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CHAPTER 1

INTRODUCTION

Fault management is defined as the characteristic by which a distributed system can mask the

fault’s occurrence and recover from it (Gadgil, Fox, Pallickara, and Pierce, Gadgil et al.2007).

This means that when a system can determine a fault and recover from it, then we can say that it

has fault management capability. The main role for fault management is to increase the ability of

a system to perform its function correctly even in the presence of internal faults, thus increasing

the dependability of a system (Burns and Wellings, Burns and Wellings2001). Two main actions

must be performed at any fault occurrence (Denaro, Pezzé, Tosi, and Schilling, Denaro et al.2006):

detection and recovery. Fault detection is the first step in the system to assess if a specific func-

tionality is, or will be faulty. After the system has detected a fault, the next step is to prevent or

recover from this fault, this is defined as fault recovery. The goal of fault detection is to verify that

the services being provided are functioning properly. The simplest way to perform such a task is

through observation (e.g., log file) and manual removal of incorrect values. The techniques for de-

tection are the following: self diagnosis, group detection and hierarchical detection. Through self

diagnosis the node itself can identify faults in its components. With group detection, several nodes

monitor the behavior of other nodes. Finally, in hierarchical detection, fault detection is performed

using a detection tree where a hierarchy is defined for the identification of faulty nodes.

There are two general techniques used for developing robust systems against system faults.

These are:

1. Fault tolerance aims to control either hardware or software faults and continue the system
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operation with a reduction in throughput or an increase in latency. The main method used is

exception handling, which provides activities to handle various faults (Liu, Li, Huang, and

Xiao, Liu et al.2010).

2. Fault management provides users with information of existing faults as accurately and infor-

matively as possible, to enable detection of malfunctions of desired properties, and diagnosis

of the root causes.

Fault tolerance focuses on improving the availability and reliability of distributed systems.

Fault management compliments fault tolerance by enabling users to (1) fix the design or the imple-

mentation to strengthen the robustness of distributed systems and (2) detect and analyze malicious

behaviors to minimize the impact on the systems.

Current fault management techniques have two typical features: First, they are added a pos-

teriori to existing applications. This means that the applications are not designed for being fault-

managed. They often lack a suitable architecture and satisfactory means for the diagnosis and

repair of faults. Second, they typically use external management functionality. State informa-

tion is extracted from the application and analyzed by an external manager, which makes them

much more difficult to diagnose and correct (also violating the principle of encapsulation) (Kokash,

Kokash2007).

In related literature, fault management is divided into different stages (Gadgil, Fox, Pallickara,

and Pierce, Gadgil et al.2007) (Dialani, Miles, Moreau, Roure, and Luck, Dialani et al.2002) (Ardis-

sono, Console, Goy, Petrone, Picardi, Segnan, and Dupré, Ardissono et al.2005) (Demsky and

Rinard, Demsky and Rinard2003): (1) Detection aims to discover potential faults as early, and
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as close to their origin as possible, (2) Diagnosis traces the detected fault symptom back to the

cause, and (3) Repair takes measures to eliminate the fault effects. Similarly, (Paradis and Han,

Paradis and Han2007) divides the stages as: (1) Fault prevention to avoid a fault, (2) Fault detec-

tion using different matrices to collect symptoms of possible faults, (3) Fault isolation to correct

different types of faults received from the networks and proposed hypothesis, (4) Fault identifi-

cation to test each proposed hypothesis and (5) Fault recovery to treat from faults. In (Lutfiyya,

Bauer, Marshall, and Stokes, Lutfiyya et al.2000), these are: (1) Fault detection: Which monitors

execution of a distributed system and checks the observations against its expected behaviors. The

fault is reported whenever a deviation from the expected behavior is discovered. Instead of man-

ual inspection, automated processes are introduced. (2) Fault diagnosis: Once a fault is detected,

additional mechanisms are utilized to diagnose the system to identify the nature of the fault and

track the root causes. (3) Evidence Generation: Evidence can be defined as a set of processed

information that demonstrates the assertions drawn from fault diagnosis. In addition, (Katchabaw,

Lutfiyya, Marshall, and Bauer, Katchabaw et al.1996) (Wu, Wei, and Huang, Wu et al.2009) (Mulo,

Zdun, and Dustdar, Mulo et al.2010) (Halima, Drira, and Jmaiel, Halima et al.2008) proposed that

fault management can be divided into: (1) Fault monitoring, (2) Fault diagnosis, and (3) Recovery.

However, in (Lyu, Lyu2007) proposed four techniques: (1)Fault prevention. (2)Fault removal.

(3)Fault tolerance: by using redundancy. (4)Fault forecasting: to estimate the occurrence con-

sequence of the faults. Similarly, (Hanemann, Hanemann2006) (Cheng, Li, and Chen, Cheng

et al.2008) proposed: (1) Detection, (2) Diagnosis and (3) Recovery.

A Failure is defined as a condition where the a running system deviates from its specified be-
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havior. The cause of a failure is thus called an error, which represents an invalid system state. The

error itself is therefore the result of a defect/fault in the system. In other words, a fault is the root

cause of a failure, which means that an error is merely the symptom of a fault. A fault may not

necessarily result in an error. Similarly, a fault may result in multiple errors. Moreover, a single

error may lead to multiple failures, and a fault may be the result of one or more errors (Ben Lakhal,

Kobayashi, and Yokota, Ben Lakhal et al.2009). Physical faults include faults that affect hardware,

interaction faults includes all external faults, and development faults include faults that occur dur-

ing development.

Fault management is the set of functions that detect, isolate, and correct faults. As mentioned

earlier, a software system fails when it deviates from its specified behavior. A single error may

therefore lead to multiple failures. Thus, fault management mainly includes maintaining and ex-

amining error logs, acting on error detection notifications, and tracing, identifying and correcting

faults. Since faults can occur in different places (e.g., software application, network connection,

hardware resources, etc.), traditional fault management tools are not fully equipped to automat-

ically monitor, analyze, and resolve faults in an SOA, where the focus is usually aimed towards

enhancing the QoS at run time. Example QoS measurements include (Yu, Liu, Bouguettaya, and

Medjahed, Yu et al.2008) (Zarras, Vassiliadis, and Issarny, Zarras et al.2004):

1. Reliability measures the ability of a service operation to be executed within the expected

time.

2. Availability measures the probability that the service operation is operating at any moment

and will do the operation of behalf of the users.



5

3. Accessibility measures the degree that the service operation is able to serve the request (i.e.

success rate).

4. Integrity measures how the service operation maintains the correctness with respect to the

source.

5. Response time measures the expected delay between the time that the service operation starts

and receiver receives the response.

6. Cost measures the expense of managing the fault and recover from it.

Note that the above list is not exhaustive, and other QoS attributes can be added.

1.1 Service-oriented Architecture (SOA)

Services involved in an SOA often do not operate under a single processing environment and

need to communicate using different protocols over a network. Under such conditions, designing

a fault management system that is both efficient and extensible is a challenging task. In essence,

SOAs are distributed systems consisting of diverse and discrete software services that work to-

gether to perform the required tasks. Reliability of an SOA is thus directly related to the compo-

nent services’ behavior, and sub-optimal performance of any of the components may degrade the

SOA’s overall quality. The problem is exacerbated due to security, privacy, trust, etc. concerns,

since the component services may not share information about their executions. This lack of infor-

mation translates into traditional fault management tools and techniques not being fully equipped

to monitor, analyze, and resolve faults in SOAs.
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An SOA is defined as “a paradigm for organizing and utilizing distributed capabilities that may

be under the control of different ownership domains” (Paradis and Han, Paradis and Han2007) (Katch-

abaw, Lutfiyya, Marshall, and Bauer, Katchabaw et al.1996). In other words, boundaries of SOAs

are usually explicit, i.e., the services need to communicate across boundaries of different geograph-

ical zones, ownerships, trust domains, and operating environments. Moreover, explicit message

passing is applied in SOAs instead of implicit method invocations. The services in SOAs are au-

tonomous, i.e., they are independently deployed, the topology is dynamic, i.e., new services may

be introduced without advanced acknowledgement, and the applications consuming a service can

leave the system or fail without notification. Services in SOAs share schemas and contracts. The

message passing structures are specified by schemas, and message-exchange behaviors are speci-

fied by contracts. Service compatibility is thus determined based on explicit policy definitions that

define service capabilities and requirements.

Two major entities are involved in any SOA transaction: service consumers and service providers

(see Figure 1.1). As the name implies, service providers provide a service on the network with the

corresponding service description (Malik and Bouguettaya, Malik and Bouguettaya2009) (Lin,

Lu, Lai, Chebotko, Fei, Hua, and Fotouhi, Lin et al.2008). A service consumer needs to dis-

cover a matching service to perform a desired task among all the services published by different

providers (Keromytis, Keromytis2007). In situations where a single service does not suffice, mul-

tiple services could be composed to deliver the required functionality. Finally, the consumer binds

to the newly discovered service(s) for execution, where input parameters are sent to the service

provider and output is returned to the consumer (Guinea, Guinea2005) (Denaro, Pezzé, Tosi, and



7

Schilling, Denaro et al.2006).

Service Broker

Service ProviderService Consumer

F i n
d

Publish

Interact

Figure 1.1: Service-Oriented Interaction Model.

A fault may occur at any of the interaction stages. At publication stage, faults are normally

caused by an incorrect description, which can only be detected by checking the description files.

Publishing faults may be related to format deployment or context, and when the format of the de-

scription is incorrect, there is an incomplete description. There might be some other faults when a

service provides different versions of features than are published in the description. If the descrip-

tion mentions features but those are not provided by the deployed service, these are called Missing

Features (Robinson and Kotonya, Robinson and Kotonya2008).Similarly, if the feature described

does not match the feature actually provided, it is an Incorrect Feature Description. Service de-

ployment faults occur when the service is not successfully deployed on the target platform. In

case the service is missing a Required Resource, the service may be deployed successfully but will

fail to perform as desired. Content faults can be detected by validating using predefined criteria.

However, it has been reported (Dudley, Joshi, Ogle, Subramanian, and Topol, Dudley et al.2004)

that deployment faults cannot be detected before the execution.
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The faults during discovery may occur either on search invocation or while returning the found

services (Gadgil, Fox, Pallickara, and Pierce, Gadgil et al.2007). These are relatively easy to detect

if no service is found. On the other hand, a wrong service found fault is difficult to detect. The

fault can only be detected when the service is actually invoked or executed. The found service may

fail if the client specifies incorrect search criteria, there is a faulty lookup service, or the provided

specification does not match the actual provided service(s).

The composition process may also present different faults due to various reasons: (1) if the

components are incompatible, then the services cannot be connected. (2) Parts of the composition

are missing or services are required to translate between services are missing. (3) The returned

composition may not meet the specified requirements. (4) Certain properties are not supported by

all parts of the composition (e.g. security may only be guaranteed by the first and last service,

but not in between). (5) Preconditions, post conditions, or invariants are not fulfilled resulting in

the contract between the services being violated. Moreover, logical faults, system faults, content

faults, and SLA faults described above may appear in composition at run time (Liu, Li, Huang,

and Xiao, Liu et al.2010).

During the binding process, the service consumer and service provider negotiate the conditions

to execute the service (Hashmi, Alhosban, Malik, and Medjahed, Hashmi et al.2011). The binding

may be denied if authorization is denied, authentication fails, or accounting problems occur. In-

sufficient security may also be a reason (e.g. one side does not trust the certificate of the other) for

fault at this stage.

Execution faults occur when the service is executed but the result does not match the expected
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outcome. If the service delivers an incorrect result, this can be either due to a software fault or

incorrect input (Katchabaw, Lutfiyya, Marshall, and Bauer, Katchabaw et al.1996) (Paradis and

Han, Paradis and Han2007). To summarize these faults we have

• Publication stage faults: Incorrect description, service description mismatch, content fault,

missing a required resource.

• Discovery stage faults: Required service does not exist or not listed in lookup service, faulty

lookup service.

• Composition stage faults: No valid composition, changes in contract.

• Binding stage faults: Authorization denied, authentication failed, accounting problems.

• Execution stage faults: Mismatched results, service crash.

SOAs can be dynamically and flexibly composed by integrating new and existing component

services to form complex processes and transactions using standard protocols such as SOAP and

WSDL. Each service in an SOA may be invoked using a different invocation model. Here, an

invocation refers to triggering a service (by calling the desired function and providing inputs) and

receiving the response (return values if any) from the triggered service. An SOA may thus be cat-

egorized as a ‘composite service’, which is a conglomeration of services with invocation relations

between them. There are six major invocation relations: Sequential Invocation, Parallel Invocation,

Probabilistic Invocation, Circular Invocation, Synchronous Activation, and Asynchronous Activa-

tion (D’Mello and Ananthanarayana, D’Mello and Ananthanarayana2009). A brief overview of

these follows(see Figure 1.2).
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Figure 1.2: Major SOA Invocation Models.

Sequential Invocation: In sequential invocation, a service S invokes its unique succeeding

service A (Menasce, Menasce2004). It is denoted as Sequential (S : A) (see Figure 1.2-(a)). Se-

quential invocation is also defined as a serial invocation (Yu, Zhang, and Lin, Yu et al.2007). A

fault may occur in a sequential invocation if the succeeding service fails (service A in Figure 1.2-

(a)), or if the connection/link between service S and service A is broken, i.e., service S cannot

reach service A. Similarly, if there is no response from one of the services or response times-out

from the invoked service (Vaculin, Wiesner, and Sycara, Vaculin et al.2008).

Parallel Invocation: In parallel invocation, a service S invokes its succeeding services in par-

allel (Menasce, Menasce2004). For example, if S has successors A and B which are independent,

S can invoke both A and B at the same time. It is denoted as Parallel (S : A, B) (see Figure 1.2-(b)).

Parallel invocation faults may occur if either of service A or service B fails. Since these work in

parallel, a fault in one of the services will effect the system model.

Probabilistic Invocation: In probabilistic invocation, a service S invokes its succeeding ser-

vice(s) with a probability (see Figure 1.2-(c)). For example, if S invokes successor A with the
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probability p and successor B with the probability 1 - p, it is denoted as Probabilistic (S : A|p,

B|1 - p). The probabilistic invocation is also defined as fork invocation (Menasce, Menasce2004).

In this type of invocation, faults may occur when the probability of service A and probability of

service B equal to 1, i.e., we cannot invoke service A or service B, or if service A and service B

fail, or there are missing links from service S to service A and service B.

Circular Invocation: In circular invocation, a service S invokes itselfn times. It is denoted as

Circular (S|n). A circular invocation can be defined as cloning itself n times (see Figure 1.2-(d)).

A fault may occur if we encounter an infinite loop, which means that n = ∞, or if n = 0 which

means that this service cannot invoke itself (when it should) (Bai, Hu, Xie, and Ng, Bai et al.2005).

Synchronous Activation: In synchronous activation, a service S is activated only when all its

preceding services have been completed. For example, if S has synchronous predecessors A and

B, both these services would need to complete before S can progress. It is denoted as Synchronous

(A, B : S) (see Figure 1.2-(e)). Faults encountered in synchronous activation are similar to the ones

discussed above for parallel invocation.

Asynchronous Activation: In asynchronous activation, a service S is activated as the result

of the completion of one of its preceding services (Menasce, Menasce2004). For example, if S

has asynchronous predecessors A and B, either A or B’s completion would cause S to progress.

It is denoted as Asynchronous (A, B : S) (see Figure 1.2-(f)). Asynchronous activation faults are

similar to the ones discussed above for the probability invocation model. Table 1.1 shows some of

the major faults that may appear in each model.

Self-healing systems have the ability to modify their own behavior in response to changes in
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Table 1.1: Expected Faults in Invocation Models
Invocation model Expected faults
Sequential Service A failed, missing the link to service A, i.e. service S cannot

reach service A, no response, response time-out.
Parallel Service A failed, service B failed, missing the link to service A or miss-

ing link to service B, i.e. service S cannot reach service A and/or cannot
reach service B.

Probabilistic Probability of service A and probability of service B equal to 0, service
A failed, service B failed, missing the link to service A or missing link
to service B, i.e. service S cannot reach service A and/or service B.

Circular Infinite loop, n equal to 0.
Synchronous Service S did not get activated because service A and/or service B did

not complete, service A failed and/or service B failed.
Asynchronous Service S did not get activated because service A and service B did not

complete, service A failed and service B failed.

their environment, such as resource variability, user needs and mobility (Lala and Kumar, Lala and

Kumar2002) (Chan and Bishop, Chan and Bishop2009) (Paradis and Han, Paradis and Han2007).

The lifecycle of self healing systems consists of four major activities as follows: (1) monitoring

the system at runtime, (2) planning the changes, (3) deploying the change descriptions and (4)

enacting the changes. A self healing system depends on the following requirements for solving

any fault(Jacques-Silva, Challenger, Degenaro, Giles, and Wagle, Jacques-Silva et al.2008).

• Adaptability: The system should enable modification of system properties such as structural,

topological, dynamic behavioral and interaction aspects.

• Dynamicity: The system should encapsulate the adaptability concerns during runtime. For

example, communication integrity and internal state consistency.

• Awareness: The system should support performance monitoring such as state, behavior,

correctness and reliability. It should then be able to recognize performance anomalies.
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• Observability: The system should enable monitoring of a resulting self healing system’s

execution environment. The system may not be able to influence changes in its environment,

but it may plan changes within itself in response to the environment.

• Autonomy: The system should provide the ability to address the anomalies which are dis-

covered through awareness and observability in the performance of a resulting system and/or

its execution environment. Autonomy is achieved by planning, deploying, and enacting the

necessary changes.

• Robustness: The system should provide the ability for a resulting system to effectively re-

spond to unforeseen operating conditions. Such conditions may be imposed by the systems

external environment, for example malicious attacks and unpredictable behavior of the sys-

tems, as well as errors, faults, and failures within the system.

• Distributability: The system should support effective performance of a resulting system in

the face of different distribution/deployment profiles.

• Mobility: The system should provide the ability to dynamically change the physical or logi-

cal locations of system’s constituent elements.

