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Abstract 

The effects of preparative parameters on the surface basicity, composition, and 

transesterification activities of several Ca-La metal oxide catalysts were investigated. Four 

different preparation methods: ammonia-ethanol-carbon dioxide precipitation, physical 

mixing, impregnation, and coprecipitation, were studied. It was found that the ammonia-

ethanol-carbon dioxide precipitation method resulted in the highest BET specific surface 

area, base strength and base site concentration. Moreover, catalyst surface composition and 

basicity are a function of calcination temperature, precipitants, pH, and molar ratio of Ca to 

La in precursor solution, and storage conditions. XRD, XPS, basicity and BET tests 

revealed that catalyst structure and dispersion of Ca species strongly influenced the 

catalyst activity. High surface concentration of Ca species, strong base strength and high 

concentration of base sites, and high specific surface area are characteristics of an active 

transesterification catalyst.  

 

Keywords: Biodiesel, Transesterification, Solid base catalyst, Preparation method, Calcination, 

Precipitant
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1. Introduction 

Biodiesel, a renewable fuel with similar combustion properties to fossil diesel, is normally 

produced by transesterification of highly refined oils with short-chain alcohols. Biodiesel can 

significantly decrease the exhaust emission of CO2, SOx and unburned hydrocarbons from motor 

vehicles [1, 2]. Biodiesel is environmentally beneficial, and therefore, is a promising alternative to 

fossil diesel [3].  

Conventionally, biodiesel is produced by a transesterification process using a homogeneous strong 

base catalyst such as sodium hydroxide or potassium hydroxide. The strong base catalysts have 

many advantages such as high activity (complete conversion within one hour) and mild reaction 

conditions (65 
o

C and 1 atm) [4, 5]. However, these homogeneous base catalysts are corrosive and 

removal of the catalysts from product is not straight forward. In general, a large amount of waste 

washing water is generated, and a long time is required for phase separation [6, 7]. The use of solid 

base catalyst can alleviate these problems and thus, recently there is an increased interest in the 

development of a highly active solid base catalyst for biodiesel production [8, 9].  

Some calcium-containing catalysts were reported to be active in oil transesterification with 

methanol [10-13]. Several traditional methods have been described for the preparation of calcium-

containing catalysts. Albuquerque et al. [14] prepared a series of CaO catalysts supported on 

mesoporous silica using an impregnation method. Zhu et al. [15] prepared a solid  

super base by dipping CaO in ammonium carbonate solution. Kawashima et al. [16] produced  

CaTiO3, CaMnO3, Ca2Fe2O5, CaZrO3, and Ca-CeO2 catalysts using a physical mixing method. 

Ngamcharussrivichai et al. [17] and Wang et al. [18] used precipitation methods to prepare solid 

base catalysts. However, all these reported calcium-containing catalysts showed much lower activity 

than a conventional homogeneous NaOH catalyst. Thus, it is desirable to maximize the surface 

concentration of active catalytic active site [13, 19]. It has been reported that high-loading of active 

components cannot be easily obtained using an impregnation method [20, 21]. High-loading of active 

components can be obtained using physical mixing [18, 20]. A major drawback of the physical 

mixing method is low crystallinity of the catalyst which has a negative effect on catalytic activity 

[22]. Furthermore, a high-loading catalyst generally result in a low specific surface area, and thus 

low surface concentration of catalytic sites for transesterification [23, 24]. Precipitation methods 
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show promise to obtain a high concentration of active catalytic sites [25, 26], however, there are very 

few reports in relation to the effects of precipitants and preparation process on the structure of Ca-

based solid catalysts and their performance in oil transesterification with methanol. 

Ngamcharussrivichai et al [17] prepared Ca and Zn mixed oxide catalysts using Na2CO3 as 

precipitant. Wang et al [18] prepared CaO-ZrO2 catalysts using ammonia solution as precipitant. 

