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Abstract

L-asparaginase (ASNase) serves as an effective drug for adolescent
acute lymphoblastic leukemia. However, many clinical trials indi-
cated severe ASNase toxicity in patients with solid tumors, with
resistant mechanisms not well understood. Here, we took a func-
tional genetic approach and identified SLC1A3 as a novel contribu-
tor to ASNase resistance in cancer cells. In combination with
ASNase, SLC1A3 inhibition caused cell cycle arrest or apoptosis,
and myriads of metabolic vulnerabilities in tricarboxylic acid (TCA)
cycle, urea cycle, nucleotides biosynthesis, energy production,
redox homeostasis, and lipid biosynthesis. SLC1A3 is an aspartate
and glutamate transporter, mainly expressed in brain tissues, but
high expression levels were also observed in some tumor types.
Here, we demonstrate that ASNase stimulates aspartate and
glutamate consumptions, and their refilling through SLC1A3
promotes cancer cell proliferation. Lastly, in vivo experiments indi-
cated that SLC1A3 expression promoted tumor development and
metastasis while negating the suppressive effects of ASNase by
fueling aspartate, glutamate, and glutamine metabolisms despite
of asparagine shortage. Altogether, our findings identify a novel
role for SLC1A3 in ASNase resistance and suggest that restrictive
aspartate and glutamate uptake might improve ASNase efficacy
with solid tumors.
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Introduction

Treating cancer with amino acid deprivation schemes has achieved

limited clinical success so far. Only in acute lymphoblastic leukemia

(ALL), the incorporation of L-asparaginase (ASNase) has signifi-

cantly increased the overall survival rates to ~90% (Broome, 1961;

Müller & Boos, 1998; Pui et al, 2009). ALL cells are auxotrophic for

asparagine, which was deaminated and depleted by the enzyme

ASNase, resulting in cell cycle arrest and apoptosis in ALL cells

without affecting normal tissues (Kidd, 1953; Broome, 1961; Ueno

et al, 1997; Pui et al, 2009). Notably, ASNase has a dual asparagine

and glutamine deaminase activity; however, its glutaminase activity

was not required for anticancer effect in asparagine synthetase

(ASNS)-negative cancer cells (Chan et al, 2014). The therapeutic

progress of ASNase in ALL had greatly encouraged its further appli-

cation for solid tumors. However, many clinical trials reported intol-

erable toxicity in patients (Haskell et al, 1969; Hays et al, 2013).

ASNS expression has been proposed as a marker for clinical predic-

tion of ASNase resistance (Scherf et al, 2000); however, treatment

of ALL with ASNase is still effective even though ASNS is expressed

(Stams, 2003; Krall et al, 2016; Vander Heiden & DeBerardinis,

2017). Interestingly, aspartate metabolism was also predicted to

contribute to ASNase sensitivity according to a previous study

(Chen et al, 2011). Overall, with the exception of ASNS, little is

known about the specific resistant mechanisms to ASNase, which

has hindered the attempts to broaden ASNase’s benefits to patients

with solid tumors (Kidd, 1953; Haskell et al, 1969; Hays et al, 2013;

Vander Heiden & DeBerardinis, 2017).

Our previous work has found that ASNase treatment of PC3, a

prostate cancer cell line, triggered asparagine shortage accompanied

by increased asparagine production through upregulation of ASNS,

as indicated by ribosomal and transcriptional profiling (Loayza-

Puch et al, 2016). This pinpointed a feedback loop under asparagine

depleted conditions. Yet, PC3 cells remained proliferative despite of
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asparagine shortage, suggesting the involvement of other mecha-

nisms responsible for ASNase resistance as upregulated ASNS was

not sufficient for asparagine replenishment. Therefore, we used a

functional genetic screen in PC3 cells to explore potential vulnerabil-

ities in solid cancer cells to ASNase treatment. We identified

SLC1A3, an aspartate/glutamate transporter, as a novel contributor

to ASNase resistance, as well as tumor initiation and progression in

a mice model for breast cancer metastasis.

Results

A genome-wide CRISPR-Cas9 screen identifies SLC1A3 as a novel
contributor to ASNase resistance in PC3 cells

To determine the optimal ASNase concentration required for

performing a genome-wide functional screen, we tested a series of

ASNase concentrations in PC3 cells. Figure 1A shows that ASNase

at a concentration of 0.3~0.5 U/ml moderately inhibited cell prolif-

eration. As this dosage is within the range used for asparagine

depletion in some ALL patients according to previous research

(Riccardi et al, 1981; Avramis & Panosyan, 2005), we performed the

screen and in vitro validation under this condition. Due to its essen-

tial role in asparagine synthesis, ASNS gene was used as a positive

control for the screen. As expected, CRISPR-Cas9 knockout (KO) of

ASNS sensitized PC3 cells to ASNase treatment but did not affect

cell proliferation under mock treatment (Fig 1B).

Next, we transduced a genome-wide CRISPR-Cas9 library,

consisting of 76,441 single-guide RNAs (sgRNAs) targeting 19,114

genes, into PC3 cells, which were further divided into mock- and

ASNase-treated conditions (Fig 1C). Following 20 days of culturing,

cells were harvested and subjected to deep sequencing of integrated

sgRNAs and MAGeCK bioinformatics analysis of individual sgRNA

abundance. Intriguingly, in addition to the expected ASNS gene, this

analysis proposed four additional genes (FDR < 0.003, Fig 1D),

whose loss of function may impair PC3 cell proliferation following

ASNase treatment. Follow-up validations using individual CRISPR

vector transductions and cell competitive growth assays successfully

validated three out of the four additional hits: EIF2AK4 (GCN2,

general control nonderepressible 2), SLC1A3, and SLC25A1 (Figs 1D

and EV1A), highlighting the reliability of the screen. Notably,

EIF2AK4 was also predictable due to its role in regulating general

nutrient deprivation responses (Bunpo et al, 2009; Ye et al, 2010).

The other two hits (SLC1A3 and SLC25A1) are both from the solute

carrier family (SLC). SLC1A3 functions as a high-affinity aspartate

and glutamate transporter, whose loss of function triggered a marked

reduction in cell survival and proliferation following ASNase treat-

ment (Figs 1E and EV1B), and SLC25A1 functions as a mitochondria

citrate carrier, whose loss of function also caused inhibitory effects

on cell survival and proliferation in the presence of ASNase, but to a

more moderate extent when compared with that of SLC1A3

(Fig EV1A). Due to the relatively strong synergistic effect, from now

on, we only focused on the role of SLC1A3 in the context of ASNase.

SLC1A3 is mainly expressed in brain tissues (Fig EV1C), critical

for the termination of excitatory neurotransmission (Kanai et al,

2013). Recent studies have highlighted the importance of SLC1A3-

mediated aspartate uptake for cancer cell proliferation under

hypoxia and crosstalk between cancer cells and cancer-associated

fibroblasts in the tumor niche (Alkan et al, 2018; Garcia-Bermudez

et al, 2018; Sullivan et al, 2018; Tajan et al, 2018; Bertero et al,

2019). We also observed elevated SLC1A3 RNA levels in several

tumor types from the TCGA database [especially kidney renal clear

cell carcinoma (KIRC, P = 5.5 × 10�30), kidney renal papillary cell

carcinoma (KIRP, P = 2.1 × 10�10), liver hepatocellular carcinoma

(LIHC, P = 3.2 × 10�10), and stomach adenocarcinoma (STAD,

P = 6.1 × 10�5)] (Fig EV1D).

