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A B S T R A C T

We show how an electricity customer decision support system (DSS) can be used to design effective demand
response programs. Designing an effective demand response (DR) program requires a deep understanding of
energy consumer behavior and a precise estimation of the expected outcome. Excessive demand shifting or
a high price responsiveness might create new peaks during low-demand periods. We combine insights from
a real-world pilot with simulations and investigate how we can design effective DR schemes. We evaluate
our pricing recommendations against existing economic approaches in the literature and show that targeted
recommendations are more beneficial for customers and for the grid. Furthermore, we conduct robustness
tests in which we apply our methods on two independent datasets and observe differences in peak demand
and electricity cost reduction, dependent on individual characteristics. In addition, we examine the role of
energy policy, as it varies across countries, and we find that the presence of competition in the electricity
market creates lower prices and more cost savings for individuals. Finally, we measure the economic value
of our DSS and show that our DSS can result in up to 38% savings on household electricity bills. Our results
exhibit how the design of effective DR can be achieved and provide insights to energy policymakers with
regard to understanding consumers’ behavior and setting regulatory constraints.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Electricity markets are currently experiencing a fundamental
change, transitioning from a traditional centralized structure to a
decentralized formation, where renewable sources produce a signif-
icant share of electricity [27,30]. The restructured electricity grid,
where all components are connected with an ICT infrastructure, is
known as smart grid [3,6]. According to [19] “the smart grid can be
defined as an electric system that uses information, two-way, cyber-
secure communication technologies, and computational intelligence
in an integrated fashion”. From a regulatory and policy-making point
of view, grid reliability and quality have been identified as the main
challenges in the smart grid [18]. One way to support the grid’s relia-
bility is to mitigate peak demand and prevent exposure of its infras-
tructure to critical strains [37,43]. Smart grid capacity should be able
to serve the peak demand at each point in time. However, most elec-
tricity customers are inclined to consume during peak hours when
they return home in the evening (e.g., 6 pm), as shown in their daily
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household consumption curves [14,20,31]. Therefore, key drivers are
incentives to electricity consumers (equipped with smart meters
and smart appliances1), who can schedule electricity consumption
more efficiently than in the past [11,37,42]. According to IEEE, smart
meters “are featuring two-way communications between consumers
and power providers to automate billing data collection, detect out-
ages and dispatch repair crews to the correct location faster” and
smart appliances are “capable of deciding when to consume power
based on pre-set customer preferences”.2 In our analysis, we assume
as consumers to be the retail household electricity customers that
engage only in electricity consumption processes. We do not account
for prosumers who also engage in small-scale production processes or
for commercial and industrial customers (C&I). Electricity consumers
are now a cornerstone of a balanced grid, since they can be incen-
tivized via pricing signals to shift part of their consumption to off-
peak hours, supporting grid stability (customer-driven process [37]).

1 EPRS — European Parliamentary Research Service: http://www.europarl.
europa.eu/RegData/etudes/BRIE/2015/568318/EPRS_BRI\T1\textbackslash.
%282015\T1\textbackslash%29568318_EN.pdf [Date Accessed: May 24, 2016].

2 https://www.ieee.org/about/technologies/emerging/emerging_tech_smart_grids.
pdf [Date Accessed: May 24, 2016].
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Fig. 1. Individual household analysis model overview.

Fig. 2. Energy consumer group analysis model overview.

Demand response (DR) [2,37,42] has been proposed as a set of tools
for shifting or curtailing consumer demand so that it adapts to
supply, creating a more balanced smart grid.

DR programs can bring numerous benefits to both the distribution
grid and to individual consumers. However, designing a successful
DR program is challenging. Firstly, consumers might show low will-
ingness to participate, affecting the effectiveness of the program [42].
Secondly, DR benefits are frequently not competitive compared to
the traditional capacity expansion solutions. Practically, DR schemes
must be designed carefully to achieve the desired outcome (peak
reduction or demand curve reshaping). This approach might not be
as cost effective as a traditional solution based on grid infrastruc-
ture expansion. Grid operators have considerable experience with
capacity expansion methods, whereas DR schemes are new and
highly dependent on human behavior and acceptance [24,42], which
can make them costly and less effective than traditional approaches.
Finally, DR pricing schemes might lead to herding behavior and
avalanche effects on shifting power demand [20,29,33,44]. This can
happen when energy consumers simultaneously react to price sig-
nals and change their consumption pattern, creating an avalanche
effect. Therefore, instead of having a flat demand curve, there might
be situations that demand is more volatile, yielding new peaks.

Increased consumer sensitivity can result in herding, since all
consumer strive to minimize electricity costs and tend to shift
consumption to low-price periods. We examine how consumer
price sensitivity influences the effectiveness of a DR program. Our
data-driven approach is rooted in evidence from real-world data,
rather than theoretical assumptions, which may not always reflect
reality. Data-driven methods might be powerful in situations when
exploratory investigation is required [21]. Our results are based
on simulations and real-world experiments.3 We see that each
consumer type responds differently to the same DR schemes. We
provide insights to energy policymakers about designing effective DR
schemes, targeting heterogeneous consumer populations. The main
data comes from a multi-residential building in Sweden, comprising
33 apartments where we account for both individual households
and the building as an aggregate power consumption unit. However,
in the Robustness Tests Section we apply our methods on two
independent datasets (from the Netherlands and the USA) to show
generalizability of results.

3 Conducted within the EU Project “Cassandra” https://cassandra.iti.gr:8443/
cassandra/app.html [Date Accessed: May 24, 2016].

https://cassandra.iti.gr:8443/cassandra/app.html
https://cassandra.iti.gr:8443/cassandra/app.html
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Fig. 3. Appliances of Household W as identified by our platform.

Designing effective DR schemes in the smart grid is a rather chal-
lenging task, since many parameters need to be taken into account.
First, in the electricity grid, unlike any traditional supply chains,
there is a lot of volatility (on the supply and consumption side)
which has increased with the introduction of renewable energy
sources that are highly weather dependent. Second, electricity is a
perishable good which needs to be consumed at the moment it is
produced, otherwise it gets lost. Unlike other perishable goods (fish,
flowers [34], etc.), electricity cannot last even a moment without
being consumed or stored. Effective DR schemes must be able to
match demand and supply, minimizing electricity losses. This makes
electricity pricing different than pricing in other capacity alloca-
tion domains. In traditional supply chains, any intermittency on the
supply side can be overcome by warehousing. However, in smart
grids storage is not available on a large scale, and wherever it is avail-
able (EVs, cold storage, etc.), it is used mostly for industrial purposes,
and is quite expensive. In addition to all these factors, consumer
responsiveness to prices is a key factor for creating pricing incen-
tives that can shift electricity consumption. This price responsive-
ness needs to be examined thoroughly in each consumer portfolio,
since prices designed for different types of consumer responsiveness
might not be effective in other portfolios (we observe this effect in
the Benchmarks Section). In many capacity allocation problems, this
price responsiveness or human acceptance might not be as predom-
inant as in electricity markets [7,9,41]. This makes the smart grid
a different domain than traditional supply chains, and therefore it
requires different treatment. The presented problem has been identi-
fied as one of the “wicked problems” [26] which poses major societal
challenges, such as the sustainability challenge. Finally, measur-
ing the actual price responsiveness of electricity consumers can be

Fig. 4. Appliances of Household X as identified by our platform.

Fig. 5. Appliances of Household Y as identified by our platform.

difficult, mainly because of the privacy legislation. Therefore, having
an indication of how electricity consumers react to pricing schemes
and markets [4,25] can be very helpful for electricity policymakers.

Creating wrong pricing incentives in the electricity grid, can
threaten its stability and quality of service [42]. Having uninter-
rupted electricity supply on the grid and high quality service is
an important factor that goes beyond the availability of any other
commercial product and influences energy policy overall. Therefore,
there is the need to examine thoroughly how we can design effec-
tive DR schemes. What makes the DR design even more challenging
is the need for combining real-world data with simulations. The
Cassandra software platform is the first large scale DSS implemen-
tation for the smart grid aiming to service energy policymakers. It
has involved multiple research institutions across Europe and was
one of the first projects that obtained permission from the EU to per-
form real-world pilots on electricity consumers (conducting pilots
on electricity consumers and having access to their raw consump-
tion data is challenging due to strict privacy legislation). We combine
insights from this pilot with simulations and investigate how we can
design effective DR schemes. We evaluate our pricing recommen-
dations against existing approaches in the literature and show that
targeted recommendations are more beneficial for customers and
for the grid. We then conduct robustness tests in which we apply
our methods on two independent datasets and we show how the
results change. In addition, we demonstrate the role of energy policy,
as it varies across countries, in providing successful pricing recom-
mendations. Finally, we show the economic value of our DSS and
the recommendations it provides to electricity customers, before and
after adjustments for energy policy compliance. Our results show
how the design of effective DR can be achieved and provide insights

Fig. 6. Appliances of Household Z as identified by our platform.
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Table 1
Average peak reduction.

