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PURPOSE. Age-related macular degeneration (AMD) is the worldwide leading cause of blindness
among the elderly. Although genome-wide association studies (GWAS) have identified AMD
risk variants, their roles in disease etiology are not well-characterized, and they only explain a
portion of AMD heritability.

METHODS. We performed pathway analyses using summary statistics from the International
AMD Genomics Consortium’s 2016 GWAS and multiple pathway databases to identify
biological pathways wherein genetic association signals for AMD may be aggregating. We
determined which genes contributed most to significant pathway signals across the databases.
We characterized these genes by constructing protein-protein interaction networks and
performing motif analysis.

RESULTS. We determined that eight genes (C2, C3, LIPC, MICA, NOTCH4, PLCG2, PPARA, and
RAD51B) ‘‘drive’’ the statistical signals observed across pathways curated in the Kyoto
Encyclopedia of Genes and Genomes (KEGG), Reactome, and Gene Ontology (GO) databases.
We further refined our definition of statistical driver gene to identify PLCG2 as a candidate
gene for AMD due to its significant gene-level signals (P < 0.0001) across KEGG, Reactome,
GO, and NetPath pathways.

CONCLUSIONS. We performed pathway analyses on the largest available collection of advanced
AMD cases and controls in the world. Eight genes strongly contributed to significant pathways
from the three larger databases, and one gene (PLCG2) was central to significant pathways from
all four databases. This is, to our knowledge, the first study to identify PLCG2 as a candidate
gene for AMD based solely on genetic burden. Our findings reinforce the utility of integrating in
silico genetic and biological pathway data to investigate the genetic architecture of AMD.

Keywords: age-related macular degeneration, pathway analysis, genome-wide association
study, database, phospholipase C gamma 2

Vision loss is one of the most feared medical conditions
because of its profound effect on day-to-day quality of

life.1,2 Age-related macular degeneration (AMD) is the most
common cause of blindness in individuals over age 60 and is
responsible for almost 10% of all cases of blindness in the
world.3 AMD is a late-onset disease that results from the
accumulation of drusen, inflammation, and photoreceptor loss
in the macular region of the eye.3 This progressive disease is
categorized as either early/intermediate or advanced AMD; the
latter is further subclassified as geographic atrophy (dry AMD
[GA]) or choroidal neovascularization (wet AMD [CNV]).3 Early
AMD is often asymptomatic and dry AMD is initially asymp-
tomatic, but as the disease progresses, patients’ central vision
begins to blur and diminish.3 Wet AMD is characterized by the
growth of abnormal blood vessels in the macula, which
ultimately results in severe vision loss.3

Although both genetic and environmental factors shape
AMD susceptibility, between 46% and 71% of the phenotypic

variance of the disease is attributable to genetic factors.4 To
understand the genetic architecture of AMD, the International
Age-Related Macular Degeneration Genomics Consortium
(IAMDGC) performed a large-scale genome-wide association
study (GWAS) for advanced AMD cases and controls. They
identified 52 independent genetic variants across 34 suscepti-
bility loci for advanced AMD that are estimated to explain
nearly two thirds of AMD heritability.5 Therefore, about one
third of AMD heritability is still unexplained by the known loci.
Although other studies have identified additional risk loci with
modest effect for advanced AMD,6,7 more comprehensive
approaches beyond GWAS must be used to find the remaining
heritable variation for AMD.

Rather than investigating associations between single
genetic variants and a phenotype, pathway analysis of GWAS
data interrogates alterations in biological pathways for a trait of
interest. Generally, this is done by aggregating summary
statistics for these variants into genes, which are then grouped
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into pathways based on data in curated pathway databases.8

We hypothesize that applying this more comprehensive
approach may help elucidate the genetic etiology of advanced
AMD that has been indiscernible from GWAS. In this study, we
performed in silico pathway analysis using the Pathway
Analysis by Randomization Incorporating Structure (PARIS)
software to identify biological pathways and processes
enriched in genetic variation potentially associated with AMD
in individuals of European descent. Because nomenclature,
foci, and definitions vary across pathway databases,9 we
utilized multiple databases to complement and validate our
findings. Additionally, we sought to determine the central
causal genes that ‘‘drive’’ the statistical signals observed for
significant pathways identified by PARIS.

