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ARTICLE

Spurious principal components
Philip Hans Franses and Eva Janssens

Econometric Institute, Erasmus School of Economics, Rotterdam, The Netherlands

ABSTRACT
The principal component regression (PCR) is often used to forecast macroeconomic variables
when there are many predictors. In this letter, we argue that it makes sense to pre-whiten the
predictors before including these in a PCR. With simulation experiments, we show that without
such pre-whitening, spurious principal components can appear and that these can become
spuriously significant in a PCR. With an illustration to annual inflation rates for five African
countries, we show that non-spurious principal components can be genuinely relevant in
empirical forecasting models.
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I. Introduction and motivation

The principal component regression (PCR) is a fre-
quently considered model to forecast macroeco-
nomic variables when there are many predictors,
see Stock and Watson (1999; 2002), Bernanke,
Boivin, and Eliasz (2005), Heij, Van Dijk, and
Groenen (2011) and many others. The idea of the
PCR is that the predictors are summarized in a few
principal components, and that these new variables
enter as explanatory variables in a regression model.
When summarizing the predictors, it is typical prac-
tice to consider growth rates of the predictors in case
of unit roots, but otherwise the variables are usually
included as they are. In this letter, we recommend to
pre-whiten all predictors, that is, to fit for example
autoregressive models to the data, and use the resi-
duals as the new predictors in principal components
analysis (PCA). When the PCA results for raw and
pre-whitened data are similar, one may well have
found non-spurious principal components.

We base our recommendation on a few simula-
tion experiments, which show that without such
pre-whitening one runs the risk of finding spur-
ious principal components, and finding spuriously
significant newly created regressors in the PCR.
The arguments why one can obtain spurious
effects are the same as those echoed in Yule
(1926), Ames and Reiter (1961) and, of course,
Granger and Newbold (1974).

An illustration of how a PCR can look like in case
of spurious and non-spurious principal components
is also given.

II. Simulation experiments

Consider the creation of four time series variables,
using the data generating process (DGP):

wt ¼ αwwt�1 þ εwt ; ε
w
t ,N 0; 1ð Þ

xt ¼ αxxt�1 þ εxt ; ε
x
t,N 0; 1ð Þ

yt ¼ αyyt�1 þ εyt ; ε
y
t,N 0; 1ð Þ

zt ¼ αzzt�1 þ εzt ; ε
z
t,N 0; 1ð Þ

Hence, there are four independent variables, each
generated as a first-order autoregression. The error
terms are all independent draws from a standard
normal distribution. The starting values are always
equal to 0. In the simulations, t will run from 1 to 50,
or 100, or 500.

First, we create principal components for the
variables xt; yt; and zt, which is done based on the
correlation matrix of these three variables. This
implies that the sum of the eigenvalues is equal to
3. If the three variables each would be a white noise
process, then the estimated eigenvalues should all
be about equal to 1. However, when the autoregres-
sive parameter deviates further away from 0 and
approaches 1, we may expect that there will appear
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spurious non-zero correlations across the variables,
as already demonstrated in Yule (1926), and hence
we may expect that the first eigenvalue will deviate
away from 1.

A confirmation of these expectations is summarized
in Table 1. The cells in the first panel present the
average value of the first eigenvalue and the SD, across
10,000 replications. It is clear that the larger the auto-
regressive parameter gets, the larger is the first eigen-
value. When the sample size increases, the deviation
away from 1 gets smaller, but not much. In the second
panel, we report the frequency of 5% significant para-
meters, associated with the first principal component
in the PCR. There, we additionally have that

wt ¼ αwwt�1 þ εwt ; ε
w
t ,N 0; 1ð Þ

with αw ¼ α like the other three variables, and where
the PCR is

wt ¼ μþ ρwt�1 þ βpct�1 þ εt;

with pct�1 denoting the first lag of the first prin-
cipal component. Clearly, there are more than 5%
significant β parameters, but the spurious effects
tend to disappear as we let the sample size increase.

Table 2 presents similar information as Table 1,
although now all variables have been pre-whitened,
that is, for all variables we first estimate a first-order
autoregression, and then we proceed with the resi-
duals. Hence, we now first run the regressions

xt ¼ μx þ γxxt�1 þ πxt

yt ¼ μy þ γyyt�1 þ πyt

zt ¼ μz þ γzzt�1 þ πzt

and we store the πxt , π
y
t and πzt and estimate the first

principal component for these residuals. From the cells
in Table 2 we learn that pre-whitening makes the
spurious results disappear, not only for the eigenvalues
and principal components, also for the PCR.

III. Illustration

What is it that we recommend to practitioners so that
they can recognize non-spurious principal compo-
nents? We recommend comparing the eigenvalues
before and after pre-whitening. In case of non-spur-
ious results, these eigenvalues should be similar.