Household W Household X Household Y Household Z

Si = 100%, Ai = 10% −1.75% 15.53% 11.59% 5.84%
Si = Ai = 100% −33.04% 9.92% 23.10% −41.74%
Si = 10%, Ai = 100% −1.75% 14.36% 11.59% 5.84%
Si = Ai = 10% −5.04% 6.69% 4.82% 5.28%
Si = Ai = 50% 23.41% 10.48% 28.60% 14.23%

Table 2
Energy cost savings.

Household W Household X Household Y Household Z

Si = 100%, Ai = 10% 6.64% 5.26% 1.09% 2.01%
Si = Ai = 100% 51.77% 38.35% 33.70% 46.98%
Si = 10%, Ai = 100% 6.64% 5.26% 1.09% 2.01%
Si = Ai = 10% 1.77% 2.26% 1.63% 1.34%
Si = Ai = 50% 18.58% 12.03% 9.78% 12.08%

to energy policymakers with regard to understanding consumers’
behavior and setting regulatory constraints.

2. Background on demand response

The term demand response is used to reflect changes in power
consumption behavior as a result of a certain intervention. Palen-
sky and Dietrich [37] and the US Department of Energy [43] present
a general taxonomy of DR, which lists all measures that reduce
or modify power consumption behavior. The most common DR
schemes are clustered into two main categories [2,13,17,37,43]:

Price-based DR

– Time-of-Use (TOU): different unit prices over different
blocks of time

– Real Time Pricing (RTP): hourly fluctuating electricity prices,
reflecting changes in the wholesale electricity price

– Critical Peak Pricing (CPP): combination of TOU and RTP,
using TOU as basic price structure

Incentive-based DR

– Direct load control: the grid operator remotely turns off
electrical equipment to support grid’s stability

– Interruptible/curtailable service: rate discounts offered to
customers for curtailing their consumption

– Demand bidding/buyback programs: customer bids for cur-
tailment based on wholesale prices (mostly applicable to
large customers)

– Emergency demand response: incentive payments offered
to customers for reducing their load during high demand
periods

– Capacity markets: customers offer to provide generation
services to the grid in exchange for up-front payments

– Ancillary services market: customers bid for offering load in
the market as a means of operating reserves.

We refer to the price-based DR schemes offered to the customers
as TOU tariffs and to the real-world pilot as incentive-based DR. We
make this distinction because our pilot does not include variable
pricing schemes (due to legislative constraints). Instead consumers

Fig. 7. Consumption curve of Household W with different sensitivity and awareness parametrizations.
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Fig. 8. Consumption curve of Household X with different sensitivity and awareness parametrizations.

received incentives for achieving certain goals related to peak
demand reduction (see Section 3.2).

DR has been a key factor for allocating peak demand to low-
demand periods, increasing capacity utilization of the existing
infrastructure [42]. Aalami et al. [1] propose a model that selects
DR programs depending on consumer portfolio. Rodrigues and
Linares [39] present a computational model to quantify the bene-
fits of DR programs. Strbac [42] provides a thorough analysis of the
benefits and challenges of DR schemes. The main benefits are related
to the distribution and transmission grid that face peak demand
reduction as a result of power consumption shifting. The challenges
are related to the low benefits for participants and policymakers.
The low benefit assumption is also confirmed by [20,29] where the
authors approach the issue from two different angles.

Price responsiveness is identified as an important factor for suc-
cessful DR overcoming the low benefits barrier [7,24,41]. Different
responsiveness to prices brings versatile outcomes and policymakers
should account for this parameter when designing DR programs [9].
This manuscript examines how this responsiveness varies across
consumers (also found as sensitivity) learning from data and

presents tariff recommendations to consumers. Our price recom-
mendations aim at expanding the consumer’s choice spectrum by
tailoring electricity tariffs to their behavioral profiles.

3. Methods

3.1. Energy stakeholders’ decision support

Firstly, we analyze household consumption behavior after
adopting a TOU tariff. TOU tariffs are chosen since they have easily
measurable outcomes [23], that can be explained to the consumers,
and they generally discourage inefficient consumption.

The model used for the individual household analysis is illus-
trated in Fig. 1. First, we collect (using smart meters) minute-by-
minute consumption data from the households. For each household
i ∈ [1, N], N = 33 we get a raw consumption vector xi = {xi,t} and
identify sensitivity (Si ∈ [0%, 100%]) and awareness (Ai ∈ [0%, 100%])
toward price changes. These two parameters reflect the extent to
which an energy consumer is sensitive and aware of price changes.

Fig. 9. Consumption curve of Household Y with different sensitivity and awareness parametrizations.
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Fig. 10. Consumption curve of Household Z with different sensitivity and awareness parametrizations.

The combination of these two parameters serves as a proxy for con-
sumer responsiveness to prices, which has been identified as one of
the important factors for a successful DR scheme [7,24,41]. We argue
that besides being price sensitive, consumers must also be aware
of price changes, otherwise they will not change their consumption
behavior. Therefore, we chose the combination of awareness and
sensitivity to model price responsiveness.

The values of sensitivity and awareness were collected through
direct interviews with the tenants of the 33 households. More specif-
ically, the tenants were asked to answer the questions displayed
in [22] (pages 76–83), which are designed by a team of behavioral
researchers and demand response professionals. Holst et al. [22] con-
ducted a behavioral survey, aimed at eliciting customers’ sensitivity
and awareness. We use the outcome of the behavioral survey to
calibrate the sensitivity and awareness parameters of the tenants,
since it makes the results more realistic than using arbitrary cal-
ibrations. After the pilot, we conducted an accuracy analysis and
calculated the errors for these sensitivity and awareness values.
To evaluate the accuracy of those values, we gave the behavioral
survey to the tenants before and after the DR pilot presented in
Section 3.2. The difference in the values they indicated as answers to
the questionnaires provides an indication of potentially wrong val-
ues for sensitivity and awareness. The error of this analysis lies in
the interval [2%–14%]. Sensitivity and awareness are assumed to be

Fig. 11. The impact of sensitivity and awareness on average peak reduction (house-
holds with highest peak reduction in bold).

independent. If the probability of shifting for a household i at a time
step t is PSi,t, then it can be expressed by Eq. (1), where a ∈ [0, 1] is
a fixed coefficient. Increasing a values yields a higher probability of
shifting.

PSi,t = a • Si • Ai (1)

After importing the raw data vector xi = {xi,t}, the software
platform decomposes this vector into separate activities and identi-
fies related appliances. The disaggregation method used is an event
detection approach as described by [35]. This method uses a form
of supervised learning [36] and can identify which appliances are
switched on at each point in time, based on training with real
consumption patterns of all household appliances. In Section 3.3.1,
the accuracy of the disaggregation approach is evaluated (∼66.4%
accurate). The goal of this method is to produce accurate disaggre-
gation of the consumption vector xi so that distinct activities are
identified. The disaggregation process gives as output a discrete set
(Acti = {Acti,j}) with all the activities j ∈ N and a discrete set
(Appli = {Appli,m}) with all the appliances m ∈ N of each household
i. It also returns a set Probi = {Probi,j} with all the probabilities of
occurrence for each activity j. All these sets together with the Si and
Ai values are the inputs of the Monte Carlo (MC) optimization [8].

Fig. 12. The impact of sensitivity and awareness on electricity cost savings (house-
holds with highest cost savings in bold).
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Table 3
TOU tariffs.

