data collection. Marmoset (Callithrix jacchus, cjl1, cj2, ¢j3) tissue
samples were collected at the Biomedical Primate Research Centre (BPRC) in
Rijswijk, the Netherlands (http://www.bprc.nl) and represent rest material invol-
ving no animal experimentation for the purpose of this work as determined by the
Animal Experimental Committee (DEC) (Supplementary Data 1). Samples were
flash frozen immediately after dissection and stored at —80 °C. Three brain regions,
cerebellum, prefrontal cortex and white matter, were used for analysis in this

manuscript. Brain samples from human (Homo sapiens; hgl, hg2, hg3), chim-
panzee (Pan troglodytes; ptl, pt2) and rhesus macaque (Macaca mulatta; rm1, rm2,
rm3) have been generated by us previously'4%7, or were resampled from the ori-
ginal brains. The adult nondemented control female human hemispheres were
obtained from the Netherlands Brain Bank (http://www.brainbank.nl/). Informed
consent was acquired meeting all ethical and legal requirements for autopsy, tissue
storage, and use of tissue and clinical data for research. Other datasets analyzed in
this study were obtained from GEO (https://www.ncbi.nlm.nih.gov/geo/) or
Synapse (https://www.synapse.org) (Supplementary Data 2).

Chromatin immunoprecipitation followed by sequencing. Chromatin immu-
noprecipitation (ChIP) was performed as previously described by us!4¢7. Sixty
milligrams of tissue was used per ChIP and homogenized in a glass douncer
(Kontes Glass Co.) in 1 ml Dulbecco’s Modified Eagle Medium with 0.2% Bovine
Serum Albumine (BSA). Cells were crosslinked while rotating for 10 min at RT in
10 ml fixation buffer (freshly made; 1% formaldehyde, 0.5 mM ethylenediamine-
tetraacetic acid (EDTA), 0.05 mM ethylene glycol-bis(B-aminoethyl ether)-N,N,N’,
N'-tetraacetic acid (EGTA), 10 mM NaCl, 5mM HEPES-KOH, pH 7.5). Samples
were washed twice with PBS, centrifuged for 5 min at 2095 x g and 4 °C, resus-
pended in 10 ml lysis buffer (50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM
EDTA, 10% glycerol, 0.5% Igepal, 0.25% Triton X-100) and incubated for 10 min at
RT while rotating. Cells were then centrifuged for 5 min at 2095 x g at 4°C and
resuspended in 10 ml wash buffer (200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA,
10 mM Tris-HCI pH 8.0) and incubated for 10 min at RT while rotating. Cells were
pelleted for 5min at 2095 x g at 4 °C and resuspended in 150 ul sonication buffer
(1 mM EDTA, 0.5 mM EGTA, 10 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.1% Na-
Deoxycholate, 0.5% N-lauroyl sarcosine), divided over two microtubes (Covaris
520045) and sonicated using the Covaris S series (12 cycles of 60 s: intensity 3, duty
cycle 20%, 200 cycles/burst). After sonication, the multiple microtubes per sample
were pooled and sonication buffer and Triton X-100 (final concentration 1%) was
added to a total volume of 550 pl. Immunoprecipitation with antibody (H3K27ac:
ab4729 abcam, H3K4me3: ab8580 abcam) coated Dynabeads Protein G (Invitrogen
10003D) was performed overnight at 4 °C. Beads were subsequently washed four
times with RIPA (50 mM HEPES-KOH pH 7.5, 1 mM EDTA, 0.7% DOC, 1%
NP40 and 0.5 M LiCl) and once with 50 mM NaCl in TE. Elution of the DNA from
the beads was performed overnight in elution buffer (50 mM Tris pH 8.0, 10 mM
EDTA, 1% Sodium Dodecyl Sulfate (SDS)) at 65 °C. Beads were removed by short
centrifugation and the supernatant 1:1 diluted with TE, followed by a 2 h incu-
bation with RNase (final concentration 0.2 ug/ul) at 37 °C and a 2 h incubation
with proteinase K (final concentration 0.2 ug/ul) at 55 °C. Finally, the DNA was
extracted using phenol/chloroform with MaXtract High Density gel tubes (Qiagen)
and purified using ethanol. Sequencing libraries were prepared according to the
Ilumina Truseq DNA library protocol and samples were sequenced at the MIT
BioMicro Center (http://openwetware.org/wiki/BioMicroCenter) using the Illu-
mina HiSeq 2000 sequencer.