To examine the function of SLC1A3, we tested its cellular aspar-

tate/glutamate transporting function using a radioactive labeled

amino acid uptake assay as previously described (Loayza-Puch et al,

2017). As predicted, SLC1A3 loss of function reduced both aspartate

and glutamate uptake in PC3 cells (Fig 1F), also leading to decreased

endogenous aspartate (~8-fold) and glutamate (~1.5-fold) levels

(Fig 1G). Following ASNase treatment in control PC3 cells, we

observed strong depletions of both asparagine and glutamine

(Fig 1G), in concordance with its known dual functions. This was

followed by a significant reduction in endogenous aspartate and gluta-

mate levels (Fig 1G), indicating a stimulated demand for aspartate

and glutamate. Consequently, in SLC1A3-KO PC3 cells, aspartate and

glutamate levels were further depleted under ASNase treatment (~16-

fold for aspartate and ~3-fold for glutamate, Fig 1G). This observation

suggests that SLC1A3-mediated aspartate and glutamate import is

required for the maintenance of sufficient intracellular aspartate and

glutamate pools to survive ASNase treatment. Of note, the endoge-

nous glutamine level was significantly depleted in SLC1A3-KO PC3

cells, but this had no effect on cell proliferation in the absence of

ASNase (Fig 1G and E). To directly test the functions of aspartate and

glutamate in the context of ASNase, we supplemented SLC1A3-KO

PC3 cells with cell-permeable forms of aspartate and glutamate (ester-

ified). Figure 1H shows that both esterified aspartate and esterified

glutamate, but not esterified leucine (control), can restore SLC1A3-

KO PC3 cell proliferation in the presence of ASNase. Lastly, we exam-

ined a possible role of SLC1A3 to ASNase treatment in vivo. We

subcutaneously implanted control and SLC1A3-KO PC3 cells into

Balb/c nude mice (cAnN/Rj) and examined tumor growth in the

absence and presence of ASNase. Figure EV1E shows that loss of

SLC1A3 in combination of ASNase treatment impeded tumor growth.

Altogether, we conclude that SLC1A3 expression negates the impact

of ASNase on PC3 cell survival, proliferation, and tumor growth.

SLC1A3 mRNA levels correlate with ASNase sensitivity in
different cancer cells

Because SLC1A3 transports both aspartate and glutamate (Fig 1F

and G), we mainly used aspartate uptake as a functional readout for

SLC1A3 in further study. We investigated the correlations between

SLC1A3 mRNA level, aspartate uptake, and sensitivity to ASNase

treatment in a panel of prostate and breast cancer cell lines. As

predicted, we observed a general trend where relatively high

SLC1A3 mRNA levels indicated high basal aspartate uptake capabil-

ity (Fig 2A and B). The exceptions in our cohort were LNCaP,

SUM159PT, and BT549 cells, with low SLC1A3 mRNA level but high

basal aspartate uptake capacity. This can be explained by the rela-

tively high expression of other aspartate/glutamate transporters in

these cells (Fig 2C). Accordingly, SLC1A3-KO reduced aspartate

uptake level only in SLC1A3-expressing cancer cells (Fig 2A and B).

Interestingly, the sensitivity profiles of the tested cancer cell lines to
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ASNase treatment were generally consistent with the impact of

SLC1A3-KO on aspartate uptake, with the exception of BT549 cells

(Fig 2B and D). To further confirm the correlation between aspar-

tate/glutamate uptake capacity and ASNase sensitivity, we used

SLC1A3-deficient MCF7 cells (a breast cancer cell line) and DU145

cells (a prostate cancer cell line), and established two cancer cell

lines overexpressing SLC1A3: MCF7-V5-SLC1A3 and DU145-V5-

SLC1A3. Figure 2E–G verified SLC1A3 ectopic expression, its subcel-

lular localization to the plasma membrane, and its capacity to

uptake up aspartate in those two cell lines. Importantly, acquired

ASNase resistance was observed in both cell lines after the ectopic

expression of SLC1A3 (Fig 2H). In line with the above results, the

addition of cell-permeable aspartate and glutamate, but not esteri-

fied leucine, to DU145 cells, restored cell proliferation under ASNase

conditions (Fig 2I). Taken together, we conclude that SLC1A3-

mediated aspartate/glutamate uptake promoted ASNase resistance.

Combination of SLC1A3 inhibition and ASNase induces metabolic
vulnerabilities that impede cancer cell proliferation

Next, we assessed chemical SLC1A3 inhibition in the context of

ASNase. We mainly compared two SLC1A3 inhibitors, the selective

non-substrate blocker UCPH-101 (Abrahamsen et al, 2013) and

TFB-TBOA (Shimamoto et al, 2004). By aspartate uptake assay, we

observed that the inhibitory activity of TFB-TBOA was far more

potent than that of UCPH-101, even reaching a nanomolar level

(Fig EV2A). Therefore, we used TFB-TBOA for further experiments.

Notably, while TFB-TBOA and ASNase, respectively, had either no

or mild effect on PC3 cell proliferation, their combinational treat-

ment effectively hindered cell proliferation and cell cycle progres-

sion (Figs 3A and B, and EV2B–D). In addition, TFB-TBOA

completely restored the adverse effect of ASNase in DU145-V5-

SLC1A3 cells but had no influence on DU145 wild-type cells (Fig 3A

and C). Interestingly, while the combinational treatment impaired

cell cycle progression in PC3 cells, it caused apoptosis in DU145-V5-

SLC1A3 cells (Figs 3C and EV2E).

Next, we investigated the effects of combined ASNase and

SLC1A3 inhibition on intracellular amino acids and key metabolites

levels by liquid-chromatography mass spectrometry (LC-MS). In

concordance with SLC1A3-KO, SLC1A3 inhibition by TFB-TBOA

promoted further depletions of aspartate and glutamate pools in PC3

cells in the presence of ASNase (Fig 3D). However, in contrast to

SLC1A3-KO, TFB-TBOA did not perturb aspartate, glutamate, and

glutamine levels, probably due to the short drug exposure time

compared with the genetic manipulation. Notably, combined

ASNase and SLC1A3 inhibition induced a marked reduction in

argininosuccinate from the urea cycle (Fig 3E). This effect can be

reasoned by the lack of aspartate availability as a substrate for

argininosuccinate synthesis (Rabinovich et al, 2015). Moreover,

nucleotide synthesis and tricarboxylic acid (TCA) cycle replenish-

ments were also impaired (Fig 3E), probably due to the deficit of

aspartate as previously described (Ahn & Metallo, 2015; Rabinovich

et al, 2015). We also observed that combinational treatment

disturbed the NAD+/NADH homeostasis, an important indicator for

cellular energy assessment and redox status (Fig 3E). And strong

lactate depletion was detected, at least partly due to the depletion of

NADH (Fig 3E). Moreover, levels of carnitine metabolites (impor-

tant transporters for lipid metabolism) were also perturbed under

combinational conditions (Fig 3E). Above all, in SLC1A3-expressed

PC3 cells, ASNase and TFB-TBOA impact metabolites involved in

the urea cycle, nucleotides synthesis, energy production by TCA

cycle and glycolysis, as well as redox homeostasis and lipid metabo-

lism. These metabolic alterations further explain why PC3 cells

resist ASNase treatment but become vulnerable once SLC1A3 is

either genetically depleted or chemically blocked.