Off-peak price (€/kWh) Peak price (€/kWh)

Tariff 1 [00:00–06:00] 0.15 [06:00–00:00] 0.32
Tariff 2 [00:00–08:00] 0.15 [08:00–16:00] 0.30 [16:00–00:00] 0.37
Tariff 3 [00:00–06:00] 0.16 [06:00–12:00] 0.26 [12:00–18:00] 0.32 [18:00–00:00] 0.37

Other inputs for the MC module include various pricing schemes in
the form of a temporal price vector (P = {Pt}). Combining all these
inputs, the MC module optimizes the electricity costs of each house-
hold and schedules the activities accordingly. MC optimization is the
most suitable approach for solving the consumer’s cost minimization
problem. Due to the high volatility of the electricity consumption
curve, there might be situations where the global optimum is not
achieved, and the algorithm might give a local optimum as global.
With the MC optimization we have the advantage of multiple itera-
tions with different starting points, making sure that the algorithm
converges to the global optimum.4

The simulated output (yi = {yi,t}) is the expected power demand
of this particular household i, benefiting the most from the offered
TOU tariff, and is determined by Eq. (2). Using the vector yi after each
experiment, we provide recommendations for suitable TOU tariffs
for particular households and for the building as a whole. A highly
volatile yi requires different pricing incentives than a more constant
and predictable consumption vector yi.

yi = arg minyi,t

T∑

t=1

yi,t • Pt (2)

T is the time horizon and Pt the prices offered for each time step
t ∈ [1, T]. These prices are the designed TOU tariffs in the simulation
experiments.

Next, we analyze consumer group behavior, using the model in
Fig. 2. We observe that now the price vector (Pl) can be different per
group Gl and the output of the model is the summation of the outputs
(yl) of each group (y =

∑k
l=1 yl). The clustering module in the soft-

ware platform [45], receives as inputs the raw consumption vector
xi = {xi,t} of each household, together with the values for Si and Ai,
produces clusters of consumers and analyzes their similarities. We
tested different clustering methods with similar results and selected
k-means clustering [5] as it gave the most robust results. The basic
logic of k-means clustering in our particular problem is summarized
by Eq. (3).

G = arg minGl

k∑

l=1

∑

ui∈Gl

‖ ui − ll‖2 (3)

Here G = {G1, . . . , Gk} is the set of the created clusters and l ∈
[1, k]. The vector ui is d-dimensional and represents each household
consumer i. Each dimension d represents one attribute of the con-
sumer. One example can be ui = {xi, Si, Ai} with d = 3. The variable
l l stands for the mean of the points in Gl. This algorithm practically
strives to minimize the within-clusters variation. Selecting the value
of k in k-means clustering might influence the results. Therefore, in
Section 4 we experiment with various values and select the one with
the most robust results. The online Appendix (http://xlarge.rsm.nl/
DSS/Appendix.pdf) presents a table of the notation used throughout
the paper.

4 Another way to solve the problem would be to use hill-climbing or simulated
annealing methods [40], but they would need to be restarted manually many times
and would require random starting points to ensure convergence.

Table 4
Cost reduction resulting from the adoption of each tariff.

Tariff 1 Tariff 2 Tariff 3

Household W 6.64% 22.62% 29.68%
Household X 5.26% 5.34% 4.58%
Household Y 1.63% 2.14% 1.09%
Household Z 1.34% 1.32% −0.01%

3.2. Real-world pilot

To compare the recommendations provided by the simulations,
we conducted a real-world pilot. As part of this pilot, smart meters
were installed in each apartment in a multi-residential building in
Sweden. We focus on the apartments as individual consumers as well
as, on groups of them, and on their dynamics.

The building consists of 33 apartments with different appliances,
and consumption activities. Therefore, we examined all apartments
and compared tenants’ reactions to DR. The pilot consists of three
phases: the baseline, the feedback, and the demand response phase.
During the baseline phase, which lasted from January 1, 2013 to
May 31, 2013, smart meters were installed and measurements about
each household’s consumption were recorded (raw consumption
data xi = {xi,t}). During the feedback phase, which lasted from June
1, 2013 to October 31, 2013, we provided feedback to the consumers
about their peak consumption and about the periods that they tend
to consume the most. This feedback phase was intended to make
household customers aware of their actual energy consumption as
well as the time intervals in which they tend to create peaks so
that they can make conscious decisions about shifting during the
final phase (DR phase). In other words, once customers know when
they create peaks, they can consciously reduce them by not con-
suming at a certain time of day. Therefore, this feedback together
with the actual incentive is captured in our results and is tightly
coupled to a successful pilot. Finally, during the demand response
phase, which lasted from November 1, 2013 to February 28, 2014, we
gave consumers incentives to reduce their peak demand in exchange
for financial rewards. More specifically, they would receive €1500
if they reduced their average consumption by 7% or more, during
the demand response phase, €1000 if they reduced their average
consumption by 5%–7% and €500 if they reduced it by 3%–5%. The
consumption reduction bounds of >7%, 5%–7% and 3%–5% were
selected based on previous real-world pilots as the most commonly
used and as realistic goals for this region of Sweden. This pilot offers
financial incentives to electricity consumers for shifting or curtailing
their demand. Hence, it can be categorized under incentive-based
DR, which is defined as a program that “gives customers load-
reduction incentives that are separate from, or additional to their
retail electricity rate” [43].

Table 5
Average peak reduction resulting from the adoption of each tariff.

Tariff 1 Tariff 2 Tariff 3

Household W −2.52% 22.92% 21.16%
Household X 14.36% 17.27% 16.22%
Household Y 4.82% 4.72% 4.56%
Household Z 5.28% −2.81% 5.00%

http://xlarge.rsm.nl/DSS/Appendix.pdf
http://xlarge.rsm.nl/DSS/Appendix.pdf
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Fig. 13. Peak demand reduction and electricity cost savings for Tariffs 1, 2, and 3.

3.3. Data description

In this section we first describe the individual household obser-
vations used in our analysis and then examine the multi-residential
building, as an aggregation of individuals.

3.3.1. Individual households
We analyzed all 33 households in the multi-residential building

and provided personalized feedback about their energy consump-
tion. Due to space limitations four households were selected
for detailed results demonstration. The selection was based on
diverse characteristics (sensitivity, awareness, appliances, reaction
to incentive-based DR, etc.) and their interest to receive personalized
recommendations and put them in practice. For confidentiality
reasons, we refer to the households in question as Households W, X,
Y, and Z. The online Appendix presents the detailed analysis of all
33 households (http://xlarge.rsm.nl/DSS/Appendix.pdf).

Household W. Household W provided us with the list of appliances,
which we use to evaluate the accuracy of the disaggregation. After
importing the raw consumption data xw, we get appliance list Applw
shown in Fig. 3. Comparing it to the actual list of appliances, we
observe that 12 out of 17 appliances were predicted correctly, which
makes the accuracy of the disaggregation module 70%. Fig. 3 shows
that the largest portion of energy consumption comes from the
cooker hood fan (cooking extractor), the microwave, and the enter-
tainment appliances.

Household X. Household X also provided us with the appliance list.
After importing the raw consumption data xx, we get appliance list
Applx shown in Fig. 4. In this household, 12 out of 18 appliances were
predicted correctly (accuracy around 67%). We conducted the same
analysis for 17 (out of 33) households that agreed to provide their
appliance list and found that the average disaggregation accuracy
across 17 households is 66.4%. This accuracy rate is quite common
in the energy disaggregation literature. Kolter et al. [32] have an
electricity disaggregation accuracy of [47%–59%]. Parson et al. [38]

have a disaggregation accuracy which differs across appliances with
a minimum of 22% for the air-conditioning units and a maximum of
77% for the refrigerator. Kim et al. [28] find that their disaggrega-
tion accuracy lies in the interval of [65%–75%]. The disaggregation
method predicts all appliances correctly except freezers and dryers.
This will be improved as more data are fed into the platform and the
method is better trained. Furthermore, the largest part of consump-
tion comes from cooking appliances (including microwave oven) and
entertainment devices (Fig. 4).

Household Y. Household Y did not provide a list of appliances, and
therefore we had to rely on the software’s disaggregation to identify
appliances and activities. Given the previous record of 66.4% accu-
racy in detecting activities, the outcome is expected to be similarly
accurate. From the pie chart in Fig. 5, we observe that entertain-
ment devices consume the largest portion of power, whereas cooking
activities are also consumption-intensive.

Household Z. Similarly, Household Z did not provide a list of appli-
ances, and therefore we had to rely on the outcome of the software.
The pie chart of activities of this household is comparable with
Household Y, but here entertainment devices have a slightly smaller
portion of the total power demand and cooking activities a slightly
higher portion (Fig. 6). Overall, the examined households so far,
show large portions of consumption on cooking and entertainment
activities (TVs, PCs, etc.).