1.2 Challenges

In the previous sections, we list some of the fault management techniques in different dis-

tributed systems. However, not all of these techniques are directly applicable to SOA. The charac-

teristics of SOA raise the following problems for fault management:
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• It is hard to apply a non-distributed management approach to SOA. A manager needs to

communicate with the managed nodes through authentications.

• The management of a SOA is composed of services that may lie outside the management

domain of the current system. System management usually involves management of web

servers, application servers, databases, and other infrastructures which are usually under a

single domain. Service management and infrastructure management should be unified to

achieve the goals of SOA fault management.

• Managers and Services may run on heterogeneous platforms and virtual machines where the

services are deployed on, and they need to be integrated together.

• A management system needs to adapt to the different QoS and physical service changes.

1.3 Thesis Goals

Many efforts have been made to resolve the faults in distributed systems in general (Cas-

tro and Liskov, Castro and Liskov2002) (Zhao, Zhao2007) (Katchabaw, Lutfiyya, Marshall, and

Bauer, Katchabaw et al.1996) (Castro, Rodrigues, and Liskov, Castro et al.2003)

(Kotla, Clement, Wong, Alvisi, and Dahlin, Kotla et al.2008) (Singh, Fonseca, Kuznetsov, Ro-

drigues, and Maniatis, Singh et al.2009) (Aghdaie and Tamir, Aghdaie and Tamir2009) (Merideth,

Iyengar, Mikalsen, Rouvellou, and Narasimhan, Merideth et al.2005) (Castro and Liskov, Castro

and Liskov2002) (Santos, Lung, and Montez, Santos et al.2005) (Morgan, Shrivastava, Ezhilchel-

van, and Little, Morgan et al.1999) (Liang, Lo, Kao, Yuan, and Chang, Liang et al.1997) (Kon-
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togiannis, Lewis, Smith, Litoiu, Muller, Schuster, and Stroulia, Kontogiannis et al.2007) (Denaro,

Pezzé, Tosi, and Schilling, Denaro et al.2006) (Chan and Bishop, Chan and Bishop2009) (Garlan

and Schmerl, Garlan and Schmerl2002) (Paradis and Han, Paradis and Han2007) (Wu, Wei, and

Huang, Wu et al.2009) (Griffith, Kaiser, and López, Griffith et al.2009) (Guinea, Guinea2005) (Keromytis,

Keromytis2007) (Park, Youn, and Lee, Park et al.2009). The problems in the current fault man-

agement mechanisms is that they are not completely suitable for SOAs due to their special needs

and features. Thus, we cannot use the distributed system fault management for SOA because of

the following reasons:

• Usability: The first challenge involves improving the usability of fault management. Specif-

ically, in the following three aspects: (1) Allowing mechanisms to be applied to applica-

tions written in any language (2) Enabling fault management without manual modification

of source code (3) Allowing users to specify expectation of system behavior.

• Execution Time: improving the ability of system operators to reason about time. Most

mechanisms increase the waiting time which will increase the overall execution time of the

system.

• Utilization of Distributed Resources: Most detection and diagnosis mechanisms adopt cen-

tralized approaches. However, in SOA we need a decentralized approach.

• Impact Analysis and Repair: Given detected faults, and their root causes, a challenging

research topic is how to accurately estimate their impact on the current system and how to

repair the system online, i.e. without recompilation and rerun. As a secondary goal it should
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also minimize the impact of faults on a running system.

Considering requirements of SOAs, we give the following insights about the objective of the

current research for fault management in the context of self-healing for SOA (FLEX).

• FLEX needs to guarantee high levels of availability, especially for system critical services.

Thus, the monitoring component needs improvement. The monitoring process when active

will place additional load on the provider, since it should response to other requests generated

by the monitor system. Previous studies show that the monitoring increases the system

overhead by sending control messages. In our work we reduce this overhead by minimizing

these control messages based on the history of the services.

• FLEX should be able to detect the fault, and recover from it in a best effort way. The

recovery process should have the ability to resolve the fault and put the system in stable

state. The selection of how to recover from the fault is a challenge. We combine between

the existing processes and find the best solution at run time.

• Fault management in FLEX should have a high level of reliability. Ideally speaking we

should have a fault free system. FLEX should be able to prevent these faults from hap-

pening and respond by executing recovery plans preemptively. Previous studies are more

focused on the expected faults, which means that the system is analyzed and a database of

expected faults is maintained. In our work, we include the detection and prevention/recovery

of unexpected faults in the system.

• FLEX needs to be automated. In previous studies, the recovery or repair plans are usually
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predefined during the design phase. However, for SOA we need on-demand plans that are

created at run-time. These plans should be applicable for the current expected or unexpected

faults.

• The traditional recovery plans in FLEX are time consuming. These may not be suitable for

the current services or do not meet consumer’s performance requirements. FLEX reduces

the waiting and processing times as much as possible. It considers the consumer priorities

and requirements if a change occurs in the system.

1.4 Motivating Example

In this section, we present an example scenario to motivate the problem and associated solution.

Assume a travel planning system that is based on a service-oriented architecture (Figure 1.3.). The

company provides travel planning services that include hotel booking, flight reservation, and car

rental. In addition to these reservation services, the system also provides an insurance service for

the entire trip or individual travel components.

A student (Sam) intends to attend a conference in London, UK. He needs to purchase an airline

ticket and reserve a hotel for this travel. Moreover, he needs some transportation to

go from the airport to the hotel and from the hotel to other venues (since this is the first time he’s

visited the UK, he intends to do some “Site-seeing” also). Sam has a restricted budget, so he is

looking for a “deal”.

Assume that Sam would be using a SOA-based online service (let’s call it SURETY) that is

a one-stop shop providing all the five options (airline ticket, hotel, attractions, transportation and
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Figure 1.3: Scenario with Invocation Models.

discounts) through outsourcing. SURETY provides many services such as: attraction service which

outsources to three services (representing individual services): Art, Museums, and Area tours.

This service provides arrangement to visit different areas through sub-contractor companies. For

clarity, Figure 1.3 shows the options at one level. Sam may select Art, Museum, Area tours, or any

combination of these services. In terms of transport options, Sam can either use a taxi service, or

move around in a rental car, bus, or bike. The different transport companies provide services based

on the distance between the places (attractions, etc.) Sam plans to visit. SURETY also provides a

package optimization service that finds “deals” for the options chosen by Sam.

In Figure 1.3, the potential services are shown for clarity from “Get request” (when SURETY
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receives Sam’s request) to “Send result” states (when SURETY sends result(s) to Sam). This is

done to show a combination of different invocation models. In reality, service invocations may not

follow such a flat structure. Since Sam is looking for a travel arrangement that include: booking

a ticket, booking a hotel, transportation (rental car, bike or bus) or taxi, and visiting some places,

some of these services can be invoked in parallel (here we assume that SURETY provides such an

option). Booking a ticket and finding attractions is an example of parallel invocation. Among the

three choices that Sam can select from (Area tours, Museums, and Art), for area attractions, he

has to make a choice among these service instances; this is an example of probabilistic invocation.

Similarly, taxi or rental car, bike and bus services can be classified as probabilistic invocations

since SURETY has to invoke one service from among multiple services. SURETY then provides

the results of transport selection to the Package Optimization service, which hunts for available

discounts (e.g., if the customer uses the system for more than one year he will get a 20%, etc.).

This invocation is an example of asynchronous invocation, as one of the transport selections will

suffice. SURETY then sends the final selection itinerary to Sam.

In SURETY, the system includes multiple services and the fail of one of these service will affect

the overall system reliability. For example, if the flight service does not response within a period

of time the system will not invoke the hotel service until it solves this issue. Moreover, the hotel

service is executed without problems but returns wrong outputs (i.e., reservation for different date).

This fault may cased by incorrect input of the client. Another scenario, the transportation service

received too many orders which went to out of time or the attraction service denied the binding

because of the security certificate. In the following, we predict the previous and other faults and
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recover from them.
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Figure 1.4: Time line for Invocation Models.

In Figure 1.4, we link the invocation models to our scenario through time line. A composed

service using one or more of the invocation models described above, may encounter a fault dur-

ing its execution. The likelihood of encountering a fault is directly proportional to the system’s

complexity, i.e., the more the invocation models involved, the greater the likelihood of a fault’s

occurrence.
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1.5 Thesis Organization

The organization of this dissertation is as follows. Chapter 2 presents a survey of the related

work (i.e., literature review) . Chapter 3 briefly explains the motivation for the work our pro-

posed self-healing framework. Chapter 4 presents the proposed semantic similarity and ranking

technique. Chapter 5 presents our fault management propagation approach. Chapter 6 presents

the performance analysis for the proposed techniques. Chapter 7 concludes the dissertation and

presents possible directions for future research work.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we provide a brief overview of the related literature for each stage of our

proposed framework. Thus, we compared FOLT with similar prediction techniques; compared

S2R with other matching techniques; and we compared FLEX with multiple fault management

techniques that use planning.

Current fault management techniques have two typical features: First, they are added a pos-

teriori to existing applications. This means that the applications are not designed for being fault

managed. They often lack a suitable architecture and efficacious means for the diagnosis and re-

pair of faults. Second, they typically use external management functionality. State information

is extracted from the application and analyzed by an external manager, which makes them much

more difficult to diagnose and correct. This also violates the principle of encapsulation (Kokash,

Kokash2007).

Developing fault tolerance mechanisms for distributed systems will become less difficult if

they are provided with manageability. A system’s manageability refers to its capability to be man-

aged, how much a service can report, and change the system’s state, and the ease of interaction

with the service. The manageability of a system depends on the manageability of its subsystems

and components. It is impossible to manage a large-scale SOA if services offer no manageabil-

ity. Developing services with built-in manageability is indispensable for composing manageable

SOAs. The manageability of a service depends on the manageability features of its platform and

its design.
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The researchers divide fault management technique into different stages. For instance, fault

management is divided into three phases in (Gadgil, Fox, Pallickara, and Pierce, Gadgil et al.2007) (Di-

alani, Miles, Moreau, Roure, and Luck, Dialani et al.2002) (Ardissono, Console, Goy, Petrone, Pi-

cardi, Segnan, and Dupré, Ardissono et al.2005) (Demsky and Rinard, Demsky and Rinard2003):

(1) Detection aims to discover potential faults as early, and as close to their origin as possible, (2)

Diagnosis traces the detected fault symptom back to the cause, and (3) Repair takes measures to

eliminate the fault effects. Similarly, (Paradis and Han, Paradis and Han2007) divides the stages

as: (1) Fault prevention to avoid a fault, (2) Fault detection using different matrices to collect

symptoms of possible faults, (3) Fault isolation to correct different types of faults received from

the networks and proposed hypothesis, (4) Fault identification to test each proposed hypothesis

and (5) Fault recovery to treat from faults. In (Lutfiyya, Bauer, Marshall, and Stokes, Lutfiyya

et al.2000), these are: (1) Fault detection: Which monitors execution of a distributed system and

checks the observations against its expected behaviors. The fault is reported whenever a deviation

from the expected behavior is discovered. Instead of manual inspection, automated processes are

introduced. (2) Fault diagnosis: Once a fault is detected, additional mechanisms are utilized to

diagnose the system to identify the nature of the fault and track the root causes. (3) Evidence Gen-

eration: Evidence can be defined as a set of processed information that demonstrates the assertions

drawn from fault diagnosis. In addition, (Katchabaw, Lutfiyya, Marshall, and Bauer, Katchabaw

et al.1996) (Wu, Wei, and Huang, Wu et al.2009) (Mulo, Zdun, and Dustdar, Mulo et al.2010)

proposed that fault management can be divided into: (1) Fault monitoring, (2) Fault diagnosis,

and (3) Recovery. However, in (Lyu, Lyu2007) proposed four techniques: (1)Fault prevention.
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(2)Fault removal. (3)Fault tolerance: by using redundancy. (4)Fault forecasting: to estimate the

occurrence consequence of the faults. Similarly, (Hanemann, Hanemann2006) (Cheng, Li, and

Chen, Cheng et al.2008) proposed: (1) Detection, (2) Diagnosis and (3) Recovery. Table 2.1 lists

some major related works and the techniques used there in.

Table 2.1: Fault Management Techniques in Literature.
Technique (Gadgil, Fox,

Pallickara, and
Pierce, Gadgil
et al.2007) (Dialani,
Miles, Moreau, Roure,
and Luck, Dialani
et al.2002) (Ardissono,
Console, Goy, Petrone,
Picardi, Segnan, and
Dupré, Ardissono
et al.2005) (Demsky
and Rinard, Demsky
and Rinard2003)

(Katchabaw, Lutfiyya,
Marshall, and
Bauer, Katchabaw
et al.1996) (Wu,
Wei, and Huang, Wu
et al.2009) (Mulo,
Zdun, and Dustdar,
Mulo et al.2010)

(Lutfiyya, Bauer, Mar-
shall, and Stokes, Lut-
fiyya et al.2000)

(Laster and
Olatunji, Laster and
Olatunji2007) (Huang,
Zou, Wang, and
Cheng, Huang
et al.2005) (Maurel,
Diaconescu, and
Lalanda, Maurel
et al.2010)

(Hanemann, Hane-
mann2006) (Cheng,
Li, and Chen, Cheng
et al.2008) (Santos,
Lung, and Montez,
Santos et al.2005)

(Paradis and Han, Par-
adis and Han2007)

Prevention N N N N N Y
Detection Y N Y N Y Y

Monitoring N Y N Y N N
Diagnosis Y Y Y Y Y N

Identification N N N N N Y
Planning N N N Y N N
Repair Y N N N N N

Recovery N Y N Y Y Y

2.1 Traditional Fault Management Strategies

There is a growing demand for highly-available systems that provide correct service without

interruptions. These systems must manage the faults because they are a major cause of outages.

Fault management is divided into: hardware and software fault management. Hardware fault man-

agement is about building computers that automatically recover from faults that occur in hardware

components. The techniques employed to do this generally involve partitioning a computing sys-

tem into modules, each module is backed up with protective redundancy so that, if the module
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fails, others can assume its function. Special mechanisms are added to detect faults and implement

recovery. Two general approaches to hardware fault recovery have been used, fault masking and

dynamic recovery (Singh, Fonseca, Kuznetsov, Rodrigues, and Maniatis, Singh et al.2009) (Kotla,

Clement, Wong, Alvisi, and Dahlin, Kotla et al.2008). Fault masking is a structural redundancy

strategy that completely masks faults within a set of redundant modules. A number of identical

modules execute the same functions, and their outputs are voted to remove fault created by a faulty

module. Dynamic recovery is generally more hardware efficient; it is the approach of choice in

resource-constrained systems. Its disadvantage is that computational delays occur during fault re-

covery, fault coverage is often lower, and specialized operating systems may be required. Software

fault management is building software that can manage software design faults which are a result

of programming errors. There is an approach called design diversity which combines hardware

and software fault management and the goal from this approach is to tolerate both hardware and

software design faults; however this is a very expensive technique because every detail have to be

determined in the design.

Software fault management provides service complying with the relevant specification of faults

by using the following: First, single version software techniques, such as monitoring techniques,

decision verification, and exception handling are used to partially manage software design faults.

Second, multiple version software techniques such as recovery block (RcB), N-version program-

ming(NVP) and N self checking programming(NSCP). Third, the multiple data representation

environment utilizes different representations of input data to provide tolerance to software design

faults, such as retry blocks (RtB), N-copy programming (NCP) and N-self checking programming.
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It has been found that redundancy alone is not sufficient for management of software design faults,

so some forms of diversity must accompany the redundancy and combine it with diversity. The

goal of diversity is to make the modules as diverse and independent as possible to minimize the

identical fault causes. Diversity divided into: design diversity and data diversity.

Diversity can be applied to several layers of the system such as hardware, application, soft-

ware system operators, and the interfaces between these components (e.g., retry, rollback, roll

forward, recovery with check pointing, restart, and hardware reboot). Since exact copies of soft-

ware component redundancy cannot increase reliability, we need to provide diversity in the design

and implementation of the software.

BFT: Byzantine Fault Tolerance

When designing replication protocols, we have to determine the types of faults the protocol is

designed to manage. The choice lies between crash fault models, where it is assumed nodes fail

cleanly by becoming completely inoperable, or a byzantine fault model, where no assumptions

are made about faulty components (Singh, Fonseca, Kuznetsov, Rodrigues, and Maniatis, Singh

et al.2009). Byzantine fault tolerance (BFT) allows a replicated service to tolerate arbitrary be-

havior from faulty replica behavior. To more easily identify the problem, definitions of byzantine

fault and byzantine failure are as follows: byzantine fault is a fault presenting different symp-

toms to different observers and byzantine failure is the loss of system service due to a byzantine

fault (Katchabaw, Lutfiyya, Marshall, and Bauer, Katchabaw et al.1996). BFT has low overhead

storage and provides good performance and strong correctness guarantees if no more than one-

third of the replicas fail. However, it requires all replicas to run the same service implementation
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and to update their state in a deterministic way. Therefore, it cannot tolerate deterministic software

errors that cause all replicas to fail concurrently, and it complicates the reuse of existing service

implementations because it requires extensive modifications to ensure identical values for the state

of each replica. The basic idea in BFT is simple. Clients send requests to execute operations, and

all no faulty replicas execute the same operations in the same order. Since replicas are determin-

istic and start in the same state, all no faulty replicas send replies with identical results for each

operation. The client chooses the result that appears in at least f+1 replies. The hard problem is

ensuring no faulty replicas execute the same requests in the same order. BFT uses a combination

of primary backup and replication techniques to order requests. Replicas move through a succes-

sion of numbered configurations called views. In a view, one replica is the primary, and the others

are backups. The primary picks the execution order by proposing a sequence number for each

request. Since the primary may be faulty, the backups check the sequence numbers and trigger

view changes to select a new primary when it appears that the current one has failed.