We also probed the key metabolites in DU145 and DU145-V5-

SLC1A3 cells. In DU145 cells (lacking SLC1A3 expression), ASNase

alone was sufficient to induce a similar metabolic profile as obtained

in PC3 treated with ASNase and SLC1A3 inhibition (Fig EV2F).

Ectopic expression of SLC1A3 negated these adverse effects, and

accordingly, the addition of TFB-TBOA restored those perturbations

in DU145-V5-SLC1A3 cells (Fig EV2F).

Then, we inquired whether ASNase treatment promotes a special

usage of cellular aspartate/glutamate. For that purpose, we

conducted metabolic flux studies using [13C4,
15N] L-aspartate and

[13C5,
15N] L-glutamate in DU145-V5-SLC1A3 cells. Notably, as

observed before (Sullivan et al, 2018), exogenous labeled aspartate

was barely incorporated to the intracellular asparagine pool

(Fig EV3A). Instead, both labeled aspartate and glutamate were

actively used to replenish downstream metabolisms, such as TCA

cycle, urea cycle, and nucleotide synthesis. However, following

ASNase treatment, the relative profiles of labeled metabolites

◀ Figure 1. A genome-wide CRISPR-Cas9 screen identifies SLC1A3 as a contributor to L-asparaginase (ASNase) resistance in PC3 cells.

A IncuCyte cell proliferation curves of PC3 cells treated with the indicated concentrations of ASNase.
B IncuCyte cell proliferation curves for ASNS knockout (sgASNS) and control (sgNon-targeting) PC3 cells in the absence and presence of ASNase.
C Flow chart for a genome-wide CRISPR-Cas9 functional screen in PC3 cells.
D Volcano plots for the MAGeCK pipeline analysis of the sgRNA abundance from the screen. Green dots indicate positive controls and red dots indicate candidates with

a fold discovery rate (FDR) < 0.003.
E IncuCyte cell proliferation curves of SLC1A3 knockout (sgSLC1A3) and control (sgNon-targeting) PC3 cells in the absence and presence of ASNase treatment. #3 and

#4 represent two different sgRNAs targeting SLC1A3.
F Radioactive labeled aspartate and glutamate uptake measurement in control (sgNon-targeting) and SLC1A3 knockout (sgSLC1A3) PC3 cells. #3 and #4 represent two

different sgRNAs targeting SLC1A3. Radioactive labeled leucine uptake was used as a control. Data were normalized to the reads of control PC3 cells.
G Endogenous levels of aspartate, asparagine, glutamate, and glutamine in control (sgNon-targeting) and SLC1A3 knockout (sgSLC1A3) PC3 cells with or without ASNase

for 3 days. Median peak intensity was used for the read normalization.
H IncuCyte cell proliferation curves of SLC1A3 knockout (sgSLC1A3#3) PC3 cells treated with ASNase and supplemented with either esterified aspartate (Asp, 6 mM) or

esterified glutamate (Glu, 6 mM), and esterified leucine (Leu, 6 mM) as a control.

Data information: For IncuCyte proliferation assays, images were taken every 4 h and the cell confluence was calculated by averaging three mapped images per well. All
results were calculated from three replicates and presented as mean � SD, unless otherwise stated. The P-value was calculated by two-tailed unpaired t-test by Prism7.
**P < 0.01, ***P < 0.001.
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remained generally similar to that of mock-treated cells, except for

increased incorporation into glutamine from labeled glutamate

(Fig EV3B and C). Thus, ASNase treatment did not induce signifi-

cant perturbations in the general metabolic usage of aspartate and

glutamate in cancer cells.

Gene expression analysis indicates the novel role of SLC1A3 in
ASNase resistance

To interrogate the influence on differential gene expression profiles

by SLC1A3 and ASNase, we performed transcriptome analysis in

three cancer cell lines: PC3 (endogenous expression of SLC1A3),

DU145 wild type (SLC1A3 negative), and DU145-V5-SLC1A3 (ec-

topic expression of SLC1A3). Consistent with the compromised cell

cycle progression in PC3 cells (Figs 3B and EV2B–D), genes related

to cell cycle progression were inhibited following ASNase and TFB-

TBOA combinational treatment (Fig 4A). ASNase-treated DU145

cells presented upregulated apoptotic signatures, corresponding to

the apoptosis phenotype observed in these cells following ASNase

treatment (Figs 4B and 3C). Intriguingly, the introduction of SLC1A3

to DU145 cells prevented the emergence of the apoptosis signature,

which was restored by the addition of TFB-TBOA (Figs 4C and 3B).

The molecular pathways related to lipid metabolism, for example,

the biosynthesis of cholesterol, steroid and mevalonate, and the

gene expression related to sterol regulatory element-binding protein

(SREBP), have been strongly impaired in all three cancer cell lines

when SLC1A3 was either chemically blocked or intrinsically absent

following ASNase treatment (Fig 4A–C).

More specifically, we observed increased vascular endothelial

growth factor A (VEGFA) mRNA levels after combinational treat-

ment in PC3 cells (Fig EV4A), in line with previous observations

that suggested a negative correlation between VEGFA and aspartate

level (Garcia-Bermudez et al, 2018). Moreover, the decreased

mRNA level of lactate dehydrogenase A (LDHA) can explain the

depletion in lactate level measured by metabolites profiling (Fig 3E).

Though ASNS mRNA level was strongly upregulated by ASNase and

SLC1A3 inhibition in DU145-V5-SLC1A3 cells, still, cell death was

induced (Fig EV4C). This indicates that elevated asparagine synthe-

sis by ASNS could be insufficient to convey ASNase resistance,

which might also be determined by aspartate/glutamate bioavail-

ability.

Altogether, we conclude that the transcriptomic changes (Fig 4A–

C) are in concordance with metabolomic perturbations (Figs 3E and

EV2F) and cellular outcomes (Fig 3A–C), indicating a novel role of

SLC1A3 in cancer cell survival following ASNase treatment.