3.3.2. Multi-residential building
Next we analyzed the multi-residential building, as an aggrega-

tion of individuals. This analysis provides insights to energy brokers
that want to manage their energy consumer portfolio effectively,
since the multi-residential building acts as a small consumer portfo-
lio. In such a group, the energy provider can create sub-groups with
similarities in consumption behavior and create pricing schemes
targeting different groups. This way, the provider can benefit from
the heterogeneity in energy consumption and create a less volatile
portfolio, and consumers can save on their electricity bills.

Table 6
Peak demand reduction and cost savings as a result of demand response pilot.

Household W Household X Household Y Household Z

Peak demand reduction (%) −19.69 −15.04 18.98 4.39
Cost savings (%) −18.14 −13.53 25.00 −5.37

http://xlarge.rsm.nl/DSS/Appendix.pdf
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Fig. 14. Benchmarking of all proposed TOU schemes with DR incentives: average peak reduction.

Fig. 15. Benchmarking of all proposed TOU schemes with DR incentives: electricity cost savings.

4. Results

In order to provide energy tariff recommendations to individual
customers, we use the models presented in Figs. 1 and 2 to analyze
the data collected from the real-world pilot. To ensure convergence
of the result, we run a large number of MC simulations (300)5 for
each experiment.

4.1. Sensitivity and awareness analysis

We simulate the response of the four household consumers pre-
sented in Section 3.3.1, to different types of pricing schemes, for a
range of response parameters (and sensitivity and awareness), so
that we can provide personalized recommendations. We contrast
the results to the observed values of sensitivity and awareness and
provide suggestions for becoming more sensitive or aware, in cases
that it can be beneficial. Furthermore, we show how sensitivity
and awareness influences peak demand and can be used by energy
providers and building managers to reduce peaks.

The sensitivity (Si) and the awareness (Ai) of the residents in
Households W, X, Y, and Z (i ∈ {W, X, Y, Z}) are adjusted within a range
of Si ∈ [10%, 100%], Ai ∈ [10%, 100%]. We display results for combina-
tions of low sensitivity and low awareness (Si = Ai = 10%) (this is
the lowest parametrization we can have besides 0% which will not
affect the simulation), low sensitivity and high awareness (Si = 10%,

5 We experimented with run numbers in the spectrum [10, 1000] and 300 is the
number that achieves convergence with negligible error in the produced results.

Ai = 100%), high sensitivity and low awareness (Si = 100%, Ai =
10%), high sensitivity and high awareness (Si = Ai = 100%), and
a median solution with Si = Ai = 50%. Tables 1 and 2 summarize
all the response results for each household and for all the combina-
tions of sensitivity and awareness calibration. The two metrics used
to evaluate the impact of sensitivity and awareness are average peak
reduction, which indicates the benefits for the distribution grid and
energy cost savings, which captures the benefits for the customers.

The energy cost after adopting a TOU tariff, CTOU is calculated
using the product of simulated response yi,t (Eq. (2)) and the
price/kWh (Pt) for each point in time t (CTOU =

∑T
t=1 yi,t • Pt). Cinitial

is the energy cost for the consumer during the same time period
without DR adoption. Assuming the initial profile is y′

i,t , then we
have: Cinitial =

∑T
t=1 y′

i,t
• Pt . The cost savings are: p = Cinitial − CTOU.

This calculation assumes that the household consumers know the

Fig. 16. Variable electricity prices from [16,20].
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Table 7
TOU tariffs from [15].

Off-peak price (€/kWh) Peak price (€/kWh) Off-peak price (€/kWh)

2-Tier [00:00–08:00] 0.1675 [08:00–19:00] 0.2122 [19:00–00:00] 0.1675
3-Tier [00:00–08:00] ∪ [19.00–00.00] 0.16752 [08:00–16:00] ∪ [18:00–19:00] 0.2122 [16:00–18:00] 0.12

prices in advance and they shift their consumption accordingly.
Thus, this calculation includes demand response behavior. We cal-
culate the results assuming a TOU pricing scheme. As an example,
we impose a two-part tariff with charges: 0.15 €/kWh for the time
period [00:00–06:00] (night tariff) and 0.32 €/kWh for the time
period [06:00–00:00] (day tariff) and we compare it to the baseline
scenario where the consumer is enrolled to the TOU tariff but does
not shift her consumption. The baseline scenario is equivalent to a
flat tariff that brings the same cost as the TOU tariff if no shifting is
involved (selected so that it satisfies the principle of cost neutrality
according to which there will be no changes on the electricity bill, if
the customer does not shift behavior).

We identify the Si and Ai parametrization that gives both positive
average peak reduction and substantial energy cost savings. In
Tables 1 and 2 we observe medium values for sensitivity and aware-
ness bring both peak reduction and energy cost savings, for all
households. Households W and Z have high levels of sensitivity and
awareness which makes them over-responsive to prices, creating
peaks instead of reducing them. Consequently, energy policymakers
should examine their consumer portfolio carefully before imposing
DR schemes, because a high responsiveness to prices might yield
negative results.

The Si and Ai parametrization that brings the highest benefits
for consumers is the Si = Ai = 100%. In other words, consumers
with the highest sensitivity and awareness toward price changes,
make the highest savings in their electricity bill. Consequently,
policymakers should examine their consumer portfolio carefully
before imposing DR schemes. Consumers with high sensitivity and
awareness do not need extra financial incentives for DR participation.
However, policymakers will need to add more customers to the port-
folio with lower sensitivity and awareness, so that on aggregate level
they avoid excessive price responsiveness and peak increase.

In Fig. 7, we see how the consumption curve of Household W
changes under different sensitivity and awareness parametrizations
with a TOU pricing scheme. The parametrizations Sw = 100%, Aw =
10% and Sw = 10%, Aw = 100% have identical consumption curves,
since the reaction to prices is analogous to the product of Sw • Aw. Fur-
thermore, we see that excessive reaction to price changes increases
the peaks for Sw = 100%, Aw = 100%.

The behavior of Household X reacting to the same prices is similar
(Fig. 8). The only difference is that the shifting with high awareness
and high sensitivity does not yield higher peaks than the initial curve,
leading to benefits for the grid and for the individual household. This

difference depends on each household’s consumption pattern and
shifting behavior.

For Household Y, the peak created from shifting for Sy = Ay =
100% is significantly lower than the actual peak during the baseline
case, creating benefits for the distribution grid and for consumers.
In contrast, for low sensitivity and awareness the shifting is so little,
yielding no significant benefits (Fig. 9).

In Fig. 10, we see that Household Z becomes over-responsive to
prices for Sz = Az = 100% and the peaks created from shifting are
higher than the initial ones. The parametrization of Sz = Az = 50%
gives the best results in lower peaks and in electricity cost savings
for the individuals.

A schematic summary of the previous results is presented in
Figs. 11 and 12. The households that either have the highest peak
reduction or the highest cost savings for the respective sensitivity
and awareness parametrization are marked in bold. Figs. 11 and
12 show how changes in sensitivity and awareness affect the
benefits households can achieve. For all households, medium sen-
sitivity and awareness achieves incentive alignment, creating the
most benefits for the grid (peak reduction) and for customers (lower
electricity bills).

4.2. Pricing schemes

After examining the impact of sensitivity and awareness on peak
demand reduction and electricity cost savings across households,
we impose TOU schemes to observe changes in the household con-
sumption curve. First, we start with a two-tier TOU tariff (Tariff 1)
with prices shown in Table 3. As this tariff only has two tiers, it
does not benefit the most from potential shifting behavior. There-
fore, we create TOU tariffs with more tiers that have the potential to
achieve both electricity cost savings and peak demand reduction. In
this way, energy policymakers do not need to provide extra financial
incentives and customers will get higher rewards for participating
in DR schemes. Gottwalt et al. [20] and Strbac [42] confirm that
DR schemes that only focus on peak reduction do not give signifi-
cant benefits for individuals. Therefore, we propose two DR schemes
described by Tariffs 2 and 3 in Table 3. These two schemes have
more than two tiers and our goal is to examine if they are more
effective in achieving peak demand reduction and cost savings. The
detailed results are presented in Tables 4 and 5 (the online Appendix
presents the full tables for all 33 households, http://xlarge.rsm.nl/
DSS/Appendix.pdf). These results are not dependent on the prices of

Table 8
Peak demand reduction and cost savings — benchmarks.