RNA sequencing. White matter tissue for bulk RNA sequencing was dissected
from each primate species (100 mg per sample). Tissue was cut into small pieces of
1 mm length and collected in 1 ml Trizol. Samples were vortexed to dissolve the
tissue followed by a 5-min incubation at RT. Samples were centrifuged for 5 min at
21,000 x g at 4°C and the supernatant was transferred to a fresh Eppendorf tube.
Four hundred microliters chloroform was added and samples were mixed by
shaking, incubated on ice for 5 min and centrifuged for 15 min at 21,000 x g at 4 °C.
The aqueous upper layer was transferred to a fresh tube. Five hundred microliters
iso-propanol and 1 pl glycoblue (Invitrogen) were added followed by mixing by
shaking and incubation overnight at —20 °C. The following day, samples were
centrifuged for 30 min at 21,000 x g, 4 °C. RNA pellets were washed twice with
75% ethanol and air-dried for 8 min at RT. Pellets were resuspended in 11 pl
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nuclease-free water and transferred to USEQ (www.useq.nl) for library preparation
and sequencing. RNA libraries were prepared according to the Illumina TruSeq
Stranded total RNA library protocol and samples were sequenced at USEQ on a
high-output NextSeq500, 1 x 75 bp.

ATAC-sequencing on FANS sorted nuclei. Prefrontal cortex tissue was dissected
from the primate brains and homogenized in a glass douncer (Kontes Glass Co.) in
2ml EZ buffer (Nuclei Isolation Kit, Sigma NUC101) and incubated for 5 min on
ice. Subsequently samples were centrifuged for 15 min at 65 x g at 4 °C, resus-
pended in 2 ml EZ buffer and incubated on ice for 5 min. Samples were again
centrifuged for 10 min at 65 x g at 4 °C, resuspended in 4 ml Nuclear suspension
buffer (NSB; 0.01% BSA, 1x complete protease inhibitor cocktail in PBS) and
filtered through a 40 um cell strainer. Samples were centrifuged for 15 min at 65 x g
at 4°C and resuspended in 30 ml NSB after which 10 ml 30% OptiPrep (Simga
D1556) was added on the bottom of the sample using a needle. Another layer of
5ml 60% OptiPrep was then added underneath and the sample was centrifuged for
10 min at 1000 x g at 4 °C. Purified nuclei were recovered from between the 60%
OptiPrep and PBS layers and checked for quality under a bright field microscope.
One hundred microliters blocking solution (0.5% BSA, 10% FBS in PBS) was added
containing anti-NeuN antibody conjugated with Alexa488 (1:1000, Merck Milli-
pore MAB377X) and Hoechst 34580 (1 pg/ml, Fisher Scienctific H21486) and
incubated for 1h at 4°C in the dark on a roller. Stained nuclei were then trans-
ferred to FACS tubes precoated with 5% BSA and sorted on NeuN signal using a
FACS-Jazz (BD Bioscience). 50,000 NeuN+ and NeuN— stained nuclei were col-
lected in PBS and processed further for ATAC-sequencing®. In short, 0.1% NP-40
was added to the sorted nuclei and samples were centrifuged for 15 min at 150 x g
at 4 °C. Pellets were then resuspended in 1 ml resuspension buffer (10 mM Tris-
HCI pH 7.5, 10 mM NaCl, 3 mM MgCl,, 0.1% Tween-20, 0.1% NP-40 in MQ) and
incubated for 3 min on ice. One milliliter resuspension buffer without NP-40 was
then added to the sample and centrifuged for 10 min at 500 x g at 4 °C. Nuclei were
resuspended in 50 pl transposition mix (1x TD buffer (20 mM Tris-HCI pH 7.6,
10 mM MgCl,, 20% dimethyl formamide in MQ), 100 nM Tn5 transposase, 33%
PBS, 0.01% digitonin, 0.1% Tween-20 in MQ) and incubated for 30 min at 37 °C
while shaking at 1000 rotations per minute. Samples were purified using Qiagen
MinElute PCR purification kit (Qiagen 28004) and eluted in 21 ul MQ. Purified
DNA was amplified with NEBnext High-Fidelity PCR master mix (NEB M0541S)
and appropriate sequencing adapters for five PCR cycles. Library complexity was
determined by qPCR on 5 pl of the PCR sample and the number of extra PCR
cycles determined®®. PCR samples were purified using AMPure XP beads (Agen-
count A63881), eluted in 12 pl MQ and sequenced at USEQ on a high-output
NextSeq500, 1x 75 bp.