BASE: BFT with Abstract Specification Encapsulation

Fault management using replication is expensive to deploy. BFT with Abstract Specification

Encapsulation (BASE) combines BFT with work on data abstraction. The main idea of this combi-

nation is to reduce the cost of BFT and improve the performance (Castro, Rodrigues, and Liskov,

Castro et al.2003). The goal of BASE is to build a replicated system by reusing a set of off-the-

shelf implementations of some service. The BASE methodology corrects BFT problems; they

enable replicas to run different implementations. The methodology is based on the concepts of

abstract specification and abstraction function from work on data abstraction. BASE offers several
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important advantages over BFT: (1) Reuse of existing code. (2) It has been observed that there is

a correlation between the length of time software runs and the probability that it fail. BASE com-

bines proactive recovery with abstraction to counter this problem. When a replica is recovered,

it is rebooted and restarted from a clean state. Then it is brought up to date using a correct copy

of the abstract state. (3) Opportunistic N-version programming. Replication is not useful when

there is a strong positive correlation between the failure probabilities of the different replicas. As

we mention in the previous sections, N-version programming exploits design diversity to reduce

the probability of correlated failures, but it has several problems: it increases development and

maintenance costs by a factor of N or more, adds unacceptable time delays to the implementation,

and does not provide a mechanism to repair faulty replicas. BASE enables an opportunistic form

of N-version programming by taking advantage from off-the-shelf implementations of common

services (Zhao, Zhao2007).

Zyzzyva: Speculative Byzantine Fault Tolerance

Zyzzyva is a state machine replication protocol proposed by (Kotla, Clement, Wong, Alvisi,

and Dahlin, Kotla et al.2008) and based on three sub-protocols: (1) agreement to order requests for

execution by the replicas, (2) view change to coordinate the election of a new primary when the

current primary is faulty or the system is running slowly, and (3) checkpoint to limit the state that

must be stored by replicas and reduces the cost of performing view changes. Zyzzyva uses specula-

tion to reduce the BFT cost and simplify the design of replication. Unlike in traditional replication

where the client orders a request to the replicas, Zyzzyva replicas speculatively execute requests

without running an expensive agreement protocol to establish the order. As a result, correct replica
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states may diverge, and replicas may send different responses to clients. If a speculative reply and

history are stable, the client uses the reply. Otherwise, the client waits until the system converges

on a stable reply and history. The challenge in Zyzzyva is ensuring that responses to correct clients

become stable because replicas are responsible for ensuring that all requests from a correct client

are eventually complete, but a client waiting for a reply and history to become stable can speed the

process by supplying information that will either cause the request to become stable rapidly.

Zeno: Eventually Consistent Byzantine-Fault Tolerance

The building of Zeno did not start from scratch but instead it is the adaptation of Zyzzyva (Singh,

Fonseca, Kuznetsov, Rodrigues, and Maniatis, Singh et al.2009). Zeno specifies safety and live-

ness properties of a generic eventually consistent BFT service. Safe, consistent system behaves

like a centralized server whose service state can be modeled as a multi-set. Each element of the

multi-set is a history which means that a totally ordered subset of the invoked operations being

aware of each other, also limits the total number of divergent histories, which in the case of Zeno

cannot exceed, at any time,

There are two types of operations, weak and strong. A weak operation may return, with the

corresponding result reflecting the execution of all the operations that precede it. In this case,

we say that the operation is weakly complete. For strong operations, they must wait until they

are committed, which means each history has a prefix related by containment before they can

return with a similar way of computing the result. Assuming that each correct client is well-

formed, it never issues a new request before its previous (weak or strong) request is (weakly or

strongly, respectively) complete. Zeno service guarantees that a request issued by a correct client
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is processed and a response is returned to the client, provided that the client can communicate with

enough replicas in a timely manner. Zeno is a BFT state machine replication protocol. It requires

N = (3 f + 1) replicas to tolerate f Byzantine faults. Zeno has three components: sequence number

assignment, to determine the total order of operations; view changes, to deal with leader replica

election; and check pointing, to deal with garbage collection of protocol and application state (see

Table 2.2).

Table 2.2: Comparison between Zeno and Zyzzyva
Zeno Zyzzyva

Allows lower overhead Allows higher overhead
lower latency Higher latency
Requires clients to use sequential timestamps Not necessarily sequential timestamps
Disables a single-phase performance optimiza-
tion

Offers a single-phase performance optimization

Clients send the request to all replicas Clients send the request only to the primary
replica.

CoRAL: Connection Replication and Application-level Logging

Most of the previous methods require deterministic servers or changes to the clients, however,

CoRAL recovers in-progress requests and does not require deterministic servers (Aghdaie and

Tamir, Aghdaie and Tamir2009). The basic idea of CoRAL is to use a combination of active

replication and logging. In the normal scenario of sending and receiving data between client and

server, the client sends a request to replicate servers, then the servers send back acknowledgment,

after that the servers send the response and the client sends back acknowledgments. However,

in CoRAL, requests and replies as usual but does not process requests unless the primary server

fails. In addition there is a backup server who receives the request from the client and sends it
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to the primary replica, then the primary replica sends the acknowledgment to the client. On the

other hand, after receiving the acknowledgement from the primary replica, the client send back the

acknowledgment to the backup server which forward this acknowledgement to the primary replica.

Through all these steps the backup logs each request while the replica process the request and reply

to the client after sending a complete copy to the backup. Internally, the primary replica reply to

the backup server if there is no fault, but in case of the fault occur before sending the reply to the

client, the backup transmits its copy. If the primary fails before logging the reply in the backup

server, the backup processes its copy of the request, generates a reply, and sends it to the client.

Thema: Byzantine-Fault-Tolerant Middleware for Web-Service Applications

Thema combines between BFT and web services to provide a structured way to build BFT

survivable web services that application developers can use like other web services (Merideth,

Iyengar, Mikalsen, Rouvellou, and Narasimhan, Merideth et al.2005). BFT assume client-server

model without requiring information from other services, in this case, these systems do not provide

support for multi-tiered applications that have heterogeneous reliability requirements. However,

thema supports the multi-tiered requirements of web services and provide standarized of web ser-

vices. Thema includes three libraries:(1) a client library that allows client access to BFT web

services, (2) a server library to facilitate the creation of these services, and (3) an external service

library that allows an external web services to be accessed safely by a BFT. Thema is designed

to address the challenges of creating distributed applications which composed of multiple web

services such as: works in a mixed fault model using BFT, allows BFT to make safe interaction

with external services and provides a support for BFT. In web services to be able to use FTB, it
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must support access from non-replicated client and support access to non-replicated web services

with internal consistency which is solved by Thema (Merideth, Iyengar, Mikalsen, Rouvellou, and

Narasimhan, Merideth et al.2005).

CLBFT: Castro-Liskov Practical Byzantine Fault Tolerance

CLBFT is a BFT state machine replication protocol and library implementation. The purpose

of creating this protocol is to create client-server fault tolerant applications. There are two char-

acteristic of CLBFT over BFT: (1) There is no assumptions for safety such as upper bound on

communication latency. (2) CLBFT has a better performance than BFT because it does not re-

quire the use of public key cryptography during normal operation (Castro and Liskov, Castro and

Liskov2002). From the client side, when the client sends a request, the CLBFT library sends the

request to the CLBFT service and wait for (f+1) response from different replicas, then ensure that

the replicas result is correct. From the server side, the replicas act as independent services but

provide the same operations which needs at least (2f+1) replicas to execute. In CLBFT Not all

replicas will execute, there are out of date replicas. CLBFT does not provide a mechanism for a

replicated service to access external services consistently. This challenge solved in Thema (Castro

and Liskov, Castro and Liskov2002).

CORBA: Common Object Request Broker Architecture

This standard defines a set of services for the implementation of replication techniques in dis-

tributed environment. CORBA is based on Object Management Group’s (OMG’s). CORBA has

multiple service objects that provide the functionalities for building fault distributed application
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such as the following: (1) replication management service is contact the object group management

service. (2) group management service which acting dynamically in the input and output of the

replicated objects. (3) generic factory is interacting with local factory which is responsible for

defining and removing replicas. (4) the property management service is responsible for defining

the prosperities of the fault tolerance for each group. (5) the fault management service performs

the interfaces of the fault monitoring. In CORBA, fault detection is incorporated at in the server

level, object level and process level.(6)recovery and logging service, the main objective of recovery

and logging in CORBA is to register requests received by the server and that to keep the replicas in

consistent state (Santos, Lung, and Montez, Santos et al.2005) (Morgan, Shrivastava, Ezhilchelvan,

and Little, Morgan et al.1999) (Liang, Lo, Kao, Yuan, and Chang, Liang et al.1997).

WS-Replication: Web Service Replication

WS-Replication uses a clustering-based approach to guarantee the availability of the system.

Availability is achieved by deploying the same service in a set of sites, so if one site fails, the other

continues providing the service. WS-Replication is based on a group communication web service

and avoids the use of ad hoc mechanisms. The group communication is a web service called (WS-

Multicast) which uses SOAP as a transport protocol. WS-Multicast provides multicast and the

notion of views. A view contains currently connected and active members. The processes start

when multicast messages are sent to a group, and the system ensures that all available members

deliver the same messages. Also, the system ensures that a message that is delivered to all available

members even if a member fails (Salas, Perez-Sorrosal, Pati and Jiménez-Peris, Salas et al.2006).
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2.2 Fault Prediction

In this section, we provide a brief overview of related literature on fault management and

fault tolerance techniques in service-oriented environments, and the Web in general. Santos et

al. (Santos, Lung, and Montez, Santos et al.2005) proposed a fault tolerance approach (FTWeb) that

relies on active replicas. FTWeb uses a sequencer approach to group the different replicas in order.

It aims at finding fault free replica(s) for delegating the receiving, execution and request replies

to them. FTWeb is based on the WSDispatcher engine, which contains components responsible

for: creating fault free service groups, detecting faults, recovering from faults, establish a voting

mechanism for replica selection, and invoking the service replicas. Raz et al. (Raz, Koopman,

and Shaw, Raz et al.2002) present a semantic anomaly detection technique for SOAs. When a

fault occurs, it is corrected by comparing the application state to three copies of the service code

and data that is injected at a host upon its arrival. Similarly, Hwang et al. (Hwang, Wang, Tang,

and Srivastava, Hwang et al.2007) analyze the different QoS attributes of web services through a

probability based model. The challenge in this approach is composing an alternate work flow in a

large search space (withe the least error). Online monitoring (for QoS attributes) also needs some

investigation in this approach.

Wang et al’s. (Wang, Bandara, and Pahl, Wang et al.2009) approach integrates handling of

business constraint violations with runtime environment faults for dynamic service composition.

The approach is divided into three phases. The first phase is defining the fault taxonomy by di-

viding the faults into four groups (functional context fault, QoS context fault, domain context fault

and platform context fault) and analyzing the fault to determine a remedial strategy. The second
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phase is defining remedial strategies (remedies are selected and applied dynamically). The reme-

dial strategies are categorized into goal-preserving strategies to recover from faults (ignore, retry,

replace and recompose) and non-goal preserving strategies to support the system with actions to

assist possible future faults (log, alert and suspend). The third phase is matching each fault cate-

gory with remedial strategies based on the data levels. The main challenge in this approach is the

extra overhead, especially when the selected strategy is a “recomposition” of the whole system.

Simmonds et al. (Simmonds, Gan, Chechik, Nejati, O’Farrell, Litani, and Waterhouse, Sim-

monds et al.2009) present a framework that guarantees safety and aliveness through the conver-

sation between patterns, and checking their behaviors. The framework is divided in two parts:

(1) Websphere runtime monitoring with property manager and monitoring manager. The prop-

erty manger consists of graphical tools to transfer the sequential diagram to NFAs and check the

XML file. The monitoring manager builds the automata and processes the events. (2) Websphere

runtime engine. It uses the built-in service component that already exists in BPEL, to provide

service information at runtime. Delivering reliable service compositions over unreliable services

is a challenging problem. Liu et al. (Liu, Li, Huang, and Xiao, Liu et al.2009) proposed a hybrid

fault-tolerant mechanism (FACTS) that combines exception handling and transaction techniques

to improve the reliability of composite services.

2.3 Dynamic Planning

In this section, we provide a brief overview of some of the related fault recovery approaches.

The methods proposed in these works generate recovery plans for SOAs and Web services. In
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SOAs, a business process can terminate successfully if all services finish their work correctly

(providing alternative plans in case of a fault). One option to recover from the fault is to retry

(i.e., Re-do) the failed service. Retry is the easiest to recover from faults since it does not require

extra work such as looking for similar Web services. In (Tan, Fong, and Bobroff, Tan et al.2010)

a new execution model called BPEL4JOB is proposed. BPEL4JOB designed a fault-handling

policy (retry) that uses a signal to indicate the job execution state and adds a retry mechanism

for faulty service, until a valid response is received. Another method using retry mechanism was

described in (Modafferi, Mussi, and Pernici, Modafferi et al.2006). In the proposed approach a

designer defines a WS-BPEL process annotated with information about recovery actions such as

retry and then a preprocessing phase, starting from this annotated WS-BPEL, generates a standard

WS-BPEL file. In (Lakhal, Kobayashi, and Yokota, Lakhal et al.2006), authors used definition

rules, compatibility rules and ordering rules to build a flexible system model. In the proposed

model called (WSC), users define a compensating procedure that is invoked in case a fault occurs

during an activities’ execution life span. The model defined a vitality degree indicating that some

activities are identified as optional. The optional activity could be ignored which is a good example

of the ignore recovery strategy.

In (Dai, Yang, and Zhang, Dai et al.2009), authors proposed a method (SMP) to predict the

QoS and performance of composed and alternative Web services in case of a fault (i.e., replace).

The proposed method used a semi-markov model to predict the service data (e.g., execution time,

input, output, etc) while the services are running. SMP is the extension of markov process based

on time-dependent stochastic behaviors. The proposed method is similar to markov model except
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that its probabilities depend on the amount of time since the last transition. The predicted perfor-

mance of Web services is used to trigger reselection process for alternate Web services used for

replacing Web services. The challenge in this method is that it is applied to only one of the metrics

for QoS attribute and assumes equivalence of services in term of functionality. Similar strategy (re-

place) is used in (Chafle, Dasgupta, Kumar, Mittal, and Srivastava, Chafle et al.2006). It proposes

a method for adaptation in Web services composition and execution by using multiple workflows

and given feedback mechanism between the composition, deployment and runtime stages along

with ranking functions. The method selects services based on similarity using the hamming dis-

tance function given the QoS dimensions that are handled by the feedbacks coming from different

stages. DISC (Zahoor, Perrin, and Godart, Zahoor et al.2010) provides a constraint based declar-

ative approach that allows users to design the composition by identifying and providing a set of

constraints that mark the boundary of the solution.

In (Vaculin, Wiesner, and Sycara, Vaculin et al.2008) a retry recovery mechanism is used as CV-

handler. The CV-handler presents an approach for specification of exception handling and recovery

of semantic web services based on OWL-S. The technique uses standard fault handlers and com-

pensation known from WS-BPEL to provide support for long running transactions. CV-handlers

allow a designer to define what situations are supposed to trigger an erroneous state. FTWeb (San-

tos, Lung, and Montez, Santos et al.2005) is a fault tolerance approach, that relies on active repli-

cas. FTWeb uses a sequencer approach to group different replicas. It aims at finding fault free

replica(s) for delegating the receiving, execution and request replies. FTWeb is based on the WS-

Dispatcher engine, which contains components responsible for: creating fault free service groups,



38

detecting faults, recovering from faults, establish a voting mechanism for replica selection, and in-

voking the service replicas. Many other replication techniques have been proposed such as (Zhao,

Zhang, and Chai, Zhao et al.2009). The proposed technique is presented as a lightweight fault tol-

erance framework for Web services (LFT). In this framework, a Web service can be rendered fault

tolerantly by replicating it across several nodes. A consensus-based algorithm is used to ensure

total ordering of the requests to the replicated Web services, and to ensure consistent membership

view among the replicas. Another example of using replication strategy is WS-Replication (Salas,

Perez-Sorrosal, Pati and Jiménez-Peris, Salas et al.2006). The proposed framework provides an

infrastructure for WAN replication of Web services. The infrastructure is based on a group com-

munication Web service. Liu et al. (Liu, Li, Huang, and Xiao, Liu et al.2009) proposed a hybrid

fault-tolerant mechanism (FACTS) that combines exception handling and transaction techniques

to improve the reliability of composite services. Table 2.3 summarizes our findings. A X in a cell

means that the corresponding technique provides explicit support for the corresponding recovery

strategy, whereas an X indicates that the strategy is not supported.

2.4 Semantic Similarity

In this section, we provide a brief overview of some of the related literature. Several meth-

ods have been proposed to deal with the Web service matching problem. The technique in (Xia

and Yoshida, Xia and Yoshida2007) uses two stage assessment. In the first stage all service be-

longing to a specific category are gathered. The second stage consists of finding similarity among

these services based on input, output, conditions and effects. LARKS (Sycara, Klusch, Widoff,
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Table 2.3: Recovery Planning Techniques Summarized
Technique Replicate Replace Retry Ignore Random
SMP (Dai, Yang, and Zhang, Dai et al.2009) x X x x x
BPEL4JOB (Tan, Fong, and Bobroff, Tan
et al.2010)

x x X x x

WS-BPEL (Modafferi, Mussi, and Pernici, Modaf-
feri et al.2006)

x x X x x

WFlow (Chafle, Dasgupta, Kumar, Mittal, and Sri-
vastava, Chafle et al.2006)

x X x x x

CV-handler (Vaculin, Wiesner, and Sycara, Vac-
ulin et al.2008)

x x X x x

FTWeb (Santos, Lung, and Montez, Santos
et al.2005)

X x x x x

FACT (Liu, Li, Huang, and Xiao, Liu et al.2009) x X X X X
WS-Replication (Salas, Perez-Sorrosal, Pati and
Jiménez-Peris, Salas et al.2006)

X x x x x

LFT (Zhao, Zhang, and Chai, Zhao et al.2009) X x x x x
WSC (Lakhal, Kobayashi, and Yokota, Lakhal
et al.2006)

x x x X x

and Lu, Sycara et al.1999) defines five techniques for service matchmaking: context matching,

profile comparison, similarity matching, signature matching, and constraint matching. Matching

services to requests is performed by using any combination of the above techniques. The ATLAS

matchmaker (Paolucci and Wagner, Paolucci and Wagner2006) defines two methods for compar-

ing service capabilities described in DAML-S. The first method compares functional attributes to

check whether advertisements support the required type of service or if it delivers sufficient quality

of service. The second method compares the functional capabilities of Web services in terms of in-

puts and outputs. Anamika (Chakraborty, Perich, Joshi, Finin, and Yesha, Chakraborty et al.2002)

presents a service matching technique for pervasive computing environments. Service descrip-

tions are provided in DAMLS. They also include platform specific information such as processor

type, speed, and memory availability. The composition manager uses a semantic service discovery
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mechanism to select participant services. RACER (Li and Horrocks, Li and Horrocks2003) adopts

techniques from knowledge representation to match DAML-S service capabilities. In particular,

it defines a description logic (DL) reasoner; advertisements and requests are represented in DL

notations.