SLC1A3 expression promotes tumor progression and ASNase
resistance in a mouse model for breast cancer metastasis

Next, we set up experiments to examine the role of SLC1A3 in

tumor response to ASNase treatment in vivo. As a first step, we

interrogated the impact of ASNase treatment on asparagine and

glutamine levels in mice with human breast cancer xenografts. We

orthotopically injected human breast cancer cells (SUM159PT) to

mammary fat pads of NOD-Scid IL2Rg-null (NSG) mice, allowed

tumors to develop to ~250 mm3, and then systemically injected

60 U ASNase per day for 5 consecutive days. Remarkably, we

detected very strong ASNase-induced depletions of asparagine not

only in the blood, but also in the mammary fat pad tissues and even

within the growing tumors (Fig 5A). However, unlike the glutami-

nase effect of ASNase in vitro, here we detected very modest pertur-

bation in glutamine levels (Fig EV5A). This is probably due to the

instant glutamine replenishment under in vivo conditions. ASNase

treatment could potentially disturb tumor growing environment, at

least in the perspective of asparagine.

Next, we employed 4T1, a highly malignant mouse breast cancer

cell line, for the assessment of the influence of SLC1A3 on ASNase

efficacy in vivo. This cell line does not express SLC1A3 (www.biog

ps.org), does not take up aspartate, and accordingly shows high

sensitivity to ASNase treatment (Fig EV5B). As expected, ectopic

expression of SLC1A3 (4T1-V5-SLC1A3) promoted exogenous aspar-

tate uptake and restored 4T1 proliferation in the presence of ASNase

in vitro (Fig EV5B). We therefore implanted 4T1 and 4T1-V5-SLC1A3

cells into the mammary fat pad of either mock- or ASNase-

pretreated NSG mice and measured tumor development. Intrigu-

ingly, while the growth of tumors derived from parental 4T1

cells was impaired by ASNase at an early stage (days 9 and 12),

SLC1A3-expressing tumors showed no significant differences

◀ Figure 2. SLC1A3 expression is linked to ASNase resistance in different cancer cells.

A RT–qPCR analysis was used to determine the relative SLC1A3 mRNA expression (to GAPDH) in different prostate and breast cancer cell lines, as indicated.
B The same cell lines (as in panel A) were transduced with either control (sgNon-targeting) or sgSLC1A3. Aspartate uptake levels were determined and compared

between control and SLC1A3 KO in these cell lines. Leucine uptake level was used for normalization. The numbers above the control column denote the basal
aspartate uptake capacity.

C RT–qPCR was used to determine the relative mRNA levels (to GAPDH) of aspartate/glutamate transporter genes (SLC1A1, SLC1A2, SLC1A3, SLC1A6, and SLC1A7) in
LNCaP, BT549, and SUM159PT cells.

D The same batch of cancer cells (as in panel B) was subjected to IncuCyte cell proliferation assays in the absence or presence of ASNase at indicated concentrations.
“ns” indicates no significant difference.

E MCF7 and DU145 cells were transduced with either lentiviral empty vector (control) or lentiviral vector containing a V5-tagged SLC1A3 coding sequence (V5-SLC1A3).
Relative SLC1A3 mRNA levels (to GAPDH) were determined by RT–qPCR.

F Immunofluorescence staining of the V5-tagged SLC1A3 in MCF7 and DU145 cells using anti-V5 antibody. Green staining indicates the plasma membrane localization
of V5-SLC1A3 and blue DAPI staining marks the nuclei. Scale bar stands for 5 lm.

G Relative aspartate uptake levels in control and V5-SLC1A3-expressed MCF7 and DU145 cells. Leucine uptake level was used for normalization.
H Control and V5-SLC1A3-expressed MCF7 and DU145 cells were subjected to IncuCyte cell proliferation assays with or without ASNase at indicated concentrations.
I DU145 cells were supplemented with cell-permeable aspartate (Asp, 6 mM, esterified) or glutamate (Glu, 3 mM, esterified) following ASNase treatment, with

esterified leucine (Leu, 6 or 3 mM) as control.

Data information: Results were calculated based on three replicates (except for SUM159 and BT549 in B, n = 2) and presented as mean � SD. The P-value was
calculated by two-tailed unpaired t-test in Prism7. **P < 0.01, ***P < 0.001. a.u. indicates arbitrary unit.
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between ASNase and mock treatment (Figs 5B and EV5C). More-

over, consistent with recent reports (Garcia-Bermudez et al, 2018;

Sullivan et al, 2018), implantation of SLC1A3-expressing 4T1 cells

resulted in relatively faster tumor growth compared to that of

parental 4T1 cells (Fig EV5D). Once tumors reached the volume of

~500 mm3, mastectomy was performed to remove the primary

tumors. The amino acid analysis of the harvested tumor samples by

mass spectrometry revealed almost complete depletion of aspara-

gine by ASNase, regardless of SLC1A3 expression status, and

slightly reduced aspartate levels in parental 4T1 cells derived tumors

following ASNase treatment (Fig 5C). Intriguingly, we also observed

depleted glutamine and glutamate levels in control tumors (Fig 5C).

This might relate to the absence of SLC1A3 or other aspartate/gluta-

mate transporters in 4T1 cells, which might decelerate glutamine

replenishment in the presence of ASNase, at least in this model. Of

note, the introduction of SLC1A3 into 4T1 cells (4T1-V5-SLC1A3)

increased intratumor aspartate and glutamate levels, and further

negated aspartate and glutamine depletions by ASNase treatment at

the cost of glutamate consumption (Fig 5C).

Following mastectomy, mice survival rate was scored. In agree-

ment with the effect of ASNase on primary tumor establishment,

mice bearing tumors derived from parental 4T1 cells survived better

early after ASNase treatment than mock-treated mice (Fig EV5E,

left). In contrast, ASNase treatment had no effect on the survival

rate of mice with SLC1A3-expressing tumors, even at early stage

(Fig EV5E, right).

Recently, the bioavailability of asparagine was reported to govern

breast cancer metastasis, and ASNase could reduce breast cancer

metastasis (Knott et al, 2018). From our results above, SLC1A3-

mediated aspartate/glutamate imports could affect ASNase treatment.

Therefore, we next assessed whether SLC1A3 expression could negate

the inhibitory effect of ASNase on cancer cell invasion in a mouse

metastasis model for human breast cancer cells as described recently

(Knott et al, 2018). For this purpose, we used MDA-MB-231 human

breast cancer cells whose metastasis burden was reduced by ASNase

(Knott et al, 2018). Similar to 4T1 cells, MDA-MB-231 cells hardly

expressed SLC1A3 (Fig 2A), did not take up aspartate, and were

highly sensitive to ASNase (Fig EV5F). Consistent with above results

(Fig 2G and H), SLC1A3 expression increased aspartate uptake and

promoted MDA-MB-231 cell proliferation in the presence of ASNase

(Fig EV5F). We therefore introduced MDA-MB-231 and MDA-MB-231-

V5-SLC1A3 cells intravenously into NSG mice and assessed the inva-

sive burdens in lung and liver. As previously reported (Knott et al,

2018), ASNase treatment reduced metastasis of parental MDA-MB-231

cells to the lung (Fig 5D). In contrast, the introduction of SLC1A3

increased metastatic burdens and overcame the inhibitory effect by

ASNase (Fig 5D). Thus, we conclude that SLC1A3 expression induces

tumor progression and ASNase resistance.