METHODS

Study Subjects and GWAS Summary Statistics

The participants for this study were previously ascertained by
cohorts in the IAMDGC as described.5 This included 16,144
individuals with advanced AMD and 17,832 unaffected
individuals. Of the advanced AMD cases, 3235 individuals
have GA only and 10,749 have CNV only. The remaining cases
have both GA and CNV. All of the cases and controls used for
our analyses were of European ancestry. All participants
provided informed consent, and the study protocol was
approved by institutional review boards as previously de-
scribed.5 Data were previously collected in accordance with
the tenets of the Declaration of Helsinki. The summary
statistics we analyzed in this study were obtained in the 2016
GWAS performed by the IAMDGC.5 Specifically, these data
include P values for 445,115 directly genotyped common and
rare variants from the advanced AMD case-control results. The
genotypes for these variants were generated from an array
(HumanCoreExome; Illumina, San Diego, CA, USA) that was
designed with additional genome-wide and custom content for
AMD.5

PARIS: Knowledge-Driven Pathway Analysis of
GWAS Data

To identify biological pathways enriched in genetic variants
possibly contributing to advanced AMD risk, we performed in
silico pathway analysis using the PARIS v2.4 software.10,11

PARIS uses variant summary statistics from GWAS, clusters
them into features defined by the linkage disequilibrium (LD)
structure of the genome based on a reference catalog of
common genetic variants, and assigns significance to pathways
based on permutation of the genome.10,11 In our analyses, we
performed 100,000 permutations. PARIS also assigns empirical
P values to the genes composing a pathway based on
permutation testing of features within each of the genes.10,11

We performed PARIS using multiple pathway databases,
including Kyoto Encyclopedia of Genes and Genomes
(KEGG),12 Reactome,13 Gene Ontology (GO),14 and NetPath.15

KEGG, Reactome, and GO databases are extensive, curated
biological pathway data repositories. NetPath is a specialized
database that covers signaling pathways. Pathways with a P

value less than 0.0001 were prioritized for further investiga-
tion. This permutation P value was calculated using the
following equation: P¼ (1þb)/(1þM), where M¼ the number
of permutations and b is the number of randomly sampled
permutation scores that are greater than the observed score.
To determine if the pathway associations we observed were
driven by known AMD loci, we reperformed our pathway
analyses excluding variants from the 34 susceptibility loci

identified by the IAMDGC (defined by the 52 genomic variants)
and their proxies (r2 ‡ 0.5) within 500 kb.5

Identification of Statistical Pathway Driver Genes

Due to disparate nomenclature and composition of pathways
in the databases, we identified genes that overlapped across
significant pathways within a database and across databases
(regardless of pathway). This served to internally validate and
complement our results. To interrogate the significant signals
obtained from the pathways identified by PARIS, we queried
which significant (P < 0.0001) genes overlapped among the
significant (P < 0.0001) pathways within a pathway database.
These genes were compared across the analyses done with
each of the pathway databases (KEGG, Reactome, GO, and
NetPath) to find statistical driver genes that had significant
signals across three or more databases for the advanced AMD
results.

Protein-Protein Interaction (PPI) Network for
Statistical Pathway Driver Genes

We searched the Search Tool for Recurring Instances of
Neighbouring Genes (STRING) database16 version 10.5 for
PPIs involving the proteins encoded by the genes identified as
statistical driver genes. The STRING database is composed of
known and predicted PPIs based on data from curated
interactions databases, high-throughput lab experiments,
coexpression, and text mining in the literature. We used the
high confidence (0.700) minimum required interaction score
to construct the protein-protein networks of interactions based
on experimental data, database entries, and coexpression.