Another DAML-S based matchmaker implementation is KarmaSIM (Narayanan and McIlraith,

Narayanan and McIlraith2002) where DAML-S descriptions are described in terms of a first-order

logic language (predicates) and then converted to Petri-nets where the composition can be simu-

lated, evaluated and performed. Context-based matching (CBM) has been proposed in (Medjahed

and Atif, Medjahed and Atif2007), the matching process is performed via peer-to-peer interac-

tions between a context-based matching engine, CPAs and community services. A service con-

sumer sends a matching request to context-based matching engine which sends a sub request to

the communities and compares the consumer requirement with each community members. Then

the context-based matching engine finds the intersection between the matching set from each com-

munity. The communities have been created based on the policies inside the Web services. The

problem in this technique is that the number of comparisons will be high if the same Web ser-

vice exists in all communities (i.e., the Web service includes all policies that the consumer has

requested). Circular context-based (CCB) has been proposed in (Segev, Segev2008), the technique

compares context extracted from each Web service based on its WSDL description to with other

Web services’ textual description context. The second stage consists of finding the context overlap

among the Web service through parsing WSDL file. Other service matching techniques are also

presented in (Baı̈na, Benali, and Godart, Baı̈na et al.2001) (Heuvel, Yang, and Papazoglou, Heuvel
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et al.2001) (Mecella, Pernici, and Craca, Mecella et al.2001). However, these techniques mostly

focus on syntactic comparison among attributes of Web services.

Since we use contextual information of Web services, we position our work with existing

context-oriented Web service frameworks. Several context-aware approaches have recently been

proposed to enhance Web service discovery and composition mechanisms. Context attributes (Lee

and Helal, Lee and Helal2003) proposes a context-aware service discovery technique for mobile

environments. It defines the context of a Web service as a set of attributes included in the service

description. Examples of context attributes include user location and network bandwidth. The

discovery engine first lookups for Web services based on traditional criteria (e.g., service category

in UDDI). Then, it reduces the qualified services to be returned to clients through context attribute

evaluation. This approach uses contextual information for service discovery not for service com-

position. Additionally, it focuses on client-related contextual information. It does not seem to

consider provider-related context which is important for Web service composition. Finally, the

definition of context is limited to some attributes added to service descriptions. We adopt a more

generic definition of Web service context through an ontology-based categorization of contextual

information. Contextualization is proposed at the Web service deployment, composition and con-

ciliation or matching levels in (Maamar, Benslimane, and Narendra, Maamar et al.2006). The

description of contexts is assumed to occur along three categories: profile, process model, and

grounding. The profile describes the arguments and capabilities of a context. The process model

suggests how context collects raw data from sensors and detects changes, that need to be submitted

to the Web service. Finally, the grounding defines the bindings (protocol, input/output messages,
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etc.) that make context accessible to a Web service. The authors did not however mention how

relevant contexts are elicited in a service matchmaking process.
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CHAPTER 3

SELF-HEALING FRAMEWORK

In this chapter, we present our proposed self-healing framework to predict and recover from

service faults. A service fault may be defined as the result of an unsuccessful or undesired outcome

of the service operation. The fault can thus be the result of a data event such as unavailable

reservation on a hotel in our running scenario, or related to execution time, when the service

exceeds the expected execution time.

SOA
Services Execution 

Plan 
PHASE 1

Service Reliability and 
Utility 

PHASE 2
Runtime Planning 

and Evaluation
Service Execution Plan 

Assessment 

Service Utility Planning Strategy 

Input/output of a phase

Input/output data

Methods

Invocation 
Point

HMM Clustering

Reputation

Figure 3.1: FLEX phases.

There are other types of faults such as user and network faults, but in this work we focus only

on the faults that occur at the service level. To predict and recover from the failure of a service,

we proposed Fault occurrence Likelihood estimation with EXception handling (FLEX). FLEX is

divided into two phases: Phase I; service reliability and utility and Phase II; runtime planning

and evaluation(see Figure 3.1). In Phase I, we assess the fault likelihood of the service using a

combination of techniques (e.g., Hidden Markov Model, Reputation, Clustering). In Phase II, we
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build a recovery plan to execute in case of fault(s) and we calculate the overall system reliability

based on the fault occurrence likelihoods assessed for all the services that are part of the current

composition. FLEX relies on five key activities to support dynamic management based on the

changes in user requirements and QoS levels.

Service history
Service weight
Execution time 
Reputation

QoS parameters

Calculate FOLT
Calculate utility

Calculate criticality 

Determine the planning 
strategy

Generate the planning 
strategy and store it

Execute the plan

Execute

Plan Decide

Analyze

Collect

No need for a new plan

Figure 3.2: The autonomic control loop for FLEX.

Figure 3.2 shows the key activities: collect, analyze, decide, plan and execute. FLEX collects

data from the system (and accompanying community) for each service such as: the service history,

the service reputation, the service weight, the service execution time and other QoS parameters.

The accumulated data is then analyzed by calculating the fault likelihood, the utility and the crit-

icality of the services. In the next step, FLEX determines which one of the planning strategies is

to be used (i.e., ignore, replace, etc). Then FLEX generates the new recovery plan(s) and stores

for future. If the fault likelihood exceeds a pre-defined threshold, then FLEX will execute the plan

immediately. These steps are described in details in the following sections.
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3.1 Fault Prediction

In this section, we present the first step of FLEX which is the fault prediction. In this Phase,

we calculate the fault occurrence likelihood (FOLT) for the service to assess its reliability. The

notations used hereafter are listed in Table 3.1. Most of the terms in the table are self-explanatory.

Table 3.1: Definition of Symbols
Symbol Definition

T The total execution time.
t0 Start time.
tn End time.
ti Time at which a new service is invoked.
k Number of services.

P (x)t Fault occurrence likelihood for servicex when in-
voked at time t.

λi Weight of servicei in relation to T.
λ′
i Weight of servicei in relation to (T − ti).

∆i First-hand fault history ratio of servicei.
∆′

i Second-hand fault history ratio of servicei.
f(si) The priority of servicei in the composition.

Brief descriptions of other symbols follow: λi is the ratio of the time taken by servicei (to

complete its execution), to the total composition execution time. On the other hand, λ′
i is the ratio

of the time taken by servicei to the total time “remaining” in the composition, from the point

when servicei was invoked. ∆i is the first-hand experience of an invoking service regarding a

component servicei’s propensity to fault. For cases where the invoker has no historical knowledge

of servicei (i.e., the two services had no prior interaction), ∆i = 0. Similarly, ∆′
i is the second-

hand experience regarding a servicei’s faulty behavior. This information is retrieved from other

services that have invoked servicei in the past. We assume that trust mechanisms (such as (Malik,

Akbar, and Bouguettaya, Malik et al.2009)) are in place to retrieve and filter service feedbacks.
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f(si) is the assigned weight of a servicei in the whole composition. It provides a measure for the

importance of servicei in relation to other component services invoked, where
∑n

i=1 f(si) = 1.
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Figure 3.3: FOLT Architecture.

FOLT architecture (Figure 3.3) is composed of several modules. These are, History Module:

This module keeps track of an individual service’s propensity to fault. The information is stored in

a History Repository that includes the service name, invocation time, reported faults (if any), and

a numerical score. The Estimation Module calculates the fault occurrence likelihood for a service

in a given context (execution history). An optional Priority Module is used sometimes (details to

follow) to indicate the service priority assignment by the invoker in a given execution scenario.
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Lastly, the Planning Module creates plans to recover from encountered faults, and prevent any

future ones. As mentioned earlier, details of the module are not the focus of this work.

In summary, the designers store some of the plan details in a plan repository while others are

generated at run time. Each plan contains specific fields such as: Plan ID, Plan Name, Plan Dura-

tion time, Plan Steps and Plan Counter. When FOLT decides to generate a plan, the system starts

the dynamic generation process. The generated plan depends on the chosen invocation model.

When the orchestrator invokes a service at any given time (invocation point), it calculates the fault

history ratio for the invoked service. Here, we use the maximum value among the external ratio

(service’s second-hand experience as observed by the community) and internal ratio (first-hand

experience of the orchestrator). The system then calculates the fault occurrence likelihood of the

invoked service. If the likelihood is greater than a pre-defined threshold (θ1) the system builds a

fault prevention plan. Otherwise, the system re-calculates the likelihood taking into consideration

the priority of the current service and compares the value again with θ1. The purpose of this step is

that non-critical services have no plans built for them, and the system can complete the execution

even if a fault occurs in any of these services. The newly created plan is tested using a series of

verifications. If the plan fails any of the tests, the system returns back to the planning module,

and a new plan is created/checked. The process repeats for x number of times until a valid plan

is found. If no plan is still found, the invoker/user is informed. Once a valid plan is created, it is

stored in the repository. Then, If the likelihood is greater than another pre-defined threshold (θ2)

the system can execute this fault prevention plan.

Phase 1 is divided into multiple steps: calculating the service’s weight (λ), calculating the
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time weight (λ′), calculating the internal history value (∆i) using a Hidden Markov Model, and

calculating the external history value (∆′
i) using clustering and reputation. The likelihood of a

fault occurring at time t is defined by studying the relationship between the service’s importance,

time it takes to execute, and its past performance in the composition. Thus, each invocation model

will have a different fault likelihood value. As mentioned earlier, λ is the ratio of the time that is

needed to complete the service execution, divided by the total time of completing the execution of

the whole system. Similar to the approach used in (Meulenhoff, Ostendorf, Živković, Meeuwissen,

and Gijsen, Meulenhoff et al.2009), we use this value of λ as one of the basic constructs in FOLT to

measure the (relative) weight of the invoked service to the rest of system time. The basic premise

is that the likelihood of a fault occurrence for a long running service will be more than a service

with very short execution time. Determining the service execution time could be accomplished

in two ways. If the system does not know the execution time for a service, then the service’s

advertised execution time is used. On the other hand, after attaining experience with the service

(prior invocations), the service execution time could be recorded and stored in the repository. Then:

λi =
T (si)

T
(3.1)

λ′
i =

T (si)

T − ti
(3.2)

where λi is as described above, T (si) is the total execution time of servicei, while ti is the invo-

cation time of servicei (i.e., when the service was invoked).

A service’s past behavior is assessed according to first-hand experience of the invoking service

and second-hand experiences of other services obtained in the form of ratings via the community.
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These experiences are evaluated as a ratio of the number of times the service failed, divided by

the total number of times the service was invoked. To assess the First-hand Experience, we use

a Hidden Markov Model (HMM). The HMM provides the probability that the service will fail

in the next invocation, based on the previous behavior of the service within the system. HMMs

have proven useful in numerous research areas for modeling dynamic systems (Malik, Akbar, and

Bouguettaya, Malik et al.2009). An HMM is a process with a set of states, set of hidden behavior

and a transition matrix. In our architecture, all services stay in one of the two states: Healthy or

Faulty (Figure 3.4).

Healthy Faulty

P State
P   Probability of being in healthy state.
q    Probability of being in faulty state.
1-p  Probability of going from healthy to 

faulty.
1-q  Probability of going from faulty to 

healthy.
1 - q

1 - p q

Figure 3.4: Finite state machine for an HMM of the service.

Each time the composition orchestrator invokes a service, it records the state of that service

(Faulty or Healthy) along with the time of the invocation. Let the vector V = the service behavior

profile, then to asses the probability that Servicei will be in the Faulty state in the next time

instance:

P (Faulty|V ) = P (Faulty|Healthy) + P (Faulty|Faulty) (3.3)

FOLT also uses other services’ experiences with Servicei to assess its reliability. Services are

divided into clusters based on their similarity (such as in (Abramowicz, Haniewicz, Kaczmarek,

and Zyskowski, Abramowicz et al.2007)). These group of services are consulted for the reputation
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of Servicei. We assume that other services are willing to share their reputation ratings, which

are assimilated using our previous work in (Malik, Akbar, and Bouguettaya, Malik et al.2009).

A combination of service time weights and service history ratios (using HMM, and reputation) is

used to assess the fault occurrence likelihood:

P (si)
t = 1− (λ′

i)
λi

1−max(∆i,∆
′
i
) (3.4)

Note that the fault history is assessed according to max(∆A,∆
′
A). Then, the likelihood of a

service executing without any fault is 1−max(∆A,∆
′
A). We use this value in relation to the total

execution times (remaining given by λ′, and overall given by λ) to assess the likelihood of a service

executing without a fault. To get the likelihood of the service’s fault occurrence we subtract this

value from 1 in Equation 3.4. In cases where we need to incorporate a service’s priority weight,

Equation 3.4 becomes:

P (si)
t = 1− (λ′

i)
λif(si)

1−max(∆i,∆
′
i
) (3.5)

Appendix 1 shows the mathematical proof for Equation 3.5. We observe that with increased

service priority, fault likelihood also increases. Based on the fault likelihood, FOLT decides when

to build a recovery plan. Services with a high priority are usually critical, and a fault in any of

those services may harm the overall QoS. Thus, fault likelihood and service priority are directly

proportional in FOLT.

Using Equation 3.5 as the basis, we define fault likelihood estimation for each invocation

model. For instance, the likelihood of fault(s) in a sequential invocation (Pseq) is dependent on

the successor service(s) (Cardoso, Miller, Sheth, and Arnold, Cardoso et al.2002). Since FOLT
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uses invocation points, only a single service can be invoked per time instance/invocation point.

Hence the equation stays the same. Let A be the successor service, then

Pseq = P (sA)
t = 1− (λ′

A)
λAf(sA)

1−max(∆A,∆′
A

) (3.6)

In a parallel invocation, fault estimation at the invocation point translates to the fault occurring

in either of the invoked services. Since all services are independent, we need to add their fault

likelihoods. Moreover, due to the likelihood of simultaneous faults occurring in the respective

services, we have

Ppar =
h∪

i=1

Pi = Σh
i=1Pi − Πh

i=1Pi

Ppar = Σh
i=1(1− (λ′

i)
λif(si)

1−max(∆i,∆
′
i
) )− Πh

i=1(1− (λ′
i)

λif(si)

1−max(∆i,∆
′
i
) ) (3.7)

where h is the number of services invoked in parallel.

In probabilistic invocation (Ppro), fault likelihood depends on the probability of selecting the

service (Q). Then, if we have k services:

Ppro =
k∩

i=1

Pi = Πk
i=1Qi × Pi (3.8)

Similarly, the fault likelihood of a circular invocation is:

Pcir = Πn
i=1PS (3.9)
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3.2 Run-time Planning

In this section, we present the second step of FLEX which is the run-time planning. Ser-

vices involved in an SOA often do not operate under a single processing environment and need to

communicate using different protocols over a network. Under such conditions, designing a fault

management system that is both efficient and extensible is a challenging task. In essence, SOAs

are distributed systems consisting of diverse and discrete software services that work together to

perform the required tasks. Reliability of an SOA is thus directly related to the component ser-

vices’ behavior, and sub-optimal performance of any of the components may degrade the SOA’s

overall quality. The problem is exacerbated due to security, privacy, trust, etc. concerns, since

the component services may not share information about their executions. This lack of informa-

tion translates into traditional fault management tools and techniques not being fully equipped to

monitor, analyze, and resolve faults in SOAs.

In Phase I (Alhosban, Hashmi, Malik, and Medjahed, Alhosban et al.2011), we defined a fault

management approach (Fault Occurrence Likelihood esTimation: FOLT) for SOAs. We assume

that component services do not share their execution details with the invoking service (defined as

an orchestrator). The orchestrator only has information regarding the services’ invocation times

and some other observable quality of service (QoS) attributes. Once faults are identified (i.e.,

likely to occur in the future), recovery plans need to be created. However, fault recovery plan

generation is challenging due to the lack of capabilities in current systems to adapt themselves at

run time to cope with dynamic changes in user requirements and the running levels of QoS at-

tributes (Nascimento, Rubira, and Lee, Nascimento et al.2011) (Mulo, Zdun, and Dustdar, Mulo
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et al.2010). In order to support such dynamic changes, we propose FLEX (FoLt with EXception

handling) a fault-tolerant mechanism which combines our planning strategies based on FOLT cal-

culations (Alhosban, Hashmi, Malik, and Medjahed, Alhosban et al.2011) and incorporates the

exception handling constructs of BPEL. Our planning module captures both the functional and

non-functional features of Web services. Functionality is specified by the operations offered by a

Web service, while the non-functional part comprises the QoS properties of a Web service.

Specifically, we propose a novel technique to dynamically evaluate the performance of Web

services based on their previous history (in terms of QoS), and user requirements. The likelihood

of fault occurrence is then used to create (multiple) recovery plans. The ‘best’ recovery plan is then

chosen to be either executed immediately (if fault likelihood is above a pre-defined threshold), or

saved for a later execution (i.e., to be executed when the fault occurs).