Discussion

Although asparagine deprivation by ASNase was discovered as an

effective treatment in lymphomas approximately 5 decades ago, its

clinical implementation to other tumor types failed (Clarkson et al,

1970; Pui et al, 2009; Hays et al, 2013). The resistant mechanism to

ASNase treatment in solid tumors was mainly attributed to the acti-

vation of the general amino acid sensing machinery (GCN2) and

asparagine synthesis by ASNS via the GCN2-ATF4-ASNS axis

(Scherf et al, 2000; Bunpo et al, 2009; Ye et al, 2010; Nakamura

et al, 2018). However, the expression of ASNS in ALL did not

compromise ASNase effectivity (Vander Heiden & DeBerardinis,

2017), indicating that the ubiquitous activation of the GCN2-ATF4-

ASNS axis in response to nutrient deprivation might be essential,

but not sufficient to induce ASNase resistance. Very recently,

protein degradation was proposed to contribute to ASNase resis-

tance in ALL (Hinze et al, 2019); however, its contribution in the

context of solid tumors is not known yet. Here, we described the

◀ Figure 3. Combinational treatment of ASNase and SLC1A3 inhibition induced metabolic vulnerabilities and restrains cancer cell proliferation.

A PC3, DU145, and V5-SLC1A3-DU145 cells were subjected to ASNase and TFB-TBOA treatment at indicated concentrations, and cell proliferation was measured by
IncuCyte assay.

B PC3 cells were treated under indicated conditions for 9 days and subjected to BrdU assays to determine cell cycle distributions. ASNase (0.3 U/ml), TFB-TBOA (5 lM).
C DU145 and V5-SLC1A3-DU145 cells were treated under indicated conditions with ASNase (0.2 U/ml) or TFB-TBOA (20 lM) or both, and subjected to IncuCyte analysis

for apoptotic cell counts.
D PC3 cells were treated under ASNase (0.3 U/ml), or TFB-TBOA (5 lM) conditions for 3 days and cell lysates were extracted and intracellular contents of aspartate,

asparagine, glutamate, and glutamine were determined by liquid-chromatography mass spectrometry (LC-MS).
E From the same experiment as in panel (D), key metabolites involved in urea cycle, pyrimidine synthesis, TCA cycle, oxidation, glycolysis, and carnitines metabolism

were determined. The NAD+/NADH ratio of the indicated conditions was calculated and normalized to control (mean � SEM). Dash line indicates indirect effect. TCA
cycle, tricarboxylic acid cycle; OAA, oxaloacetic acid; UMP, uridine monophosphate; CMP, cytidine monophosphate; PEP, phosphoenolpyruvate; NADH, nicotinamide
adenine dinucleotide (reduced form); NAD+, nicotinamide adenine dinucleotide (oxidized form); NADPH, nicotinamide adenine dinucleotide phosphate
(reduced form); NADP+, nicotinamide adenine dinucleotide phosphate (oxidized form); FAD, flavin adenine dinucleotide; GSSG, glutathione disulfide; HMG-CoA,
3-hydroxy-3-methylglutaryl-CoA.

Data information: Median peak intensity was used for raw data normalization in (D and E). Results were calculated based on three replicates and presented as
mean � SD (unless otherwise stated). The P-value was calculated by two-tailed unpaired t-test from Prism7. *P < 0.05, **P < 0.01, ***P < 0.001.

▸Figure 4. Gene expression changes pinpoint key pathways involved in SLC1A3-mediated ASNase resistance.

A–C PC3 (A), DU145 (B), and DU145-V5-SLC1A3 (C) cells were treated with ASNase (0.3 U/ml in A; 0.2 U/ml in B and C), TFB-TBOA (5 lM) for 3 days as indicated and
subjected to transcriptome analysis. Bioinformatics pathway or gene ontology (GO) biological process analysis was performed on the sets of genes that were
upregulated or downregulated when PC3 cells were treated with ASNase and TFB-TBOA compared to mock. Transcriptome analysis was based on one biological
replicate for each cell line and validated by real-time PCR experiments in Fig EV4A–C. Heatmap presents row scaled normalized read counts, and the biological
signaling pathway enrichment analysis was performed by ToppGene online program (Chen et al, 2009).
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identification of SLC1A3, an aspartate/glutamate transporter, as a

novel contributor to ASNase resistance and metastasis in cancer

cells. As SLC1A3 is specifically expressed in brain tissues, this

expression pattern may be beneficial to guide ASNase treatment in

solid tumors.

ASNase could break down both asparagine and glutamine, even

though its glutaminase activity was not required for ASNS-negative

cancer cells (Chan et al, 2014). Moreover, ASNase was found effec-

tive in treating solid tumors with intrinsic loss of ASNS (Li et al,

2019). We observed that in cell culture conditions, both

asparagine and glutamine were robustly depleted by ASNase

(Fig 1G). However, in vivo conditions, asparagine was far more

effectively depleted than glutamine (Figs 5C and EV5A), probably

due to the abundant bioavailability and timely replenishment of

glutamine that reduced the effect of glutaminase activity of ASNase.

The importance of asparagine to tumor cell survival was further

highlighted in recent studies. Ye et al (2010) have demonstrated the

importance of asparagine synthesis via GCN2-ATF4 axis for tumor

cell survival during nutrient deprivation. And it has been demon-

strated the essential role of asparagine in promoting cancer cell

proliferation and breast cancer metastasis (Krall et al, 2016; Knott

et al, 2018; Pavlova et al, 2018). Our study provides another

support for the role of asparagine in cancer biology and puts

forward the potential usage of ASNase in cancer therapy.

According to a previous study, aspartate metabolism was

predicted to contribute to ASNase resistance in primary ALL

samples (Chen et al, 2011). Our results that ASNase resistance

could be provoked by either ectopic SLC1A3 expression or the

supplementation of membrane-permeable aspartate/glutamate

strongly support this hypothesis (Figs 1H, and 2H and I). It indi-

cates that SLC1A3-mediated fueling of endogenous aspartate/gluta-

mate levels is a novel contributor to ASNase resistance. Moreover,

aspartate was the second most enriched amino acid (after aspara-

gine) for genes related to epithelial-to-mesenchymal transition

(Knott et al, 2018). In line with this, we observed that SLC1A3

expression could promote cancer cell metastasis, regardless of

asparagine bioavailability (Figs 5D and EV5E). Even though recent

studies mainly focused on the role of SLC1A3 in mediation of

aspartate uptake (Alkan et al, 2018; Garcia-Bermudez et al, 2018;

Sullivan et al, 2018; Tajan et al, 2018), we could not exclude the

role of glutamate, which could be converted to aspartate via oxida-

tive or reductive carboxylation. This is supported by our findings

that both aspartate and glutamate could rescue ASNase toxicity in

SLC1A3 KO or negative cancer cells (Figs 1H and 2I).