Motif Analysis for Statistical Pathway Driver Genes

We extracted reference genome sequences for the statistical
driver genes using the UCSC Genome Table Browser.17 We
included 600 nucleotides upstream from the first exon and the
50 untranslated region (UTR) in the sequences for each gene.
To identify potential sequence motifs for each of these gene
sets, we utilized the Multiple Expectation Maximization (EM)
for Motif Elucidation (MEME) software suite.18 Sequences were
considered motifs if their lengths were between 6 and 50
nucleotides. MEME was not required to find a motif in every
sequence, but motifs were required to have an E-value of
0.0001. Each motif from the gene sets was then investigated in
Tomtom, which looks for transcription factors (TFs) that are
associated with the motif. TF binding motifs were evaluated
based on the known human TF database from JASPAR19 using
HOCOMOCO.20 To validate the motifs found and to test the
null hypothesis of random motifs found unrelated to the
statistical driver genes, 10 permutations were run on a random
gene set generator for eight genes and performed the same
analyses via MEME and Tomtom. We removed motifs and TFs
that appeared in both the random and actual gene sets from
further analysis.

RESULTS

In Silico Pathway Analysis

We identified several biological pathways and processes from
KEGG, Reactome, GO, and NetPath databases (Table 1;
Supplementary Tables S1–S4) to be significantly associated
with advanced AMD using PARIS. A pathway was considered
significant if it had a pathway-level P value less than 0.0001.
The vast majority of pathways in the four databases were not
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significant (Table 1). When we reperformed our pathway
analyses excluding the 34 known AMD loci,5 ~40% of the
previously significant KEGG (n ¼ 10) and GO (n ¼ 53)
pathways and over 60% of the Reactome (n ¼ 32) pathways
remained significant (Supplementary Tables S1–S3). The single
NetPath pathway that was significant in our initial analysis
(Wnt; Supplementary Table S4) was no longer significant in
this sensitivity analysis (P ¼ 0.00215).

Statistical Driver Genes Among Advanced AMD-
Associated Pathways

Because pathway structure and terminology vary across
databases, we determined which genes were significantly
contributing to the overall pathway signals detected by PARIS.
We compared the significant genes in significant pathways
from KEGG, Reactome, and GO (Fig. 1; Table 2) and identified
eight such genes. Upon removing variants from our analyses
that fell within the 34 known AMD susceptibility loci as
defined in Supplementary Table S5 in the IAMDGC GWAS,5 we
found that two genes (PPARA and PLCG2) remained statistical
driver genes across associated pathways from KEGG, Reac-
tome, and GO.

To identify evidence of PPI for the proteins encoded by the
eight statistical driver genes in our analyses (C2, C3, LIPC,
MICA, NOTCH4, PPARA, PLCG2, and RAD51B), we queried the
STRING database. Each of these proteins have multiple binding
partners identified through functional studies or in silico
predictions (Fig. 2). When considering no more than 50
interaction partners for each of the eight proteins, we found
three distinct clusters of PPIs (Fig. 2). One cluster connects
MICA, PLCG2, LIPC, C2, C3, and other immune-related
proteins (Fig. 2A); another connects NOTCH4, PPARA, and

other signaling proteins (Fig. 2B); and the third contains
RAD51B and other DNA repair proteins (Fig. 2C).

Using the MEME software suite, we identified sequence
motifs with known TF binding sites near the eight statistical
driver gene seqeuences from the UCSC Genome Table
Browser.17 Five motifs were present for most of the statistical
driver genes and contain binding sites for TFs (Table 3). Only
one sequence motif ([GCA][AC][CT]AG[AT]G[CA][TGA]A[A
G][AT][CA]T[CA][CG][GA]T[CG][TG][CA]A[AG]AAA[ATG][A
G]AAA[AT][CA][AC]A[AC]A[AC][AT][AT]A) was near all eight
statistical driver genes and contained binding sites for 12 TFs.