3.2.1 Utility and Reliability Calculation

The reliability of a service is determined as the percentage where the service is providing fault

free service or in the worst case the minimum number of faults. This value is used in a utility

function to determine whether we need to create a fault recovery. A utility function R(λ′
i) defined

for 0 < λ′
i < 1 has the property of non-satiation (i.e., the first derivation R′(λ′

i) > 0, and the

second derivation R′′(λ′
i) < 0). Thus:

R(SA) = (λ′
A)

λAf(sA)

1−max(∆A,∆′
A

) (3.10)
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We first find the first derivative for λ′
i based on the above equation as:

R′(SA) =
dR

dλ′
A

=
λAf(sA)

1−max(∆A,∆′
A)

(λ′
A)

λAf(sA)

1−max(∆A,∆′
A

)
−1

(3.11)

By analyzing Equation 3.11 we can see that this will generate a positive value since:

0 < λ′
A < 1 (3.12)

0 < f(x) < 1 (3.13)

max(∆A,∆
′
A) < 1, 0 < 1−max(∆A,∆

′
A) < 1 (3.14)

then

λAf(sA)

1−max(∆A,∆′
A)

(λ′
A)

λAf(sA)

1−max(∆A,∆′
A

)
−1

> 0 (3.15)

i.e.,

dU

dλ′
A

> 0 (3.16)

Similarly,

R′′(SA) =
d2R

dλ′
A
2 (3.17)
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R′′(SA) = (
λAf(sA)

1−max(∆A,∆′
A)

)2(
λAf(sA)

1−max(∆A,∆′
A)

− 1)(λ′
A)

λAf(sA)

1−max(∆A,∆′
A

)
−2

(3.18)

By analyzing Equation 3.18 we can see that thus will generate a negative value since:

λAf(sA)

1−max(∆A,∆′
A)

< 1 (3.19)

subtracting 1 from each side, gives

λAf(sA)

1−max(∆A,∆′
A)

− 1 < 0 (3.20)

The minimum expected value for λA, f(sA), and (1 − max(∆A,∆
′
A)) is equal to 0.01 then the

minimum value of this equation is 0.01, thus, (0.01 - 1 = -0.99). However, the maximum expected

value for the previous parameters is 0.99 then (0.99 - 1 = -0.01). So, ( λAf(sA)
1−max(∆A,∆′

A)
− 1) will be

always less than 1 which makes the whole equation (Equation 3.18) negative.

d2U

dλ′
A
2 < 0 (3.21)

Form the Equations 3.11 and 3.18 we can see that our equation is a valid objective utility function

(as per the definition). As mentioned earlier, the utility value is used to make a decision regarding

plan generation/execution based on the following:
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R =



Rmax if 0.7 < R ≤ 1;

Raverage if 0.4 < R ≤ 0.7;

Rmin if 0.2 < R ≤ 0.4;

Rrisk if 0 ≤ R ≤ 0.2;

If the utility is Rmax that means the service is expected to execute correctly without possibility

of a fault. In this case, FLEX invokes the service without any concern and no recovery plan is

generated. However, if the utility is Raverage that means the service has a possibility of failure

but this possibility is low. In such a case FLEX will create a recovery plan and store it in the plan

repository and when the fault occurs, it retrieve and execute the created plan. When the value of

utility is Rmin that means the service has a high possibility of failure, and FLEX should create and

execute the recovery plan instead of invoking the service. Finally, if the utility is Rrisk then the

system should take an immediate action by replacing the service by a similar one.

3.2.2 Dynamic Recovery Plan Generation

Planning can be defined as “a kind of problem solving, where an agent uses its beliefs about

available actions and their consequences, in order to identify a solution over an abstract set of

possible plans” (Jensen, Jensen2004). In any composite system two main types of services may

exist: critical services (CS) and non-critical services (NS). The degree of criticality is thus based

on the tasks undertaken by these services, where each task contains one or more operations. In

FLEX, to determine the criticality degree of a service we use: (i) user priority and operation

weight calculation (UOW), and (ii) the critical path method (CPA). In UOW, the main factors are:
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the operation priority value that is provided by the consumer (Wuseri) and operation criticality

(defined as the ratio of the operation’s execution time to the total execution time of the service).

OpCritical(opi, servicej) =
WOpij ×

∑n
k=1 Rk

|W |+ |D|
(3.22)

Where (WOpij ) is the weight of the operation i in service j which is calculated by dividing the

execution time of the operation over the total service time, (Rk) is the reputation of the service that

is provided by n different composition, W is the number of component services in the composition,

and D is the number of Web services that depend on Web service j. After determining the criticality

of the operation we calculate the criticality of the task, and the criticality of the overall service

(ServiceSignificance).

TaskCriticality(taskk) =

∑z
i=1 Wuseri ×OpCritical(opi, servicej)∑z

i=1 Wuseri
(3.23)

where z is the number of operations in taskk, and Wuseri is the user’s weight for opi.

ServiceSignificance =
m∑
i=1

TaskCriticality(taski) (3.24)

where m is the number of tasks in the servicej . FLEX uses the ServiceSignificance value

to create a binary decision for UOW. If ServiceSignificance > β (where β is a predefined

threshold) then service criticality value for UOW is one, otherwise it is zero. The binary UOW

value is used in conjunction with the CPA value. The discussion follows.

In CPA, we specify the composition in the system as a statechart (Zeng, Benatallah, Dumas,
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Legend
Basic state               Compound state                   Start state                     Final state

Figure 3.5: Statechart of travel scenario (SURETY).

Kalagnanam, and Sheng, Zeng et al.2003). The choice of statechart is for two reasons: it has well-

defined semantics and it offers the basic flow invocations that exist in any composition such as

sequential, parallel and circular. In our approach, the states are the Web service(s), and the transi-

tions among the states are the links to the next invocation point. States can be basic or compound.

Basic states are labeled to one Web service. However, compound states contain more than one

Web service. An example for a compound state is a set of Web services (S1,S2, and S3). As a

simplified statechart Figure 3.5 shows the statechart for our running scenario which contains nine

basic states and two compound states.

Definition 1:(Execution path) An execution path of a statechart is a sequence of basic states

[State1, State2,..,Staten], where State1 is the initial state, Staten is the final state, and Statei ∈

(State1,..,Staten). Statei is a direct successor of one of the states in [State1,..,Statei−1] and it is not

a direct successor of the states in [Statei+1,..,Staten].�

From Definition 1, we see that the statechart has a finite number of paths. In addition, if the

statechart has probabilistic invocation, it has multiple execution paths, where each one represents

a sequence of services.
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Figure 3.6: Representation of different execution paths.

Figure 3.6 gives an example of two execution paths for the statechart in Figure 3.5. Since there

is a probabilistic branch after state6, there are two paths: path 1 and path 2. In path 1 the execution

goes from state5 to state6 then state10, while in path 2 the execution goes from state5 to all the

other states (state7, state8 and state9) then state10. We use the critical path algorithm (CPA) for

determining the critical services in the system. The critical path of a system is a path from the start

state to the final state which has the highest/lowest total sum of weights in the consumers view of

point. In our running example, we assume that the consumer’s main concern is the execution time,

and each service’s execution time is given in Figure 3.7. After calculating the total execution time

for each path, we found that the minimum total execution time is 89 ms (execution path 1). The

critical path is thus (state3, state4, state5, state6, and state10). Every service located in the critical

path is critical service. After determining the critical services using CPA and UOW we are use a

conjunction (XOR) to determine the final decision for criticality. The service criticality is equal to

zero if (CPA = 0 AND UOW = 0).
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Figure 3.7: Critical path and critical services.

3.2.3 Incorporating WS-BPEL

Business Process Execution Language (BPEL) is a commonly accepted standard for defining

business processes with composition of services in SOA (Andrews, Curbera, Dholakia, Goland,

Klein, Leymann, Liu, Roller, Smith, Thatte, Trickovic, and Weerawarana, Andrews et al.2003).

Standard BPEL variables are a snapshot of data returned by a service and thus present a duplicate

version of remote data at some particular time. However, in certain cases we want to ensure that

the process always uses the latest version of important business data as other applications may

change the data in the data source during the BPEL process execution.

This problem arises particularly in case of long-running BPEL processes, which can take a few

days, weeks or even months to complete. WS-BPEL has a few built-in exception handling strate-

gies, that work similar to the try-throw-catch mechanism in programming languages such as JAVA.

Such exception handling mechanisms work after a service is invoked and a fault occurs. However,

the FLEX planning module also enables the creation of a recovery plan before service innovation

(and execute this alternate in special cases). Figure 3.8 shows the general architecture of FLEX.

As mentioned earlier, FLEX works in two different ways (i.e., before or after the occurrence of the
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Figure 3.8: Overview of FLEX.

fault): pre-recovery and post-recovery. In the pre-recovery, FLEX works alone without WS-BPEL,

but in the post-recovery, FLEX fully exploits WS-BPEL’s built-in exception handling constructs.

The pre-recovery actions are predicting the fault, building the recovery plan, and executing the

recovery plan (it needed). The primary post-recovery action is using WS-BPEL to handle the fault,

and if BPEL’s built in strategies can not recover from the fault, then as a secondary action, FLEX

reinitiates the planning process.

In general, before invoking any service the Service Invocation Module sends the service’s infor-
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Figure 3.9: Planning module processes.

mation to the History Module which is responsible for calculating the fault likelihood (Alhosban,

Hashmi, Malik, and Medjahed, Alhosban et al.2011). Based on this value, the Estimation Module

determines if the system needs pre-recovery, or it can continue the invocation process. If the deci-

sion is pre-recover then the Planning Module decides the best plan through the Decision Making

Module, i.e., generates the recovery plan, verifies it, stores it in the Service Repository, and execute

it (if needed). When a fault occurs at runtime, the system first employs the WS-BPEL exception

handling strategies to repair it. If the fault is fixed, the composite service continues its execution.
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Otherwise, the system returns back to the Planning Module which generates an optimal recovery

plan and executes it. The Planning Module (PM) consists of three components: Decision Making

Component (DMC), Validation Component (VC) and Planning Component (PC). Each one of the

components has it is own responsibilities. Starting from DMC, the input of this component is the

service utility which could be (as mentioned earlier) one of four utility values such as: Rmax,

Raverage, Rrisk and Rmin. Based on the utility of the service, DMC decides whether to create a

plan or not. A new/generated plan is then validated (using VC). The decision of VC is based on the

availability of the plan (i.e, whether the services in the new plan are available), the fault likelihood

of the plan, and the execution time of the new plan compared to the current execution time. If VC

determines that the plan is valid, the likelihood of fault is low and the execution time is acceptable,

then the plan is stored in the plan repository. On the other hand, if the plan fails in any one of the

tests, the system returns back to PC, and a new plan is created/validated. The process repeats for x

number of times until a valid plan is found. If no plan is still found, the invoker/user is informed,

and if required FLEX invokes the current service plan with the expected risks (see Figure 3.9).

The six exception handling strategies used in FLEX: Ignore, Parallel-Retry, Retry-Until, Replace,

Active Replication and Passive Replication. Details follow.

Ignore: Just as its name suggests, this strategy does not take any direct action to handle a fault,

other than ignoring the execution of the faulty service (i.e., the system may ignore the current

service and continue the execution without wasting time in fixing the fault). This strategy is used

in situation where the service ignorance will not affect the main goal. For instance, in our scenario
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(Figure 1.3), if there is a fault in S3 (e.g., no response after specific time) FLEX may ignore S3 and

skip to service S4 (Figure 3.10).

S3

S1

Get
Request

S2

S4 S5

S7

S9 Send
Result

S31 S32 S33

S6

S8

Figure 3.10: Ignore Strategy.

Precondition: Fault or fault predicted , and Servicex is not critical

1. Disable Servicex, i.e., disable the invocation of this service.

2. Return back to the last step in the execution plan before invoking the faulty service.

3. Create a bypass link to the immediate next service in the system.

4. Resume the execution of the ’new’ composition.

5. Report the state (e.g., a fault report) to the system.

Retry: In this strategy, if a fault occurs in a service, the system repeats the same service

once. The repetition of the service in Retry may be carried out without altering any conditions

or changing some of the conditions (e.g., input variables, etc.). Figure 3.11 shows an example of

retry where the Hotel booking (S2) service was repeated because a fault occurs in this service (e.g.,

change of flight date). In this case, the strategy deletes all previous results and restarts from the

beginning.

Precondition: Fault or fault predicted, and Servicex is available
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Figure 3.11: Retry Strategy.

1. Delete results from the first time invocation for Servicex.

2. Return back to the first step in the execution plan of invoking the faulty service.

3. Change any variables if required.

4. Resume the execution.

5. Report the state (e.g., a fault report) to the system.

Retry-Until: In the retry-until strategy, if a fault occurs in a service, the system repeats the

same service multiple times. The repetition of the service is with a condition that the execution

time should not exceed ρ, where ρ is the maximum time the system allows for this service’s exe-

cution. For instance, if ρ = 40 ms, and the Hotel booking service time is equal to 15 ms, then this

service will be repeated for two times at maximum.

Precondition: Fault or fault predicted , Servicex is available, ρ

1. Delete results from the first time invocation for Servicex.

2. Return back to the first step in the execution plan of invoking the faulty service.
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3. Check condition: Check the maximum acceptable time

• Resume the execution.

4. Report the state (e.g., a fault report) to the system.

Replace: Under the replace strategy, the system should find another similar service and replace

the current one. The new service should have the same functional and non-functional parameters.

This is especially interesting in the context of Web services since each Web service is represented

by a category. In our scenario (Figure 3.12), if the Flight reservation (S1) service fails then the

system looks for similar services and replace it with the new one (i.e., the same category under

UDDI).

S3

S1

Get
Request

S2

S4 S5

S7

S9 Send
Result

S31 S32 S33

S6

S8

Sa
S1_tmodel= xxxyxxx
S2_tmodel= xxxyyyy
S3_tmodel= xxxyxzz
Sa_tmodel= xxxyxxx
Sb_tmodel= xxxyyyx 

Figure 3.12: Replace Strategy.

In FLEX, we have two types of replacement: overlapping and full replacement. In overlap-

ping, we keep the operations that perform well and replace the operations that have faults, while

in full replacement, all service operations are replaced (see Figure 3.13). Otherwise, if the sys-

tem cannot find that kind of operation, it moves to full replacement of such as servicea (Nepal,

Sherchan, Hunklinger, and Bouguettaya, Nepal et al.2010) (Menascé and Dubey, Menascé and
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Dubey2007) (Bergmann, Richter, Schmitt, Stahl, and Vollrath, Bergmann et al.2001) (Li, Xu, Wu,

and Zhu, Li et al.2012) (Yao, Lu, Fu, and Ji, Yao et al.2010) (Alhosban, Hashmi, Malik, and

Medjahed, Alhosban et al.2012).

Precondition: Fault or fault predicted, and Servicey is available

1. Delete results from the first time invocation for Servicex.

2. Return back to the first step in the execution plan of invoking the faulty service.

3. Similar service. i.e., find a service Servicey which is similar to Servicex.

4. Create link to the new alternative service (Servicey).

5. Resume the execution.

6. Report the state (e.g., a fault report) to the system.

Replicate: In replicate, the system invokes multiple equivalent services at the same time

(equivalent means that they provide the same functional and (similar) non-functional parameters).

Thus, if a service fails, then there is another service that can fulfill the desired task. In our scenario,

when the strategy is replicate for Transportation service (S4) then the system invokes the similar

services (Sb, Sc and Sd). (see Figure 3.14).

Precondition: Fault or fault predicted , and similar services are available

1. Delete results from the first time invocation for Servicex.

2. Return back to the first step in the execution plan of invoking the faulty service.

3. Keep the link to Servicex.
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Figure 3.13: Different scenarios of replace strategy.

4. Similar service. i.e., find services that is similar to Servicex.

5. Create link to the new alternative service (Servicey).

6. Resume the execution.

7. Report the state (e.g., a fault report) to the system.
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SbS1_tmodel= xxxyxxx
S2_tmodel= xxxyyyy
S3_tmodel= xxxyxzz
S4_tmodel= wwwxxz
Sa_tmodel= xxxyxxx
Sb_tmodel= wwwxxz 
Sc_tmodel= wwwxxz
Sd_tmodel= wwwxxz

Sc

Sd

Figure 3.14: Replicate Strategy.
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In replication we have two types: active and passive replication. In the active replication, the

system invokes all replicas at the same time and takes the service that returns the first response.

Some fault tolerance techniques employee active replication such as Fewer (Santos, Lung, and

Montez, Santos et al.2005), Thema (Merideth, Iyengar, Mikalsen, Rouvellou, and Narasimhan,

Merideth et al.2005) and WS-Replication (Salas, Perez-Sorrosal, Pati and Jiménez-Peris, Salas

et al.2006). In passive replication, the system invokes the primary replica to perform the job and

invokes backup replicas only if the primary replica fails. Some of the fault tolerance techniques

employee passive replication such as FT-SOAP (Fang, Liang, Lin, and Lin, Fang et al.2007) and

FT-CORBA (Majzik and Huszerl, Majzik and Huszerl2002). Table 3.2 summarizes the previous

recovery strategies.

Table 3.2: FLEX planning strategies
Recovery plan Brief description

Ignore (Servicex) Ignores the current service and skips to the immediate next
service(s).

Retry (Servicex) Repeats the execution of the current service once.
Retry-until (Servicex, ρ) Repeats the execution of the current service until the service

execution time exceeds ρ.
Replace(Servicex, Servicey) Executes an alternative of servicex (i.e., replace by

servicey).
Passive-replication (Servicex,
Servicey)

Allows the execution of servicex and servicey at the same
time.

Passive-replication (Servicex,
ServicesSetss)

Allows the execution of servicex and all the services in Ser-
viceSet at the same time.

FLEX creates dynamic plans (when the system needs them at run time) based on the utility and

criticality of the services.

• Utility (R): This is the utility of the service which has been calculated in the previous part:
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Rmax, Raverage, Rmin and Rrisk.

• Criticality (C): This is a binary value assessed from the two different ways (UOW and CPA)

by calculating the criticality degree.

• Ucost: This is a binary value that the user provides to the system. If the user does not accept

any extra cost (i.e., the cost of invoking another services), Ucost will be zero. When Ucost

equals to one that means the user does not mind the extra cost.

• Utime: This is a binary value that the user provides to the system. If the user does not accept

any extra time, Utime will be zero. When Utime is equal to one that means the user does not

mind an increased execution time.

C

= 1 = 0

RR

= Rrisk
= Rmin

= Raverage

= Rmax

= Rrisk

= Rmin = Raverage

= RmaxReplace

Ucost

= 0 = 1

= 0

Replace Utime

Active 
Replication

Passive 
Replication

= 1

Ucost

= 0

Replace

= 1

Retry-Until

Utime

= 0 = 1

Retry

Ignore
Ignore

Ignore

Figure 3.15: Selection Tree for Planning Strategies.