Since total deposition of metal ions is important [19, 27], it is apparent that a single precipitant 

cannot effectively precipitate all metal ions in solution. The effects of multiple precipitants on the 

structure and performance of Ca-base catalyst have not been reported. The objective of this study is 

to develop a multistep precipitation process to prepare a CaO-La2O3 based catalyst with a relatively 

high base strength, basicity, specific surface area and site concentration. A new precipitation 

process utilizing ammonia solution (as base precipitant), carbon dioxide (as acid precipitant) and 

ethanol (as neutral precipitant) was developed. The Ca3La1 catalyst prepared by this novel method 

was compared with those prepared by physical mixing, impregnation, and co-precipitation methods. 

The effects of catalyst preparative parameters on catalytic activities, such as pH value of precursor 

metal salt solution, molar ratio of Ca to La and calcination temperature were investigated. For solid 

base catalyst, proper storage conditions are important for maintaining a high activity [28]. Thus, 

the effects of adsorbed triglyceride, methanol, CO2 and H2O on the activities of CaO-La2O3 based 

catalysts were evaluated.  

2. Experimental  

2.1 Materials  

SSSSoybean oil (0.02% of free fatty acids (FFA) and 0.02 % of water) was purchased from Costco 

warehouse (Detroit, MI). Methanol (0.03 % water) was obtained from Mallinckrodt Chemicals 

(Phillipsburg, NJ). Calcium oxide (99.9 %), lanthanum oxide (99.9 %), calcium acetate hydrate 

(98%), lanthanum nitrate hydrate (98%), ethanol (95 %) and ammonia (99 %) are of analysis grade, 

and were purchased from Sigma-Aldrich Company (St. Louis, MO).  

 

2.2 Catalyst Preparation  

CaO-La2O3 series catalysts were prepared by four different methods.  

2.2.1 Ammonia-ethanol-carbon dioxide precipitation method:  

Appropriate amounts of 2 M La(NO3)3 and 1 M Ca(Ac)2 solutions were mixed, with pH value of the 

mixture adjusted to 9.0 with a 6 M ammonia solution. Stepwise addition of 100 ml of ethanol was 

made every 30 minutes (repeated four times) to the boiling mixture solution to promote initial 

precipitate formation. This was followed by bubbling of 30 mL/min of CO2 (10 (v) % in air) for 5 

minutes at 30 minute intervals to form carbonate precipitate (repeated six times). The pH value of 
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the precursor solution was maintained at 9.0 by ammonia solution throughout the whole process. 

The precipitate was filtered and washed with 100 mL of 75 % ethanol solution, dried at 150 
o

C for 12 

hours, calcined at 430 
o

C for 1 hr, then at 780 
o

C for 8 hours. This catalyst was labeled as Ca3La1. 

When only Ca(Ac)2 solution was used, the Ca-containing catalyst was labeled as CaO; and when 

only La(NO3)3 solution was used, the La-containing catalyst was labeled as La2O3.  

When only ammonia solution was used as precipitant, the prepared catalyst was labeled as 

Ca3La1-NH3. Analogously, the catalysts were labeled as Ca3La1-CH3CH2OH and Ca3La1-CO2 

when only ethanol or CO2 was used, respectively.  

2.2.2 Physical mixing method  

Eighteen grams of CaO and 33g of La2O3 were physically mixed with 50g of distilled water and 

ground in a mortar. This mixture was then dried at 100 
o

C for 10 hour and, calcined at 780 
o

C for 8 

hours. This catalyst was labeled as CaO-La2O3.  

2.2.3 Impregnation method  

La2O3 powder was impregnated with an appropriate amount of 1 M Ca(Ac)2 solutions, followed by 

drying at 100 
o

C for 10 hours, calcined at 780 
o

C for 8 hours. The process was repeated again to 

obtain the desired CaO loading. This catalyst was labeled as CaO/La2O3.  

2.2.4 Co-precipitation method  

Appropriate amounts of 1 M Ca(NO3)2, 2 M La(NO3)3 and 1 M Na2CO3 solutions were mixed with 

vigorous stirring. After the precipitate was formed, it was filtered and washed with distilled water. 

