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CHAPTER 1 

INTRODUCTION 

1.1 Antibiotic Resistance and Current Issues in Drug Discovery 

The discovery of the first commercially available antibiotic, penicillin, in 1928 has 

proven to be one of the greatest achievements of the 20th century (1). Antibiotics have 

saved millions of lives around the globe by reducing human mortality and revolutionizing 

medicine in many aspects (2). The availability of antimicrobial agents allows treatment of 

otherwise deadly infections such as syphilis, pneumonia, and rheumatic fever. In 

addition, major invasive surgeries as well as chemotherapy are now possible and have 

achieved high success rates (3).    

More than 80 years have passed since Alexander Fleming discovered penicillin, 

leading to a vast increase in the antimicrobial drug research (4). While hundreds of 

antibiotics have been introduced into the clinic since then, these agents typically function 

on a very limited number of microbial targets (5). Antimicrobial agents predominantly 

target DNA and RNA synthesis (e.g., fluoroquinolones), cell wall biosynthesis (e.g., -

lactams), cell membrane (e.g., daptomycins) construction, protein synthesis (e.g., 

tetracyclins), or folic acid metabolism (e.g., sulfonamides) (6). The relatively limited set 

of targets, coupled with other mechanisms discussed below, have lead to a decrease in 

the effectiveness of antibiotics (2, 7). 

The intensive use of antibiotics results in the remarkable increase of the bacterial 

resistance (3). One example of how fast bacteria are able to develop resistance to a new 

therapy can be demonstrated by the archetypical human pathogen called tuberculosis 

(TB). Currently, this bacteria infects almost one-third of the worlds population (1). Highly 

effective anti-TB antibiotics such as streptomycin and isoniazid were introduced into 

clinic in the late 1940s and resulted in the saving of millions of lives. However, bacteria 
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have developed resistance to these drugs (8). Nowadays, treatment of TB infections is 

difficult due to inappropriate use of previously effective antibiotics. The new anti-TB drug 

regimen consists of a cocktail of multiple antiinfective agents (1). Recently, another 

dangerous human pathogen, Pseudomonas aeruginosa, became a major health threat. 

P. aeruginosa was historically associated with burn wounds, but has now become a 

serious hospital-acquired pathogen (9). This bacterium has traditionally been treated 

with β-lactams and aminoglycosides, however the ineffectiveness of these drugs against 

P. aeruginosa has lead to the clinical introduction of more potent antibiotics such as 

quinolones and lipopetides (10). In recent years, Staphylococcus aureus has rapidly 

evolved as a drug resistant “superbug” (11). Until the 1960s, S. aureus was manageable 

with penicillin. Yet, three years after penicillin analog, methicillin, was introduced into the 

clinic, meticillin-resistant strains of S. aureus were detected. Currently, 60% of 

Staphylococcal infections are resistant to at least one antibiotic (12).     

While antibiotic resistance has been presented in the media as a new medical 

problem, resistance has always been observed (7). Generally, microbial resistance 

occurs via immunity bypass, enzyme-catalyzed destruction of the antibiotic, efflux of the 

drug from the bacterial cell or modification of the target so that the antibiotic no longer 

binds. One alarming issue with bacterial resistance is the fact that bacteria can  transfer 

resistance genes to both their progeny and also other bacteria in the environment (3).   

The growing concern regarding antibiotic resistance in the 1990s has primarily  

been focused on the Gram-positive bacterial pathogens including methicillin-resistant S. 

aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and penicillin-

resistant S. pneumonia (13). However, antibiotics are urgently needed for Gram-

negative bacterial strains to treat panantibiotic-resistant Acinetobacter baumanii, 

carbapenem-resistant Klebsiella pneumoniae, and fluoroquinolone-resistant P. 
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aeruginosa and Enterobacter species (13, 14). The issue of antibacterial resistance is 

heightened by the fact that over the past 30 years, only two novel classes of antibiotics 

(oxazolidinone-linezoid and lipopeptide-daptomycin) have been introduced into the clinic 

(Figure 1.1) (14). Unfortunately, this fact is unlikely to be changed in the near future. 

Currently, there are 150 antibacterials in preclinical development, but only 7 are in 

Phase III clinical trials. Although there is a growing need for new drugs, the antibiotic 

market has shown only a 4% increase over the last 5 years (13). Those numbers are 

extremely low and need a drastic turn-around; however, fierce economic pressures 

associated with developing a new antiinfective agent (~10 years and $800M) coupled 

with the high rates of resistance shortly after introduction into clinic continue to challenge 

the field (15).     

Clearly, there is a growing need for new antibiotics with novel mechanisms of 

action (14). Traditionally, antimicrobial agents have been either natural products or their 

derivatives (16). However, there is a wide array of resistance mechanisms incorporated 

into the bacterial genome for many natural products, limiting some of their utility in the 

field of drug discovery. This has suggested to researchers that new approaches focused 

more on the synthetic drug development are required (3). High-throughput screening 

(HTS) is one method that might offer additional advantages to the antibiotic drug 

discovery due to its unbiased nature and the fact that extensive libraries of compounds 

(>1,000,000) are available.     
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Figure 1.1 Novel classes of antibiotics introduced into clinic from 1930 to 2012.  

 
One promising area of antimicrobial drug discovery is the de novo purine 

biosynthesis pathway (17). In the 1980s, a divergence was found between the bacterial 

and human purine biosynthesis pathways. The pathway in bacteria requires 11 steps to 

synthesize inosine monophosphate (IMP) and involves two additional enzymes, both of 

which are absent in humans (18). These differences between bacterial and human de 

novo purine biosynthesis make this pathway an ideal target for the antibiotic drug 

research.   

1.2 Overview of the de novo purine biosynthesis pathway 

Adenylate and guanylate are required for numerous key biological processes, 

including the synthesis of DNA and RNA, chemical energy, and as parts of other 

important biomolecules (e.g. NADH, coenzyme A, etc.) (19). There are two pathways for 

the synthesis of these nucleotides. The first is the de novo purine biosynthetic pathway. 

This pathway was elucidated in the 1950s by Buchanan et al. who showed that 
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phosphoribosyl pyrophosphate (PRPP) is converted into inosine monophosphate (IMP) 

via a 10-step enzymatic process in higher eukaryotes (Figure 1.2) (20, 21). IMP is 

formed from small molecule precursors including glycine, glutamine, aspartate, carbon 

dioxide, N10-formyl-tetrahydrofolate, and ribose-5-phosphate which build-up the purine 

heterocycle onto the sugar (20). Once IMP is formed, IMP can be converted into either 

adenosine monophosphate (AMP) or guanosine monophosphate (GMP) depending 

upon the needs of the cell. The second pathway for purine synthesis is the salvage 

pathway which recycles purine bases generated during metabolic degradation of 

nucleotides. However, this pathway produces only 1% or less of the total nucleotides 

needed for DNA synthesis (22). Therefore, de novo purine biosynthesis is the major 

process for generating purine bases needed for replication of organisms.     

 

Figure 1.2 Purine biosynthetic pathway (20). Enzyme names in the diagram are 

presented by their designated genes.  
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The pathway elucidated by Buchannan remained essentially unchanged until 

research in the 1990s showed that there were differences in the pathway between 

higher eukaryotes (e.g., humans) and bacterial, yeast and fungi. Research on the 

pathway noted that enzymes such as PurF, PurD, PurL, PurM, and PurB were 

ubiquitous while PurN or PurT, PurK/PurE (class I) or PurE (class II), PurH or PurP, and 

PurJ or PurO varied between organisms (Refer to the List of Abbreviations on page viii) 

(20). Differences in the de novo purine biosynthetic pathway were found not only at the 

protein level, but also in the gene organization where it was common for higher 

organisms to have fused gene products (e.g., human PAICS with PurC and PurE class II 

subunits). It was previously postulated that the fusion of several enzymes might be 

important for substrate channeling (23).    

Despite multiple differences, several enzymes in the pathway use the same 

mechanistic strategies and have a high structural homology suggesting a convergent 

evolutionary origin (20). These enzymes include PurP, PurK, PurT, and PurD, all of 

which catalyze a coupling reaction of an amino group with a carboxylate group via a 

formation of an acylphosphate intermediate (20). These enzymes belong to the ATP-

grasp superfamily (24, 25). In addition to the above-mentioned enzymes, Class I and II 

PurEs are also structurally and functionally related to each other.         

1.3 N5-CAIR synthetase (PurK) and N5-CAIR mutase (PurE class I) 

 The sixth step in de novo purine biosynthesis is the only carbon-carbon bond 

forming reaction in the pathway. PurE is the enzyme that catalyzes this unique chemical 

transformation which transforms aminoimidazole ribonucleotide (AIR) to 4-carboxy-5-

aminoimidazole ribonucleotide (CAIR) with the aid of CO2. For about 30 years, the PurE 

enzyme was thought to be the same in all organisms and was universally called AIR 

carboxylase. However, in the early 1990s, researchers showed that in bacteria, yeast 
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and fungi, two enzymes were required to convert AIR to CAIR (Figure 1.3). This 

discovery was initiated by attempting to identify the AIR carboxylase gene in microbes. 

Zengado et al. and Watanabe et al. identified two different genes within the PurE locus 

(PurK and PurE) (26). Later, Zalkin et al. reported a 429 amino acid protein using 

chicken liver cDNA that was similar to the bacterial PurE protein, but did not possess 

any protein analogous to PurK (27). A key question remained: why are there two genes 

for the conversion of AIR to CAIR in microorganisms? To address this question and 

establish the function of PurK, Stubbe et al. purified both the PurK and PurE protein (28). 

These researchers discovered that PurE was capable of converting AIR into CAIR; 

however, only in the presence of non-physiological concentrations of bicarbonate. The 

addition of PurK and ATP led to a rapid production of CAIR under conditions with low 

concentrations of bicarbonate. These studies indicated that PurK appeared to act as a 

CO2 generation system for PurE.  Additional studies revealed that PurK synthesized the 

short-lived intermediate, N5-CAIR from AIR and PurE converted N5-CAIR into CAIR (29). 