Consider as an illustration the three annual inflation
rates for France, Japan and the USA, see Franses and
Janssens (2017) for data and graphs on these data and
the others later. If we fit a first-order autoregression to
each of these variables, the estimated autoregressive
coefficients obtain values of 0.931, 0.776 and 0.823,
respectively. These values are all approaching 1, and we

Table 1. The data generating process.
Sample size

50 100 500

α
0.5 1.288 (0.127) 1.205 (0.090) 1.091 (0.041)
0.8 1.448 (0.196) 1.328 (0.147) 1.150 (0.067)
0.9 1.567 (0.242) 1.448 (0.194) 1.219 (0.097)
0.95 1.656 (0.275) 1.568 (0.247) 1.305 (0.135)
0.99 1.786 (0.325) 1.738 (0.306) 1.572 (0.245)
α
0.5 6.8% 5.9% 5.6%
0.8 9.5% 6.8% 5.4%
0.9 13.4% 9.7% 5.9%
0.95 17.1% 13.5% 6.7%
0.99 19.6% 18.7% 13.0%

xt ¼ αxxt�1 þ εxt ; ε
x
t,N 0; 1ð Þ

yt ¼ αyyt�1 þ εyt ; ε
y
t,N 0; 1ð Þ

zt ¼ αzzt�1 þ εzt ; ε
z
t,N 0; 1ð Þ

where it is assumed that αx ¼ αy ¼ αz ¼ α. The cells in the first panel
present the average value of the first eigenvalue and the SD, across
10,000 replications. In the second panel, we report the frequency of
significant parameters (5% level) associated with the first principal com-
ponent in the PCR. There, we additionally have that
wt ¼ αwwt�1 þ εwt ; ε

w
t
~N 0; 1ð Þ, whereas the PCR is

wt ¼ μþ ρwt�1 þ βpct�1 þ εt , with pct�1 denoting the first lag of the
first principal component.

Table 2. The data generating process.
Sample size

50 100 500

α
0.5 1.229 (0.102) 1.160 (0.071) 1.071 (0.032)
0.8 1.230 (0.102) 1.159 (0.071) 1.070 (0.031)
0.9 1.233 (0.103) 1.159 (0.070) 1.071 (0.031)
0.95 1.233 (0.104) 1.161 (0.072) 1.071 (0.032)
0.99 1.232 (0.103) 1.161 (0.072) 1.070 (0.031)
α
0.5 5.5% 5.0% 5.5%
0.8 5.5% 5.4% 5.3%
0.9 5.8% 5.5% 5.2%
0.95 6.4% 5.4% 5.1%
0.99 6.3% 5.6% 5.3%

xt ¼ αxxt�1 þ εxt ; ε
x
t,N 0; 1ð Þ

yt ¼ αyyt�1 þ εyt ; ε
y
t,N 0; 1ð Þ

zt ¼ αzzt�1 þ εzt ; ε
z
t,N 0; 1ð Þ

where it is assumed that αx ¼ αy ¼ αz ¼ α. The cells in the first panel
present the average value of the first eigenvalue and the SD, across
10,000 replications, when applied to the πxt , π

y
t and πzt , where these are

the estimated residuals from
xt ¼ μx þ γxxt�1 þ πxt
yt ¼ μy þ γyyt�1 þ πyt
zt ¼ μz þ γzzt�1 þ πzt
In the second panel, we report the frequency of significant parameters (5%
level) associated with the first principal component in the PCR. There, we
additionally have that wt ¼ αwwt�1 þ εwt ; ε

w
t
~N 0; 1ð Þ, whereas the PCR is

wt ¼ μþ ρwt�1 þ βpct�1 þ εt , with pct�1 denoting the first lag of the
first principal component.
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therefore should be wary for similar issues as have been
observed in the simulation experiments earlier.

When we apply PCA on the correlation matrix,
we obtain for the raw data the eigenvalues 2.425,
0.446 and 0.129, and for the residuals after fitting
country-specific autoregressive models of order 1,
the eigenvalues 2.359, 0.418 and 0.223. Hence, in
both situations there clearly is a single dominant
principal component, with 0.808 and 0.786% of the
variation explained, respectively. The weights in the
first principal components are 0.610, 0.535 and 0.584
for the raw data, and 0.600, 0.553 and 0.578 for the
pre-whitened data. Not only are the eigenvalues very
similar, also the weights are clearly very similar.

Consider now the five annual inflation rates for the
North African countries Algeria, Egypt, Libya,
Morocco and Tunisia. The first-order autocorrelation
are 0.772, 0.704, 0.248, 0.654 and 0.096, respectively.
The first eigenvalue obtained from PCA for the raw
data is 2.348 and the first principal component covers
0.470 of the total variance. The weights are 0.379,
0.421, 0.539, 0.433 and 0.448. When we fit first-order
autoregressions, and apply PCA to the residuals, we get
a first eigenvalue of 1.870, which is associated with only
0.374 of the total variance. The weights have become
0.404, 0.213, 0.628, 0.212 and 0.594, which seemmark-
edly different from those for the raw data. Hence, we
may have found a spurious principal component here.

In Table 3, we report the estimation results for
inflation in Botswana and Lesotho, two countries
that are quite far away from North Africa, but for
which inflation may resonate with worldwide
inflation (which we assume is the first principal
component for France, Japan and USA). Each first
row shows that the North African principal com-
ponent seems significant at close to a 5% level,
while each second row shows that the World
based principal component is significant at a
level much less than 5%. The forecast performance
of the model including the non-spurious principal
component is clearly better. When we include both
principal components in a single PCR, we obtain p
values of 0.168 and 0.186 for the North African
components, respectively. The correlation between
the two principal components is only 0.335, so the
low p values are not due to high correlation
between these two variables. Hence, the non-spur-
ious principal component makes the spurious
component obsolete.

This illustration shows that comparing PCA
outcomes for raw and pre-whitened data can be
useful to diagnose non-spurious principal
components.
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II −0.092 (0.138) 1.336 (0.501) 5.373 3.644

Model I: inflationt ¼ μþ ρ inflationt�1 þ β PCNorth Africa;t�1 þ εt
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