The solid precipitate were then dried at 100 
o

C for 10 hours, and calcined at 780 
o

C for 8 hours. This 

catalyst was labeled as La2O3 ·CaO.  

All catalysts were activated at 780 
o

C for 1 hour in pure N2 (30 mL/min) before any kinetic study.  

 

2.3 Catalyst Characterization  

The Hammett indicator method was used to determine the basic strength of the catalyst [28, 30]. 

Basic strength was expressed by an acidity function (H_) defined by Eq. (1), where [BH-] and [B-] 

are the concentrations of the indicator and its conjugated base, respectively, and pKBH is the 

logarithm of the dissociation constant of the indicator used:  

 

 
 

The indicators used were as follows: neutral red (pKBH = 6.8), bromothymol blue (pKBH = 7.2), 

phenolphthalein (pKBH = 9.8), 2, 4-dinitroaniline (pKBH = 15.0) [31, 32]. Basicity was measured  
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by the method of Hammett indicator-benzene carboxylic acid (0.02 mol/l anhydrous methanol  

solution) titration [33].  

The specific surface area of the catalysts were determined by a Micromeritics model ASAP 2010 

surface area analyzer (North Huntingdon, PA) based on nitrogen adsorption/desorption isotherms 

acquired at 77.2 K using a 30 s equilibrium interval. The surface area was computed using the BET 

(Brunauer–Emmett–Teller) model. All catalyst samples were degassed at 200 °C for 5 h prior to 

analysis to remove any adsorbed molecules from the pores and surfaces.  

Thermal decomposition of the catalyst was evaluated by thermogravimetric analysis/differential 

thermal analysis (TG/DTG) carried out on a Perkin Elmer Pyris-1 (Waltham, MA) operating under a 

flow of nitrogen (30 mL/min) and at a 10 
o

C/min heating rate from room temperature to 1273 K.  

Powder X-ray diffraction (XRD) patterns were taken with a Rigaku RU2000 rotating anode powder 

diffractometer (Woodlands, TX) equipped with CuKα radiation (40kV, 200mA), over a 2θ range of 

20
o 

-80
o

, with a step size of 0.02 
o 

and a scanning speed of 5
o 

/min.  

Energy dispersive spectrometry (EDS) was performed with an Hitachi S-2400 Scanning Electron 

Microscope (San Jose, CA). Maximum operating voltage used was 25kV.  

 

2.4 Biodiesel Reactions and Product Analysis  

Erlenmeyer flasks (25 mL) containing oil, methanol, and catalysts were used as batch reactors. In 

most studies, 10.0 g of soybean oil, 7.6 g of methanol, and 0.5 g of activated oxide catalyst were  

put into a flask. Flasks containing the reactant mixture were heated in a shaking bath (Series 25  

incubator, New Brunswick Scientific Co.) maintained at 58 
o

C and shaken with a speed of 450 rpm.  

The tube reactor has a dimension of 20 mm i.d. • 355 mm length in which 8 g of Zn3La1 catalyst 

was packed. Reactants were premixed in a beaker and then pumped into the top of the vertically 

oriented reactor. The flow rate was fixed at 0.2 mL/min (Chrom. Tech. Inc., Apple Valley, MN); 

reaction temperature was held at 58 
o

C in a water bath (PolyScience Inc., Warrington, PN); reaction 

pressure was around 1 atm; resident time was 120 minutues; molar ratio of methanol to oil varied 

from 15:1.  

The concentrations of FAME in the samples were quantified by using a GC-MS (Clarus 500 GC-

MS, Perkin-Elmer) with a capillary column (Rtx-WAX Cat. No.12426). Ethyl arachidate (Nu-Chek 

Prep Inc, Elysian, Minnesota) was used as an internal standard. Water content was analyzed using 

a Brinkman/Metrohm 831 KF Coulometer (Westbury, NY) according to ASTM D 6304-00. FFA 

concentration was determined using a Brinkman/Metrohm 809 titrando (Westbury, NY) according 

to ASTM D 664.  