Thus, PurK was named N5-CAIR synthetase while PurE (Class I) was renamed N5-CAIR 

mutase. Studies on N5-CAIR synthetase indicated that the reaction took place via a 

formation of a carboxyphosphate intermediate that dissociated to give carbon dioxide 

(CO2). Subsequently, CO2 was attacked by AIR to produce N5-CAIR (Scheme 1).             
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Figure 1.3 Divergence in the sixth step of the de novo purine biosynthesis pathway (30).  

 
Scheme 1 Proposed mechanism of PurK catalysis (30).  

 

 
 The discovery of a new intermediate in de novo purine biosynthesis prompted an 

examination of the pathway in higher eukaryotes. As mentioned above, work by Zalkin 

and colleagues revealed that higher eukaryotes lacked a PurK gene. This suggested 

that the pathway in higher eukaryotes was different. To verify this, studies were 

conducted using the enzyme from chicken. This research revealed that in higher 

eukaroytes AIR and CO2 directly converted to CAIR. Thus, the protein is AIR 

carboxylase enzyme.  
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1.4 De novo purine biosynthesis as antibacterial target 

 The divergence, described above, provide a significant biochemical rationale for 

investigating de novo purine biosynthesis as an antibacterial drug target. This contention 

has also been supported by genetic and medical studies on purine auxotrophs. These 

studies have shown that the purine biosynthetic pathway is important for the bacterial 

virulence once a microorganism is inside the host (31). It has been shown that bacterial 

strains auxotrophic for purines are significantly less virulent than the wild-type strains 

(32, 33). The study conducted by Perfect et al. on Cryptococcus neoformans ade2 

auxothrophs (the same gene as PurK/PurE) showed that they were unable to replicate in 

a meningitis animal model while complemented strains demonstrated a restored 

virulence (34). Shigella flexneri PurE and PurK mutants exhibited no virulence and 

impaired bacterial growth in animal models (35). Other researchers have also shown a 

dependence of microbial virulence on the presence of PurK and PurE genes (36-38). 

Together, these studies validate the hypothesis that N5-CAIR synthetase (PurK) and N5-

CAIR mutase (PurE) are targets for the development of new antibiotics.     

In this thesis, the discovery and biological evaluation of unique classes of 

inhibitors targeting bacterial N5-CAIR synthetase and N5-CAIR mutase enzymes will be 

presented. 
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CHAPTER 2 

SMALL MOLECULES TARGETING N5-CAIR SYNTHETASE 

2.1 Introduction 

 N5-CAIR synthetase is a unique enzyme present in bacteria, yeast and fungi, but 

not in humans (18, 39). Studies on this enzyme have shown that it plays an important 

role in microbial growth and disease progression (40). Deletion of the N5-CAIR 

synthetase gene produces a non-virulent strain of bacteria that is incapable of 

propagating in human or mouse serum (33, 34, 37, 38, 41-43). These results agree with 

recent work by Lan et al. (2010) who has shown that 6-thioguanine can inhibit de novo 

purine biosynthesis and, as a result, suppress the virulence of S. aureus (36). This 

evidence validates N5-CAIR synthetase as an ideal target for the discovery of inhibitors 

targeting de novo purine biosynthesis in bacteria. Given the current challenges of 

commercially available antibiotics, antibacterial agents with novel mechanisms of action 

will be invaluable against the growing problem of the bacterial resistance (3, 16).   

 While there had been ample evidence for targeting N5-CAIR synthetase, there 

were no known small-molecule inhibitors of N5-CAIR synthetase before a publication by 

our laboratory in 2009 (17). This publication outlined a HTS study conducted at the 

Center for Chemical Genomics (CCG) at the University of Michigan to identify drug-like 

inhibitors of N5-CAIR synthetase. The study identified 14 inhibitors (hit rate: 0.03%) with 

IC50 values below 70 μM (17). All compounds followed the Lipinski’s rules (44). Out of 14 

initial “hits”, 6 had an isatin (1H-indole-2,3-dione) core (Figures 2.1.1 a and c). The isatin 

class of inhibitors was potent against bacterial N5-CAIR synthetase (IC50 (HTS) ranging 

from 2.3 to 69 μM). The Michaelis-Menten studies of one of the isatin inhibitors showed 

non-competitive kinetics with respect to ATP and AIR suggesting the possibility of a 

unique binding pocket on N5-CAIR synthetase (17).       
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Figure 2.1.1 Isatin inhibitors of N5-CAIR synthetase. (A) The isatin core structure; (B) 

Isatin nomenclature; (C) Isatin-based inhibitors discovered from HTS. 

 
To improve the potency of isatin inhibitors, researchers in our laboratory initiated 

an extensive study focused on the multiple substitutions and modifications of the core 

isatin structure. From these studies, initial structural-activity relationships (SAR) could be 

deduced (Table 2.1.1). It was found that the inhibitory effects of isatin-derivatives varied 

depending on the structural modification of the isatin core. Introduction of electron-

withdrawing groups (e.g. halogenation and nitrosation) at the 5’, 6’, and 7’ positions 

resulted in a substantial increase in inhibition. Small substitutions on the nitrogen also 

lead to an increase in potency.  
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Table 2.1.1 Inhibitory activity of isatin-based compounds (see Figure 2.1.1 for 

nomenclature) in the malachite green/phosphomolybdate assay (Unpublished results). 

Biological evaluation was performed by Dr. Melissa Topper. 

Compound R1 R2 R3 R4 R5 IC50, μM 

1 Cl H H H H 75 ± 2 

2 H Cl H H H 10.0 ± 0.8 

3 H H H Cl H 7.6 ± 2.0 

4 H F H H H 10.5 ± 0.8 

5 H H F H H 35 ± 5.3 

6 H H H F H 5.6 ± 4.5 

7 H NO2 H H H 4.6 ± 0.7 

8 H OCH3 H H H 15 ± 2.1 

9 H I H H H 17 ± 3.4 

10 H CH3 H H H 18 ± 3.3 

11 H SO3Na H H H 12.5 ± 2.8 

12 H OCF3 H H H 8.0 ± 1.5 

13 H H H OCH3 H 25.3 ± 3.6 

14 H Br Br H H 5.0 ± 0.4 

15 H Br H Br H 7.4 ± 2.1 

16 H Br Br Br H 6.8 ± 1.2 

17 H Cl H Cl H 4.5 ± 0.8 

18 H Br H H CH3 4.6 ± 2.5 

19 H Br H Br CH3 4.2 ± 0.6 

20 H Br H NO2 H 6.9 ± 0.9 

21 H NO2 H Br H 8.7 ± 3.5 

22 H Br H NO2 CH3 3.8 ± 0.3 

23 H NO2 H Br CH3 3.9 ±0.6 
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The data presented in the Table 2.1.1 was generated using the malachite green 

assay which measured phosphate, a product of the reaction. This assay was optimized 

by Firestine et al. to be used primarily in the HTS study (Figure 2.1.2) (17). While the 

assay is fast and robust, it suffers from several drawbacks. First, it is very sensitive to 

phosphate, which is a common contaminant in water and glassware. This can lead to a 

large background signal. Second, the assay is discontinuous meaning that the reaction 

must be manually stopped before the UV measurement is taken. This introduces error in 

the time of the reaction, which in turn, affects the kinetics measured by this assay. 

Finally, because the assay measures phosphate, it is subjected to the phosphate 

release kinetics of the enzyme. Thus, compounds which alter the release kinetics of 

phosphate but do not alter the catalysis of the enzyme would result in an aberrant Ki 

value. Since the determination of the kinetic mechanism of the isatin inhibitors was the 

primary interest, the discontinuous nature of the phosphate assay precluded its use. 

Given this problem, along with the other issues listed above, an examination of a second 

assay was necessary to establish the validity of the IC50 values for the isatin-based 

derivatives. In this chapter, the pyruvate kinase/lactate dehydrogenase-coupled UV 

assay system (Figure 2.2.1) is examined to present a comparison with the IC50 values 

determined from the phosphate assay (30). In addition, the kinetics and the mode of 

inhibition of one representative isatin-based, 7-bromoisatin, are presented.    

 

 

Figure 2.1.2 Discontinuous malachite green/phosphomolybdate UV assay. 
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2.2 Results 

2.2.1 Validation Study of Isatin-Based Derivatives 

 The pyruvate kinase/lactate dehydrogenase-coupled assay (Figure 2.2.1), used 

to determine the IC50 values for the isatin derivatives, has been well established for N5-

CAIR synthetase (29). This assay measures the oxidation of NADH at 340 nm as a 

function of the ADP produced by N5-CAIR synthetase during its conversion of AIR into 

N5-CAIR. The pyruvate kinase/lactate dehydrogenase-coupled assay is continuous 

which makes it ideal for determining the kinetics of isatin inhibitors.   

 

 

Figure 2.2.1 Pyruvate kinase/lactate dehydrogenase-coupled assay (30).   

 
 To study the correlation in IC50 parameters between the malachite 

green/phosphomolybdate and pyruvate kinase/lactate dehydrogenase-coupled assays, 

six representative isatin compounds with high, intermediate, and low IC50 values were 

chosen. Among these isatin derivatives were 4-chloroisatin (1), 7-chloroisatin (3), 6-

fluoroisatin (5), 5-methoxyisatin (8), 7-methoxyisatin (13), and 5,7-dibromoisatin (15). 

Given the distinct differences in the assay components as well as the variations in the 

enzyme and substrate concentrations used in each assay, direct comparison of IC50’s 

could not be performed. However, the correlation between malachite green and enzyme-

coupled assays could still be evaluated based on the trend of their IC50’s (Table 2.2.1). It 

was found that the assays were highly consistent. Compounds 3 and 15 displayed the 
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highest potency in both assays while inhibitors 8 and 13 showed moderate activity and 

compounds 1 and 5 were the least potent inhibitors of N5-CAIR synthetase.  

 
Table 2.2.1 Inhibitory activity of isatin-based compounds evaluated using both the 

phosphomolybdate and coupled assay systems. 