Mapping and analysis of primate ChIP-Seq data. To ensure proper comparison
of samples from different platforms and studies, all reads from primate cortical and
cerebellar samples were trimmed to a 36 bp length using the Fastx-toolkit (http://
hannonlab.cshl.edu/fastx_toolkit/index.html). Sequences were aligned using Bowtie
1.1.2 (http://bowtie-bio.sourceforge.net/index.shtml) excluding reads with more
than one mismatch (seed length 36) or with multiple alignments, unless stated
otherwise. Reads were mapped to the most recent reference genome available
(Supplementary Data 3). Fraction of reads in peaks (FRiP) scores all exceed the 1%
threshold used by the Encyclopedia of DNA Elements (ENCODE)?!, and the
percentage of unique reads was overall high (mean 89.25%, Supplementary Data 3).
Genome-wide enriched regions were annotated per sample using MACS2 version
2.1.1 (p= 107", extsize = 300, local lambda = 100,000). Whole-cell extract input
controls were generated for each common marmoset brain region (Supplementary
Data 3). We used the internal MACS2 lambda control to correct for local bias as
whole-cell extract inputs often introduce sonication biases at open chromatin
regions. Identified H3K27ac or H3K4me3 enriched regions were extended to a
minimum size of 2000 bp (peak center + 1000 bp), the resolution typically observed
for these regions!'>¢7.. Lists of enriched regions per species and brain region were
obtained by merging the identified regions of the replicates per tissue, with regions
overlapping at least 1 bp being stitched together. This lenient cutoff was chosen to
ensure that most enriched regions with multiple summits were merged. The
average overlap was ~700 bp, with only 3% of regions were a merger with an
overlap of less than 100 bp. Reproducible enriched regions were defined as enriched
regions present in at least two biological replicates of the same brain region per
species. Nonredundant H3K27ac-enriched region lists were obtained per primate
species by merging the regions of both brain regions. Public data were downloaded
from either the GEO or Synapse repositories (Supplementary Data 2) and reana-
lyzed to match our analysis using the most recent primate genome if required,
using the settings described above.

GRE analysis and quality control across primate genomes. Primate regulatory
elements were defined using the UCSC liftOver tool (—minMatch = 0.1) (Sup-
plementary Fig. 2c). H3K27ac-enriched regions of chimpanzee, rhesus macaque
and marmosets were reciprocally mapped to the human genome (hg38). Regions
that were mapped to multiple (nonunique) locations and regions that changed
more than 50% in size were excluded (n = 2043). Following mapping to hg38,
all four lists for the different primate species were merged. Average overlap was