3. Results and Discussion  



DIGITALCOMMONS@WSU  |  S. Yan, et al.  |  2010 7

3.1 Effect of  preparation method  

The XRD spectrum of Ca-La metal oxide catalysts which were prepared by four different 

preparation methods were shown in Figure 1. For the Ca3La1 catalyst, Ca(OH)2 and La(OH)3 

phases were identified, indicating that Ca3La1 consisted of a mixture of each hydroxide. For  

CaO/La2O3, only the La(OH)3 phase was identified and no Ca crystalline peaks were detected,  

even though the EDS results (Table 1) show that this catalyst had a bulk Ca to La ratio of 0.3. The 

XRD spectrum of the CaO/La2O3 also shows that there was a slight shift of the peaks at 27.2
o 

and 

28.0
o 

which corresponded to the (1, 1, 0) and (1, 0, 1) planes of La(OH)3, respectively.  

 

 

Fig. 1. XRD spectrum of Ca3La1, CaO/La2O3, La2O3�CaO, and CaO–La2O3. 

 

These shifts suggest that La3+ ions in the host lattice were partially substituted by Ca2+ ions [34]. 

For La2O3 ·CaO, there were no evident diffraction patterns of Ca or La species suggesting a highly 

amorphous nature of this material [35]. For CaO-La2O3, the physically mixed sample, both Ca(OH)2 

and La(OH)3 phases were found. However, the half-width of peaks of Ca(OH)2 and La(OH)3 phases 

were smaller than those of the Ca3La1 catalyst, indicating that the crystal size of CaO-La2O3 was 

bigger than Ca3La1. The XRD measurements suggest that calcium can exists as segregated 

Ca(OH)2 crystal (as in Ca3La1 and CaO-La2O3), incorporated into the La species lattice (as in 

CaO/La2O3), or amorphous form (as in La2O3 ·CaO), as a result of different preparation procedures.  

It has been reported that the base sites over heterogeneous catalysts are active centers for 

transesterification [36, 37]. Thus, it is interesting to correlate the effects of base strength and 

basicity of the catalysts on activity. As indicated in Table 1, Ca3La1 shows the highest value in base 

strength (9.8 < H-< 15). Moreover, the total basicity of the catalysts is in the order of: Ca3La1 > 
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CaO/La2O3 > CaO-La2O3 > La2O3/CaO. As discussed before, Ca3La1 exhibits the best 

transesterification activity among these catalysts.  

The catalysts prepared by traditional methods have low BET surface areas (< 10 m
2

/g) as 

compared to Ca3La1 (62.6 m
2

/g, Table 1). XPS and EDS results show that surface atomic molar  

ratios of Ca to La for Ca3La1, CaO/La2O3 and La2O3 ·CaO catalysts are higher than bulk ones.  

This suggests that the ammonia-ethanol-carbon dioxide precipitation method, impregnation 

method and co-precipitation method can promote Ca dispersion on the surface of the catalyst.  

 

Table 1. BET specific surface area, surface atomic ratio of Ca to La, bulk molar ratio of Ca to La, and basicity of Ca3La1, 

CaO/La2O3, La2O3·CaO, CaO–La2O3.  

Catalyst 
Preparation 
method 

Bulk atomic 
ratio of Ca 
to La 

Specific 
surface area 
(m2/g) 

Surface 
atomic ratio 
of Ca to La 

Basicity (mmol/g) 
 

     
6.8 < H− 
< 7.2 

 

7.2 < H− 
< 9.8 

 

9.8 < H− 
< 15 

 

Total 
basicit
y 
(mmol
/g) 

 

Ca3La1 

Ammonia–
ethanol–
carbon 
dioxide 
precipitation 
method 

3.5 62.6 4.2 2.0 10.4 1.2 13.6 

CaO/La2O3 
Impregnation 
method 0.3 5.3 2.7 5.1 3.4 – 8.5 

La2O3·CaO 
Co-
precipitation 
method 

0.4 9.9 0.7 0.8 – – 0.8 

CaO–La2O3 
Physical 
mixing 
method 

3.5 6.2 3.1 3.8 2.1 – 5.9 

 