Notably, we demonstrate that SLC1A3 inhibition in combina-

tion with ASNase treatment could hinder cancer cell proliferation

by inducing either cell cycle arrest or apoptosis, which was

observed in ALL cells following ASNase treatment (Kidd, 1953;

Broome, 1961; Ueno et al, 1997; Pui et al, 2009). Metabolic and

transcriptomic profiles of cancer cells treated with ASNase and

SLC1A3 inhibition indicated numerous defects in many critical

processes (Figs 3E and EV2F). Intriguingly, in addition to the

well-known engagements in urea cycle, nucleotide synthesis, and

TCA cycle replenishments (Rabinovich et al, 2015; Sullivan et al,

2015; Van Vranken & Rutter, 2015), aspartate and glutamate

metabolisms might also directly or indirectly influence energy

production, redox homeostasis, and lipid metabolism following

ASNase treatment (Fig 5E).

Our metabolomic and “diricore” analyses indicated that ASNase-

treated SLC1A3-expressing cancer cells and tumors still present

asparagine shortage (Fig 5A and C; Loayza-Puch et al, 2016).

Consistent with a previous study (Sullivan et al, 2018), our meta-

bolic flux assays demonstrated that asparagine pool was not effi-

ciently replenished by labeled aspartate (Fig EV3A). In mammalian

cells, the lack of asparaginase activity prohibits asparagine utiliza-

tion for the production of other amino acids or metabolic intermedi-

ates and the role of asparagine became essential when glutamine

was depleted, even though it was only for protein synthesis

(Pavlova et al, 2018).

Homologues of SLC1A3 (SLC1A1, SLC1A2, SLC1A6, and

SLC1A7) can also transport aspartate/glutamate (Kanai et al, 2013).

It remains to be further investigated whether these transporters also

contribute to ASNase resistance in some cancer cells. The

compound TFB-TBOA could potently inhibited SLC1A3, which leads

to the negation of SLC1A3 in ASNase resistance in vitro. However,

in vivo tests with TFB-TBOA showed poor pharmacokinetics activity

(a sharp drop in serum levels 7 h postinjection, data not shown).

Future pharmacological manipulation of TFB-TBA might be needed

to improve its in vivo performance.

Altogether, using a genome-wide functional genetic approach,

we identified SLC1A3, an aspartate/glutamate transporter, as a key

determinant in the survival of cancer cells during ASNase treatment.

We pinpointed the role of aspartate/glutamate in fueling metabolic

pathways related to urea cycle, nucleotide, energy production, redox

◀ Figure 5. SLC1A3 expression promotes ASNase resistance and tumor progression in a mice model for breast cancer metastasis.

A SUM159PT human breast cancer cells were orthotopically injected into the mammary glands of NSG mice. Once SUM159PT tumors reached 250 mm3 volume, mice
were treated with mock or ASNase (60 U per day) for 5 consecutive days (n = 3). Following treatment, mice were sacrificed, and blood, mammary glands, and tumors
were collected and subjected to mass spectrometry to determine the asparagine level. Essential amino acids were used for the raw data normalization. Data are
presented as mean � SD.

B The mouse breast cancer cell lines 4T1 and 4T1-V5-SLC1A3 were orthotopically implanted into the mammary glands of pretreated NSG mice. Presented is the volume
measurements of arising tumors at day 9 (n = 13 mice for each group, except for 4T1 + ASNase, n = 12). Data are presented as mean � SEM.

C From the same experiment in panel (B), tumors were surgically removed once reached a volume of ~500 mm3 and collected and subjected to LC-MS to determine the
levels of asparagine, aspartate, glutamine, and glutamate. Leucine level was used as a control. Results are based on five tumor samples and presented as
mean � SEM.

D The human breast cancer cell lines MDA-MB-231 and MDA-MB-231-V5-SLC1A3 were intravenously injected into pretreated NSG mice. Once mice showed breathing
problems, they were sacrificed, and lung and liver were collected and blindly scored for metastasis lesions. The P-value was calculated by one-tailed unpaired t-test
in Prism7. Data are presented as mean � SEM (n = 8).

E A schematic model depicting how SLC1A3-mediated aspartate and glutamate uptake promotes ASNase resistance.

Data information: The pretreatment started 2 days before the injection of cancer cells. And mice were either injected with 60 U ASNase or saline per day. The P-value
was calculated by two-tailed unpaired t-test in Prism7, unless otherwise stated. *P < 0.05, **P < 0.01, ***P < 0.001.
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homeostasis, lipid metabolism, and glutamine biosynthesis, in this

process. Our results show that solid tumors are amendable to

systemic administration of ASNase, opening the possibility of

expanding ASNase benefit to solid tumors.

Materials and Methods

Cell culture

The human prostate cancer cell lines (PC3, DU145, LNCaP, and

22RV1) were bought from ATCC and cultured in RPMI (Thermo

Fisher Scientific). The human breast cancer cell lines (MCF7, MDA-

MB-231, and MDA-MB-468) were cultured in high glucose DMEM.

SUM159PT cells (archived in the laboratory) were cultured in

DMEM/F12 1:1 medium with addition of insulin (sigma, I1882-

100MG, final concentration of 5 lg/ml) and hydrocortisone (sigma,

final concentration of 1 lg/ml). BT549 cells (archived in the labora-

tory) were cultured in RPMI with insulin (final concentration of

5 lg/ml). The mouse breast cancer cell line 4T1 was a gift from

O. v. Tellingen (Amsterdam, the Netherlands) and cultured in

DMEM (high glucose). HEK-293T packaging cell line for lentivirus

production was cultured in high glucose DMEM. All the mediums

were supplemented with 10% FBS, 1% penicillin/streptomycin

except for SUM159PT cells (5% FBS + 1% penicillin/streptomycin).

All the cells were cultured in a humidified 37°C incubator with 5%

CO2 injection.

IncuCyte cell proliferation assay

Cells were seeded in 96-well plate (Greiner, 655090), and three

images per well were taken every 4 h by the IncuCyte imaging

system (Essen Bioscience). Cell confluence per well was calculated

by averaging the mapped areas for those three images. Experiments

were performed with independent triplicates.

Generation of SLC1A3 expression plasmid

SLC1A3 cDNA was amplified from the pLX304-SLC1A3 plasmid

kindly gifted by Roderick Beijersbergen (Amsterdam, the Nether-

lands) using the following primer sequences: 50-ACAGCGTCTAGA
CCGGTTAGCGCTAGCTCATTAC-30 and 50-CGACAGTTAGCCAGAG
AGCTCGCGGCCGCCGCTGT-30. The resulting product was digested

using XbaI (Roche) and NotI (Thermo Fisher Scientific) restriction

enzymes and ligated into a pLenti backbone (Korkmaz et al, 2016)

with compatible sticky ends.

Lentivirus production and infection

A third-generation lentivirus packaging system consisting of

pCMV-VSV-G (Addgene#8454), pRSV-Rev (Addgene #12253), and

pMDLg/pRRE (Addgene #12252) was co-transfected with lenti-

CRISPR v2 (Addgene: #52961) containing sgRNA. Transfection

was performed in HEK-293T cells using PEI (polyethylenimine,

Polysciences), and medium was refreshed after 18 h. Virus was

harvested 48 h after transfection by snap-frozen and stored at

�80°C. Target cells were incubated with virus for 24 h, and then,

medium was refreshed. Thirty-six hours after virus infection,

target cells were selected with either puromycin (1 lg/ml) or blas-

ticidine (5 lg/ml) according to the need of the experiments. The

selection stopped when no surviving cells remained in the no-

transduction control plate and cells were switched to normal

culture medium.