Compound 

IC50 

Enzyme-coupled 

Assay, μM 

IC50 

Malachite Green 

assay, μM 

15 15 ± 2.2 7.4 ± 2.1 

3 37.5 ± 2.6 7.6 ± 2.0 

8 59 ± 2.7 15 ± 2.1 

13 76.8 ± 4 25.3 ± 3.6 

5 87 ± 2.8 35 ± 5.3 

1 153 ± 12 75 ± 2 

 

2.2.2 Kinetic Analysis of 7-Bromoisatin 

 While the structure of N5-CAIR synthetase from a number of organisms (e.g. E. 

coli, S. aureus, and T. thermophilus) has been solved, the structure of isatin analogs 

bound to the enzyme haven’t been determined. This raises a key question regarding the 

binding location of these potent compounds. Michaelis-Menten kinetic analysis can 

provide valuable information about the mechanism of inhibition and by inference, the 

binding site of the inhibitor. To explore the kinetics of isatin derivatives, 7-bromoisatin 

(Figure 2.2.2) was chosen as a representative compound with a low micromolar IC50 of 

6.2 μM.  

 

Figure 2.2.2 Structure of 7-bromoisatin. 
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 The kinetics of 7-bromoisatin were determined by varying bicarbonate, ATP, and 

AIR concentrations and plotting this data against N5-CAIR synthetase catalyzed reaction 

rates to construct a series of Lineweaver-Burk plots (Figure 2.2.3). It was found that 7-

bromoisatin was uncompetitive with respect to AIR (Figure 2.2.3 b) and showed mixed 

type of inhibition with respect to bicarbonate and ATP (Figures 2.2.3 a and 2.2.2 c).  
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Figure 2.2.3 Lineweaver-Burke plots for the inhibition of E. coli N5-CAIR synthetase by 

7-bromoisatin (17). (A) Lineweaver-Burke plot with varied concentration of bicarbonate, 

fixed concentration of ATP, AIR, and various concentrations of 17 (() 0 μM, () 5 μM, 

and () 8 μM). (B) Lineweaver-Burke plot with varied concentration of AIR, fixed 

concentration of bicarbonate, AIR, and various concentrations of 17 (() 0 μM, () 2.5 

μM, and () 5 μM). Lineweaver-Burke plot with varied concentration of ATP, fixed 

concentration of bicarbonate, AIR, and various concentrations of 17 (() 0 μM, () 5 

μM, and () 8 μM). 

  The uncompetitive nature of 7-bromoisatin with respect to AIR suggested that it 

could only bind to N5-CAIR synthetase in the presence of the substrate and then inhibit 

the enzyme. The GraphPad Prism software package was used to calculate the inhibition 

constant of 7-bromisatin with respect to AIR based on its uncompetitive kinetics and it 

was found to be 0.71 ± 0.47 μM.  

 Mixed kinetics of 7-bromoisatin with respect to bicarbonate and ATP implied that 

the inhibitor could bind to the enzyme either in the presence or absence of these 

substrates. The inhibition constant was also calculated using GraphPad Prism software 

package for bicarbonate data. The Ki value of 7-bromoisatin with respect to bicarbonate 



18 
 

 

was 24.7 ± 10 μM. Inhibition constant of 7-bromoisatin with respect to ATP could not be 

generated due to ambiguity of the kinetics where GraphPad Prism software was unable 

to fit this data into the equations for mixed type of inhibition.       
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2.3 Discussion 

  Compounds containing isatin in their core structure have been known for more 

than a century (45, 46). Yet, it has only recently been acknowledged that they exhibit a 

range of biological activities including antiplasmoidal, antiviral, anticonvulsant and many 

other activities (47-50). In addition, Schiff and Mannich bases of isatin display 

antibacterial activity (51, 52). Isatin is very abundant in nature and can be found in plants 

of specific genus, in frogs, and as a metabolic derivative of adrenaline in humans (46, 

53, 54). The isatin derivative, sunitinib, is a receptor tyrosine kinase inhibitor that has 

been approved by the FDA in 2006 to treat gastrointestinal stromal tumor and renal cell 

carcinoma (55). All of the above mentioned properties of isatin make it a unique 

foundation for a wide variety of medicinal applications.          

In this chapter, the inhibitory activity of six representative isatin-based 

compounds created by the modification of the isatin core was verified. It was found that 

the enzyme-coupled assay was consistent with malachite green assay since their 

enzyme inhibition trends were identical. Thus, compounds 3 and 15 were the most 

potent in both assays, while 1 and 5 were the least potent inhibitors of N5-CAIR 

synthetase (Figure 2.3.1). However, the IC50 values were significantly different between 

the assays and varied by as much as 2-4 fold from one another.  

The inconsistency between the assays was expected since IC50 values strongly 

depended on the specific experimental conditions as well as the kinetic mechanism of 

the inhibitor (56). For example, the concentration of N5-CAIR synthetase was higher in 

the pyruvate kinase/lactate dehydrogenase-coupled compared to the malachite 

green/phosphomolybdate assay. Thus, more inhibitor was needed to saturate the 

enzyme.  Despite the fact that half maximal inhibitory concentrations were different, the 
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second assay validated the fact that these compounds inhibited the enzyme, hence 

providing invaluable information for the future optimization of isatin compounds.   

    

 

Figure 2.3.1 Comparison of the IC50 values obtained from the malachite green/phospho-

molybdate assay (blue) and pyruvate kinase/lactate dehydrogenase-coupled assay 

(red). 

 
To better understand the mechanism of N5-CAIR synthetase inhibition by isatins, 

kinetic evaluation of one representative, potent inhibitior, 7-bromoisatin, was conducted. 

This study utilized the continuous pyruvate kinase/lactate dehydrogenase-coupled 

assay. It was found that 7-bromoisatin was uncompetitive with respect to AIR (Ki= 0.71 ± 

0.47 μM) and showed mixed type of inhibition with respect to bicarbonate (Ki= 24.7 ± 10 

μM) and ATP. If 7-bromoisatin was competitive with any substrate, the location of its 

binding site on the enzyme would be evident. Unfortunately, 7-bromoisatin had a more 

complex mechanism of action. The uncompetitive nature of 7-bromoisatin inhibitor with 

respect to AIR indicated that it could only bind in the presence of this substrate and at a 

different location on the enzyme from AIR. In addition, it was possible for 7-bromoisatin 

to bind to the enzyme in the presence or absence of ATP and bicarbonate and inhibit the 
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enzyme allosterically. This type of behavior signified that 7-bromoisatin bound either 

somewhere outside the active site or in an active site pocket created after a 

conformational change was induced by substrate binding to the enzyme. Given the fact 

that the core structure of all compounds is isatin, it is anticipated that the same binding 

site identified for 7-bromoisatin is used by the rest of the inhibitors. These results are 

extremely important because they provide crucial information about the binding 

properties of the isatin-based inhibitors.  

Is there precedence for an allosteric binding site in N5-CAIR synthetase? To date, 

no allosteric regulators of the enzyme have been identified. However, N5-CAIR 

synthetase is mechanistically and structurally related to the multi-subunit enzyme called 

acetyl-CoA carboxylase. In the mid 1990s, soraphen A (Figure 2.3.2) was found to be a 

nanomolar non-competitive inhibitor of one acetyl-CoA carboxylase domain called biotin 

carboxylase (57, 58). Later, researchers from Columbia University solved the crystal 

structure for soraphen A bound to the yeast biotin carboxylase domain (59). This 

structure revealed that soraphen A bound to a previously unrecognized allosteric site of 

the enzyme that was 25 Å away from its active site. In addition, the structural data 

showed that soraphen A could bind in the biotin carboxylase dimer interface and 

inhibited the enzyme by disrupting the oligomerization of this domain.  

 

 

Figure 2.3.2 Structure of soraphen A. 
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It is quite possible that isatin compounds may also inhibit N5-CAIR synthetase in 

a manner similar to soraphen A. 7-Bromoisatin is a non- or un-competitive inhibitor with 

respect to the N5-CAIR synthetase substrates, which is typically associated with 

allosteric inhibitors. Also, N5-CAIR synthetase is a dimer (60). Therefore, the allosteric 

effects of 7-bromoisatin may be due to disrupting dimer formation. Clearly, there is a 

great need for a high-resolution crystal structure of N5-CAIR synthetase with a bound 

isatin molecule. Once structural data are available, docking studies will open the doors 

for the optimization of already existing isatin-based inhibitors of N5-CAIR synthetase 

which should result in improved potency.         

 In conclusion, the studies presented here have validated isatin analogs as 

inhibitors of N5-CAIR synthetase and have also provided kinetic information regarding 

their action on the enzyme. This information should help in the design of more potent 

compounds against microbial de novo purine biosynthesis and ultimately may prove 

useful as antibacterial drugs with a novel mechanism of action.   
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2.4 Materials and Methods 

 Analytical HPLC experiments were performed on a Waters 600 instrument using 

a PRP1 reversed-phase column (Hamilton). Enzymatic assays were conducted on a 

Varian UV-vis Cary 100 spectrophotometer equipped with a cell changer and a 

temperature controller.  

2.4.1 Inhibitory activity of E. coli N5-CAIR synthetase isatin-based derivatives in 

the pyruvate kinase/lactate dehydrogenase-coupled assay 

 Half maximal inhibitory concentrations (IC50) of compounds 1, 3, 5, 8, 13, and 15 

were determined using the procedure published by Paritala et al. (30) with the following  

modifications. The total reaction volume was 0.5 ml, each experiment was performed in 

duplicate, the pH of the HEPES buffer was 7.8, and the reagents were incubated for 2 

min before the addition of E. coli N5-CAIR synthetase. Each compound was dissolved in 

DMSO and tested at various concentrations. The rate of NADH oxidation was monitored 

at 340 nm. The data generated was analyzed by plotting initial velocity against various 

inhibitor concentrations to generate a dose-response curve. These plots were analyzed 

using the GraphPad Prism software package. IC50 values (equation 1) and their standard 

errors with 95% confidence intervals were generated by the GraphPad Prism software.   

  

  
 

 

            
 
               

where Vi is the reaction velocity at a specific inhibitor concentration [I], V0 is the 

uninhibited velocity, and n=1 is the Hill slope. 