 

The catalytic performance of Ca-La based catalysts prepared by different preparation methods is 

presented in Figure 2. The FAME yields after one hour for these catalysts were between that 

achieved by homogeneous NaOH or H2SO4 catalysts. Ca3La1 needed about 60 minutes to get to the 

highest FAME yield (95.3 %), which shows a similar catalytic activity to NaOH and is higher than 

CaO/La2O3, CaO-La2O3 and La2O3 ·CaO. The catalytic activity trend of Ca3La1, CaO/La2O3, CaO-

La2O3 and La2O3 ·CaO parallels the variability of total basicity in Table 1; i.e. the higher the 



DIGITALCOMMONS@WSU  |  S. Yan, et al.  |  2010 9

basicity, the higher the activity of catalyst, which is in good agreement with early studies [13, 38, 

39]. The effect of catalyst components was also studied. Using an ammoniaethanol-carbon dioxide 

precipitation method, binary metal oxides catalyst, Ca3La1, single CaOcontaining, and single 

La2O3-containing catalysts were prepared. Figure 2 shows that binary metal oxides catalyst has a 

higher activity than pure metal oxides. Our previous study shows that there was a strong 

interaction between Ca and La species in the binary catalyst prepared by the ammonia-ethanol-

carbon dioxide precipitation method, which resulted in high basicity, high BET surface area and 

high catalytic activity in oil transesterification [39].  

 

 

Fig. 2. Transesterification activities of Ca3La1(1), CaO/La2O3(1), La2O3·CaO(1), CaO–La2O3(1), CaO(1), La2O3(1), 

H2SO4(2) and NaOH(3). Reaction conditions: (1) 10 g of soybean oil, 7.6 g of methanol, 0.5 g of catalyst and 

65 °C; (2) 20 g of soybean oil, 7.3 g of methanol, 0.6 g of H2SO4 and 65 °C; and (3) 20 g of soybean oil, 4.5 g of 

methanol, 0.2 g of NaOH and 65 °C. 

 

3.2 Effect of  calcination temperature  

Since the catalyst prepared by the ammonia-ethanol-carbon dioxide precipitation method showed 

promising activity in oil transesterification, the effects of preparative parameters, such calcination 

temperature, calcium loading, pH value, ammonia, CO2 and alcohol addition, and storage 

conditions, were investigated to optimize the catalyst structure and activities.  

Figure 3 is a TG curve of uncalcined Ca3La1. The total weight loss from 50 
o

C to 920 
o

C was about 

87 %. The weight loss before 200 
o

C was about 10 % which corresponded to the desorption of 

physically adsorbed molecules (H2O and CO2) [40]. The weight loss from 300 ~ 430 
o

C was about 70 

% which can be attributed to the decomposition of Ca(OH)2, La(OH)3 and Ca(OCH2CH3)2 [41, 42]. 
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Lastly, the weight loss at 700 ~ 780 
o

C was considered to be the decomposition of carbonate salts 

such as CaCO3 and La2CO5 [43, 44].  

 

 

Fig. 3. Weight losses as a function of temperature of uncalcined Ca3La1. Note the three weight loss stages. 

 

Based on the TG curve, the Ca3La1 catalyst was calcined at 300 
o

C, 450 
o

C, 780 
o

C and 950 
o

C 

respectively, and the total basicities were measured (Figure 4). It can be observed that the basicity 

of the catalysts initially increased with the calcination temperature and reached a maximum at 

780
o

C; but decreased when the calcination temperature exceeded 780
o

C. BET surface area in Table 2 

shows a similar trend. 780
o

C was considered to be the optimal calcination temperature to obtain a 

maximum value in both basicity and BET surface area.  

 

 

Fig. 4. Basicity of Ca3La1 calcined at different temperature. Note the basicity at 780 °C. 
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Table 2.  