We further restricted our definition of statistical pathway
driver gene to include genes that also strongly contributed to
AMD-associated pathways from NetPath. This enabled us to
further support PLCG2 as a candidate gene for advanced AMD
(Fig. 3). This gene encodes a phosphodiesterase that is
involved in phosphatidylinositol signaling and several other
immune, metabolic, and signaling pathways curated in KEGG,
Reactome, GO, and NetPath (Fig. 3). We interrogated potential
interaction partners for the PLCG2 protein by constructing a
PPI network for PLCG2 using the STRING database (Fig. 4). We
also determined if PLCG2 harbored any suggestive associations
with AMD in the IAMDGC data. None of the P values for the 65
individual PLCG2 variants we analyzed with PARIS reach
genome-wide significance (P < 5 3 10�8), but several of them
(n¼ 14) were nominally associated (P < 0.05) with advanced
AMD (Fig. 5). The single-variant association results from PLCG2

are not highly correlated based on LD structure using the 1000
Genomes Project (Fig. 5), which indicates that the concentra-
tion of nominally significant results in this gene is not merely
due to LD.

DISCUSSION

Using knowledge-driven pathway analysis on GWAS data, we
uncovered pathways that were enriched in variation potential-
ly associated with AMD in individuals of European descent.
Our study is, to our knowledge, the first to perform such
analyses on the largest available advanced AMD case-control
association dataset. We found several signaling, immune,
metabolic, and disease-related pathways from the KEGG,
Reactome, GO, and NetPath databases that are associated with
advanced AMD. Our sensitivity analysis demonstrated that
several of the pathways from KEGG, Reactome, and GO
(Supplementary Tables S1–S3) remained associated with
advanced AMD following the exclusion of the 34 AMD

TABLE 1. Significantly Associated Pathways Across Multiple Pathway
Databases for Advanced AMD

Database

Count of

Significant

Pathways

Total Entries

in Database

Proportion of

Significant

Pathways

in Database

NetPath 1 26 0.038

KEGG 25 293 0.085

Reactome 50 1,748 0.029

GO 145 12,765 0.011

Pathways were considered significant if they obtained an empirical
P < 0.0001.

FIGURE 1. Comparison of significant genes from AMD-associated
KEGG, Reactome, and GO pathways identified by PARIS. Eight genes
demonstrated significant signals across all three comparisons and are
summarized in Table 2.

TABLE 2. Eight Statistical Pathway Driver Genes From Significant
KEGG, Reactome, and GO Pathways

Gene Chromosome Full Gene Name (HGNC)

Statistical pathway driver genes implicated in the 2016 IAMDGC

GWAS Loci

C2 6 Complement C2

MICA 6 MHC class I polypeptide-related

sequence A

NOTCH4 6 Notch receptor 4

RAD51B 14 RAD51 paralog B

LIPC 15 Lipase C, hepatic type

C3 19 Complement C3

Novel genes identified with pathway analysis with PARIS

PLCG2 16 Phospholipase C gamma 2

PPARA 22 Peroxisome proliferator activated

receptor alpha

The cross-database comparison of significant genes from signifi-
cantly associated pathways.
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susceptibility loci described earlier.5 This suggests that modest
effects aggregating in these pathways may contribute to the
missing heritability of AMD. Although the Wnt pathway from
NetPath was no longer significant in our sensitivity analysis, the
Wnt signaling pathway from GO remained associated with
AMD. This results from the difference in the pathway
definitions. These pathways are nearly identical in size (n ¼
45 and 41 genes for NetPath and GO, respectively); however,
only two genes overlap between them (PLCG2 and FZD4).
Furthermore, the Wnt signaling pathway in KEGG (n ¼ 140
genes) and the signaling by Wnt pathway in Reactome (n¼294
genes) only achieved pathway-level P values of 0.032 and 0.037

in our analyses, respectively. These pathway definition
differences further justify our use of multiple curated databases
in our analyses to uncover AMD-associated pathways and genes
driving their statistical significance.

Due to varying nomenclature for pathways across databases
and as a way of internal validation, we focused on eight
statistical driver genes (C2, C3, LIPC, MICA, NOTCH4, PPARA,
PLCG2, and RAD51B) that were consistently significant across
GO, Reactome, and KEGG pathways. PPARA and PLCG2 were
not previously identified as a part of the 34 IAMDGC loci
associated with AMD risk. The strongest single-marker P values
observed in PLCG2 and PPARA were 2.05 3 10�4 and 3.10 3