Hous. W Hous. X Hous. Y Hous. Z

[20] Peak demand red. (%) 4.15 2.34 1.35 −0.79
Variable Cost savings (%) 1.52 1.22 0.00 0.00
[15] Peak demand red. (%) 5.93 3.73 −10.53 −18.43
2-Tier Cost savings (%) 0.59 1.41 −5.36 −14.46
[15] Peak demand red. (%) 0.04 3.10 0.48 2.03
3-Tier Cost savings (%) 0.63 1.12 0.00 1.09
[16] Peak demand red. (%) −0.71 −6.36 3.03 −1.30
Winter Cost savings (%) 1.49 3.57 0.00 0.00
[16] Peak demand red. (%) 7.11 10.66 3.66 1.34
Summer Cost savings (%) 2.74 0.00 0.00 0.00

http://xlarge.rsm.nl/DSS/Appendix.pdf
http://xlarge.rsm.nl/DSS/Appendix.pdf
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Fig. 17. Benchmarking of the presented TOU tariffs: average peak reduction.

each tier per se, but on the structure of the tariff and the relative
difference between the tiers. Practically, the absolute numbers used
for the prices do not influence the structure of the results, but they
serve as an indication of what the results will look like. Increasing the
tiers of the tariffs yields higher peak demand reduction and higher
electricity cost savings for households. We compare the outcome of
adopting a TOU tariff to the baseline scenario where the consumer is
enrolled to the tariff but does not shift consumption (which is equiv-
alent to a flat tariff which brings the same cost as the TOU tariff
without shifting — cost neutrality). All compared tariffs presented in
Table 3 are constructed so that the average price per kWh is the same
in all pricing schemes.

We are interested in tariffs that bring both electricity cost savings
for individual customers and peak demand reduction. Fig. 13 (for
all 33 households) shows peak demand reduction on the vertical
axis and individual cost savings on the horizontal axis. In order
to have a win–win situation for smart grid and individual house-
holds, we need to look for tariffs in the first quadrant of the axes.
Tariffs located in the fourth quadrant are beneficial for individuals
but not for the distribution grid. The tariffs in these schemes target
consumers with high sensitivity and awareness, who become over-
responsive to price changes and create new peaks in demand. At least
one of the three tariffs achieves incentive alignment for 72% of the
consumer population, creating both peak reduction and cost savings.
The remaining 28% comprises high sensitivity and awareness con-
sumers who are over-responsive to price changes. This different
behavior to price changes and differences in consumption profiles
can be tackled by creating consumer groups with similar charac-
teristics so that demand shifting becomes more effective. Negative
peak reductions resulting from high price sensitive consumers can
be overcome by reducing the price difference between the tiers
of the tariff, so that their reaction to price differences becomes

milder. Finally, energy policymakers can create a more diversified
consumer portfolio where high price sensitive consumers offset the
consumption profile of low price sensitive consumers and create flat-
ter aggregate demand curve. Fig. 13 confirms our initial assumption
that DR schemes have different outcomes depending on individual
consumer characteristics. Therefore, it is important to examine these
characteristics in depth before designing a DR scheme.

4.3. Personalized recommendations

The results of the previous tariffs are compared to the outcome
of the incentive-based DR pilot described in Section 3.2. Comparing
an incentive-based DR with a simulated price-based DR cannot, of
course, provide a thorough comparison between the two methods.
It can only provide an indication of how these two techniques can
affect the customers and the grid. Incentive-based and price-based
DR (TOU tariffs) use different methodology, and we can therefore
only compare their outcome.

The demand response phase of the pilot lasted from November 1,
2013 to February 28, 2014. Since the baseline measurements were
gathered during different periods over the year, we apply daylight
correction in order to have a fair comparison. More specifically, we
normalize all the results on the daylight hours of the year to prevent
seasonal bias in our comparisons. The impact of this normalization
is that the results can now be comparable on the same basis. A
shortcoming of this normalization is that it does not account for dif-
ferent usage of appliances depending on the season. However, in our
particular case, this shortcoming does not influence the results sig-
nificantly, since most of the appliances (Figs. 3–6) do not have high
dependencies on the season. The lighting devices are most depen-
dent on the season and daylight hours, but they have a small share of
the total consumption (see Figs. 3–6).

Fig. 18. Benchmarking of the presented TOU tariffs: electricity cost savings.
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Fig. 19. Sensitivity and awareness histogram in the multi-residential building.

Table 6 presents the results of the DR pilot on the four households
in question. For Households W and X, demand actually increased
instead of decreased. The residents were either not willing to partic-
ipate and continued to consume as normal, or they were trying to
reduce peak demand in the common areas of the building, shifting a
lot of activities in their apartments. This apartment building has com-
munal areas where tenants can do their laundry or other household
activities. Therefore, trying to reduce consumption in the common
areas might have led to an increase in the demand of some individual
households. In other households, such as Y and Z, peak demand
decreased significantly, leading to cost savings for Household Y.
Although Household Z reduced its peak consumption, it increased
total energy consumption and, therefore, had higher electricity costs
than before the DR pilot.

Having examined the effect of these three TOU pricing schemes
and the DR pilot, we present the most suitable option for each house-
hold with regards to: a) average peak reduction and b) cost savings.
Figs. 14 and 15 show the average peak reduction and cost savings of
the four households, respectively.

For Household W, all recommendations, apart from the incentive-
based DR, bring peak demand reduction. However, only Tariff 2 and
Tariff 3 yield both peak demand reduction and individual savings on
the electricity bill. For Household X, all tariffs besides the incentive-
based pilot bring cost savings and average peak reduction. However,
the absolute value of peak reduction is lower than this of Household
W. For Household Y, the incentive-based DR is clearly the most effec-
tive, achieving both peak demand reduction and lower electricity
costs. For Household Z, the incentive-based DR leads to peak demand
reduction but also to an increase in the total energy consumption
and thus to higher electricity costs. Instead, Tariffs 1 and 3 bring
peak reduction but small cost savings. This is attributed to the low
consumer price sensitivity and awareness.

4.4. Benchmarks

To evaluate our approach against existing ones in the literature,
we use a set of benchmarks that has been used in the context of

Table 9
TOU tariffs in the multi-residential building for number of clusters
k=3.

Off-peak price (€/kWh) Peak price (€/kWh)

Cluster 1 [00:00–08:00] 0.18 All other time 0.27
Cluster 2 [08:00–16:00] 0.18 All other time 0.27
Cluster 3 [16:00–00:00] 0.18 All other time 0.27

household electricity consumption. All these benchmarks use the
same assumptions as we do (target household owners, aim at peak
demand reduction and electricity bill savings) and have been effec-
tive on the datasets they have been applied to. Each of these bench-
marks reveals a new aspect in the comparison (multi-tiers vs. single
tiers, low price variation vs. high price variation, etc.). First, we use a
variable pricing scheme proposed by [20] and has different tiers for
each hour of day (24 tiers, variable pricing). The prices are depicted
in Fig. 16 and come from the wholesale prices of the European Energy
Exchange (EEX). This benchmark is helpful for examining how a
multi-tier tariff performs in our particular population. In addition, we
use two other benchmarks from [15]. They are a two-tier and three-
tier tariff, and are displayed in Table 7. These benchmarks help us
understand how TOU tariffs designed for other populations perform
on our population. Finally, we used two benchmarks by [16]. These
are multi-tier tariffs (24 tiers, variable), designed for winter and sum-
mer, respectively. These two benchmarks (Fig. 16) have lower price
tiers than the other three benchmarks and our tariffs, and will there-
fore be useful to show how our population reacts to lower price
tariffs.

The benchmark results are shown in Table 8. Adding the results
from the presented benchmarks in Fig. 14, we get Fig. 17. We see
that our tariffs have a better peak demand reduction, compared to
the benchmarks. This is mostly attributed to the personalization of
the tariffs to our portfolio, having examined their price responsive-
ness. Similarly, adding the results from the presented benchmarks
in Fig. 15, we get Fig. 18. We see that the tariffs used in the liter-
ature perform worse both in terms of average peak and electricity
cost reduction. The three-tier tariff proposed by [15] performs better
than the two-tier one. We observed the same in our tariff struc-
tures. Furthermore, the tariffs presented by [16] do not perform well
in our population because they have quite low prices, and our cus-
tomers do not shift their behavior enough to create essential peak
demand reduction. Finally, we see that multi-tier tariffs (like the
ones proposed by [16,20] are not effective in our consumer group,
mostly because of the peak and off-peak hours and price differences.