BET specific surface area, surface atom ratio of Ca to La, binding energy and surface percentages of La, Ca 

and lattice oxygen. 

 

 

 

The chemical state and surface composition of the catalysts as determined by XPS are shown in 

Table 2. The binding energy (BE) of La 3d5/2 remained constant at 833.4 ~ 833.8 eV as calcination 

temperature increased. The BE of the two Ca 2P3/2 components were at 347.6 ~ 348.2 eV for CaCO3 

and 346.3 ~ 346.7 eV for Ca(OH)2 species, respectively [45]. Therefore, it appears that the outermost 

surface layers of the catalyst was carbonated and hydrated. The presence of CaO can be neglected 

since the BE of Ca in CaO is below that of Ca(OH)2 [46] and it is not observable in the XPS spectra. 

The difference between the TG curve, XPS and XRD can be attributed to contact with ambient 

environment when preparing XPS and XRD samples. CaO in fresh catalysts could react with H2O 

and CO2 in the air, forming hydroxide and carbonate salts [13]. Thus, there is no characteristic BE 

line for CaO. Two photoemission lines can be seen for O1s, which correspond to two distinct oxygen 

species. The line with low BE (528.7 ~ 529.1 eV ) was attributed to oxygen ions in the crystal lattice 

(Olatt); the line (530.8 ~ 531.2 eV) was to the adsorbed oxygen [46, 47]. Crystal lattice oxygen has a 

strong Lewis base site and it is generally considered as the active center for oil transesterification 

[48-50]. Table 2 shows that the surface concentration of Olatt and Ca
2+ 

initially increased with 

calcination temperature, reached the highest value at 780 
o

C, and then decreased with further 

increase in temperature. On the other hand, surface La
3+ 

kept increasing with calcination 

temperature.  

The effect of calcination temperature on the catalytic acitivity of Ca3La1 is shown in Figure 5. The 

catalyst calcined at 780 
o

C shows the highest activity and a FAME yield of 95.3 % can be obtained in 
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90 minutes. The catalysts calcined at 300 
o

C and 450 
o

C show low conversions even with an extended 

reaction time (180 minutes). The catalyst calcined at 950 
o

C shows a relatively high activity and a 

yield of 87.8 % was reached after 180 minutes. Catalyst activity increased with calcination 

temperature until 780 
o

C and then slightly decreased with further temperature increase. The 

catalyst activities also displayed a similar pattern as basicity (Figure 4), BET surface area and 

surface Ca 
2+ 

and Olatt concentration (Table 2) as a function of calcination temperature.  

 

 

Fig. 5. Yield of FAME based on the catalysts calcined at 300 °C, 450 °C, 780 °C and 950 °C. Reaction 

conditions: 10 g of soybean oil, 7.6 g of methanol, 0.5 g of catalyst and 65 °C. 

 

3.3 Effect of  precipitants  

Table 3 shows the catalyst structure and performance of precipitates of ammonia solution, ethanol 

and CO2. Using NH3 solution, major precipitates formed were hydroxides such as La(OH)3 and 

Ca(OH)2 [51]. EDS results show that for Ca3La1-NH3 catalyst, the bulk molar ratio of Ca to La is 

only 0.4, which is much lower than that of the original precursor solution (3:1 of Ca to La). This 

suggests that Ca ions present in the original solution were not totally precipitated. BET results 

show that it has a low specific surface area as compared to Ca3La1. The Hammett indicator results 

show that it had a low base strength and small amount of basicity. Correspondingly, the FAME 

yield using Ca3La1-NH3 was only 5.6 % at 90 minutes. Using CO2 as precipitant, carbonates such as 

CaCO3 and La2CO5 were formed [51, 52]. Similar to Ca3La1NH3, Ca3La1-CO2 has a low bulk ratio 

of Ca to La, low BET surface area, and poor basicity resulting in a poor transesterification activity. 

When ethanol was used as a precipitant, the major precipitate formed is ethylate [51, 52]. Ca3La1-

CH3CH2OH exhibited a high specific surface area and a wide distribution of base strength (Table 3). 