CRISPR-Cas9 genome-wide screen in PC3 cells and
MAGeCK analysis

PC3 cells were transduced with lentivirus pools containing sgRNAs

of a genome-wide CRISPR-Cas9 Brunello library (Doench et al,

2016; addgene #73179) at a multiplicity of infection (moi) of ~0.3

and ~1,000 × representations for each guide. After 2~3 days of

recovery from puromycin (1 lg/ml) selection, cells were split into

two different conditions: One was subjected to ASNase treatment

(0.3 U/ml, ITK) for 20 days, and the other to mock treatment. Two

independently replicates were included. Subsequently, genomic

DNA was isolated using the phenol–chloroform extraction protocol

and sgRNAs were amplified using a two-step PCR protocol for next-

generation sequencing. Libraries were sequenced in an Illumina

HiSeq-2500 sequencer, and raw reads were demultiplexed and

analyzed using the in-house perl script XCALIBR (https://github.

com/NKI-GCF/xcalibr). The individual sgRNAs abundance was

further analyzed using MAGeCK (Li et al, 2014) pipeline to find

genes statistically depleted during the screening. The MAGeCK soft-

ware was ran with default options, and the 1,000 non-targeting

sgRNAs included in the CRISPR-Cas9 library were used for control

normalization.

Fist PCR forward primer: 50- ACA CTC TTT CCC TAC ACG ACG

CTC TTC CGA TCT NNN NNN GGC TTT ATA TAT CTT GTG GAA

AGG ACG -30 and first PCR reverse primer: 50- GTG ACT GGA GTT

CAG ACG TGT GCT CTT CCG ATC TAC TGA CGG GCA CCG GAG

CCA ATT CC -30. The forward primer contained a barcode

(NNNNNN) that enabled multiplexing.

Second PCR forward primer: 50- AAT GAT ACG GCG ACC ACC

GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC T

-30 and reverse primer: 50- CAA GCA GAA GAC GGC ATA CGA GAT

CGA TGT GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T -30.

Competitive cell proliferation assay

PC3 parental cells were stably transfected with pLKO-H2B-GFP and

mixed with plentiv2-sgRNA transfected PC3 cells (GFP-negative) at

a ratio of ~3:7 and seeded into 12-well plates in the absence or pres-

ence of ASNase (0.3 U/ml). Cells were split every 3~5 days, and the

ratio of GFP-negative cells among the mixed population was

measured by flow cytometry (Calibur, BD Biosciences). GFP-nega-

tive cell counts at each timepoint were normalized to day 0 when

the cells were initially mixed.

Radioactive aspartate uptake assay

Cells were counted and seeded 1 day before the assay in 12-well

plates as described (Loayza-Puch et al, 2017). After washed twice

with PBS, cells were incubated, respectively, with [3H] L-leucine (in

sodium-free uptake buffer) and [3H] L-aspartate (in PBS) for 5 min.

Next, cells were washed twice with ice-cold PBS and collected with

0.1 M NaOH. The counts for radioactivity were measured by a
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liquid scintillation analyzer on LSC2910 PerkinElmer Counter.

Leucine uptake was used for normalization.

BrdU labeling

For PC3 cells, a final concentration of 10 lM bromodeoxyuridine

(BrdU, Sigma) was added to the medium and incubated for 25 min.

Cells were harvested and fixed with 70% cold ethanol at 4°C for

30 min. RNase A treatment (final concentration at 0.5 mg/ml) at

37°C for 30 min was applied. Cells were resuspended in freshly

prepared HCl/0.5% Triton solution (for DNA denature) at room

temperature for 20 min and then neutralized by 0.1 M Na2B4O7.

After washed once with PBS/Tween, cells were incubated with 1:40

diluted anti-BrdU antibody (Dako) at RT for 30 min. Cells were

incubated with FITC-conjugated anti-mouse Alexa Fluor 488

secondary antibody (1:500, Dako) at RT for 30 min in the dark.

After washing another 2X, cells were then resuspended in PI

(20 lg/ml) solution and ready for FACS assay (at least 10,000 cells

were gated for each condition).

Metabolite profiling and isotope tracing

1.5 × 105 cells were seeded in 6-well plates and treated for 72 h as

indicated. After washed twice with cold PBS, cells were subjected to

1 ml lysis buffer composed of methanol/acetonitrile/H2O (2:2:1) for

metabolites extractions. The lysates were collected and centrifuged

at 16,000 g (4°C) for 15 min, and the supernatant was transferred to

a new tube for further liquid-chromatography mass spectrometry

(LC-MS) analysis. The LC-MS analysis procedure and parameters

were used as described before (Loayza-Puch et al, 2017). Metabo-

lites were identified and quantified using LCquan software (Thermo

Scientific) on the basis of exact mass within 5 ppm and further vali-

dated by concordance with retention times of standards. Peak inten-

sities were normalized based on median peak intensity of total

metabolites or on essential amino acids. For Fig 5A, 10 ll of serum
was diluted in 1 ml lysis buffer. For Fig 5A and C, 50~100 mg

mammary fat pad tissues and tumors were ground in a mortar

under liquid nitrogen, and metabolites were extracted by adding

500 ll lysis buffer and sonicated for 10 min before centrifugation.

For isotope tracing experiment, 2.5 × 105 DU145-V5-SLC1A3

cells were seeded in 6-well plates. Next day, cells were exposed to

either mock or ASNase (0.2 U/ml) for 48 h and then supplemented

with either 1.5 mM [13C4,
15N] L-aspartate (Cambridge Isotope Labo-

ratories, CNLM-544-H) and 1.5 mM unlabeled glutamate (Sigma,

G8415) or 1.5 mM [13C5,
15N] L-glutamate (Cambridge Isotope Labo-

ratories, CNLM-544-H) and 1.5 mM unlabeled aspartate (Bioconnect

47203.01) for 8 h. Then, the cells and the medium were harvested

for further analysis as described above.

Total RNA isolation

Total RNA was isolated using Trisure reagent (Bioline) following

the manufacturer’s instructions. Briefly, cells were washed twice

with PBS and 1 ml Trisure was added for homogenization. After

centrifuge, the aqueous phase was transferred to a new tube and

mixed with cold isopropyl alcohol for RNA precipitation by

centrifuging at 4°C for 1 h. RNA pellet was washed twice with 75%

ethanol and finally dissolved in RNase-free water.

Reverse transcription and quantitative real-time PCR (RT–qPCR)

Reverse transcription was performed with Tetro Reverse Transcrip-

tase kit (Bioline) according to the manufacturer’s instructions.

Briefly, 2 lg of total RNA was used as templates for each reaction.

qPCR products were prepared using a SensiFAST SYBR No-ROX kit

(Bioline) according to the instructions and performed in the Light

Cycler 480 (Roche). Primers are listed in Table EV1.