2.4.2 Kinetic analysis of 7-bromoisatin against E. coli N5-CAIR synthetase 

 The procedure by Firestine et al. (17) with several modifications was used to 

determine kinetics of 7-bromoisatin. The total reaction volume was 0.5 ml, each 

experiment was performed in duplicate, the pH of the HEPES buffer was 7.8, and the 



24 
 

 

reagents were incubated for 2 min before the addition of E. coli N5-CAIR synthetase. 

Compound 7-bromoisatin was dissolved in DMSO and tested at 2.5, 5 and 8 μM 

concentrations. For the experiments in which ATP (1.0 mM) and AIR (10 μM) were held 

constant, concentrations of NaHCO3 were varied from 0.5 to 5 mM. When ATP (1.0 mM) 

and NaHCO3 (1.0 mM) were held constant, various concentrations of AIR were tested 

ranging from 10 to 35 μM. Finally, NaHCO3 (1.0 mM) and AIR (10 μM) were held 

constant when ATP concentrations were varied from 10 to 250 μM. Initial velocity due to 

enzyme activity was determined for each experiment and Lineweaver-Burke plots of 

initial velocity versus varied bicarbonate, ATP or AIR concentration were generated to 

determine the likely mode of enzyme inhibition by 7-bromoisatin. Every data point on the 

Lineweaver-Burke plot was generated in duplicate and the mean of two experiments was 

used in Graphpad software package Ki calculations. Curve fittings were performed using 

the same software. Inhibition constants (Ki) and their standard errors with 95% 

confidence intervals for 7-bromoisatin with respect to AIR, ATP, and bicarbonate were 

determined using GraphPad Prism. The data for AIR were fitted by the program to 

equations 1-3 for uncompetitive enzyme inhibition while the data for ATP and 

bicarbonate was fitted into equation 4 based on the observed mixed kinetics. Inhibition 

constants for each inhibitor concentration were calculated separately and then averaged. 
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where Km is the Michaelis-Menten constant, αKm is the apparent Km in the presence of 

inhibitor, Vmax is the maximum velocity, V0 is the initial velocity, Vmax
app is the apparent 

maximum velocity, [S] is the substrate concentration, Ki is the binding constant, and the 

slopes with or without inhibitor are generated from a Lineweaver-Burk plot (61). 

2.4.3 Synthesis of 5-aminoimidazole ribonucleotide (AIR) 

 AIR was prepared as described by Firestine et al. (62) with several modifications 

to the procedure. After purifying CAIR by a DEAE Sepharose column, fractions were 

analyzed by HPLC and UV spectroscopy for purity. CAIR fractions from the Sepharose 

purification were injected into HPLC and eluted isocratically with 50 mM DIPEAA at a 

flow rate of 1 mL/min. HPLC spectra were compared to the CAIR standard for the 

presence of impurities. In addition to HPLC, UV spectroscopy was used to analyze CAIR 

samples for identity and purity. Lyophilized CAIR fractions were dissolved in 100 mM 

Tris (pH 8.0), transferred to a 1-mL quartz cuvettes and each sample was scanned from 

220 to 300 nm. UV spectra were compared to the published results for pure CAIR. (28) 

AIR was prepared by non-enzymatic decarboxylation of CAIR using NH4OAc pH 4.8 

buffer essentially as described by Firestine et al. Sepharose column purification was not 

necessary because pure CAIR was used for the decarboxylation reaction. This was 

validated by HPLC and UV analysis of the AIR produced (same conditions as for CAIR). 

The concentration of AIR used in the assays was determined using extinction coefficient 

(ε) of AIR at 260 nm (εAIR = 1570 ± 100 M-1cm-1 at pH 8.0).  

2.4.4 Preparation of diisopropylethylammonium acetate (DIPEAA) 

    Ninhydrin (large excess) was combined with N,N-diisopropylethylamine (DIPEA, 

20 mL, 0.115 mol, 1.0 eq) and the reaction was stirred overnight at room temperature. 

Then, DIPEA solution was pipetted out to a new round-bottom flask followed by the 

addition of another large excess of ninhydrin. This mixture was refluxed overnight. After 
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24 hours, refluxing was stopped and the dark brown DIPEA solution was distilled to 

afford pure DIPEA. N,N-Diisopropylethylammonium acetate (DIPEAA) was produced by 

combining DIPEA with glacial acetic acid in a 1:1 ratio DIPEAA was diluted with HPLC 

grade water before use in HPLC.    
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CHAPTER 3 

SMALL MOLECULES TARGETING BACTERIAL N5-CAIR MUTASE 

3.1 Introduction 

 De novo purine biosynthesis is a key metabolic process found in higher 

eukaryotes, bacteria, yeasts, and plants (20). In recent years a dichotomy in the pathway 

has been found between species (Figure 3.1.1) (18). This divergence is centered on the 

formation and utilization of the chemically labile intermediate, N5-CAIR (63). Formation of 

N5-CAIR is accomplished by the enzyme N5-CAIR synthetase, which converts ATP, AIR 

and bicarbonate into N5-CAIR, ADP and inorganic phosphate. N5-CAIR mutase (class I 

PurE) directly transfers the carbamate carboxylate from the N5-position of N5-CAIR to C4 

to generate CAIR. Animals, on the other hand, directly carboxylate AIR to produce CAIR 

using AIR carboxylase (class II PurE) (64, 65). It has been suggested that this difference 

in the pathways might be attributed to changes in the CO2 environmental conditions (21). 

 

Figure 3.1.1 Reactions catalyzed by AIR carboxylase, N5-CAIR synthetase, and N5-

CAIR mutase. R is ribose 5’-phosphate (66). 
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Structural and sequence alignment studies of AIR carboxylase and N5-CAIR 

mutase confirm that these enzymes are evolutionary related and they have a high 

degree of structural and sequence homology (Figure 3.1.2) (20, 67). Despite this 

similarity, biochemical studies of AIR carboxylase and N5-CAIR mutase show that the 

enzymes are highly specific for their own substrates. Thus, AIR carboxylase cannot 

utilize N5-CAIR as a substrate and N5-CAIR mutase is unable to catalyze a reaction of 

AIR and CO2 (17). These shared features complicate the discovery of selective N5-CAIR 

mutase inhibitors. 

 

Figure 3.1.2 Comparison of two monomers: human AIR carboxylase (PDB 2H31) and E. 

coli N5-CAIR mutase (PDB 1D7A).  

 
To date, there is only one example of a selective inhibitor between AIR 

carboxylase and N5-CAIR mutase. In 1993, Firestine et al. reported the discovery of 

NAIR (4-nitro-5-aminoimidazole ribonucleotide) (68). NAIR was shown to be a slow, 

tight-binding inhibitor of G. gallius AIR carboxylase with the inhibition constant (Ki) of 

0.34 nM. Unfortunately, this compound inhibited AIR carboxylase better than N5-CAIR 

mutase, rendering the compound ineffective for antimicrobial studies. Furthermore, the 

compound did not possess drug-like properties because it was highly charged at 
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physiological pH. In a 2009 paper, Firestine and co-workers investigated multiple azole 

nucleotide analogs of NAIR as AIR carboxylase and N5-CAIR mutase inhibitors (67). 

However, these compounds were significantly less potent than NAIR, but still bound 

better to AIR carboxylase than N5-CAIR mutase. It was suggested that AIR carboxylase 

was sensitive to the electronic character of the nucleotide inhibitors and suggested that 

compounds which mimicked the electrostatic character of the transition state for the 

decarboxylation of N5-CAIR could become potent and selective N5-CAIR mutase 

inhibitors. However, no such inhibitors have been discovered.  

Given the challenges listed above, coupled with the fact that no selective inhibitor of N5-

CAIR mutase is known, it is clear that a new approach is needed to identify selective N5-

CAIR mutase inhibitors. Therefore, we decided to take advantage of high-throughput 

technology and perform an unbiased search for potent and, more importantly, selective 

inhibitors of N5-CAIR mutase. In this chapter, the results of these studies will be outlined 

and the discovery of the first selective inhibitor of N5-CAIR mutase will be highlighted. 

The role that each stereoisomer plays in the potency and specificity of this molecule will 

be will computationally explored and the initial efforts at developing a stereospecific 

synthesis of this inhibitor will be outlined.      

 

    

 

 

 

 

 

 



30 
 

 

3.2 Results 

3.2.1 High-throughput Screening 

 In an attempt to identify drug-like compounds against N5-CAIR mutase, our 

laboratory initiated an HTS study at the Center for Chemical Genomics (CCG) at the 

University of Michigan. A 48,000 compound library of commercially available drug-like 

molecules was screened against E. coli N5-CAIR mutase with a counterscreen against 

human AIR carboxylase. The enzyme-catalyzed CAIR decarboxylation assay (Figure 

3.2.1) was used for the HTS study. This assay was conducted by measuring the 

background UV absorbance (260 nm) in each well of the 384-well plate containing 

buffer, CAIR and the potential inhibitor from the 48,000-compound library. Then, the 

enzyme (E. coli N5-CAIR mutase or human AIR carboxylase) was added to each well 

and the absorbance was measured again after 10 minutes. The two absorbance 

measurements were subtracted to give the absorbance due to enzyme activity without 

background. It was important to measure the background levels because it was likely 

that some library compounds absorbed UV light at 260 nm.   

 

Figure 3.2.1 Enzyme-catalyzed CAIR decarboxylation assay.  

 
 The high-throughput screen was conducted as follows. First, 48,000 compounds 

were screened against E. coli N5-CAIR mutase at a single inhibitor concentration. The 
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activity of the inhibitor was determined relative to the positive control (no enzyme) and a 

negative control (no inhibitor). The primary screen identified 1,637 compounds with a hit 

rate of 3.4% (Figure 3.2.2). The second screen (in triplicate) validated 360 out of the 

1,637 compounds yielding a hit rate of 0.75%. Out of 360 compounds, 259 followed 

Lipinski’s rules (44). 