FIGURE 2. PPI network generated for the proteins encoded by the eight statistical driver genes. No more than 50 interactions from the STRING
database were displayed for each input protein. This threshold of interactions enabled the connection of all eight queried proteins to a network.
Three distinct networks were defined by the proteins encoded by the statistical driver genes: (A) network connecting MICA, PLCG2, LIPC, C2, C3,
and other immune-related proteins; (B) network connecting NOTCH4, PPARA, and other signaling proteins; (C) network connecting RAD51B and
other DNA repair proteins. Types of interaction sources include coexpression (black), experimental data (magenta), and curation in databases
(cyan).
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10�5, respectively, and do not meet the classical GWAS
significance levels. In our sensitivity analysis, PPARA and
PLCG2 remained statistical driver genes in pathways from
KEGG, Reactome, and GO, suggesting that pathway analysis
can identify novel AMD genes. Additionally, the aggregation of
nominally significant independent variants in PLCG2 suggests
that the gene-wide significance of PLCG2 is greater than that of
the individual variants and emphasizes the power of pathway
analysis for identifying gene-wide signals rather than single-
variant associations.

DNA motif analysis identified five sequence motifs adjacent
to the eight statistical driver genes in their promoter regions.
These motifs represent sites of known TF binding and suggest
that the expression of these genes may be controlled by similar
mechanisms. One motif ([GCA][AC][CT]AG[AT]G[CA][TGA]
A[AG][AT][CA]T[CA][CG][GA]T[CG][TG][CA]A[AG]AAA[ATG]
[AG]AAA[AT][CA][AC]A[AC]A[AC][AT][AT]A) was adjacent to

the start positions of all eight statistical driver genes and
contains known binding sites of several TFs (Table 3).
Functional studies are required to confirm these in silico
findings and elucidate the transcriptional mechanisms of these
statistical driver genes in the context of AMD.

One gene, PLCG2, was central to multiple pathways in all
four databases and remained significant after our sensitivity
analysis. PLCG2 encodes a signaling enzyme (phospholipase C
gamma 2, PLCG2) that utilizes calcium to catalyze the
hydrolysis of PIP2 into second messengers IP3 and DAG.21

These molecules initiate intracellular calcium flux and activate
protein kinase C, respectively.21 The enzymatic activity of
PLCG2 results from tyrosine phosphorylation performed by
growth factor receptors, immune receptors, and G protein-
coupled receptors as well as the activity of lipid-derived
second messengers in the cell.21 This enzyme is highly
expressed in cells of hematopoietic origin and is responsible

TABLE 3. Sequence Motifs With TF Binding Sites Near Statistical Driver Genes

Motif Consensus Sequence TF P Value

Statistical

Driver Genes

G[CG][TG]TG[AT]ACC[CAT][AG]G[GT][AG]GG[CT][GT][GT][AT][GA]

[CG]TT[GC]C[AT]G[TA]GAGCC[GT]AGA[TA]C[GA][CG][GT][CT]

C[AT][CG]

KLF5 0.0095 C2

LIPC

MICA

NOTCH4

PPARA

RAD51B

KLF12 0.011

THA11 0.012

ZN563 0.013

IRF2 0.013

NFIA 0.017

ZN449 0.019

ELF2 0.020

ZBTB6 0.021

RARG 0.024

[CT][TA]G[GT]C[TC]AA[CA][AG][CT][AG][GC][TA][GC]AAACCC[CA]

[GC][TA][CA][TA]C[TC]A[CT][TC][AC]AA[AG]ATA[CT][AT][AG]

[AC]AAA[AT]TA[GT][TCG]

PIT1 0.0052 C2

LIPC

MICA

NOTCH4

PPARA

RAD51B

SOX5 0.0093

AIRE 0.010

CEBPE 0.011

[GA][CG]CTG[CT][AT][GA][TA]CC[CA]AGCT[AGC][CT][TA][CGA][GT]

[GT][GT][AT][GC]G[CTC][TG][GA]AG[GT]CAG[GA][AT]G[AC][AC]

[TGC]

MAFB 0.0089 C2

LIPC

MICA

NOTCH4

PPARA

RAD51B

MAFF 0.010

HTF4 0.011

MAFK 0.012

FOXA2 0.012

TFE2 0.014

BACH2 0.021

[GA]C[CT]T[CT][GC][GA]CC[TC]CCCAAA[GC][TC]GCTGGGAT[TC]