Table 10
TOU tariffs in the multi-residential building for number of clusters
k=4.

Off-peak price (€/kWh) Peak price (€/kWh)

Cluster 1 [00:00–06:00] 0.15 All other time 0.27
Cluster 2 [06:00–12:00] 0.15 All other time 0.27
Cluster 3 [12:00–18:00] 0.15 All other time 0.27
Cluster 4 [18:00–00:00] 0.15 All other time 0.27
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Table 11
TOU tariffs in the multi-residential building for number of clusters
k=5.

Off-peak price (€/kWh) Peak price (€/kWh)

Cluster 1 [00:00–05:00] 0.14 All other time 0.27
Cluster 2 [05:00–10:00] 0.14 All other time 0.27
Cluster 3 [10:00–15:00] 0.14 All other time 0.27
Cluster 4 [15:00–20:00] 0.14 All other time 0.27
Cluster 5 [20:00–24:00] 0.14 All other time 0.27

Our consumer population shows, overall, substantial peak demand
reduction when there are prices differences, sufficient to create
cost savings from shifting. In other words, the residents will not
shift their consumption a lot without big price differences, mostly
because of their medium price responsiveness. The variable tariffs
used by [16,20] do not meet these criteria, and therefore do not
create substantial peak demand reduction.

4.5. Consumer group identification within a multi-residential building

After examining the effect of sensitivity and awareness of each
individual, we expand the analysis to the whole building. All 33
households belong to a multi-residential building managed by an
administrator, who is responsible for paying the aggregate electricity
bills. Our recommendations are useful for the building administrator
and for the energy provider of these 33 households.

We measured the consumption data of these households from
January 1, 2013 to May 31, 2013. We collected their baseline house-
hold consumption profiles and imported them into the software
platform. Using the CSN module as presented in Fig. 2, we identified
various consumer groups based on different segmentation criteria.
We selected the two criteria that have the highest variation among
the household consumers: total energy consumption and maximum
power consumption. We used real data from interviews with tenants
to calibrate the sensitivity and the awareness of each household. The
histogram in Fig. 19 summarizes the values of the parameters sen-
sitivity (Si) and awareness (Ai) of the household customers i in the
multi-residential building of our pilot.

We demonstrate scenarios with three, four and five numbers
of clusters (k ∈ [3, 5]) and apply the TOU pricing schemes in
Tables 9–11. Since there is no clear rule for selecting the number
of clusters in k-means algorithm [5], the parameter k is selected
based on domain knowledge or by judging the quality of the pro-
duced clusters. We selected these numbers of clusters (k ∈ [3, 5])
because we noticed that even when we increased the number of
clusters, the observations were mostly concentrated in 3–5 clusters.
The rest of the clusters were not sufficiently populated, creating no
real insights about the consumer groups. In addition, in some cases
(e.g., Fig. 25, right pane) the clusters are very close to each other,
indicating that these customers could belong to the same group. Fur-
thermore, given that we have 33 households, a number of clusters

Fig. 20. Histogram for segmentation criterion: total energy consumption.

Fig. 21. Boxplot for segmentation criterion: total energy consumption.

k ∈ [3, 5] is expected to create fairly populated clusters. We evaluate
the effect of these consumer clusters and their TOU tariffs on peak
demand and compare them to a flat tariff scenario where the whole
building faces a uniform pricing scheme of 0.24 €/kWh. This uniform
pricing scheme is selected to reflect the average electricity price in
northern Europe in 2013.6

In terms of consumer segmentation, we selected the two main
differentiating criteria: total energy consumption and maximum
power consumption. Typically, electricity consumers have similari-
ties in terms of electricity consumption. The main differences include
the overall consumption during a certain time horizon, which is
dependent on the number and type of household appliances they
possess and the maximum power at which they consume, which
depends on the time they consume a certain amount of electricity
and/or on any potential concurrent consumption from different
appliances (consuming a certain amount of electricity in a shorter
time interval creates higher power demand).

4.5.1. Total energy consumption segmentation criterion
We use total energy consumption as our first segmentation

criterion. It is expected that since the customers have different con-
sumption habits and appliances, they will also show variety in their
total energy consumption. This is confirmed by the variance of total
energy consumption on the histogram (Fig. 20) and the boxplot
(Fig. 21). We checked the between-groups differences among all
adjacent bins of the histogram and found that they are significantly
different at 99% confidence interval (pairwise t-test, p < .01). Since
the number of clusters (k) is still uncertain, we will experiment with
three possible values (k ∈ [3, 5]).

The clusters resulting from applying k-means on the multi-
residential building with possible values k ∈ [3, 5] are displayed in
Fig. 22. This figure, together with Fig. 25, shows how the clustering
of the households is done using Eq. (3). Each time (Figs. 22, 25)
a different segmentation criterion is used to create the clusters.
In addition, we show how changing the number of clusters (k)
affects the outcome. In Fig. 22, we see that for k = 3 the households
create two sufficiently populated clusters and one less populated
one. This means that regarding total consumption, the households
can be categorized in two sufficiently populated clusters and a less
populated cluster.

By applying the TOU tariffs in Tables 9–11 to these clusters, we
see average peak reduction and electricity cost savings shown in
Table 12. We see that k = 4 and k = 5 yield the most beneficial
results for the distribution grid (in terms of average peak reduc-
tion) and for the household customers (in terms of cost savings).
However, looking at the clusters for different cases of k, we see that

6 http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_price:
statistics [Date Accessed: May 24, 2016].

http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_price:statistics
http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_price:statistics
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Fig. 22. Consumer groups for segmentation criterion: total energy consumption.

some clusters are heavily populated with customers, whereas oth-
ers comprise only two or three customers. This results both from the
commonalities between the two groups that are stronger but also
from the relatively small consumer sample (33 households). These
scarcely populated clusters might be the reason that peak demand
reduction is relatively low in some cases. Behavior shifting in these
clusters is not as big compared to that of the other more populated
clusters, yielding a lower aggregate result. To get the results shown
in Table 12, we repeated each 300-run simulation 10 times (suf-
ficient number of runs to yield significant results) and performed
statistical significance analysis. Specifically, we used the two-sample
t-test to conduct pairwise comparisons of the electricity consump-
tion per hour (before and after consumer segmentation). Table 12
presents the statistical significance of the result and the effect sizes
in terms of Cohen’s d coefficient7 and effect size correlation (r) [12].
If Cohen’s d coefficient belongs to [0.2, 0.5), it indicates a small (but
not trivial) effect size, if it belongs to [0.5, 0.8), a moderate effect size
and if it is >.8, a large effect size. A large effect size means that a large
portion of the two samples does not overlap. The means and standard
errors of each comparison are indicated as M and SE, respectively
(M1, SE1 refers to the group of results after clustering and M2, SE2 to
the baseline group of results without clustering). Table 12 indicates
that Cohen’s d is >.8 in all cases, meaning large effects wherever they
are significant.

4.5.2. Maximum power segmentation criterion
We use maximum power of each household in the multi-

residential building as our second segmentation criterion. This is
expected to show differentiation among the consumers since it is
heavily dependent on appliances, apartment occupancy, and general
consumption habits. This is confirmed by the variance of maximum
power demand on the histogram (Fig. 23) and boxplot (Fig. 24). We
performed pairwise comparisons to check the between-groups dif-
ferences among all adjacent bins of the histogram and found that
they are significantly different at 99% confidence level (pairwise
t-test, p < .01).

The clusters resulting from applying k-means on the multi-
residential building with possible values k ∈ [3, 5] are displayed in
Fig. 25. After applying the TOU tariffs described at the beginning of
the Section, we see average peak reduction and energy cost savings
shown in Table 13. We observe that k = 4 and k = 5 create high

7 d = M1−M2√
(SD2

1+SD2
2)/2

, M1— mean of the results after clustering and M2— mean of the

results without clustering, SD1— standard deviation of the results after clustering and
SD2— standard deviation of the results without clustering.

benefits for the distribution grid and for the household customers.
Furthermore, for k = 4 we have four clusters that are sufficiently
populated and we also observe the highest electricity cost savings
(Fig. 25), since the groups of customers are large and shifting their
demand is effective. Also in Fig. 25, we observe that in the k = 5
case, two clusters are quite close to each other and could potentially
be represented by one cluster. To get the results shown in Table 13,
we applied the same process as described above. We observe that
in almost all cases, Cohen’s d is >.8, meaning large effects wherever
they are significant. The effect size is medium only for k = 3, but in
this case the results are not satisfactory for the grid or for the cus-
tomers, hence it is not a case for creating policy recommendations
and the medium effect size does not play an important role.