 Dose-response studies were conducted on all 259 compounds and 130 

displayed a dose-response relationship (hit rate of 0.27%). Finally, dose-response 

studies were conducted on all 130 compounds against human AIR carboxylase to 

establish their selectivity profiles. Only two compounds (hit rate 0.004%) out of 130 did 

not inhibit human AIR carboxylase at the concentrations screened by CCG.   

 

 

Figure 3.2.2 HTS flow chart. 
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 Examination of the 130 E. coli N5-CAIR mutase inhibitors revealed several 

desired features (Table 3.2.1). The two selective inhibitors (1, 2) of E. coli N5-CAIR 

mutase are also shown in Table 3.2.1. Compound 1 displayed an IC50 of 20 μM against 

bacterial enzyme while it showed no activity against human enzyme below 100 μM (the 

highest concentration screened). Compound 2 showed similar potency with IC50 against 

E. coli N5-CAIR mutase of 12 μM and again it was not active against human AIR 

carboxylase. The remaining compounds displayed low micromolar IC50 values against 

both N5-CAIR mutase and AIR carboxylase and thus were not selective. Interestingly, 

the majority of the 130 compounds were similar to compound 1. As can be seen from the 

representative examples shown in Table 3.2.1, these compounds had different 

substituted amines; however, these substitutions did not result in selectivity. Only the 

sulfonamide of 1 gave selective activity, albeit at a loss of inhibitor potency.  

 
Table 3.2.1 HTS-derived inhibitors of E. coli N5-CAIR mutase and human AIR 

carboxylase 

No. Structure 

IC50          

N
5
-CAIR 

Mutase      

(μM) 

IC50              

AIR 

Carboxylase 

(μM) 

No. Structure 

IC50          

N
5
-CAIR 

Mutase      

(μM) 

IC50              

AIR 

Carboxylase 

(μM) 

1 

 

20 >100 2  12 >100 

3  7 9 4  3 2 

5  9 14 8  27 50 
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3.2.2 Kinetic Analysis of “Hit” Compounds  

 Compounds 1 and 2 were acquired from the vendor to perform verification of the 

HTS results. Kinetic analysis of both inhibitors was conducted using the same enzyme-

catalyzed decarboxylation assay as previously described in the introduction (Figure 

3.2.1). Lineweaver-Burk plots were constructed to determine the inhibition constants (Ki) 

and the mode of inhibition (competitive, uncompetitive, or non-competitive) of 

compounds 1 and 2 against E. coli N5-CAIR mutase and human AIR carboxylase. The 

results are presented in Figure 3.2.3. Compound 1 was competitive with respect to CAIR 

when tested against both N5-CAIR mutase and AIR carboxylase. The inhibition constant, 

Ki was 28 ± 5 μM against the bacterial enzyme and 134 ± 21 μM against the AIR 

carboxylase. Although, 1 displayed only a 5-fold lower Ki for N5-CAIR mutase than for 

AIR carboxylase, it is the first known, selective inhibitor of the bacterial enzyme.  

 

 

Figure 3.2.3 (A) Lineweaver-Burke plot for the inhibition of E. coli N5-CAIR mutase in the 

presence of () no inhibitor, () 25 μM of 1, and () 35 μM of 1. (B) Lineweaver-Burke 

plot for the inhibition of human AIR carboxylase in the presence of () no inhibitor, () 

35 μM of 1, and () 75 μM of 1.  
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Generation of a Lineweaver-Burke plot for compound 2 failed because this 

compound strongly absorbed UV light at 260 nm creating large errors in the 

measurement of enzyme-catalyzed decarboxylation. In addition, 2 was unique and 

structurally unrelated to any other “hit” from the HTS. Based on the above data, it was 

concluded that compound 2 was probably a false HTS positive.  

3.2.3 Molecular Modeling Study of Compound 1 

 To gain insight into the selectivity of 1 for N5-CAIR mutase versus AIR 

carboxylase, we conducted molecular modeling studies based on the available crystal 

structures of the bacterial and human enzymes. Our kinetic analysis of compound 1 

(Figure 3.2.3) showed that it was a competitive inhibitor (with respect to CAIR) of N5-

CAIR mutase and AIR carboxylase. This indicated that compound 1 bound to the same 

active-site pocket as CAIR. Based on this information, docking of 1 was carried out using 

the MOE (2010.10) software package with the crystal structure of E. coli N5-CAIR 

mutase (PDB: 2ATE), which had the CAIR analog, NAIR (Figure 3.2.4), bound in the 

active site. Unfortunately, human AIR carboxylase (PDB: 2H31) had no substrates or 

products bound in its active site. Since N5-CAIR mutase and AIR carboxylase were 

previously found to be evolutionary related and displayed nearly identical tertiary 

structures with a high degree of sequence similarity (39, 69), we superimposed the two 

enzymes to determine the location of the CAIR binding site in AIR carboxylase.  

    

 

Figure 3.2.4 Structure of NAIR. 
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The examination of compound 1 revealed that there was one chiral center and 

the kinetic analysis of 1 (Section 3.2.2) was performed using the commercially acquired 

racemic mixture. Unfortunately, pure enantiomers of compound 1 were not commercially 

available and thus, we were unable to determine the effect of stereochemistry on the 

potency of inhibition. To examine a possible effect, both enantiomers of inhibitor 1 

(Figure 3.2.5) were included in the docking studies to gain additional information about 

the selectivity of one enantiomer versus another.     

 

 

Figure 3.2.5 Structures of (S) and (R) enantiomers of compound 1. 

 
 Docking studies revealed that neither enantiomer of 1 bound deeply into the 

active site of AIR carboxylase (Figures 3.2.6, 3.2.7 and 3.2.8, 3.2.9) and thus was more 

solvent exposed. Compound 1 formed strong hydrogen bond interactions with Arg331 as 

well as Lys304, both of which are conserved in all AIR carboxylases. These interactions 

were formed with the succinamide and sulfonamide moieties of 1 and served to anchor 

the compound in a solvent exposed region of the active site pocket. In contrast, 1 bound 

better to N5-CAIR mutase (Figures 3.2.10, 3.2.11 and 3.2.12, 3.2.13) possibly due to the 

stronger enzyme interactions with residues Ala96, Ala73, and Arg46, which were 

conserved only in N5-CAIR mutases. These enzyme residues also had strong hydrogen 

bond interactions with a sulfonamide moiety of 1 along with two π-cation interactions. 

Due to their location on the enzyme, Ala96, Ala73 and Arg46 caused 1 to bind deeper 
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into the pocket resulting in an increased number of interactions with other residues in the 

active site of N5-CAIR mutase.  

 Additionally, the evaluation of both enantiomers (R versus S) was performed 

separately within each enzyme class. Docking studies showed that the enantiomers had 

differences in their binding affinity (as measured by binding energies) for each enzyme. 

This suggested that an increase in selectivity may be gained by focusing on only one 

enantiomer of compound 1. It was found that the (S)-isomer of 1 had a lower energy 

values than the (R)-isomer in both N5-CAIR mutase (-15.06 kcal/mol for (S) and -13.94 

kcal/mol for (R)) and AIR carboxylase (-12.66 kcal/mol for (S) and -9.12 kcal/mol for (R)).  

 

Figure 3.2.6 Interaction diagram of (S) isomer of compound 1 docked to human AIR 

carboxylase active site (PDB: 2H31). The red circle around a residue indicates that this 

residue is strictly conserved in human AIR carboxylase. The intensity of the purple color 

around an atom in the compound indicates the degree of solvent exposure. Dotted 

arrows represent hydrogen bond interactions between ligand and the enzyme. 

Hydrophobic residues are colored in green interior while polar residues are colored in 
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light purple. Basic and acid residues are annotated with a blue or red ring, respectively, 

around a residue. The size of the light blue cresent around a residue indicates the 

strength of the interaction. Only residues within 5 Å from compound 1 are shown. 

 

Figure 3.2.7 The surface representation of human AIR carboxylase active site with (S) 

enantiomer of 1. All residues shown on the 3D diagram are located within 5 Å from 

molecule 1. Blue color represents basic residues and red color shows acidic residues. 

 

Figure 3.2.8 Interaction diagram of (R) isomer of compound 1 docked to human AIR 

carboxylase active site (PDB: 2H31). The nomenclature of the diagram is the same as 

described for Figure 3.2.6.  
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Figure 3.2.9 The surface representation of human AIR carboxylase active site with (R) 

enantiomer of 1. The nomenclature of the diagram is the same as described for Figure 

3.2.7. 

 

Figure 3.2.10 Interaction diagram of the (S)-isomer of compound 1 docked to E. coli N5-

CAIR mutase active site (PDB: 2ATE). The red circle around a residue indicates that this 

residue is strictly conserved in E. coli N5-CAIR mutase. The rest of the nomenclature is 

the same as described for Figure 3.2.6.  
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Figure 3.2.11 The surface representation of E. coli N5-CAIR mutase active site with (S) 

enantiomer of 1. The nomenclature of the diagram is the same as described for Figure 

3.2.7. 

 

Figure 3.2.12 Interaction diagram of (R) isomer of compound 1 docked to E. coli N5-

CAIR mutase active site (PDB: 2ATE). The nomenclature of the diagram is the same as 

described for Figure 3.2.10.  
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Figure 3.2.13 The surface representation of E. coli N5-CAIR mutase active site with (R) 

enantiomer of 1. The nomenclature of the diagram is the same as described for Figure 

3.2.7. 

 
3.2.4 Exploratory Synthesis of the Pure Enantiomers of Compound 1 

 The molecular modeling studies (Section 3.2.3) suggested the possibility that the 

(S)-isomer of compound 1 was a better inhibitor than the (R)-isomer. To test this 

molecular modeling hypothesis, the enatiomerically pure isomers of 1 were required for 

the evaluation against each enzyme. Unfortunately, the synthetic method for the 

preparation of these isomers was unknown and there were no publications on 1 reported 

in any database. Thus, preliminary studies were required to explore the stereospecific 

synthesis of 1.  