However, it still had a low bulk ratio of Ca2+  to La3+, and low FAME yield (32.1 % after 90 minutes). 
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However, as discussed earlier, Ca3La1 catalyst, in which ammonia, ethanol and CO2 were 

sequentially used as precipitants, had the highest bulk ratio of Ca to La, highest total basicity and 

highest FAME yield.  

 

Table 3. Bulk molar ratio of Ca to La, BET specific surface area, basicity and yield of FAME of Ca3La1–

NH3, Ca3La1–CO2, Ca3La1–CH3CH2OH and Ca3La1. Reaction conditions: (1) 10 g of soybean oil, 7.6 g of 

methanol, 0.5 g of catalyst and 65 °C. 

 

 

 

In this sequential precipitation approach, the addition of NH3 solution (base precipitant) could 

quickly increase pH value of the precursor solution. Bubbling in CO2 (acid precipitant) led to the 

formation of carbonate and slightly decreased the pH value. Thus, by adjusting the NH3 and CO2  

addition, and maintaining the pH value, Caand Lacan be precipitated in the desired ratio  

from the precursor solution. There are two possible functions of ethanol. Firstly, during the  

calcination process the ethylate decomposes and generates a large mount of CO2 and H2O. These 

gases may expand the volume of catalyst precursor and lead to the formation of micropores which 

yields a high specific surface area [27]. Secondly, base strength of CaO prepared from CaOCH2CH3 

is much higher than that prepared from CaCO3 and Ca(OH)2 [53]. Thus, ethanol may enhance the 

catalyst basicity. The cooperative effect of the three precipitants leads to a more complete and 

uniform precipitation and a high specific surface area, base strength and basicity, resulting in a 

high transesterification activity.  
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3.4 Effect of  precursor solutions  

Table 4 shows that if the pH value was kept at 6.0 or 7.5, the final catalyst had a relatively low 

bulk molar ratio of Ca to La, which suggests that Ca
2+ 

in precursor solution was not fully 

precipitated. XPS results show that the surface percentage of lattice oxygen, and the Ca
2+ 

and La
3+ 

increased with pH value of precursor solution, and led to a higher catalytic activity (Figure 6). These 

findings are consistent with previous studies that pH value and molar ratio of Ca to La in the 

precursor solution have an impact on the precipitation process [52, 54].  

 

Table 4. Effects of pH value of the precursor solution on the bulk molar ratio of Ca to La and surface 

percentages of La, Ca and lattice oxygen. 

 

 

 

Fig. 6. Yield of FAME based on the catalysts prepared from the precursor solution with 6.0, 7.5 and 9.0 of 

pH. Reaction conditions: 10 g of soybean oil, 7.6 g of methanol, 0.5 g of catalyst and 65 °C. 
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Table 5 shows that molar ratios of Ca to La in the precursor solution were different with those on 

the catalyst surface. When the molar ratio is 3.0: 1.0 in the precursor solution, the surface 

percentage of lattice oxygen and total amount of lattice oxygen, and the concentration of Ca
2+ 

and 

La
3+ 

were highest, and led to the highest catalytic activity (Figure 7). Thus, a basic precursor 

solution (pH 9.0) and 3.0: 1.0 molar ratio of Ca to La in solution were identified as the optimal 

conditions for the ammonia-ethanol-carbon dioxide precipitation method.  

Table 5. Effects of molar ratio of Ca to La of the precursor solution on the surface molar ratio of Ca to La 

and surface percentages of La, Ca and lattice oxygen. 