5. Robustness tests

To show that the proposed results are robust and generaliz-
able independent from the data used, we apply the three TOU
pricing schemes presented above, on two other datasets. The first
dataset includes households from the Netherlands and the second
includes households from Austin, Texas, USA. We argue that these
two datasets have distinct differences because the Netherlands has
a different climate than Austin, where temperatures are higher and
air conditioning installations are frequently used. Furthermore, the
data from the Netherlands and Austin differ in terms of behavior
and appliances from the household data in Sweden, allowing us to
derive more general results, not dependent on a particular dataset or
region. Due to space limitations, we present indicative results of this
analysis. The data from Austin and the Netherlands have 15 minute
granularity, were collected during 2013 and 2009 respectively and
represent mid-sized households, similar to those in Sweden (to allow
for comparability). We present an example of a ten-day household
consumption in the Netherlands and Austin in Fig. 26. Despite the
geographical distance, we observe that both households show a sim-
ilar consumption pattern. In the US household we observe a shift
of the peaks of approximately 150 min which could be explained
by differences in the daylight hours and in individual routines (i.e.
people in Austin returning from work and starting their household
activities later than people in the Netherlands). We also observe
slightly higher peaks in the US household, which was expected due
to its typically larger size and larger energy needs, compared to a
northern European household. The maximum power consumption
for this particular household in Austin is 7163 W and the maximum
power consumption for this household in the Netherlands is 6188
W. With respect to volatility we use the metric |max − min| and is
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Table 12
Average peak reduction and cost savings for k ∈ [3, 5] number of clusters with segmentation criterion: total energy consumption.

k = 3 k = 4 k = 5

Average peak reduction 3.86%* 5.32%∗∗ 5.08%∗∗

t(9) = −3.12 t(9) = −5.39 t(9) = −3.50
Cohen’s d = 1.40, r = 0.57 Cohen’s d = 2.41, r = 0.77 Cohen’s d = 1.56, r = 0.61
M1 = 10957.27, SE1 = 136.25 M1 = 10790.80, SE1 = 106.89 M1 = 10817.67, SE1 = 161.82
M2 = 11396.73, SE2 = 34.64 M2 = 11396.73, SE2 = 34.64 M2 = 11396.73, SE2 = 34.64

Energy cost savings 1.08% 2.80%∗∗ 3.13%∗∗

t(9) = −1.90 t(9) = −6.61 t(9) = −7.04
Cohen’s d = 0.85, r = 0.39 Cohen’s d = 2.96, r = 0.83 Cohen’s d = 3.15, r = 0.84
M1 = 40.14, SE1 = 0.22 M1 = 39.44, SE1 = 0.16 M1 = 39.30, SE1 = 0.17
M2 = 40.58, SE2 = 0.05 M2 = 40.58, SE2 = 0.05 M2 = 40.58, SE2 = 0.05

∗ p < .05.
∗∗ p < .01.

Fig. 23. Histogram for segmentation criterion: maximum power consumption.

higher for Austin (6915 W) compared to the Netherlands (6188 W).
Overall, both households show the same consumption pattern and
peaks of the same magnitude.

Tables 14 and 15 show how households in the Netherlands and
in Austin react differently to pricing schemes. This mostly depends
on the appliances they have and the activities they are willing to
shift. We see that all tariffs have a beneficial effect both for house-
holds and the grid in the Netherlands. That is mostly attributed to
the presence of shiftable appliances, unlike the households in Texas
that might not be able to shift the functionality of appliances like
air conditioning devices. In this case, Tariff 3 achieves both peak
reduction and electricity cost savings.

We examine the electricity pricing policies and the regulatory
constraints in applying the proposed tariffs in both countries.
Although the electricity market is deregulated in Texas, a regulatory
body oversees the market, ensuring fair use of this public

Fig. 24. Boxplot for segmentation criterion: maximum power consumption.

good.8 Therefore, if an electricity provider wanted to introduce new
electricity tariffs for Austin, it would have to offer services at market
prices so that it remains competitive. Currently, Austin has a multi-
tier tariff,9 offered by the main player (incumbent provider). In fact,
it is a five-tier electricity tariff which varies in summer and winter.
However, this tariff has multiple tiers that apply to different levels of
energy consumption (e.g., $0.033/kWh for [0, 500] kWh, $0.08/kWh
for [501, 1000] kWh, $0.091/kWh for [1001, 1500] kWh, $0.11/kWh
for [1501, 2500] kWh, $0.114/kWh for > 2500 kWh plus some reg-
ulatory charges of around $0.045/kWh) instead of different times of
the day, which is our proposed approach. On the one hand, we see
that the multi-tier tariffs are already in place and therefore there is
no need for extra regulation to allow for this tariff structure. On the
other hand, we observe that overall electricity prices are lower com-
pared to Europe. In Austin, the max rate is approximately $0.19/kWh
(electricity rate $0.114/kWh + regulatory charges $0.045/kWh),
which is lower than the European average price of €0.21/kWh. Our
price recommendations are tailored to European households and
are therefore in a higher price range. Consequently, if we had to
provide recommendations to household customers in Austin, Texas,
we would keep the same tariff structures presented in the paper,
adjusting however the tier levels to reflect a realistic price in this
area. Specifically, the average electricity tariff in Austin (as given by
the numbers above) is approximately $0.13/kWh. Table 16 shows
one potential formulation for recommended TOU tariffs for Austin.

In the Netherlands, the electricity market is also deregulated,
with a regulatory body, which ensures fair competition and delivery
of electricity to the end consumers [46]. The average electricity
price is approximately €0.18/kWh,10 and there are night tariffs in
place (two-tiered tariffs). This means that multiple-tiered tariffs,
as we recommend could also be implemented. If we had to tailor
our recommendations to this area, we would have to adjust the
prices so that the average corresponds to the average price there, so
that our price suggestions are competitive in this market. Table 17
shows one potential formulation for recommended TOU tariffs for
the Netherlands.

Tables 18 and 19 present the results after imposing the adjusted
prices. We see that all three adjusted tariffs in Austin and in the
Netherlands bring savings to the individuals, with the four-tier tariff
yielding the highest savings. However, all of these tariffs create
peak demand increase instead of reduction. This is because currently
the prices in Austin are very low, and in the Netherlands they are
lower than the European average, which leads to shifting electricity

8 https://austintexas.gov/department/regulatory-affairs [Date Accessed: May 24,
2016].

9 http://austinenergy.com/wps/portal/ae/residential/rates/residential-electric-
rates-and-line-items/ [Date Accessed: May 24, 2016].
10 http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_price:

statistics [Date Accessed: May 24, 2016].

https://austintexas.gov/department/regulatory-affairs
http://austinenergy.com/wps/portal/ae/residential/rates/residential-electric-rates-and-line-items/
http://austinenergy.com/wps/portal/ae/residential/rates/residential-electric-rates-and-line-items/
http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_price:statistics
http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_price:statistics
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Fig. 25. Consumer groups for segmentation criterion: maximum power.