 A restrosynthetic analysis was conducted for the synthesis of 1. Compound 1 

could be divided at points a or b. Dissection at a gave two products, 4-aminomethyl 

benzenesulfonamide and the stereospecific halide. It was hypothesized that this halide 

could be synthesized from the corresponding alcohol which was produced by the 

condensation of the stereospecific 2-hydroxy-butanoic acid ethyl ester with aniline. A 

disconnection at b would give the stereospecific amine and the corresponding 
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sulfonamide halide. The amine could be synthesized from a protected aspartic acid and 

aniline. Analysis of route a revealed that while the aminomethyl-benzenesulfonamide 

was commercially available, there were no reported stereospecific syntheses of the 

halide. However, cyclization of the butanoic acid had been reported in the literature. For 

route b, both the stereospecific amine and the benzenesulfonamide methyl halide had 

been previously reported in the literature. Although there were several concerns 

regarding the control of the addition of the halide to the amine, the short synthesis 

coupled with the fact that all of the compounds were known, indicated that route b would 

likely be the preferred method for preparation of the pure enantiomers of compound 1.   

 
Scheme 3.1 Retrosynthetic analysis for the synthesis of compound 1. 

 

 
The synthesis of compound 1 began with the preparation of the amine 13 in two 

steps (Scheme 3.2). The first step consisted of a microwave-assisted cyclization reaction 

of N-Boc-S-aspartic acid with aniline in the presence of O-(Benzotriazol-1-yl)-N,N,N′,N′-

tetramethyluronium hexafluorophosphate (HBTU) and N,N-diisopropylethylamine (DIEA) 

in DMF to afford compound 12 in 90% yield. This one-step microwave-assisted coupling 

reaction was fast and high yielding compared to the published procedure (70) by Witiak 

et al. that reported preparation of compound 12 in 3 steps. Synthesis of 13 from 12 was 

1 
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accomplished by standard tert-butyloxycarboxyl (Boc) group deprotection using 2M 

hydrochloric acid in ethanol to afford the desired compound in high yields.   

 
Scheme 3.2 Synthesis of Boc-α-amino-N-phenylsuccinimide 12 and α-amino-N-

phenylsuccinimide·HCl 13. 

 

 
 The availability of stereochemically defined compound 13 allowed examining 

multiple routes toward the preparation of the enantiomers of 1. A review of the literature 

suggested several synthetic approaches to secondary amines from primary amines 

including direct N-alkylation (71-73), the use of protective groups (74, 75), and reductive 

alkylation reaction (76, 77). First, it was decided to proceed with the direct N-alkylation of 

compound 13 with 15. Compound 15 was prepared from the commercially available 14 

by treatment with 28% ammonia in tetrahydrofuran (THF) (Scheme 3.3) (78).  

 
Scheme 3.3 Synthesis of compound 15. 

 

 
Reaction of 13 with 15 in the presence of triethylamine at 0°C resulted in no 

reaction. Repeating this reaction using a different base, diisopropylethylamine (DIPEA) 

with tetrabutylammonium iodide (TBAI) in THF while heating in the microwave produced 



43 
 

 

exclusively the di-alkylated compound 16 (Scheme 3.4). Examination of direct N-

alkylation of compound 13 with compound 15 in the presence of cesium hydroxide 

monohydrate in dimethylsulfoxide (DMF) was also unsuccessful and yielded no reaction.   

 
Scheme 3.4 Direct N-alkylation reaction of 13 with 15.   

 

 
 Since the direct alkylation of 13 resulted in only the dialkyl product 16, the 

exploration of the option of protecting the amine to prevent di-addition was attempted.  

Previous researchers have utilized the nosyl (4-nitrobenzenesulfonyl) protecting group 

as a mechanism for controlling alkylation reactions of amines (79). This protecting group 

converts an amine into a sulfonamide which increases the acidity of the NH proton 

allowing for more facile alkylation, but also prevents the over-alkylation of the amine. 

Furthermore, the nosyl group can be readily removed. 

Protection of 13 with 4-nitrobenzenesulfonyl chloride (Nosyl-Cl) in 

dichloromethane (DCM) afforded compound 17 in 30% yield (Scheme 3.5). Next, the 

alkylation of 17 was examined. After the exploration of numerous methods, it was found 

that the microwave-assisted alkylation of 17 in the presence of cesium carbonate 

produced the desired compound 18 albeit in low yields. The final step was the removal 

of the protecting group. Nosyl protecting groups were removed by treatment with thiols 

where thiolphenol was the most common reagent (80). Deprotection of 18 with 

thiophenol and cesium carbonate in acetonitrile resulted in either no reaction or highly 
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decomposed materials depending upon the conditions utilized in the reaction. We also 

explored a solid-phase route by reacting 18 with polystyrene-thiophenol in the presence 

of potassium trimethylsilanolate (TMSOK) in THF (81). Again, only highly decomposed 

materials were obtained.       

 
Scheme 3.5 Synthetic approach for the synthesis of compound 1 using 4-

nitrobenzenesulfonyl chloride as protective agent. 
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3.3 Discussion 

 Researchers working in the area of the de novo purine biosynthesis consider 

Buchanan and co-workers, working in the 1950’s, as pioneers in establishing the basics 

of this fundamental pathway. In the 1990s, it was realized that major differences in the 

de novo purine biosynthesis existed between humans and microbes (28, 29, 82). These 

findings suggested that exploring the divergence in this pathway could result in the 

development of novel antimicrobial agents (17, 64, 65). Despite the predictions, 

medicinal agents targeting bacterial N5-CAIR mutase and synthetase have been limited. 

 One of the most difficult challenges in this field is the development of agents that 

specifically target bacterial N5-CAIR mutase. Both structural and sequence studies have 

revealed that N5-CAIR mutase is highly similar to human AIR carboxylase. To date, there 

have been no selective inhibitors reported and most of the known inhibitors of these 

enzymes possess more potent inhibition against AIR carboxylase over N5-CAIR mutase.  

To accomplish the main goal of discovering selective N5-CAIR mutase inhibitors, the 

University of Michigan high-throughput facility has been successfully utilized. The 

discovery of a moderately potent and selective E. coli N5-CAIR mutase inhibitor 1 (Ki= 

28.4 ± 5 μM) represents a groundbreaking step towards the main goal of developing 

novel antibiotics targeting the de novo purine biosynthetic pathway. 

The selectivity of compound 1 was a key question that has arisen from this 

discovery. Previous studies of inhibitors of AIR carboxylase and N5-CAIR mutase have 

postulated that stereoelectronics have played a key role in selectivity (67). Given the fact 

that approximately 100 additional molecules related to 1 have been discovered, this 

suggests that unlike the previous studies, the substitution patterns on 1 are critical for its 

selectivity. To gain an understanding of how the substitutions on 1 affect the selectivity, 
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docking studies to probe molecular interactions between 1 and both enzymes have been 

conducted.  

It was found that 1 had alternative binding interactions with active site residues of 

N5-CAIR mutase compared to AIR carboxylase. Mathews et al. have previously showed 

that residues in the P-loop and 40s loop were conserved between AIR carboxylase and 

N5-CAIR mutase while residues within the 70s loop were conserved strictly within the 

enzyme class (18). Therefore, it was expected that residues within the 70s loop would 

form distinct interactions which in turn would explain the differences in the binding 

specificity of 1. Molecular modeling revealed that Ala73 (N5-CAIR mutase) and Arg331 

(AIR carboxylase), both part of the 70s loop, did form a strong hydrogen bond 

interactions to the succinamide and sulfonamide moieties of 1. Moreover, the conserved 

Arg46 in N5-CAIR mutase and Lys304 in AIR carboxylase were also involved in binding 

of 1. Even though, Arg46 and Lys304 belonged to the conserved 40s loop, previous 

research indicated that these residues were a distinctive feature within each enzyme 

class (83). Earlier reports had not postulated any importance for the residues located in 

the 90s loop, but Ala96, present only in E. coli N5-CAIR mutase provided key interactions 

to 1. Other residues involved in the binding of 1 included Ser16, Ser18, Asp19, Ser43, 

His45, Gly71 on E. coli N5-CAIR mutase and Asp277, Ser301, His303, and Gly330 on 

human AIR carboxylase. All of these amino acids were conserved within each enzyme 

class and likely explain why so many compounds related to 1 were capable of binding to 

both enzymes. Since E. coli N5-CAIR mutase had more residues interacting with  1 than 

human AIR carboxylase and the strength of those interactions was much higher (~2-4 

kcal/mol), it was concluded that  1 was selective for N5-CAIR mutase. 

Another feature that was examined during the docking study was the role that 

stereochemistry played in binding. The molecular modeling of compound 1 enantiomers 
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showed strong evidence that the (S)-isomer had higher binding energy (~1-3 kcal/mol) 

for N5-CAIR mutase and AIR carboxylase than its (R)-isomer. These results prompted us 

to begin examining whether the (S) isomer might lead to a more effective inhibitor of the 

bacterial N5-CAIR mutase. Therefore, the study into the stereospecific synthesis of 1 

was initiated. Unfortunately, no synthetic method for preparation of 1 was found in the 

literature. Our approach towards the enantiomeric synthesis of 1 focused on the 

alkylation of 13, prepared from aspartic acid derivatives. Generally, secondary amines 

can be made by N-alkylation of primary amines under conditions which minimize di-

addition. In our case, steric and stereochemical considerations prevented the synthesis 

of the (S)-isomer of 1. Several modifications to the alkylation procedure where no heat 

was applied gave no reaction, while heating lead to the rapid formation of the di-

alkylated product. While we could have employed a strong base to generate the amino 

anion, this would have likely led to racemization. Thus, the protection of amine with nosyl 

chloride was attempted to afford compound 17. Protection was found to be very low 

yielding (30%) most likely due to the bulkiness of the starting materials which prevented 

proper molecule orientation for the nucleophilic attack. Given this conjecture that steric 

bulk was responsible for the difficulty in formation of 17, it was perhaps not surprising 

that formation of the mono-alkyled product 18 was also accomplished in poor yield. 

Despite the low yield, it was hypothesized that the final product could be achieved by 

deprotection. However, cleavage of the nosyl protecting group by two different routes 

gave only decomposition of the starting materials.  