~2700 bp, with only 0.3% of regions were a merger with an overlap of less than
100 bp. The resulting list was again mapped to all three primate genomes using
reciprocal liftover to make sure that merged regions were mappable across all
primates. To ensure equal mappability, >90% of the bases within a regulatory
element had to be properly annotated in all reference genomes (<10% overlap with
UCSC Table Brower’s gap locations lists). This cutoff was chosen as unknown bases
generally occur in stretches rather than as single nucleotides across the genome. To
account for repetitive or duplicated genomic regions, which are especially sus-
ceptible to poor annotation in lower-quality genomes, enrichment scores were not
allowed to change significantly in the target genome when allowing reads to map to
multiple locations. These repetitive regions were defined per species by mapping
reads from every sample to unique locations (bowtie: —best —strata -m 1) as well as
to multiple locations (bowtie: —best —strata -M 1). Genomic regions that were
enriched using the multimap settings but not with unique mapping are potential
repetitive elements that are not annotated at similar depth across all the genomes.
All regulatory elements that overlap a repetitive element on any of the primate
species (n = 11,432) were therefore discarded. In total, 37,308 regulatory elements
could be identified with the above restrictions on all four genomes (Supplementary
Data 4). GREs were assigned to their target gene based on their location on the
human genome as it is the best annotated genome. GREs located within 1000 bp of
an annotated TSS (USCS RefSeq hg38) were considered promoters and assigned to
the associated gene. Enriched regions located outside 1000 bp from a TSS were
classified as putative enhancers and were assigned to a target gene based on PFC
HiC data®. If no significant enhancer—promoter loop was annotated, the enhancer
was assigned to its closest active TSS based on H3K4me3 enrichment (Supple-
mentary Data 5).

Hierarchical clustering, PCA, t-SNE analysis. Duplicate reads were removed
from the bam files using Samtools 1.3.1 and read coverage within enriched regions
was counted using Bedtools v2.26.0. Read counts were then normalized for the total
number of uniquely mapped reads per sample and log2 transformed using the rlog
(blind) function in DESeq2. For hierarchical clustering (e.g. Supplementary Fig. 2b,
f), Pearson correlations between the samples were calculated. Samples were clus-
tered based on Pearson distance using average linkage and heatmaps were gener-
ated using the heatmap.2 function from the gplots R package. For principle
component analysis (PCA, Fig. 1c), the prcomp function in R (http://www.R-
project.org) was used. t-SNE multidimensional scaling coordinates were deter-
mined using the t-SNE R package (Fig. 1b). H3K27ac heatmaps and metaplots were
generated using the ngs.plot.r (e.g. Supplementary Fig. 1c).

Annotation of hominin-specific regulatory changes. Hominin-specific reg-
ulatory changes were identified based on differential H3K27ac-enrichment between
great ape (human and chimpanzee) and monkey (rhesus and marmoset) species.
Pairwise comparison of human and chimpanzee with macaque and marmoset for
both cerebellum and prefrontal cortex was performed using DESeq2 (Supple-
mentary Fig. 3a, b). Per pairwise comparison we temporarily excluded all regions
with zero original read count in all the replicates of a single species; in total, 711
regions were excluded. Raw read counts were then used to define differentially
enriched regions using the DESeq2 function in R. Regulatory elements with a
twofold change in enrichment and an FDR < 0.01 were defined as significantly
differentially enriched (DE). Hominin regulatory changes were defined as all
regions that are DE for both human and chimpanzee compared to macaque and
marmoset, or vice versa (Supplementary Fig. 4a, Supplementary Data 6).

Analysis of GRE cell-type specificity. To assess the cell-type specificity of GREs
in our datasets, we leveraged ChIP-seq data from FANS sorted PFC nuclei?”-** and
single-cell ATAC-seq data from PFC34, For FANS sorted nuclei, paired-end ChIP-
seq sequencing reads were obtained and mapped to the human genome using
Bowtie 1.1.2, excluding reads with more than one mismatch, multiple alignments
or where one of the pairs could not be mapped. Metaplots and heatmaps were
obtained using the ngs.plot.r function.

For cell-type-specific ATAC-Seq regions, we obtained lists of differentially
enriched regions per cell type as provided34. From these we selected regions that
were differentially enriched in a single-cell type. GREs from out datasets were then
overlapped with these cell-type-specific ATAC-Seq regions and GREs overlapping
a single-cell-type-specific ATAC-Seq region were annotated as specific to that cell
type. GREs overlapped none or more than one cell-type-specific ATAC-Seq region
were annotated as not cell-type-specific. The difference in oligodendrocyte-specific
content between sets of GREs was calculated using a Fisher’s exact test in R.