 

 

Fig. 7. Yield of FAME based on the catalysts with different molar ratio of Ca to La. Reaction conditions: 10 g 

of soybean oil, 7.6 g of methanol, 0.5 g of catalyst and 65 °C. 
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3.5 Effect of  storage conditions  

Solid base catalysts are often vulnerable because they have a tendency to adsorb acid molecules 

from the ambient environment and lose activity [19]. As discussed in previous reports [38, 39], CO2 

and H2O in air can easily poison basic sites on a catalyst surface and change the bulk crystal 

structure of the catalyst. However, information on the proper storage conditions for these types of 

the catalyst has not been reported. The effects of exposing the fresh catalysts in air, soybean oil and 

methanol on the activity of were investigated. The catalyst exposed to soybean oil showed a reaction 

rate very similar to that of freshly activated Ca3La1 catalyst (Figure 8). The catalysts exposed to 

methanol and air showed a significant decrease in catalytic activity. These findings suggest that 

active base sites on Ca3La1 can be effectively protected from acidic gas in air since soybean oil is 

non-polar and has a relatively low pKa value (3.55). On the other hand, methanol has a high pKa 

value (15.54) with dissolved acidic gases. Thus, these soluble acidic gases may poison the basic sites 

and lead to a gradual loss in catalyst activity.  

 

 

Fig. 8. Yield of FAME based on H2SO4(1), NaOH(2) and the catalysts stored in soybean oil, methanol and 

air(3). Reaction conditions: (1) 20 g of soybean oil, 7.3 g of methanol, 0.6 g of H2SO4 and 65 °C; (2) 20 g of 

soybean oil, 4.5 g of methanol, 0.2 g of NaOH and 65 °C; and (3) 10g of soybean oil, 7.6 g of methanol, 0.5 g of 

catalyst and 65 °C. 
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3.6 Catalyst durability  

Ca3La1 catalyst was successfully recycled three times in a batch stir reactor (see Figure 9a), but 

its activity dropped in the fourth cycle. And in a continuous fix bed reactor the yield of FAME 

maintained higher than 92 % for 14 days, but from the 15
th 

day catalyst deactivation can be observed 

(see Figure 9b). The deactivation of Ca3La1 catalyst was supposed to be related with the active site 

blockage by adsorbed intermediates or product species, such as diglyceride,  

monoglyceride, and glycerin and the contamination by O2, H2O, and CO2 in air as stated in 3.5  

section [13, 33].Some researchers also suggested that the deactivation was caused by leaching of 

catalyst components especially for the calcium containing species [55, 56]. Further study about 

prolonging catalyst life should be done.  

 

Fig. 9. Reusability of Ca3La1 catalyst. (a) In a batch stir reactor. Reaction conditions: 10 g of soybean oil, 

7.6 g of methanol, 0.5 g of catalyst and 65 °C and (b) in a fix bed continuous reactor. Reaction conditions: 

molar ratio of methanol to oil is 15:1, flow rate 0.2 mL/min, 8 g of Ca3La1 catalyst, resident time 120 min, 

58 °C. 
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4. Conclusion  

A sequential precipitation method with ammonia solution, ethanol and carbon dioxide as 

precipitants for solid base catalyst preparation has been developed. A cooperative effect among the 

precipitants allows a more complete and uniform precipitation process, a higher specific BET 

surface area, higher concentration of strong base sites, and a high catalytic activity in the oil 

transesterification reaction for biodiesel production.  

The structure of Ca and La metal oxides depends on the precipitation methods. Three types of Ca 

structures were observed: 1.Ca species segregated on the surface in the samples prepared by the 

ammonia-ethanol-carbon dioxide precipitation method and the physical mixing method. Crystal size 

of Ca species for Ca3La1 was smaller than of the CaO-La2O3. 2. Ca incorporated into the La(OH)3 

lattice prepared by the impregnation method, 3.Ca stayed as a non-crystal structure prepared by 

the co-precipitation method. Segregated and highly dispersed Ca species were obtained by the 

ammonia-ethanol-carbon dioxide precipitation method.  

The calcination temperature, nature of precipitants, pH value, and molar ratio of Ca to La have a 

significant effect on catalyst structure and activity. The Ca3La1 catalyst should be stored in non-

polar oil to prevent contamination and deactivation from ambient environment. Using this class of 

catalysts, which is relatively inexpensive because of low raw materials and manufacturing costs, 

significantly simplifies the product purification process, and greatly decreases the production cost of 

biodiesel.  
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