Based on the above notations, we build a selection tree. Figure 3.15 shows our selection tree

which consists of four levels. In the first level, the system checks the service criticality (C), if the
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criticality is equal to zero then it goes to the second level to check the utility (R). If the utility is

Rmax then there is no need to build any plan, but if the utility is Raverage, Rmin or Rrisk then

the system will ignore the service in case of fault because it is not a critical service. On the other

hand, when the criticality (C) is equal to one that means the current service is critical. Thus, if the

service utility is Rrisk then the recovery plan is replace the service immediately before the current

invocation, but if the utility is Rmin then the system moves to the third level to check Ucost. If

Ucost is equal to zero then the planning strategy is replacing the service, but if Ucost is equal to

one then the system moves to the fourth level which checks Utime. In the case that Utime is equal

to zero, then the planning strategy is active replication because the user accepts extra cost but he

does not accept extra time. If Utime is equal to one, then the choice is passive replication because

the user accepts both extra cost and time. When the Utility (R) is Raverage the system checks

Ucost, if it is equal to zero then the planning strategy is replace, but if it is equal to one then the

system checks Utime. If Utime is equal to zero, then the plan is Retry-Until, but if Utime is equal

to one then the plan is Retry.
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CHAPTER 4

SEMANTIC SIMILARITY AND RANKING

In this chapter, we present our proposed Semantic Similarity and Ranking framework. Due

to the competitive and fast growing nature of today’s business climate, most organizations are

automating their business processes for service and operation delivery. In this respect, service-

oriented computing (SOC) has become a main trend in software engineering that exploits Web

services as fundamental elements for developing on-demand applications. Web services are self-

described, self-contained and platform-independent computational elements that can be published,

discovered, and composed using standard protocols, to build applications across various platforms

and organizations in a dynamic manner. With the increasing agreement on the functional aspects

of Web services, such as using WSDL for service description, SOAP for communication and WS-

BPEL for composing Web services etc., the research interest is shifting towards the non-functional

aspects of Web services (Papazoglou, Pohl, Parkin, and Metzger, Papazoglou et al.2010).

Developers can now add descriptions (using standards such as OWL-S) to their Web ser-

vices to define and advertise the non-functional aspects of services (including input, output, pre-

condition, post-condition and functions), thereby facilitating automated discovery, invocation and

inter-operation. However, the first step in this process is to ‘resolve’ the consumer request against

prospective Web services, so that the most appropriate component could be selected (Alhosban,

Hashmi, Malik, and Medjahed, Alhosban et al.2011). The expected availability of a large num-

ber of highly specialized component services, means that it would be increasingly challenging to

find the most suitable service(s) in a reasonable amount of time (Nepal, Sherchan, Hunklinger, and
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Bouguettaya, Nepal et al.2010). Moreover, some Web services may not be able to satisfy consumer

requests individually, and hence need to be integrated with other Web services to provide the de-

sired functionality. This adds to the complexity of an already challenging problem (Bouguettaya,

Krüger, and Margaria, Bouguettaya et al.2008).
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Figure 4.1: Matching levels.

In this chapter, we present our novel approach (defined S2R: Semantics-based Similarity and

Ranking) for Web service selection (Alhosban, Hashmi, Malik, and Medjahed, Alhosban et al.2012).

S2R is divided into four levels as shown in Figure 4.1. In the first level (L1), we filter the available

Web services under a specific category based on their functional properties such as input, output
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and operations. In the second level (L2), we further reduce the service search space based on non-

functional properties, such as Quality of Service (QoS) parameters (Alhosban, Hashmi, Malik, and

Medjahed, Alhosban et al.2011). In the third level (L3), we further reduce the service search space

based on their behavioral properties, and we rank the services based on their utility value (in the

fourth level (L4)). The utility value is calculated using a utility function which allows stakeholders

to ascribe a value to the usefulness of the overall system as a function of several QoS attributes such

as response time, availability, cost, reliability, etc. according to their preferences (Nepal, Sherchan,

Hunklinger, and Bouguettaya, Nepal et al.2010) (Li, Xu, Wu, and Zhu, Li et al.2012) (Yao, Lu, Fu,

and Ji, Yao et al.2010) (Nejati, Sabetzadeh, Chechik, Easterbrook, and Zave, Nejati et al.2007).

The utility value is calculated using a utility function which allows stakeholders to ascribe a

value to the usefulness of the overall system as a function of several QoS attributes such as response

time, availability, cost, reliability, etc. according to their preferences (Nepal, Sherchan, Hun-

klinger, and Bouguettaya, Nepal et al.2010) (Menascé and Dubey, Menascé and Dubey2007) (Bergmann,

Richter, Schmitt, Stahl, and Vollrath, Bergmann et al.2001) (Li, Xu, Wu, and Zhu, Li et al.2012) (Yao,

Lu, Fu, and Ji, Yao et al.2010). Using utility function, S2R filters Web services at each level so that

more costly operations (e.g., reputation calculations) are applied on a reduced number of candidate

services to shorten the time and space complexity of this search process. Moreover, since service

selection is an on-demand process, we apply the S2R filters on run time.

In this section, we present an example scenario to motivate the problem and associated solution.

Assume a travel planning system that is based on a service-oriented architecture (Figure 1.1.). The

company provides travel planning services that include hotel booking, flight reservation, and car
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rental. In addition to these reservation services, the system also provides an insurance service for

the entire trip or individual travel components.
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Figure 4.2: Example Scenario: A Travel Reservation System

The main Web service for the system is called Travel Web service (TW) with major operations:

Check Availability, Get Quote, Reserve, Apply, and Send Payment. TW does not

implement all these functionalities by itself, rather it outsources some of the functionality to other

component Web services. In Figure 4.2. we can see that component Web services (outsourced

Web services) include: Hotel Web service (HW), Flight Web service (FW), Car Web service (CW),

Insurance Web service (IW), and Credit Web service (CrW). The consumer invokes TW through

the Get Quote operation by providing the travel date, departure and arriving city information.

To get the quote, TW should interact with other services (i.e., HW, FW, and CW) by checking the

availability for the required dates and cities using operation Check Availability. TW then
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requests quotes for the available reservations through the operation Get Quote. Upon receiving

individual quotes from component services, TW aggregates these quotes and sends them to the

consumer. At this point in the reservation process, the consumer also has the option of buying travel

insurance (which TW outsources to IW). If the consumer accepts the quote, the payment process

starts. TW outsources CrW to process the credit payments. CrW in turn outsources the consumer’s

credit check process to ChW. If the consumer’s credit meets the credit score requirements, then TW

makes a reservation with (HW, FW, and CW) and starts the insurance process (if consumer wills).

Finally, TW notifies the consumer with the confirmation number (for flight, hotel and rental car)

and sends the receipt. TW may run into some issues when it is trying to formulate this solution

by outsourcing functionalities to component services. First of all, how would TW calculate the

functional equivalence of two or more similar services, e.g., when TW is looking for a flight Web

service, the first step is to find all the Web services that provide this functionality (i.e., resolve both

syntactic and semantic equivalence). Even if TW is able to find functionally similar Web services

for flight Web service, they may have different non-functional (QoS) properties (such as service

A may have a response time of 3ms and service B may take 7ms to respond to user requests).

Hence TW needs to differentiate among the candidate services based on the value (utility) they

add to the composition. The main motivation behind S2R is to solve the above mentioned issues

while reducing the time and space complexity of this (services) search process. We believe that

an efficient solution to the service selection problem is also paramount in reducing fault recovery

time in SOAs, for cases where a faulty service needs to be replaced by a ‘similar’ one (Alhosban,

Hashmi, Malik, and Medjahed, Alhosban et al.2011).
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4.0.4 S2R Architecture

Generally, similarity measurement consists of two components: syntactic and semantic. In

syntactic similarity, we look for the similarity between data items where value of this similarity

usually lies in the range [0,1]. In semantic similarity, we look for defined relationships among

various terms and concepts (e.g. defined in an ontology or extracted). In S2R, both syntactic and

semantic similarity filters are applied to find a set of Web services that match users’ requirements.

We assume that each Web service is defined using a description language such as WSDL (Web

Service Description Language) which describes the functional service properties and its interface.

WSDL files are published in a service registry that allows providers to advertise general informa-

tion about their Web services. This information is used by clients for discovering providers and

Web services of interest. UDDI and ebXML are examples of protocols that can be used for the reg-

istration of Web services. Since UDDI is the leading specification for the development of service-

based repositories or registries (Bouguettaya, Krüger, and Margaria, Bouguettaya et al.2008) we

use UDDI as a registration repository, where service providers publish their WSDL files (in catalog

form). UDDI is organized in form of business activity categories (including the built-in NAICS,

UN/SPSC and the other user defined categories), and service providers are responsible for pub-

lishing their services in the appropriate UDDI category. Numerous Web services providing similar

functionality may thus be listed under the same category in a UDDI. In S2R, we search the UDDI

and retrieve the Web services under a category and send them to the first level (Functional Context

Filter (FCF)). Thus, S2R starts by calculating the syntactic similarity for each attribute, and if a

syntactic match is not found, candidate services are checked for semantic similarity. The attributes
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types in FCF are: (1) syntactic attributes, which include the list of input and output parameters, the

data types of the parameters, and the protocol to be used to invoke the Web service such as SOAP.

(2) Semantic attributes, include the pre-conditions and effects of an operations execution.

(n) services in category x
Functional Context Filter (FCF)    

Syntactic: 
- List of input/output parameters
- Data types
- Protocols

Semantic:
- Pre-conditions
- Post-conditions

Non-functional Context Filter (NCF)
QoS Parameters:

- Response time
- Availability
- Reliability
- Cost

.

.

- Security

Ranking 
(n-m) services

FCF

NCF

BCF

Behavioral Context Filter (BCF)
- Monitoring
- Clustering
- Classification

Figure 4.3: Overview of the matching levels for S2R.

We feed the (reduced) output set from (FCF) into the second level (Non-functional Context

Filter(NCF)) as in Figure 4.3. NCF is a filtering mechanism based on QoS parameters which

measure the quality of a Web service. There are many parameters that can be used to measure

a Web service’s quality such as response time, availability, reliability, cost, security and privacy,

etc. (Comuzzi and Pernici, Comuzzi and Pernici2009) (Lee, Lee2011) (Krishnamurthy and Babu,

Krishnamurthy and Babu2012) (Pernici and Siadat, Pernici and Siadat2011) (Yeom, Tsai, Bai,

and Lee, Yeom et al.2011). In addition, we can add any new specification to each one of these

filters. After finding the providers that support the same service based on functional context (n-

m providers), we filter them based on QoS requirements and are left with (n-m-k providers). In
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the third level, we cluster the services based on their behavior through (Behavioral Context Fil-

ter(BCF)). Finally, we rank the candidate Web services based on their utility. In the ranking level,

we rank the candidate Web services based on their utility. We divide the Web services into two

sets: HighRank set and LowRank set. The HighRank set includes the Web services that have QoS

values higher or equal to consumer’s requested values with the constraint that the price does not

exceed consumer’s maximum price. However, the LowRank set includes the Web services that

have QoS values lower than the requested values. In case of empty HighRank set, the first Web

service in the LowRank set is considered the best candidate. Note that the first three levels (i.e.,

FCF, NCF and BCF) are ‘context based filters’.

A context is “any information that can be used to characterize the situation of an entity. An

entity is any person, place, or subject that is considered relevant to interaction between a user and

an application, including the user and the application themselves” (Dey, Dey2000). Context has

been used in several areas such as machine learning, computer vision, information retrieval, and

decision support (Kouadri Mostéfaoui and Brézillon, Kouadri Mostéfaoui and Brézillon2006). We

view context as any Web service consumer or provider-related information that enables interac-

tions between service consumers and providers. The provider-related context contains meta-data

about the provider and its service (e.g., service description, QoS, etc). Similarly, consumer-related

context contains meta-data about the consumer (e.g., consumer’s location, expertise level, etc). For

example, a non-functional context policy may include a set of quality of service parameters (e.g.,

response time) associated with the service. Each context definition belongs to a certain category

which can be either consumer-related or provider related. From a provider’s perspective, interact-
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ing with a consumer depends on the situation (i.e. current variable values) of that consumer, and

vice versa. Due to space restrictions, we omit further details regarding context definition. The

interested reader is referred to (Medjahed and Atif, Medjahed and Atif2007). The summary of the

levels and their parameters is given in Table 4.1. In the following, we provide details for the S2R

filtering levels mentioned above.

Table 4.1: S2R Levels
Level Context

Filter
Context
Type

Parameters Supported
language

References

First FCF Functional
Context

Syntactic
and semantic

OWL-S,
WSDL-S,
..

(Martin, Burstein, Mcder-
mott, Mcilraith, Paolucci,
Sycara, Mcguinness, Sirin,
and Srinivasan, Martin
et al.2007), (Paolucci and
Wagner, Paolucci and Wag-
ner2006)

Second NCF Non-
functional
Context

response
time,
availability,
reliability,
cost,...

WSCL,
HQML, ..

(Gu, Li, Tang, Xu, and Huang,
Gu et al.2007), (Gu, Nahrstedt,
Yuan, Wichadakul, and Xu, Gu
et al.2001)

Third BFC Behavioral
Context

Monitoring,
clustering
and classifi-
cation

OWL-S (Fogg and Eckles, Fogg
and Eckles2007), (Ro-
man and Kifer, Roman and
Kifer2007), (Yahyaoui, Maa-
mar, and Boukadi, Yahyaoui
et al.2010)

Fourth Ranking Ranking HighRank
and
LowRank

None N/A

4.0.5 Level I: Functional Context Filter (FCF)

As mentioned earlier, the WSDL files are published in a UDDI and consist of (textual) descrip-

tions of the Web service’s operations (such as input, output, conditional output, precondition and



81

postcondition). While some service providers describe these functionalities in different ways (e.g.

both input and precondition are described as input), so S2R includes preconditions with inputs and

postconditions with outputs.

In S2R, we extract this and other functionalities’ information from OWL-S. An OWL-S service

is characterized by three types of knowledge:

1. Service profile: it describes the operation of the service. It consists of three types of informa-

tion: a human readable information section which describes the service, the functions that

the service provides and a list of functional attributes. For example, hotel service provides

the room availability of a specific hotel, this is the human information, the functional at-

tribute is the input, the output and any other quality of service attribute such as the response

time.

2. Process-model: it describes how the service works by defining the services composition and

the exact operations.

3. Service grounding: it specifies the details of how an agent can access a service (i.e., the

information needed by the agent to discover the service).

If the Web service does not support OWL-S, S2R extracts the Web service information from the

UDDI using the OWL-S/UDDI mapping as shown in Figure 4.4.

In an ideal scenario we would be able to find a service that perfectly matches to user require-

ments. However in SOAs with numerous combination of service attributes (i.e., input, output, and

operations) the chances of having such a perfect match may be slim. Thus, instead of trying to

find a perfect match, we could find a Web service that fulfills the user’s requirements as much as
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UDDI

OWL-S Profile
- contactInformation

- name
- title
- phone
- fax
- email
- physicalAddress
- webURL

- serviceName
- textDescription
- hasProcess
- serviceCategory
- serviceParameter
- qualityRating
- input
- output
- precondition
- effects
- service Product
- service Classification

Business Entity
- name
- contact

- person name
- phone
- email
- address

- discovery URL
- business Key

Business Service
- business Key
- name
- description
- categoryBag

- hasProcess_TModel
- serviceCategory_Tmodel
- serviceParameter_TModel
- qualityRating_TModel
- input_Tmodel
- output_TModel
- precondition_TModel
- erffect_Tmodel
- serviceProduct_TModel
- serviceClassification_TModel

- bindingTemplates

Figure 4.4: Mapping between OWL-S and UDDI constructs.

possible (i.e., Web services may provide less functionalities or may have more functionalities than

requested). In S2R, we first look for a perfectly matching service, then we increase our search

to incorporate services that provide more functionalities than requested. If we cannot find any

suitable candidate in the first two searches, we expand our search to include services that provide

less than desired functionalities. However, in such scenarios we would need to compose multiple

services to provide the requested functionality. Thus, we may have the following four scenarios

(see Figure 4.5).

• Equivalent (Figure 4.5a.) Web servicex and Web servicey are equivalent if all operations in

Web servicex are exactly the same as all operations in Web servicey and the number of operations
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Web servicex
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Web servicex Web servicex

Not 
equivalent
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op1 op2 opn op1 op2 opn

op1 op2 opn

opk-1
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Web servicex
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op1 op2 opn

op1 op2 opn

opk-1

(a) (b) (c) (d)Web servicey Web servicey Web servicey

Legend
Non-similar operation                        Similar operation                                                       

Figure 4.5: Service matching scenarios.

in Web servicex is equal to the number of operations in Web servicey. Moreover, the inputs and

outputs for each operation in Web servicex are the same (names could potentially differ, e.g., cost

vs price)as the inputs and outputs for each operation in Web servicey.

• Subsume (Figure 4.5b.) Web servicex is subsumed by Web servicey if all operations in Web

servicex are included in Web servicey. However, Web servicey has extra inputs, outputs or opera-

tions. In this case Web servicey can be counted as similar Web service to Web servicex but it may

request or provide extra information.

• Not-equivalent (Figure 4.5c.) Web servicex and Web servicey are not equivalent if all opera-

tions in Web servicex do not match any operation in Web servicey. In this case Web servicex and

Web servicey are totaly different.

• Plug-in (Figure 4.5d.) Web servicey is plugged-in Web servicex if some operations in Web

servicey matches some operations in Web servicex. In this case we need to find and compose an-

other Web service(s) that cover the extra operations needed for Web servicex.

To classify any Web service under one of the matching scenarios in S2R, we identify the ser-
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vice operations according to the following. We consider three main types of operations: one-way,

request-response, and confirmation. In one-way operations, the Web service receives a message

without producing any output message (i.e., one-way communication). In request-response oper-

ation, the service receives an input message, processes it, and sends correlated output message to

the sender. Confirmation operation sends an output message but does not expect to receive any

more messages. CW::Get quote::FW is an example of a request-response operation. Its input

includes departure airport, arrival airport, departure date, return date, and the number of passen-

gers. The output message for this request-response message contains a price and room type(s).