Table 13
Average peak reduction and cost savings for k ∈ [3, 5] number of clusters with segmentation criterion: maximum power.

k = 3 k = 4 k = 5

Average peak 1.98% 5.51%∗∗ 6.00%∗∗

Reduction t(9) = −1.64 t(9) = −6.73 t(9) = −4.63
Cohen’s d = 0.74, r = 0.36 Cohen’s d = 3.01, r = 0.83 Cohen’s d = 2.07, r = 0.72
M1 = 11171.30, SE1 = 132.27 M1 = 10769.24, SE1 = 86.49 M1 = 10713.22, SE1 = 143.35
M2 = 11396.73, SE2 = 34.64 M2 = 11396.73, SE2 = 34.64 M2 = 11396.73, SE2 = 34.64

Energy cost 1.89%∗∗ 2.73%∗∗ 2.72%∗∗

Savings t(9) = −5.01 t(9) = −7.65 t(9) = −6.44
Cohen’s d = 2.24, r = 0.75 Cohen’s d = 3.41, r = 0.86 Cohen’s d = 2.88, r = 0.82
M1 = 39.81, SE1 = 0.14 M1 = 39.46, SE1 = 0.13 M1 = 39.47, SE1 = 0.16
M2 = 40.58, SE2 = 0.05 M2 = 40.58, SE2 = 0.05 M2 = 40.58, SE2 = 0.05

∗ p < .05.
∗∗ p < .01.

use to low-price time intervals. Consequently, demand is accumu-
lated in these time intervals, creating new peaks. This shifting to
low-price intervals is indicated by the high cost savings compared
to the tariffs before the adjustment. These results show that con-
sumer portfolios require thorough investigation before introducing
new tariffs. Currently, we assumed an average price sensitivity and
awareness for all consumers in Austin and the Netherlands (due to
lack of real data). These results also show that grid operators need to
carefully analyze consumer responsiveness before introducing per-
sonalized tariffs. Therefore, if the grid operator in Austin and in the
Netherlands wanted to introduce time-of-use tariffs, it should avoid
setting large price differences during the day and should examine
the customer portfolio carefully so that it identifies their respon-
siveness to prices. The Cassandra software platform can be useful
in simulating such tariff design scenarios before applying them in
practice, and preventing situations that might not be beneficial for
both parties in the electricity market (grid and customers).

Fig. 26. Example consumption of a household in NL and in Austin over a 10-day time
horizon (granularity 15 min).

Table 14
Cost reduction resulting from the adoption of each tariff.

Tariff 1 Tariff 2 Tariff 3

Netherlands 10.00% 10.00% 7.70%
Austin 3.92% 4.14% 3.02%

6. Managerial insights

The presented analysis can be applied to any country, as long
as the simulation experiments are calibrated to the particular
datasets. Specifically, from the Robustness Tests Section, we know
that consumer price responsiveness is an important component of
a successful simulation on the software platform and subsequent
implementation in the real-world. However, as long as the specific
datasets are available, the software can produce accurate simulation
scenarios, to examine the impact of specific pricing schemes. Fur-
thermore, in order to generate realistic results, we need to take
into account the electricity regulation in each part of the world. For
example, some countries do not allow variable pricing schemes (e.g.,
due to lack of smart metering infrastructure) and other countries
have monopolized electricity markets with certain electricity price
caps. All these conditions need to be accounted for, before designing
targeted pricing schemes for specific areas.

Table 15
Average peak reduction resulting from the adoption of each tariff.

Tariff 1 Tariff 2 Tariff 3

Netherlands 30.82% 14.08% 19.13%
Austin −3.56% −9.88% 2.79%
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Table 16
Adjusted TOU tariffs — Austin.

Off-peak price ($/kWh) Peak price ($/kWh)

Tariff 1 [00:00–06:00] 0.03 [06:00–00:00] 0.17
Tariff 2 [00:00–08:00] 0.03 [08:00–16:00] 0.14 [16:00–00:00] 0.24
Tariff 3 [00:00–06:00] 0.03 [06:00–12:00] 0.20 [12:00–18:00] 0.18 [18:00–00:00] 0.23

Table 17
Adjusted TOU tariffs — Netherlands.

Off-peak price (€/kWh) Peak price (€/kWh)

Tariff 1 [00:00–06:00] 0.06 [06:00–00:00] 0.22
Tariff 2 [00:00–08:00] 0.06 [08:00–16:00] 0.18 [16:00–00:00] 0.30
Tariff 3 [00:00–06:00] 0.06 [06:00–12:00] 0.14 [12:00–18:00] 0.22 [18:00–00:00] 0.30

In terms of economic impact, the Cassandra software platform
can be used to simulate multiple economic scenarios and calculate
the benefits for stakeholders. We presented a detailed analysis from
the household customer’s point of view and simulated the potential
cost reduction after adopting one of the proposed electricity tariffs.
Fig. 27 shows the economic impact of this adoption on the 33 house-
holds of the Swedish pilot. We see that overall, all pricing schemes
result in lower electricity bills for customers. Specifically, we observe
that a multi-tier electricity tariff is actually more beneficial for the
customer and can lead to cost savings of up to 38%.

We also observed in the Robustness Tests Section that the
presence of competition in the market has a positive effect on elec-
tricity customer savings. In other words, electricity providers have
to adjust their prices to the market to remain competitive. In Fig. 28,
we show the changes in cost reductions after introducing more com-
petitive tariffs. We observe, that overall the presence of competition
creates higher cost reductions for consumers compared to a situation
in which prices are regulated exogenously.

7. Discussion and conclusions

Our analysis gives policymakers a better understanding of how
individual consumers and groups of consumers react to DR schemes.
We first discuss our recommendations for the distribution grid man-
agers, whose main objective is to stabilize the grid. Second, we
present recommendations for individual consumers, that want to
minimize their electricity costs without compromising their indi-
vidual comfort. And finally, we provide recommendations that lead
to a win–win situation for both distribution grid and individual
consumers.

7.1. Distribution grid and energy providers

Below we present findings related to the stability of distribution
grid or a balanced consumer portfolio. We found that:

– If a portfolio has only consumers with high sensitivity, no
extra benefits are needed to incentivize DR participation, but
extra consumers need to be added to the portfolio to offset
peaks created by the high sensitivity consumers. High sen-
sitivity consumers benefit the most from prices, but become
over-responsive to prices.

Table 18
Cost reduction resulting from the adoption of each tariff: adjusted to
location.

Tariff 1 Tariff 2 Tariff 3

Netherlands 12.50% 14.29% 14.29%
Austin 6.67% 6.50% 6.90%

– If a portfolio has consumers with lower sensitivity and aware-
ness, extra financial incentives might be needed, since these
consumers do not benefit the most from price differences.

– Since consumers react differently to tariffs, clustering based
on their sensitivity and awareness similarities creates more
homogeneous behavior in terms of peak reduction.

– When clustering customers within a portfolio, the clusters
need to be sufficiently populated. In our specific data set,
creating four and five clusters achieved the highest alignment
of benefits for consumers and distribution grid.

7.2. Household energy consumers

We saw that consumers’ energy consumption, their household
appliances and their price responsiveness need to be taken into
account when making personalized recommendations. In general,
we observed that:

– Consumers with the highest sensitivity and awareness benefit
the most from DR in terms of electricity cost reduction.

– Consumers with medium sensitivity and awareness usually
bring benefits for individuals and the grid.

7.3. Incentive alignment

Here we summarize the findings that achieve incentive alignment
for the grid and its consumers.

– In the multi-residential building, four or five clusters showed
the best alignment of benefits between consumers and the
distribution grid.

– Consumers with medium sensitivity and awareness are more
likely to bring a win–win situation with peak reduction and
electricity bill savings.

In summary, we are combining insights from a real-world pilot
with simulations to tackle one of the “wicked problems” in the
smart grid domain, namely, to create effective DR schemes tai-
lored to household electricity consumers. We demonstrate the effect
of our personalized recommendations on individual households

Table 19
Average peak reduction resulting from the adoption of each tariff:
adjusted to location.

Tariff 1 Tariff 2 Tariff 3

Netherlands −1.07% −8.91% −5.30%
Austin −7.93% −5.66% −8.15%
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Fig. 27. Economic impact of adopting one of the proposed pricing schemes on the
33 households in Sweden.

Fig. 28. Economic impact of adopting the proposed and adjusted pricing schemes in
the Netherlands and Austin.

and benchmark our recommendations with existing methods in
the literature. We show the importance of price responsiveness in
creating successful DR schemes, since tariffs that are not tailored to
specific populations tend to be less effective. We conduct robustness
tests on two independent datasets and we show how the pricing
recommendations can be adjusted to account for various regulatory
constraints. Our results indicate the market deregulation and compe-
tition results in lower prices and higher cost savings for households.
These are useful insights for policymakers. Finally, we measure the
economic value of our DSS to household consumers. Our DSS can
achieve up to 38% savings on the household electricity bill.

Since this is an exploratory study, the results might be dependent
on the data. However, in the Robustness Tests Section, we present
results applied on two other independent datasets. Another limi-
tation is that the simulations conducted on the software platform
depend on the disaggregation module, which might create some
inaccuracies. We are currently training the disaggregation module
with more data inputs, to increase its accuracy.
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