AC[AG]GGCGT[GC]A[GA]CC

TFAP4 0.0047 C2

LIPC

MICA

NOTCH4

PPARA

PLCG2

RAD51B

ZN322 0.0062

ZNF41 0.011

CRX 0.013

ZIC3 0.015

NKX21 0.020

GLI3 0.024

[GCA][AC][CT]AG[AT]G[CA][TGA]A[AG][AT][CA]T[CA][CG][GA]T[CG]

[TG][CA]A[AG]AAA[ATG][AG]AAA[AT][CA][AC]A[AC]A[AC][AT][AT]A

HEN1 0.0025 C2

C3

LIPC

MICA

NOTCH4

PPARA

PLCG2

RAD51B

ZSC31 0.0029

PKNX1 0.0034

NKX21 0.0037

PBX3 0.0066

TYY1 0.010

NR2C1 0.011

VDR 0.014

CREB1 0.016

RFX2 0.021

ATF1 0.021

CEBPE 0.022

For each motif, we identified TFs associated with the motif sequence using Tomtom. The P value represents the strength of the match between
the sequence motif identified adjacent to the statistical driver genes and the curated sequences of the TF binding motifs in the HOCOMOCO
database.
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for regulating immune responses and platelet adhesion and
spreading.22–26

The PLCG2 protein interacts with several members (HCK,
LYN, PIK3R1, and SYK) of the microglia pathogen phagocyto-
sis pathway in humans.27 Its interaction partners also play roles
in oxidative stress, angiogenesis, and platelet activation. BLNK
and BTK are central to facilitating B-cell apoptosis following
oxidative stress.28,29 Exposure to oxidative stress activates
EGFR, which promotes retinal epithelial cell health and
survival through EGFR/Akt, PI3K, and ERK/MAPK signaling
pathways.30,31 EGFR downstream signaling also contributes to
retinal pigment epithelial cell proliferation and migration in
wound healing.32,33 PIK3R1 is a regulatory subunit of PI3K in
the PI3K/Akt/mTOR pathway, which is a possible target for
treating ocular neovascularization.34 PI3K and Tec protein
kinases regulate platelet activation,35 and signaling cascades
from LCP2 (also called SLP-76) and SYK are responsible for
separating blood and lymphatic vasculatures in the human
body.36 These interactions and processes, coupled with
PLCG2’s role in the VEGF pathway,37,38 could be pertinent

for understanding the role of PLCG2 and its interaction
partners in the choroidal neovascularization subtype of
advanced AMD. In the CNV-only case-control GWAS performed
by the IAMDGC, no PLCG2 variants were genome-wide
significant; however, 13 variants were nominally associated
with CNV (P < 0.05).5 Of the 65 PLCG2 variants analyzed by
PARIS, 31 exhibited lower P values in the CNV-specific
IAMDGC GWAS than in the combined advanced AMD IAMDGC
GWAS.

Heterozygous gain-of-function mutations in PLCG2 result in
constitutive phospholipase activity and PLCG2-associated
antibody deficiency and immune dysregulation, which is
characterized by immunodeficiency and autoimmunity.39 This
gene was recently identified as a candidate gene for
rheumatoid arthritis (RA) due to its overexpression in RA
patients compared to controls.40 Genetic risk scores for RA are
associated with increased AMD risk,41 and individuals with RA
are at a higher risk of developing AMD.42

PLCG2 is also highly
expressed in microglia43 and has been previously implicated in
the genetic etiology of late-onset Alzheimer’s disease

FIGURE 3. Identification of PLCG2 as a candidate gene for advanced AMD. A comparison of the significant genes from significant KEGG, GO,
NetPath, and Reactome pathways in our PARIS pathway analysis converged on one gene (PLCG2), which encodes a protein that is common to
several pathways.
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(LOAD).44,45 Specifically, GWAS identified a protective effect
for a rare variant in the coding region of PLCG2 on LOAD.44,45

This variant is considered hypermorphic because the mutant
enzyme experiences a small increase in enzymatic activity
compared to wild-type enzyme, which would imply that mildly
activating PLCG2 could be a therapeutic intervention for

LOAD.43 Functional studies would need to be performed to
determine if PLCG2’s enzymatic activity could be modulated by
a similar mechanism in patients with AMD.