ChW::Notify consumer credit::CrW is a one way operation whose input contains a

first name, last name, age and number of days. TW::Confirmation is a confirmation operation

with the output of reservation details and a receipt. As we can see Request-response operations

have both input and output messages. However ,One way operations only contain input messages

and confirmation operations only produce output messages. Each message consists of one or more

parameters called parts in a WSDL. A parameter has a name and a data type. The data type gives

the range of values that maybe assigned to the parameter. The first step in finding functional

equivalence among Web services is to extract this parts information from the WSDL file for the

parameters and return values of operations provided by candidate Web services.

Definition 2. Two operations opik and opjl match if either (1) type of message for opik = “one-

way” and type of message for opjl = “confirmation”; or (2) type of message for opik = “request-

response” and type of message for opjl =“request-response”.�
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Definition 3. Each Web service is accessible via operations and each operation is identified by

a tuple < Descriptionij,Modeij, Inputij, Outputij, Purposeij, Categoryij, Qualityij >, where

Descriptionij is a textual summary about the features of the operation, Modeij is the type of op-

eration (i.e., one way, response-request or confirmation), Inputij is the input of the operation (if

it exists), Outputij is the output of the operation (if it exists), Purposeij is the business function

offered by the operation, Categoryij describes the operation domain, Qualityij provides the op-

eration’s qualitative properties. �

Example: The operation TW::Get quote::HW in our running example. is defined by a tuple

<this operation returns the price for a given date to reserve hotel, request-response, dates and num-

ber of passengers; price in dollar, bussiness.function = request for quote, hotels, Quality.price>x

and Quality.security=“false”>.

Definition 4. operationij is similar to operationkl or subsumed by operationij if

1. ∀x ∈ Inputij, ∃x′ ∈ Inputkl| x is data type compatible with x′.

2. ∀y ∈ Outputij,∃y′ ∈ Outputkl| y is data type compatible with y′.

3. (Categoryij = Categorykl) ∨ (Categoryij ⊆ Categorykl).

4. Modeij = Modekl.

5. (Purposeij ≡ Purposekl) ∨ (Purposeij ⊆ Purposekl).
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6. Text matching between Descriptionij and Descriptionkl ≥ ℓ|ℓ is a pre-determined thresh-

old.
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Figure 4.6: Functional Context Filter (expanded).

In FCF, we apply neighborhood calculation to find the similar Web services based on their

functional properties. This filter works based on three predefined matrices: input matrix, output

matrix and operation matrix. Figure 4.6 shows the steps of how FCF works. Upon arrival of a

consumer request, a list of n services is retrieved from the UDDI under the requested category.

FCF’s Matrix Builder module then creates the three matrices: input, output and operation. Each

matrix has m×n dimensions where m is the number of retrieved Web services and n is the number

of inputs, outputs or operations for each matrix respectively. For instance, an Am×n operations

matrix is created as
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Ai,j =


1 if Web servicei has operationj ;

0 otherwise.

When the Web servicei does not provide the operationj , the value of Ai,j is zero. For example,

if we have non-stop operation (i.e., provide the non-stop routes) and Web servicex does not provide

it, we will add zero under this operation for Web servicex.

Table 4.2: Example of Web-operation Matrix
Get-Quote Get-Destination Get-Price Get-Time

Web service1 1 1 0 1
Web service2 1 1 1 0
Web service3 0 1 1 0
Web service4 1 1 1 1
Web service5 1 1 0 0
Web service6 0 1 1 1

While we are filling the matrix, the main concern is determining if the parameters of servicex is

the same as the parameters in the matrix. For instance, finding a flight using Web servicex requires

the input (airport name), but Web servicey may requires the input (zip code) for the same operation.

Hence it is important to find sematic similarity to address such scenarios.

S2R extracts the semantic information of the candidate Web services through OWL-S. The

semantics of the parameters are defined by the following attributes:

1. Consumer and provider types: the consumer and the provider should be under the same

category. For example, if they provide travel services then they should be under the travel

category. In case of a composite solution that has multiple categories, the Business role will

define the category for each service.
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2. Category: the category for each parameter describes the area of interest of the parameter.

The category is defined by a tuple (domain, synonym, overlap). Domain gives the area

of interest. For example, “travel” which takes these values from the domain in OWL-S.

Synonym contains a set of alternative names for the domain name. For example, “trip” is

a synonym of “travel”. Overlap contains the list of categories that overlap with the current

category.

3. Purpose: describes the goal of the parameter, for example, the goal of Get-Quote in the

scenario is to return the price of the requested service.

4. Business role: the business role gives the type(category) information about a service un-

der a certain business role. Every parameter has a well defined meaning according to the

taxonomy.

5. Unit: it is the measurement unit for a parameter such as, using miles to measure the distance

and dollar to measure the cost, etc.

We use Table 4.2 to illustrate matrix building. The matrix contains six Web services and four

operations. The matrix dimensions are A6×4. The operations for Web service1 are (Get-Quote,

Get-Destination and Get-Time), the Web service2 operations are (Get-Quote, Get-Destination

and Get-Price), etc. The first step of S2R is determining the inputs, outputs and operations of

the Web service which based on the consumer request. If all the properties are available in the

matrix then we just add the service name, and insert one under the property if the service provides

it, else insert zero. However, if the property does not exist, we will edit and add the new prop-

erty to the matrix. For example, one provider wants to publish Web service7 which includes the
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operations (Get-Quote, Get-Destination, Get-Price and Get-Rate). The first three

operations exist in the matrix but the last operation is a new one. In this case we add the new

property (Get-Rate), add one under the operations (Get-Quote, Get-Destination and

Get-Price), so the new matrix will be as follows

Table 4.3: Example of Adding Web service to the Web-operation Matrix
Get-Quote Get-Destination Get-Price Get-Time Get-Rate

Web service1 1 1 0 1 0
Web service2 1 1 1 0 0
Web service3 0 1 1 0 0
Web service4 1 1 1 1 0
Web service5 1 1 0 0 0
Web service6 0 1 1 1 0
Web service7 0 1 1 1 1

FCF inserts the requirements into a vector by getting the parameters for a specific category from

the service repository. It then builds a priority matrix. The priority matrix is a matrix that gives

weight to each property and will move the focus towards more important operations. Based on

TF-IDF (Karimzadehgan, Li, Zhang, and Mao, Karimzadehgan et al.2011), we define the priority

matrix over the original matrix Am×n to compute the weight of each item as:

wi,j =
Ai,j × |Wsi|

OpM
∗ log Ai,j

|Opj|
(4.1)

where Ai,j is one if the operation j exists in Web service i, otherwise Ai,j is zero, |Opj| is the

number of times that Opj has been used by all Web services, OpM is the number of operations

in the matrix and |Wsi| is the number of operations for Web service i. The result after applying

Equation 1. to our example matrix (in Table 4.3) will be the priority matrix in Table 4.4. The
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operations that are provided most often by the Web services in the same category will have the

highest weights and the operations that are provided less will have lower weights.

Table 4.4: Priority Matrix
Get-Quote Get-Destination Get-Price Get-Time Get-Rate

Web service1 0.0635 0.1111 0 0.0635 0
Web service2 0.0635 0.1111 0.0794 0 0
Web service3 0 0.1667 0.1190 0 0
Web service4 0.0476 0.0833 0.0595 0.0476 0
Web service5 0.0953 0.1667 0 0 0
Web service6 0 0.1111 0.0794 0.0635 0
Web service7 0 0.0833 0.0595 0.0476 0.0119

After building the priority matrix, FCF converts each row of the matrix into binary vectors, for

example if the consumer request contains the operations <Get-Quote, Get-Destination,

Get-Price, Get-Rate> while the available service has <Get-Quote, Get-Destination,

Get-Price, Get-Time, Get-Rate> then the query vector of this Web service is < 1, 1, 1, 0, 1 >.

FCF finds similar Web services based on vector similarity (Chan, Gaaloul, and Tata, Chan et al.2011)

as:

Similarity(I, J) = |cosine
−→
Vi ,

−→
Vj | = |

n∑
k=1

(ik × jk)| ÷

√√√√ n∑
k=1

i2k ×

√√√√ n∑
k=1

j2k (4.2)

Now, let us suppose that the consumer requests a matching for Web service that includes the

operations: < Get− Quote, Get− Destination, Get− Price > i.e., the vector will be
−→
V1 =<

1, 1, 1, 0, 0 > and it will compared to all vectors
−→
Vd where d ∈ [1,m] in the matrix Am×n.
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I =



1 1 0 1 0

1 1 1 0 0

0 1 1 0 0

1 1 1 1 0

1 1 0 0 0

0 1 1 1 0

0 1 1 1 1



, J =

(
1 1 1 0 0

)
, Similarity(I, J) =



0.6667

1.0

0.8403

0.8824

0.8403

0.6667

0.5882


(4.3)

If the threshold β for selecting the Web services is (0.8) then the result from FCF is the set

{Webservice2,Webservice3,Webservice4,Webservice5}. In this case, we find that Webservice3

and Webservice5 have the same similarity value (0.8403). Notice that Webservice3 does not pro-

vide the operation Get-Quote and Webservice5 does not provide the operation Get-Price.

In such case, we return back to the operation priority matrix which shows the priority for the op-

eration Get-Price is 0.1190 and the priority for the operation Get-Quote is 0.0953, so we

prefer Webservice3 contains the higher priority operation.

4.0.6 Level II: Non-functional Context Filter (NCF)

NCF is divided into two steps: The first step checks for the service availability, thereby, elimi-

nating the Web services that are unavailable. The second step checks Web service similarity based

on other QoS parameters (e.g., response time, throughput, reliability, etc). We use the ping utility

for the former, which has been used for Web service performance measurements (Guoping, Hui-



92

juan, and Zhibin, Guoping et al.2009). After determining the set of Web services that respond

to the ping inquires, we start the second step where we use Context Policy Assistance (CPA) to

test the similarity between the QoS parameters that are required by the consumer and the QoS

parameters offered by the available Web services.

Context Rule   NF-cost
Context Property Cost
Instance cost_s, cost_d
Type  NFP
Action  matchproperity($cost_s$, $cost_d$)

{ If cost_d<= cost_s Then return true else return false }

Figure 4.7: Rule example.

CPA is created by the service provider and should be attached to the service. It facilitates

interaction between providers and the service registry to store the context policies. For further

details, the interested reader is referred to (Medjahed and Atif, Medjahed and Atif2007). A service

provider may create the context specification using a context specification language such as WS-

Policy. WS-Policy provides a general model and syntax to describe and communicate the policies

of Web services (Erradi, Maheshwari, and Tosic, Erradi et al.2007). Each policy contains a set of

rules that define the QoS requirements/capabilities of the Web services. A sample rule is shown

in Figure 4.7. where a context rule is identified by a name to specify the property. In this rule we

need two instances: the consumer’s cost and the provider’s cost. The type of this policy is NFP

(non-functional policy) and it compares the cost between the two parties to determine if they are

compatible. We use these policies to determine if two Web services are similar based on the QoS

parameters they both share (Alrifai, Skoutas, and Risse, Alrifai et al.2010).

Definition 5. QoS vector description: it is an extendable vector used to define QoS parameters
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of the provider and the consumer. It is expressed as: QoS = < QoS1, QoS2, ..., QoSn >, n ∈ R,

where QoSn indicates nth QoS attributes and QoSi where i ∈ [1,n] is equal to {Availability, Cost,

Response time, Error rate, Throughput, Reliability, Reputation, and Security.}.�
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NCF

Set of matching Web services from 
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Figure 4.8: Non-functional Filter (expanded).

QoS parameter matching is done as:

1. Convert the parameters into QoS vector descriptions. Then, we have one vector for the con-

sumer request:

< ConQoS1, ConQoS2, ..., ConQoSn > and multiple vectors for the provider offerings:

< Pro1QoS1, P ro1QoS2, ..., P ro1QoSn > ... < ProkQoS1, P rovkQoS2, ..., P rovkQoSn >.
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Here we assume that the providers provide trusted information for the QoS values (Sherchan,

Nepal, Hunklinger, and Bouguettaya, Sherchan et al.2010). There are three different cases

in converting the QoS parameters: the consumer vector is greater than the provider vector,

the consumer vector is less than the provider vector, or the consumer vector is equal to the

provider vector. In the first case we add zeros at the end of the consumer vector and in the

second case we add zeros at the end of provider vector.

2. Create a new vector called conform with length equal to the max length of consumer and

provider vectors. For each element in the vector use the polices to compare the conditions,

and if the condition is met then add one to the conform vector else put zero. At the end of

this step we will have the vector < conform1, conform2, ..., conformn >.

3. Calculate the conformity degree between the services for the consumer QoSi and the provider

QoSj as:

Conformity(QoSi, QoSj) =
z∑

q=1

Weightq ∗ conformq (4.4)

where i,j are Web services, z is the maximum length of parameters, i.e., z = max(|QoSi|, |QoSj|),

and Weightq is the weight assigned to each QoS parameter.

Consumers may have different expectations about the conformity degree of their services. For

this purpose, they provide a conformity threshold θ (0 < θ ≤ 1). In NFC (Figure 4.8), we find all

Web services j where the conformity degree (QoSi, QoSj) is greater than θ, which are then passed

to the ranking level. The conformity threshold is given by the consumer as a part of his profile,

while the QoS weight is created automatically by the system based on the level of the consumer’s
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expertise. In S2R, we defined three types of consumers: expert, regular and normal consumers. The

expert consumers are knowledgable about meaning of all QoS parameters and they may assign the

desired value for the QoS parameters for specific services. The regular consumers have some

knowledge about the QoS parameters, and they may assign values to some QoS parameters and

leave the other parameters without weights. In this case, the system predefined weights are used

for unassigned parameters. The normal consumers do not have any knowledge about the QoS

parameters that the system assigns weights for all parameters.

The main benefit of categorizing the consumers into these types is to let the expert consumer

participate in making a decision by providing weights for each QoS parameter. However, the sys-

tem will provide all the QoS attribute weights for other categories of the consumers. In essence,

consumer categories are determined based on the assigned values for the current request.

Example: Suppose that Web service HW is one of the candidate Web services as a result of

FCF. Let it have the following QoS vector: < price = $50; response-time= 60 sec; error-rate = 0.01;

security=“false”>. On the other hand, the consumer (Web servicex) QoS vector is as following: <

price ≤ $70; response-time < 90 sec; error-rate < 0.05; reliability= 0.80; security=“true”>. The

first step is building the conformity vector: < 1, 1, 1, 0, 0 >. The first three values of the vector are

equal to one because the conditions are met between Web servicex and Web servicey. However,

since the values of reliability and security do not match, 0’s are appended. The conformity degree

based on individual QoS parameter weights is then assessed. Assume that the consumer provides
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the weights as < 0.3, 0.2, 0.4, 0.1, 0.3 >, then:

Conformity(QoSx, QoSy) =
5∑

q=1

< 0.3, 0.4, 0.1, 0.1, 0.1 > ∗ < 1, 1, 1, 0, 0 >= 0.8 (4.5)

4.0.7 Level III: Behavioral Context Filter (FCF)

A behavior observation is an observation of a Web service quality for one interaction. This

observation is computed based on the distance between the score of a Web service and the average

of quality attribute values of Web services belonging to the same domain1.

Acceptable 
behavior

Unacceptable 
behavior

P

1- P

P1- P

Figure 4.9: Behavioral patterns using HMM.

For classification purposes, we cluster the Web service into two states: acceptable (Acc) and

unacceptable (Ucc) behavior (Figure 4.9). The degree of acceptance is based on the conformity of

QoS between the service provider and service consumer. The experiences are evaluated as a ratio

of the number of times in the acceptable state, divided by the total number of times the service

was invoked. Each time the composition orchestrator invokes a service, it records the state of that

service (acceptable or unacceptable) along with the time of invocation. Let the vector V = the

service behavior profile, then to asses the probability that Servicei will be in the acceptable state

in the next time instance:

1A domain gathers services having the same functionality
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P (Acc|V ) = P (Acc|Ucc) + P (Acc|Acc) (4.6)
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Figure 4.10: Web service behavioral pattern and clusters.

Hidden Markov models have successfully been applied to various pattern recognition prob-

lems (Salfner, Schieschke, and Malek, Salfner et al.2006). We also use an HMM to predict ser-

vices’ behaviors. We use the Forward algorithm to train the model and calculate the sequence

likelihood. The sequence likelihood is the probability that model χ can generate observation O.

Assume that we train two sequences: acceptable sequence χ and unacceptable sequence χ′. Now,

we need to determine whether a given observation is acceptable or non-acceptable. The new ob-

servation is defined using the vector O = [o0, o1, ... oh]. This is done using Bayes decision theory

to classify the observations (see Figure 4.10).

The Forward algorithm is based on a forward variable αt(i) denoting the probability of subse-

quence [o0, o1, ... ot] and the fact that the stochastic process is in state i at time t:

αt(i) = Pr(o0o1..ot, Pt = pi|χ) (4.7)
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αt(i) can be computed by the following recursive computation scheme:

α0(i) = χi gi(o0) (4.8)

Each time the process enters a state, one observation is generated according to the probability

(gi(oz)), where αt(i) is the probability of the entire sequence and the fact that the stochastic process

is in state i at the end of the sequence, sequence likelihood Pr(O|χ) can be computed as:

Pr(O|χ) =
2∑

i=1

αt(i) (4.9)

After behavior classification, we rank the Web services based on the utility in L4.

4.0.8 Level IV: Web service Ranking

In this level, S2R ranks the Web services based on the range compatibility of the QoS parame-

ters. We use weighted sum filter function after converting the QoS parameters into a range vector

in the format of the component vector description.

Definition 6. The component vector description is expressed as:

< (QoS1, QoS1min, QoS1max), (QoS2, QoS2min, QoS2max), ..., (QoSn,QoSnmin, QoSnmax) >,

n ∈ R, where QoSi∈[1,n] is the best QoS value for parameter i, QoSimin is the minimum accept-

able value for parameter i, and QoSimax is the maximum acceptable value for parameter i, then

QoSimin ≤ QoSi ≤ QoSimax.�

Each vector is accompanied by a decision model, i.e. ranges of all the QoS parameters as well
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as their respective priorities also known as the weights. The ranking will be based on the matching

degree (i.e., how near the QoS parameter that is provided by the provider is to the QoS parameters

required by the consumer). Note that we can use the provider QoS values in one of two ways:(i)

QoS values as advertised by the service provider, or (ii) QoS values obtained using behavior mon-

itoring through the community (i.e., provider reputation). The best ranked Web service will be the

Web service that is closest to the ’best’ value and the worst ranked will be the Web service that is

the farthest from the ’best’ value. However, if a Web service provides a larger value than the best

value but has a lower cost associated to it, then the system will give this Web service a higher rank.