Confounder analysis and batch effect. Batch effect was controlled for as done

previously by analyzing biological replicates in separate batches!4%7. This reduces
consistency in batch-related influences between replicates thus reducing the chance
that these are picked up in DE analysis. This also allows for the reanalysis of data
that have been generated at an earlier stage and have been handled similarly. To
assess the effect of confounding variables, such as post-mortem delay (PMD) and
sequencing batch between our datasets, we performed multivariate analysis on the
H3K27ac enrichment of the here identified GREs. We defined several biological

and technical covariates that could have influenced enrichment scores, including
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species, tissue type, gender, PMD, sequencing depth, sequencing platform, FRIP
score and experimental batch. These covariates were used in a linear regression
model on rpkm normalized read tables, after which we used ANOVA to extract the
percentage of variance explained and significance per covariate for every GRE
(Supplementary Fig. 3c—e). Only 27 out of 1930 GREs that changed in hominins
(gains and losses) had a significant contribution of covariates (batch, gender, PMD,
sequencing platform, p <0.01, Supplementary Fig. 3d). One of these was also
deregulated in ASD brain. To further exclude that the identified characteristics of
hominin-specific PFC gains are not due to batch effect, we analyzed white matter
ChIP-sequencing samples where the samples were equally distributed across pre-
defined experimental batches with all of the different species occupying the same
batch and batches containing biological replicates. The resulting regions were still
enriched for oligodendrocytes and preferentially deregulated in ASD brain (Sup-
plementary Fig. 9g, h), excluding batch as a basis for our observations.

Functional analysis of gene sets and motif analysis. Gene ontology analysis was
done using the Genomic Regions Enrichment of Annotations Tool (GREAT ver-
sion 3.0.0, http://bejerano.stanford.edu/great/public/html) with basal plus exten-
sion setting. Multiple genes can therefore be assigned to the supplied enriched
regions (Fig. 3d, Supplementary Fig. 6f, Supplementary Data 8). Motif enrichment
was performed on hominin-specific regulatory changes for cerebellum and pre-
frontal cortex separately, using HOMER version 4.9.1 with default parameters
(Supplementary Data 7).

Stratified LD score regression of SNPs in hominin GREs. To study enrichment
for disease heritability at hominin-specific GREs, we obtained the summary sta-
tistics of genome-wide associate data for various brain-related phenotypes (Alz-
heimer’s disease, ASD, Parkinson’s disease, schizophrenia and bipolar disorder). To
calculate disease enrichment, we added our sets of GREs (hominin-specific chan-
ges, all GREs, all enhancers, all promoters) and ASD-associated GREs as defined
previously*4, to the baseline model of this package. We also included a set of
randomly shuffled GREs. Enrichment statistics were calculated as the ratio between
explained heritability and the proportion of SNPs in H3K27ac-enriched regions,
using the LD score regression software (https://github.com/bulik/ldsc).

Autism spectrum disorder** or Alzheimer’s disease*>-associated regulatory
elements were categorized as more enriched or less enriched in patients brains over
control samples using recent data. The resulting regions were compared with
hominin gains and losses from cerebellum and prefrontal cortex. Significant
enrichment or depletion compared to all annotated GREs per brain region was
determined using a Fisher’s exact test in R. The statistical significance cutoff was set
at 0.01 and P values were adjusted for multiple testing using the Benjamini
—Hochber’s FDR method.

Sequence conservation and hominin nucleotide changes. PhastCon scores were
calculated using the UCSC phastCon 20 mammals track (http://hgdownload.soe.
ucsc.edu/goldenPath/hg38/phastCons20way/). To increase the resolution at GREs
for relevant nucleotides, we used only those nucleotides that were DNAsel enriched
in the frontal cortex, as defined by ENCODE regions within the GREs, to calculate
conservation?®. Mean values of all scored nucleotides per GRE are plotted (Fig. Le).
Hominin-specific nucleotide changes were defined based on the pairwise alignment
files of chimpanzee, rhesus macaque and marmoset with human, as obtained from
UCSC. All nucleotides that shared the same base between human and chimpanzee
but not with macaque and marmoset were annotated as hominin-specific
nucleotide changes. The percentage of hominin-specific nucleotide changes per
GRE is plotted (Fig. 1f).