Although PLCG2 has not been previously associated with
AMD in a case-control GWAS, variants in this gene were
associated with AMD when accounting for birth control pill
usage in women with CNV.46 These associations were unde-
tectable when gene-environment interactions between PLCG2

variants and exogenous estrogen exposure were not consid-
ered.46 Other interaction studies have identified PLCG2 variants
as genetic modifiers of previously identified associations among
menopausal hormone therapy, mammographic density, and
breast cancer risk, which could suggest sex-specific effects of
genetic variants in this gene for disease risk.47,48

While our study provides in silico evidence for the roles of
these statistical driver genes and pathways in AMD, it does not
biologically confirm them. Functional studies are required to
determine causality for these genes and pathways in patients
with AMD. Knowledge-driven pathway analyses are subject to
the quality and coverage of the knowledge in a given database.
We attempted to circumvent this limitation by utilizing
multiple databases in our analyses and integrating our results.
The GWAS data used in this study were generated from
individuals of European descent. Consequently, these findings
may not be applicable to non-European populations. The
IAMDGC GWAS dataset is considered the largest available
dataset for advanced AMD cases and controls in the world. We
are unaware of any comparable datasets available for replica-
tion.

FIGURE 4. PPI network generated for PLCG2. No more than 10
interactions were displayed. Types of interaction sources include
coexpression (black), experimental data (magenta), and curation in
databases (cyan).

FIGURE 5. LocusZoom Plot of P values for the 65 PLCG2 variants in the IAMDGC advanced AMD case-control analysis. These variants were either
within the gene boundaries (human genome build 37) of PLCG2 or within 50 kb of these boundaries. P values were generated by the IAMDGC in
their advanced AMD case-control GWAS published in 2016.5 LD estimates (r2) are based on the European (EUR) population from the 1000 Genomes
Project (November 2014 release).
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Weber,4 Gonçalo R. Abecasis,1 and Iris M. Heid2

1Center for Statistical Genetics, Department of Biostatistics,
University of Michigan, Ann Arbor, Michigan, United States

2Department of Genetic Epidemiology, University of Re-
gensburg, Germany

3Department of Epidemiology and Biostatistics, Case
Western Reserve University School of Medicine, Cleveland,
Ohio, United States

4Institute of Human Genetics, University of Regensburg,
Germany

5Kidney Epidemiology and Cost Center, Department of
Biostatistics, Department of Internal Medicine-Nephrology,
University of Michigan, Ann Arbor, Michigan, United States

6School of Medicine, Menzies Research Institute Tasmania,
University of Tasmania, Hobart, Tasmania, Australia

7Center for Human Genetics, Marshfield Clinic Research
Foundation, Marshfield, Wisconsin, United States

8Department of Ophthalmology, University of California San
Diego and VA San Diego Health System, La Jolla, California,
United States

9Retina Service, Massachusetts Eye and Ear, Department of
Ophthalmology Harvard Medical School, Boston, Massachu-
setts, United States

Pathway Analysis Implicates PLCG2 in AMD IOVS j September 2019 j Vol. 60 j No. 12 j 4049

Downloaded from iovs.arvojournals.org on 10/31/2019



10Department of Ophthalmology, Perelman School of Med-
icine, University of Pennsylvania, Philadelphia, United States

11Department of Ophthalmology, Wilmer Eye Institute,
Johns Hopkins University School of Medicine, Baltimore,
Maryland, United States

12Department of Molecular Biology and Genetics, Johns
Hopkins University School of Medicine, Baltimore, Maryland,
United States

13Department of Neuroscience-Johns Hopkins University
School of Medicine, Baltimore, Maryland, United States

14Institute of Genetic Medicine-Johns Hopkins University
School of Medicine, Baltimore, Maryland, United States

15Institue de la Vision, Université Pierre et Marie Curie,
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