Western blot analysis

Cells were washed twice with PBS and lysed with 2 × SDS buffer

(4% SDS, 20% glycerol and 125 mM Tris PH 6.8). Next, protein

levels were quantified by Pierce BCA protein assay kit (Thermo

Scientific). Lysates were loaded into a separating 7.5% SDS–PAGE

gel, and protein was transferred to nitrocellulose membranes. After

blocking with 5% milk/PBS–Tween-20 (0.2%) solution, the

membrane was incubated with mouse-anti-V5 (Thermo Fisher

Scientific). Proteins were visualized using the secondary fluores-

cently-labeled antibodies goat anti-mouse IRDye 680 RD (LI-COR

Biosciences) and scanned on the Odyssey infrared imaging system

(LI-COR Biosciences).

Immunofluorescence assay

Cells were grown on glass coverslips, washed twice with PBS, and

fixed with 2% PFA for 10 min at room temperature. Next, cells were

permeabilized with 0.5% Triton/PBS solution, blocked with 5%

FBS for 1 h, and incubated with mouse-anti-V5 (Thermo Fisher

Scientific) and Alexa-488-conjugated rabbit anti-mouse secondary

antibodies. Coverslips were mounted on glass slides using Vecta-

shield containing DAPI. Images were taken with Leica confocal

microscope SP5.

TruSeq standard mRNA sample preparation

Stranded-specific libraries were generated using the TruSeq

Stranded mRNA sample preparation kit (Illumina) following the

manufacturer’s instructions. Briefly, 2 lg of total RNA was polyA-

selected using oligo-dT beads and the RNA was fragmented, random

primed, and reverse transcribed using SuperScript II Reverse Tran-

scriptase kit (Invitrogen). Second-strand complementary DNA was

then synthesized, 30-adenylated and ligated to Illumina sequencing

adapters, and subsequently amplified by 12 cycles of PCR. The

sequencing libraries were analyzed on a 2100 Bioanalyzer using a

7500 chip (Agilent) and pooled equimolarly into a 30 nM multiplex

sequencing pool.

Deep sequencing

Samples were sequenced on the Illumina HiSeq2500 sequencer

generating 65-nucleotide single-end reads.

RNA-seq analysis

Sequenced reads were aligned to the human genome (hg19) using

TopHat v2.0.8 (Trapnell et al, 2009). Only uniquely mapped reads

were retained for further analysis. SAMTOOLS v0.1.19 (Li et al,
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2009) was used to convert the BAM output to SAM format and to

sort the BAM file. The read counts per gene were calculated using

the HTSeq program, v0.5.4p1 (Anders et al, 2015). The DESeq pack-

age (Oshlack et al, 2010) was used to generate normalized read

counts and for differential gene expression analysis. DESeq called

differentially expressed genes with FDR cutoff of 0.05 and abs

(FC) > 1.5 were considered as significantly differentially expressed

genes.

IncuCyte® Caspase-3/7 Green apoptosis assay

Cells were pre-seeded in 96-well plate (Greiner, 655090) 48 h before

the addition of Caspase-3/7 Green Apoptosis reagent (Essen

Bioscience, 4440). The green signals were captured every 4 h, and

apoptotic cells were counted.

Animal studies

All mice experiments were approved by the Netherlands Cancer

Institute Animal Experimental Committee. For Fig EV1E, xeno-

grafts were induced by subcutaneous injection of 4 × 106 PC3

control (sgNon-targeting) and sgSLC1A3 cells (monoclonal #4-1) in

one flank of Balb/c nude mice (n = 8) and treatment started when

tumors reached 50 mm3. For Fig 5A, 4 × 106 SUM159PT cells were

resuspended in 50 ll PBS and injected into the mammary gland

#4 of NOD-SCID IL2R-null (jax) (NSG) mice. After tumor volumes

reached ~250 mm3, mice (n = 3 per group) were administrated

either with mock (saline) or ASNase (60 U per day) for 5 consecu-

tive days by intraperitoneal injections. Serum, mammary fat pad

tissues, and tumors were collected and snap-frozen for LC-MS

analysis when the mice were sacrificed. For Fig 5B, 1 × 105 4T1

cells and 4T1-V5-SLC1A3 cells were respectively resuspended in

20 ll 1:1 mix of PBS and growth factor reduced Matrigel (Gel-

trexTM, Gibco) and injected into 1 mammary fat pad per mouse.

Mice were pretreated for 2 days either with saline or ASNase

(60 U per day) before tumor cells were introduced, and the treat-

ment was performed every day until the mice were sacrificed

(n = 13 per group except for the group of 4T1 treated with

ASNase, n = 12). Primary tumors were surgically removed once

the tumor volumes reached 450–550 mm3, and mice underwent

breathing challenges every day. For Fig 5D, 5 × 104 MDA-MB-231

and MDA-MB-231-V5-SLC1A3 cells (in 50 ll PBS) were, respec-

tively, injected into the tail veins of 2 days of pretreated NSG mice

(n = 8 per group) and mice were sacrificed 22 days post-tumor

cells introduction.

All the experiments were using NSG mice 6~8 weeks old (ex-

cept for Fig EV1E), and mice were weighed every 2 or 3 days to

monitor weight loss. For ASNase treatment, mice were intraperi-

toneally administrated 60 U ASNase every day till the end of the

experiments. Tumor volumes were calculated by the formula

V = 1/2(LW2), where L is length and W is width of the primary

tumor.

Histopathology analysis of lung and liver invasion

Lung and liver tissues were collected and fixed in formalin fixative

and embedded in paraffin. The immunohistochemistry (IHC) of

vimentin (DAKO, M0725, dilution: 1:4,000) was conducted on

4-lm-thick sections according to standard procedures. The stained

slides were examined blindly by a pathologist, and the number of

tumorous lesions (more than 10 cancer cells) was scored in each of

the sections. The sections were reviewed with a Zeiss Axioskop2

Plus microscope (Carl Zeiss Microscopy, Jena, Germany), and

images were captured with a Zeiss AxioCam HRc digital camera and

processed with AxioVision 4 software (both from Carl Zeiss Vision,

München, Germany).

Statistics

Data analyses were performed using GraphPad Prism (version 7).

The statistical tests used are described in figure legends. *P < 0.05,

**P < 0.01, ***P < 0.001. For the mass spectrometry analysis of

amino acids in tumor samples, no statistics methods were used to

predetermine sample size. For animal experiments, an estimate was

made for the number of mice needed, without power calculation.

TCGA datasets analysis

Expression data from tumor and normal tissue samples were down-

loaded for every project available at ICGC data portal (http://dcc.ic

gc.org; release 27). For consistency, only expression data from pipe-

line “RNASeqV2_RSEM_genes” were considered. The downloaded

normalized expression data were scaled to TPM (transcripts per

million reads) and log2 transformed. Only projects with more than

10 normal samples were considered. All analyses were done using

R-language. The statistical comparison between normal and tumor

samples was done using a Wilcoxon sum rank test with Bonferroni

correction for multiple comparisons.

Data availability

The deep sequencing datasets generated in this study have been

deposited in GEO database under accession number: GSE134074

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134074).

All other data generated that support the findings of this study are

available from the corresponding author upon reasonable request.

Expanded View for this article is available online.
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