Analysis of gene expression data and open chromatin. Raw RNA sequencing
reads were trimmed to a length of 60 bp, starting from base 12, using the Fastx-
toolkit and aligned to the appropriate genome using hisat2 2.0.5 (https://ccb.jhu.
edu/software/hisat2/index.shtml) using default settings (Supplementary Data 3).
Duplicated reads that are likely PCR duplicates were removed. Reads mapping to
multiple locations were also removed from further analysis. Expression values were
counted for each gene using the featureCount function of the Rsubread packages in
R. ATAC-sequencing reads were trimmed to remove Nextera adapter sequence 5'-
CTGTCTCTTATA-3' using cutadapt (https://cutadapt.readthedocs.io/en/stable/)
and processed similar to ChIP data as described above.

Analysis of interdependence. The interdependence between categorical variables
(hominin-specific gain, deregulated in ASD and oligodendrocyte specificity) of the
identified PFC GREs was calculated using LLM3D>>. LLM3D fits a number of log-
linear models to 3D contingency tables of GRE counts and selects the model that
best fits the observed element characteristics. These models imply different (in)
dependence relationships between the variables, with the null hypothesis assuming
complete independence. The significant P value indicates that the oligodendrocyte
specificity of the hominin-specific gains deregulated in ASD is higher than expected
for a random overlap between the two sets.

Chromosome Conformation Capture (4C) analysis. Frozen white matter tissue
was dissected from the brain and pulverized in liquid nitrogen using a pestle and
mortar. The frozen tissue was further homogenized in 1 ml PBS with 10% fetal
bovine serum (FBS) using a cold 2 ml dounce (Kontes Glass Co.). Cells were then
crosslinked and processed, using DpnlIl and Csp6l as restriction enzymes. Cells
were fixed for 10 min on RT in fixation buffer (10% FBS, 2% formaldehyde in PBS),
after which glycine was added to a final concentration of 125 mM to quench the
fixation. Samples were washed twice with PBS and centrifuged for 5 min at 750 x g.
Cells were lysed in 2 ml cold lyses buffer (50 mM Tris-HCI pH 7.5, 150 mM NacCl,
5mM EDTA, 0.5% NP-40, 1% Triton X-100) and incubated for 5 min at RT, 5 min
at 65 °C and 1 min on ice. Samples were subsequently pelleted by centrifugation for
5min at 550 X g. The 3C template was obtained by addition of restriction buffer
(Ix DpnlI restriction buffer, 3% SDS in MQ) and incubated for 1 h at 37 °C. Triton
X-100 was added to a 2.5% concentration and samples were again incubated for 1 h
at 37 °C. Restriction of the samples was performed overnight at 37 °C after addition
of 10U DpnlI restriction enzyme, followed by an overnight ligation at 15 °C after
addition of T4 ligation buffer (final concentration: 1x) and 1.5 ul T4 ligase. The
following day, 100 ug proteinase K was added and samples incubated overnight at
65 °C, followed by a 45 min incubation at 37 °C with 100 pg RNase A. The 3C
template was purified using phenol-chloroform and processed for another round of
restriction-ligation using Csp6lI to create the 4C template. For amplification on the
MET promoter viewpoint, the following primers were used: 5'- TACACGACGC
TCTTCCGATCTCTAATGAATTTTTTCTGCATGAAGAT-3' as reading primer
and 5'- ACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTTACCAGCCCTAG
ACGTG-3' as nonreading primer. Sequencing was done on the Illumina MiniSeq
platform. Sequencing reads were trimmed to remove primer sequences and map-
ped on hgl9, removing all reads that mapped to multiple locations. 4C coverage
was calculated by averaging mapped reads in running windows of 41

fragments ends.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The ChIP-seq and RNA-Seq data reported in this study are available at Gene Expression
Omnibus with accession code GSE130871. Other public datasets sets employed in our
study can be found via accession numbers in Supplementary Data 2.

Code availability
All analysis was done using R (http://www.r-project.org) or Python (http://www.python.
org) employing the packages described above.
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