While we were ultimately unsuccessful in the stereospecific synthesis of 1, the 

optimization of the synthesis of the key intermediate 13 was successful and several 

methods for the alkylation of this amine were also explored. In addition, polarimetry 

experiments (Table 3.4.1, page 58) showed that the synthesis of the pure enantiomer of 
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compound 13 was achieved without any product racemization. There are other methods 

which could be employed to prepare 1, including reductive alkylation or even 

abandoning route b and exploring route a outlined in scheme 3.1. This will likely be the 

subject of future work in the Firestine laboratory. 
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3.4 Materials and Methods 

 Analytical HPLC experiments were performed on a Waters 600 instrument using 

PRP1 reversed-phase column (Hamilton). Enzymatic assays were conducted on a 

Varian UV-vis Cary 100 spectrophotometer equipped with a cell changer and a 

temperature controller. Microwave irradiation experiments were carried out on a Biotage 

Initiator instrument operating at 2.45 GHz frequency with continuous irradiation power 

from 0 to 400 W. Synthesized compounds were purified using FlashMaster II Purification 

System.  Measurements of pH were performed on Acumet AB15 pH meter (Fisher 

Scientific). The 1H and 13C NMR spectra were recorded with permission on a Varian 400 

mHz at the Wayne State University Chemistry Department. Deuterated solvents were 

acquired from Cambridge Isotopes. Inhibitors 1 and 2 were purchased from Maybridge. 

All other chemicals were obtained from Fisher Scientific, Sigma-Aldrich, Acros Organics, 

TCI, Chem-Impex International or VWR International.     

3.4.1 High-throughput screening 

HTS screen was conducted at the Center for Chemical Genomics (CCG) at the 

University of Michigan. The 48,000 compound library was constructed using 16,000 

compounds from the Maybridge Hit-Finder library (Maybridge), 20,000 compounds from 

ChemDiv, 10,000 compounds from Chembridge, and 2,000 compounds from the MS 

Spectrum library. The assay for both N5-CAIR mutase and AIR carboxylase involved 

monitoring the enzyme catalyzed decarboxylation of CAIR at 260 nm. E. coli N5-CAIR 

mutase, human AIR carboxylase, and CAIR were prepared as previously described (84). 

All assays were preformed in 384-well plates (Corning 3701) as follows. To each assay 

well, buffer (100 mM Tris·HCl pH 8.0), 10 μM CAIR and a library member (10-20 μM 

depending upon supplier) were added and the absorbance of each well was measured 

at 260 nm. The reaction was initiated by the addition of E. coli N5-CAIR mutase and the 
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reaction was quenched by the addition of 10 mM NaOH after 10 minutes. The 

absorbance of each well was again measured and the two measurements were 

subtracted. For the positive control, no drug or enzyme was added while the negative 

control consisted of no drug but added enzyme. The positive control values were set to 

100% inhibition while the negative control was set to 0%. Compounds which displayed a 

3 standard deviation difference from the negative control were taken as potential 

inhibitors. All potential inhibitors were rescreened, in triplicate, using the same assay 

under the same conditions. Only compounds which displayed inhibition in all three 

replicates were analyzed further. Lastly, an 8-point dose-response assay was conducted 

with drug concentrations ranging from 1-100 uM. The dose-response assay was 

conducted using N5-CAIR mutase or human AIR carboxylase.  

3.4.2 Purification of Human AIR Carboxylase 

Human AIR carboxylase was purified from overexpressed E. coli BL21-DE3 

using a plasmid containing cloned Ade2 gene with a His-tag as prepared by Dr. Paritala. 

Purification of AIR carboxylase was conducted as follows (40). Bacterial cells expressing 

AIR carboxylase were lysed using the B-PER reagent (4 mL per gram of pellet, Pierce 

Biotechnologies). The lysed bacteria were centrifuged at 14,500 rpm for 60 min 

(Beckman ultra high-speed centrifuge, rotor JA-20). Streptomycin (5 mg/mL) was added 

to the supernatant, incubated for 30 min and then centrifuged at 14,500 rpm for 60 min. 

The supernatant was loaded onto a column containing Cobalt RAPID RUNTM Agarose 

Beads (Gold Biotechnology) which had previously been pre-conditioned with buffer A (50 

mM sodium phosphate, 300 mM sodium chloride, and 10 mM imidazole, pH 7.4 at 4°C). 

The protein loaded column was successively washed, at 4 °C, with Buffers B-D (50 mM 

sodium phosphate, pH 7.4, 300 mM sodium chloride, containing either 25 mM (B), 50 

mM (C), or 100 mM (D) imidazole.. AIR carboxylase was eluted with buffer E containing 
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50 mM sodium phosphate, 300 mM sodium chloride, and 150 mM imidazole, pH 7.4 at 

4°C. The purity of the protein was checked with SDS-PAGE (47 kDa band). Purified AIR 

carboxylase was dialyzed against 10 mM Tris·HCl, 200 mM NaCl, pH 8 and 

concentrated to 1 mg/mL using an Amicon centrifugal concentrator. 

3.4.3 Kinetic analysis of inhibitor 1  

  All assays were performed using a Cary 100 UV-vis spectrophotometer, 

thermostated to 37 °C and reagents were kept on ice until use. In a 1-mL cuvette, 100 

mM Tris-HCl pH 8.0, varied amounts of CAIR (5-100 μM) and compound 1 or 2 (0 - 100 

μM) were combined followed by a 2 min incubation time at 37 °C. Background UV 

absorbance was measured and the reaction was initiated by the addition of 260 ng of E. 

coli N5-CAIR mutase. The conversion of CAIR to N5-CAIR was monitored at 260 nm. 

The initial velocity was determined over a two minute time span immediately after 

addition of the enzyme. The assay for AIR carboxylase was carried out in an identical 

fashion as listed above except that the reaction was initiated by the addition of 560 ng of 

human AIR carboxylase enzyme. Lineweaver-Burke plots for both enzymes were 

constructed by plotting 1/V0 vs. 1/[S] and linear lines were calculated using GraphPad 

Prisim. Inhibition constant (Ki) and the standard error with 95% confidence interval were 

calculated using the GraphPad Prism software package. The data for compound 1 were 

fitted by the program to equations 1-3 for competitive enzyme inhibition. 
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In these equations,  Km is the Michaelis-Menten constant, αKm is the apparent Km 

in the presence of the inhibitor, Vmax is the maximum velocity, V0 is the initial velocity, [S] 

is the substrate concentration, and Ki is the binding constant (85) 

3.4.4 Molecular modeling studies 

 All molecular modeling studies were performed on a Pentium IV Windows XP 

workstation using the Molecular Operating Environment (MOE 2010.10; Chemical 

Computing Group, Canada) software package. The crystal structures of E. coli N5-CAIR 

mutase complexed with nitroAIR (PDB ID: 2ATE) and AIR carboxylase complexed with 

CO2 (PDB ID: 2H31) were obtained from the protein data bank. N5-CAIR mutase was 

prepared for docking studies by removing nitroAIR and water molecules from the active 

site; applying Protonate3D function on the whole enzyme to correct for the physiological 

pH of 7.4; isolating the active site pocket and calculating partial charges on the active 

site residues using the MMFF94x force field. Human AIR carboxylase was a part of a 

bifinctional enzyme called phosphoribosylaminoimidazole carboxylase/phosphoribosyl- 

aminoimidazole succinocarboxamide synthetase (PAICS). Therefore, the AIR 

carboxylase components of PAICS were isolated from the rest of the enzyme and 

prepared in a manner identical to those described for N5-CAIR mutase. To determine the 

location of the active site of AIR carboxylase, E. coli N5-CAIR mutase was superimposed 

with human AIR carboxylase and the region of AIR carboxylase which overlapped with 

residues binding NAIR in N5-CAIR mutase was taken to be the active site of AIR 

carboxylase. Isomers of compound 1 were drawn using the builder module of MOE 

followed by the calculation of partial charges using the MMFF94x force field. Ligand-

receptor docking of two isomers of compound 1 with either E. coli N5-CAIR mutase or 

human AIR carboxylase was carried out using MOE 2010.10 docking function. The 

poses were scored based on the London dG scoring function (Retain: 30) for estimating 
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binding energy. Refinement was set to Forcefield (Interactions: 500) in order to minimize 

energy in the receptor pocket. Finally, the Rescoring 2 option was set to none (Retain: 

10), allowing the final refined poses to be ranked by the MM/GBVI binding energy 

estimation. Multiple, low energy conformations of each isomer were calculated and the 

results were stored in a database. Docking positions of each isomer in the active sites of 

N5-CAIR mutase and AIR carboxylase were significantly affected by their available 

conformations. Therefore, the lowest energy conformer of each isomer was chosen from 

the database for further analysis. Ligand binding energies were calculated for docked 

poses using the appropriate function available in MOE.   

3.4.5 Exploratory synthesis of compound 1 

Boc-α-amino-N-phenylsuccinimide (12)  

 

N-Boc-L(S)-aspartic acid (1.0 g, 4.29 mmol, 1 eq) and HBTU (1.6 g, 4.29 mmol, 1 

eq) were dissolved in 15 mL of anhydrous DMF in a 20 mL microwave vial (Biotage). 

The reaction vessel was sealed, purged with argon gas, and stirred for 15 min until all 

solids dissolved. DIPEA (2.2 mL, 12.9 mmol, 3 eq) and aniline (0.4 mL, 4.29 mmol, 1 eq) 

were added to the reaction vessel via syringe, stirred at room temperature for 20 min 

and then irradiated in the microwave at 65°C for 1 h. An additional aliquot of HBTU (1.6 

g, 4.29 mmol, 1 eq) was added and irradiated for 1 h at 75°C. Finally, a third addition of 

HBTU (1.0 g, 4.29 mmol, 1 eq) was made and the reaction was irradiated for 1h at 75°C. 

The solvent was evaporated in vacuo and the crude product was dissolved in ethyl 
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acetate, washed successively with water, sodium bicarbonate solution, and brine. The 

organic layer was dried over magnesium sulfate, filtered and evaporated to give the 

crude product which was purified by flash chromatography (15% ethyl acetate/85% 

hexane). The product containing fractions were combined and the solvent was 

evaporated to give  473 mg (3.8 mmol, 90%) of the desired compound as a pale yellow 

solid. 1H NMR (CDCl3, 400 MHz):  δ = 7.29 – 7.49 (m, 5H), 4.48 (t, J = 9.2, 1H), 3.36 (d, 

J = 7.2, 1H), 2.93 (d, J = 7.2, 1H), 1.45 ppm (s, 9H). 

α-amino-N-phenylsuccinimide·HCl (13)  

 

Compound 12 (500 mg, 1.72 mmol, 1 eq) was combined with 10 mL of 2M HCl in 

ethanol and the reaction was stirred for 3 hours. The solvent was evaporated in vacuo 

and the crude product was repeatedly triturated with ethyl acetate to remove impurities. 

The remaining solid was dried in vacuo to yield  369 mg (1.63 mmol, 95%) of the final 

product as a pale yellow solid. 1H NMR (CD3OD, 400 MHz):  δ = 7.51 (t, J = 8.4, 3H), 

7.40 (d, J = 7.6, 2H), 4.36 (t, J = 9.2, 1H), 3.21 (d, J = 9.2, 1H), 2.93 (d, J = 6.2, 1H). 

4-(Bromomethyl)benzenesulfonamide (15)  

 

4-(Bromomethyl)benzenesulfonyl chloride (500 mg, 1.86 mmol, 1.0 eq) was 

dissolved in 10 mL of THF under an argon atmosphere and chilled on ice while stirring. 

After 10 min, excess 28-30% ammonia (0.5 mL) solution (J.T. Baker) was added 

dropwise via syringe, the solution was brought to room temperature and then stirred for 
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another 1.5 h. The reaction mixture was quenched with water and then extracted with 

ethyl acetate (three times). The combined ethyl acetate extracts were washed with brine 

(three times), dried over magnesium sulfate, filtered and the solvent was removed in 

vacuo to give  340 mg (1.36 mmol, 73%) of the final product as a white solid (86). 1H 

NMR (DMSO-d6, 400 MHz):  δ = 7.89 (d, J = 8.4, 2H), 7.59 (d, J = 8.4, 2H), 4.61 ppm (s, 

2H). 

4,4'-(((2,5-dioxo-1-phenylpyrrolidin-3-yl)azanediyl)bis(methylene))dibenzenesulfon- 

amide (16) 

 

Fifty milligrams (0.221 mmol, 1 eq) of 13 were dissolved in 8 mL of anhydrous 

THF in a 20 mL microwave vial. To this, 72 μL of DIPEA (0.442 mmol, 2 eq) was added 

and the reaction was stirred, under argon at room temperature for 20 min. The solution 

cleared within 10 min. Compound 15 (82.7 mg, 0.331 mmol, 1.5 eq), dissolved in 2 mL 

of anhydrous THF was added dropwise to the reaction vial and the reaction was stirred 

for 30 min at room temperature. The reaction was then irradiated in the microwave for 30 

min at 65°C. At this time, 122.3 mg of TBAI (0.331 mmol, 1.5 eq) and 72 μL of DIPEA 

(0.442 mmol, 2 eq) were added and the solution was again stirred for 30 min at room 

temperature. Finally, the reaction was sealed and irradiated in the microwave at 65 °C 

for an additional 30 min. The reaction was dried in vacuo and the crude material was 

purified by flash chromatography (89% dichloromethane/10% methanol/1%ammonium 



56 
 

 

hydroxide) to yield 37.1 mg (0.0702 mmol, 27%) of the product as a white solid. 1H NMR 

(CD3OD, 400 MHz):  δ = 7.84 (d, J = 5.6, 4H), 7.60 (d, J = 6.4, 4H), 7.54-7.43 (m, 3H), 

7.26 (d, J = 5.6, 2H), 4.17 (t, J = 6.4, 1H), 3.89 (d, J = 6.4, 2H), 3.34 (s, 2H), 3.30 (s, 2H), 

2.99 (d, J = 8.4, 1H); MS (TOF-MS, m/z); calculated [M+Na]+ for C24H24N4O6S2Na 

551.11, found: 551.10.  

N-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-nitrobenzenesulfonamide (17) 

 

Compound 13 (300 mg, 1.32 mmol, 1eq) was dissolved in 6 mL of 

dicholormethane (DCM) followed by the addition of DIPEA (1.31 mL, 7.94 mmol, 6 eq). 

The solution was cooled, while stirring, to 4 °C for 10 min. 4-Nitrobenzenesulfonyl 

chloride (320 mg, 1.45 mmol, 1.1 eq, 95% pure) was dissolved in 1 mL of DCM and 

added dropwise to the pre-chilled solution of 13. During the addition, the solution 

changed from pale yellow to dark green. The reaction was stirred at room temperature 

for 24 h under argon atmosphere. At this time, the solvent was evaporated in vacuo. 

Tthe crude product was semi-purified by flash chromatography (50% ethyl acetate/50% 

hexane). The resulting semi-pure product was crystallized from chloroform to give 17 

(Yield: 150 mg (0.4 mmol, 30%)). 1H NMR (DMSO-d6, 400 MHz):  δ = 8.42-8.46 (m, 1H), 

8.06 (t, J = 7.2, 1H), 7.88 (d, J = 7.6, 2H), 7.47 (t, J = 7.6, 2H), 7.39 (t, J = 7.6, 1H), 7.18 

(d, J = 7.6, 2H), 4.88 (t, J = 5.6, 1H), 4.79 (t, J = 5.6, 1H), 3.06 ppm (d, J = 9.6, 1H). 

 

http://www.sigmaaldrich.com/catalog/product/aldrich/272248?lang=en&region=US
http://www.sigmaaldrich.com/catalog/product/aldrich/272248?lang=en&region=US
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 N-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-nitro-N-(4-sulfamoylbenzyl)benzenesulfon-

amide (18) 

 

Compound 17 (56 mg, 0.149 mmol, 1 eq) was dissolved in 1.5 mL of DMF in a 5 

mL microwave vessel (Biotage). To this solution, solid cesium carbonate (97.1 mg, 0.298 

mmol, 2 eq) was added and the reaction mixture was stirred for 20 min at room 

temperature. To this, 15 (37.3 mg, 0.149 mmol, 1 eq) was added and the solution was 

again stirred for 10 min. Finally, the reaction vessel was sealed and irradiated in the 

microwave for 30 min at 50°C. The solvent was evaporated in vacuo and the product 

was semi-purified by flash chromatography (70% ethyl acetate/30% hexane). The semi-

pure product was finally purified by crystallization from methanol to give 18 (Yield: 20 mg 

(0.037 mmol, 25%)). 1H NMR (CD3OD, 400 MHz):  δ = 8.20 (d, J = 7.6, 1H), 7.98 (d, J = 

7.2, 1H) 7.88 (s, J = 7.2, 1H), 7.84 (d, J = 8.8, 2H), 7.65 (d, J = 8.8, 2H), 7.47 (d, J = 7.2, 

3H), 7.36 (t, J = 7.2, 2H), 7.25 (d, J = 7.2, 2H), 4.88 (t, J = 8.4, 1H), 4.5 (s, 2H), 4.05-

4.12 (m, 1H), 3.73 (d, J = 8.4, 1H), 3.55 (dd, J = 8.4, 1H), 3.05 ppm (d, J = 8.4, 1H). 

3.4.6 Optical rotation of compounds 11, 12 and 13 

 Optical rotation of compounds 11, 12 and 13 were determined by Dr. Shiv 

Sharma using Perkin-Elmer 241 polarimeter with the cell length of 100 mm. Sodium 

lamp (589 nm) and Mercury lamp (578 nm) were employed in the polarimetry 

measurements. Each compound (10 mg) was dissolved in 1.0 mL of HPLC grade 
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methanol followed by the filtration of this mixture using a micro filter. The standard 

consisted of pure HPLC grade methanol. Generated data is summarized in the Table 

3.4.1 

 
Table 3.4.1 Optical rotation data for L-isomers of compounds 11, 12, and 13. 

Compound 

(L- isomers) 

Optical Rotation (α) 

Mercury lamp Sodium lamp 

11 -5.5 -5.2 

12 +4.3 +3.9 

13 -15.5 -13.7 
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ABSTRACT 

NOVEL INHIBITORS OF THE BACTERIAL DE NOVO PURINE 
BIOSYNTHESIS ENZYMES, N5-CARBOXYAMINOIMIDAZOLE 

RIBONUCLEOTIDE SYNTHETASE AND MUTASE 

by 

MARIA V FAWAZ 

August 2012 

Advisor: Dr. Steven M. Firestine 

Major: Pharmaceutical Sciences 

Degree: Master of Science 

 Antibiotic resistance has seen a significant increase during the past decade. The 

increasing frequency of the drug-resistant bacterial infections has amplified the need for 

novel antimicrobial agents. De novo purine biosynthesis is one area that has great 

potential for antibacterial drug development because this pathway is different in 

microorganisms versus humans. The difference in the pathway is centered on the 

synthesis and utilization of the purine intermediate N5-carboxy-5-aminoimidazole 

ribonucleotide (N5-CAIR). Previous studies have shown that N5-CAIR is a key 

intermediate in purine biosynthesis in bacteria, yeast and fungi, but not in humans. N5-

CAIR is synthesized from 5-aminoimidazole ribonucleotide (AIR) by the enzyme N5-

CAIR synthetase and it is utilized by N5-CAIR mutase to produce the intermediate 4-

carboxy-5-aminoimidazole ribonucleotide (CAIR). In our laboratory we explored both 

enzymes as potential targets for the design of novel de novo purine biosynthesis 

inhibitors. Previous studies suggested that the isatin-based inhibitors were promising low 

micromolar inhibitors of N5-CAIR synthetase. Here, the biological verification of the isatin 

compounds as potential “hits” and their kinetic analysis are presented. The second 
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project involves the discovery, kinetic evaluation, molecular modeling, and exploratory 

synthesis of the first known, selective inhibitor of N5-CAIR mutase.  
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