Definition 7. ∀ Web services WSi ∈ ω, where ω is the set of all Web services which are similar

(functional and non-functional) to the requested service:

WebServiceRankSet =


HighRank if WSi ≥ µ ∧ cost ≤ ℘;

LowRank if WSi < µ.

where µ is the best value of QoSj that is provided by the consumer from the vector

< (QoSj, QoSjmin, QoSjmax) >, and ℘ is the acceptable cost by the consumer. �

We assume that all the participating Web services are able to articulate their objectives and

prioritize them (Ackoff, Ackoff1978). The articulation and prioritization of objective values is well

accepted in multi-attribute situations and operations research (Chandra, Ellis, and Vahdat, Chandra

et al.2000) (Faratin, Sierra, and Jennings, Faratin et al.2002) (Resinas, Fernandez, and Corchuelo,

Resinas et al.2012). The consumer determines/assigns a priority for each QoS parameter (e.g.,

the price of the service is more important than its execution time). In our method, we covert these
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priorities into a weighted vector to compare the consumer requirements with the provider offer. All

the Web services conform to some constraints in the solution. For instance, any QoS vector cannot

have a negative value (as shown by Equation 4.10), and the QoS values lie between the maximum

and minimum allowable values set by the consumer Web service (as shown by Equation 4.11).

Xj ≥ 0 and Yij ≥ 0 (4.10)

Xj(min) ≤ Xj ≤ Xj(max) and Yij(min) ≤ Yij ≤ Yij(max) (4.11)

The utility function is a multi-step calculation that evaluates the degree of matching between

the Web services. A weighted sum approach is used to combine these multiple QoS parameters.

We use a distance function to measure the difference among the proposed solutions of both the

consumer and provider Web services. Thus, lower utility values are desired as they translate to

lesser mismatch among the services. Similarly, lower values translate to higher ranks for the

solutions among the solution space. The utility value of a match is calculated as follows

∆ij =
|Xj − Yij|

Xj

(4.12)

rj =
n∑

j=0

(WXj ∗∆ij +WYij ∗∆ij) (4.13)
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Rs = min

G∑
j=0

(rj) (4.14)

S2R technique succeed in finding the best performance similar Web services in the Cloud.

Since user requirements for cloud services vary, service providers have to ensure that they can be

flexible in their service delivery while keeping the users isolated from the underlying infrastructure.

On the other hand, the service consumers require faster response time which may be achieved by

distributing requests to multiple Clouds in various locations at the same time. This creates the

need for finding similar services or applications on different clouds. There are many challenges

involved in finding such services such as the functional and non-functional attributes.

Cloud computing could also be refereed to as service-oriented computing (SOC) paradigm.

Web services are self-described, self-contained and platform-independent computational elements

that can be published, discovered, and composed using standard protocols, to build applications

across various platforms and organizations in a dynamic manner. With the increasing agree-

ment on the functional aspects of Web services, such as using WSDL (Booth and Liu, Booth

and Liu2006) for service description, SOAP (SOAP, SOAP2007) for communication and WS-

BPEL (WSBPEL, WSBPEL2005) for composing Web services etc., the research interest is shift-

ing towards the non-functional aspects of Web services (Papazoglou, Pohl, Parkin, and Metzger,

Papazoglou et al.2010) (Buyya, Yeo, Venugopal, Broberg, and Brandic, Buyya et al.2009).

We present an example scenario to motivate the problem and associated solution. Figure 4.11.

shows a typical service auction scenario in a cloud computing environment. In the example shown,

broker conduct an auction to match bids of multiple resources advertised by different providers.
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These providers advertise their resources with the required price. The consumers then submit their

bids to show the degree of interest in the advertised resources. The bids from the consumers are

queued in the database by Job schedule services which will help in calculating the winning bid.

On the other hand, the resources are indexed and stored in the database by Catalogue services.

After that, the Trading broker service coordinates the matching of resources and bids, and trading

between auction participants. At the end of the auction the broker decides the winners and sends the

reservation requests to the Reservation service. Then the reservation service informs the resource

providers and consumers about the final result (i.e., who won the bid). The payment processing

takes place through the Accounting service.

User1 User2 User3 Usern

Provider1 Provider2 Providerm

Job schedule 
services

Accounting 
services

Reservation
services

Catalogue
services

Trading broker service

Providers submit 
resources

1

consumers submit 
bids

2

Bids are queued
3Resources are 

indexed
4

Resources are 
reserved 

6

Broker matches 
resources and bids

5 Payments and 
reset

7

Figure 4.11: A trading scenario in the cloud

In Figure 4.11, we focus on five main services: Job schedule services, Catalogue services, Trad-

ing broker service, Reservation service and Accounting service. Job schedule service is the service
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that stores the bids coming from the consumers and sorts them by date, time and price. Catalogue

service stores the resources advertised by the providers and indexes them to reduce the complexity

for the bid matching process. Trading broker service is the service that manages the auction and

matches the bids with the required price. Reservation service is the service that reserve a specific

resource to the winner of the auction and informs results to the participants of the auction process.

Finally, accounting service is the service that is responsible for processing payments: check if the

consumer’s credit meets the credit score requirements, make a payment and send the results to the

user. The above scenario has many challenges. First and the foremost would be calculating the

functional equivalence for the two or more similar services, e.g., when looking for an accounting

service, the first step is to find all the Web services that provide this functionality (i.e., resolve both

syntactic and semantic equivalence). Even if it is able to find functionally similar Web services

for accounting service, they may have different non-functional (QoS) properties (such as service A

may have a response time of 3ms and service B may take 7ms to respond to user requests). Hence

we needs to differentiate among the candidate services based on the value (utility) they add to the

composition. The main motivation behind our technique is to solve the above mentioned issues

while reducing the time and space complexity of this (services) search process. We believe that

an efficient solution to the service selection problem is also paramount in reducing fault recovery

time in SOAs, for cases where a faulty service needs to be replaced by a ‘similar’ one (Alhosban,

Hashmi, Malik, and Medjahed, Alhosban et al.2011).



104

CHAPTER 5

FAULT MANAGEMENT PROPAGATION

In this chapter, we focus on faults that propagate from participants to composite services. We

refer to these faults as bottom-up. Some of the examples of bottom-up-faults may include, a

hardware failure occurring in the participant service deeming it unreachable by the composite

system, a scheduled maintenance downtime for the participant’s provider, change in participants

interface (e.g. changing an optional parameter to mandatory in WSDL specification). Composite

services therefore need to detect and handle any faults as soon as possible, to avoid any run-time

failures or service outages in overall system.

Figure 5.1: HTTP message example.

Web services generally use HTTP as the underlying message transport (example of such mes-

sages in Figure 5.1). Hence, they are either guaranteed message delivery or notified if a message

was not delivered (e.g., because of a server unavailability). This adds another layer of information

to the system and hence could differentiate among a lost message vs. service outages. However,

this also means that composite services become aware of a fault only at the time they interact with

their participants and not at the time that fault occurred. Hence, the current state of a participant
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service is a function of last interaction that occurred among the participant and composite service,

which may or may not represent the current state of the service. This may decrease the availability

of composite services. Besides, users’ requests are pending as long as the composite service did

not recover from the fault (e.g., by replacing the faulty participant with an equivalent one). This

calls for a framework in which composite services are able to detect and handle bottom-up faults

as soon as those faults occur in their participants and once detected should recover gracefully from

these.

In essence, the recovery mechanism should allow the composite system to continue providing

its core services to the customers (e.g., through service change monitoring). Service changes may,

for instance, originate from the introduction of a new functionality, the modification of existing

functionality to improve performance, or the inclusion of new regulatory constraints that require

service behavior to be altered. Such changes should not be disruptive, i.e., requiring radical modi-

fications in the very fabric of services, or the way that business is conducted (Andrikopoulos, Ben-

bernou, and Papazoglou, Andrikopoulos et al.2008). Since routine change increases the propensity

for error, one needs to know why a change was made, what are its implications, and whether the

change is complete. In a Web services environment, changes only affect the Web service provider’s

system. Typically Web service consumers do not immediately perceive the upgraded process, par-

ticularly the detailed changes of Web services. Hence, Web service based applications may fail

on the Web service client side due to changes carried out during the provider service upgrade. In

order to manage changes as a whole, the Web service consumers have to be taken into considera-

tion as well, otherwise changes that are introduced at the service producer side can create severe
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disruption.

In addition, to control service evolution, a designer must know why a change was made, what

its implications are, and whether the change is consistent. Eliminating spurious results and incon-

sistencies that occur because of uncontrolled changes is necessary for services to evolve grace-

fully, ensure stability, and handle variability in their behavior. We can classify the nature of service

changes depending on their causal effects: Shallow changes. These are small-scale incremen-

tal changes localized to a service or restricted to the services clients. Deep changes. These are

large-scale transformational changes cascading beyond a services clients, possibly to entire value

chains (end-to-end service networks). While both shallow and deep changes need an appropriate

versioning strategy, deep changes further introduce several intricacies of their own and require the

assistance of a change-oriented service life cycle to allow services to react appropriately to changes

as they occur (Andrikopoulos, Benbernou, and Papazoglou, Andrikopoulos et al.2008).

In this chapter, we introduce a framework for managing and recovering from bottom-up faults

in composite services. The proposed framework (extending (Medjahed and Malik, Medjahed and

Malik2011)) uses soft-state signaling to propagate faults from participants to composite services

and uses a semantic rule based recovery mechanism to employ the traditional system recovery

strategies. Soft state denotes a type of protocols where state (e.g., whether a server is alive) is

constantly refreshed by periodic messages; state which is not refreshed in time expires. This is

in contrast to hard-state where installed state remains installed unless explicitly removed by the

receipt of a state-teardown message. Advantages of the soft-state approach include implicit error

recovery and easier fault management resulting in high availability (Alhosban, Hashmi, Malik,
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and Medjahed, Alhosban et al.2011). Soft state was introduced in the late 1980s and has been

widely used in various Internet protocols (e.g., RSVP). However, to the best of our knowledge,

this work is the first to use soft-state for fault management in composite services. We then employ

a semantic rule based approach to apply multiple recovery strategies to ensure the stability of

the system. We use ECA based rules that allow system designers the flexibility and consistency to

device multiple recovery strategies. The strategies could be devised at both the system composition

time or during the execution of the system during the optimization/enhancement phase. The major

contributions of the work can be summarized as follows: First, we introduce a bottom-up fault

model for composite services. The model includes a taxonomy of bottom-up faults, a definition

of state for composite services, and a peer-to-peer topology for state propagation. Second, we

propose a soft-state based framework for bottom-up fault management in composite services. The

framework includes: protocols for fault detection (push and pull), propagation (pure soft-state and

soft-state with explicit removal), and reaction (policy-based). Finally, we conduct a comprehensive

set of experiments to assess the performance and applicability of the proposed framework.

5.1 Motivation

To better motivate the need for bottom-up fault management in composite services, consider the

scenario depicted in Figure 5.2. The scenario shows two composite services; Travel Composition,

and City Tour Composition (CS1 and CS2 respectively) that outsource some of their functionality

to other participants. For instance, at the reception of the travel planning request (step 1), CS1

invokes WS1 to book the flight (step 2). Then, it invokes WS2 to book the hotel (step 3). Finally,
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it invokes WS3 to book a car from the airport to the hotel (step 4), and returns the result to the user

(step 5). Similarly, CS2 receives a city tour request from the user (step a). It first invokes WS3

to book a car for site-seeing purposes, etc (step b). Then, it invokes WS4 to book a movie ticket

(step c), and WS5 to book a museum ticket (step d). Finally, it returns the result to the user (step

e). Note that WS3 is being shared by two different compositions.

WS1 WS2 WS3 

CS1: Travel Composition CS2: City Tour Composition 

Book Flight Book CarBook Hotel
Book Museum 

Ticket
Book Movie 

Ticket
WS4 WS5 

(1)

(2)
(3)

(4)

(5) (a)

(b) (c) (d)

(e)

Figure 5.2: Reference Scenario.

Let us consider the case of a server failure in WS1. When CS1 receives a user request, it

invokes WS1 (step 2), but since WS1 is no longer able to process incoming requests, CS1 is

notified by the underlying HTTP server (if HTTP is used as a transport protocol) that the message

was not delivered to WS1. CS1 handles this situation (e.g., as part of its exception handling code)

by returning a run-time error message to the user (e.g., “your request cannot be executed at this

time”). Note that both CS1 and WS1 are autonomous and offered by different providers. Hence the

CS1 provider is not necessarily informed by the WS1 provider about the unavailability of WS1;

WS1 provider may even not know that CS1 is planning to use WS1 as a participant. Let us now
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consider the case where the WS3 provider changes the WSDL specification of WS3 by adding a

new parameter to its input message. Let us assume that CS1 and CS2 receive user requests. Since

CS1 and CS2 are not aware of WS3’s update, they will forward users’ requests to WS3 using an

obsolete message signature. WS3 will hence send back a run-time error message to CS1 and CS2.

As in the previous case, both composite services will in turn send error messages to their users.

The above mentioned cases illustrate the following:

• The composite services returned run-time errors to users because of the inability of those

services to promptly detect faults in their participants. Such situations may be unacceptable

in applications such as disaster management (e.g., unavailability of an emergency service),

supply chain (e.g., a supplier running out of stock for a given product because of a strike),

and real-time systems (e.g., failure of a computing resource such as processor in a real-time

application).

• The faults that composite services need to deal with are physical, such as a server failure in

the first case, as well as logical, such as an update of a service policy (i.e., WSDL specifica-

tion) in the second case.

In the rest of this chapter, we present a framework that enables composite service to automati-

cally manage faults in their participants as soon as those faults occur, as opposed to the participant

invocation time.
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5.2 Fault Model

In this section, we describe our model for bottom-up fault management. We first provide a

categorization of bottom-up faults. Then, we define the notion of a participant’s state. Finally, we

introduce a peer-to-peer topology for bottom-up fault management.

5.2.1 Bottom-up Fault Taxonomy

A fault management approach must refer to a taxonomy that describes the different types of

faults that composite services are expected to be able to manage. We identify two types of bottom-

up faults: physical and logical (Figure 5.3). Physical faults are related to the infrastructure that

supports Web service. A node fault occurs if the servers (e.g., application server, Web server)

hosting a participant are out of action. Logical faults are initiated by service providers; this is in

contrast to physical faults which are out of service providers’ control. We categorize logical faults

as status change, policy change, and participation refusal. Status change occurs if the service

provider explicitly modifies the availability status of its service. The status may be changed through

freeze or stop. In the freeze fault, providers shut down their services for limited time periods

(e.g., for maintenance, unavailability of a product in a supply chain’s provider). In the stop fault,

providers make their services permanently unavailable (e.g., a company going out-of-business).

Participation refusal occurs if a service is not willing to participate in a given composition. Policy

change occurs if the provider updates one of its service policies. We adopt a broad definition

of policy, encompassing all requirements under which a service may be consumed. Policies are

specified in XML-based Web service languages/standards (e.g., WSDL, WS-Security) (Alonso,
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Figure 5.3: Bottom-up Fault Taxonomy.

Casati, Kuno, and Machiraju, Alonso et al.2004). Changes in the policies of a participant WSi may

impact the way a composite service CSj interacts with WSi. Hence, they should be considered as

logical faults (e.g., as shown in the running example).

5.2.2 State of a participant service

Soft-state signaling enables the propagation of bottom-up faults from participants to composite

services. The main idea of this class of signaling is that the state of each participant is periodically

sent to the composite service. The composite service will then use the received state to determine

whether there was any physical or logical fault in the participant. Several questions need to be

tackled when designing a soft-state protocol: what is the definition of a state? And how is the state

computed? We will give answers to these questions in the rest of this chapter.

The proposed framework must deal with all types of faults depicted in Figure 5.3. Physical

faults are detected by composite services in an implicit manner; if a node fault occurs at a partic-

ipant, then the composite service will not receive a state from that participant. The participation



112

refusal fault is explicitly communicated by participants if they are not willing to be part of a com-

position. Status change faults are detected either implicitly (pure soft-state protocol) or explicitly

(soft-state with explicit removal protocol). Finally, policy change faults are transmitted as part of

the participant’s state and hence, they are detected in an explicit manner. We will give below a

definition of state and the way it is computed.

True/False

ChangeStatus Category Scope

ChangeDetails

Figure 5.4: State of a Participant Service.

To keep track of policy changes, each participant WSi maintains a data structure called Statei

(Figure 5.4). Statei is defined by two attributes: ChangeStatus and ChangeDetails. ChangeStatus

is equal to True if policy changes have been made to WSi. Several changes may occur in WSi

during a time period; details about these changes are stored in the ChangeDetails set. Each element

of this set represents a policy change; it is defined by a couple (C,S) where C is the category of the

policy and S is the scope of the change. The initial values of ChangeStatus and ChangeDetails are

False and ∅, respectively. The following definition summarizes the properties of Statei maintained

by a participant WSi.

Definition

The state, denoted Statei, of a participant WSi is defined by (ChangeStatus,ChangeDetails) where:

• ChangeStatus = True ⇐⇒ changes have been made to WSi.
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• ChangeDetails = {(C,S) / C and S are the category and scope of a change in WSi}.

• Initially do: Statei.ChangeStatus = False and Statei.ChangeDetails = ∅ .

• At the occurrence of a change (C,S) in WSi do: Statei.ChangeStatus = True, Statei.ChangeDetails

= Statei.ChangeDetails ∪ {(C,S)}.�

A policy category refers to the type of requirements specified by a policy. We adopt the policy

categorization defined in (Garlan and Schmerl, Garlan and Schmerl2002) which classifies policies

as functional, non-functional, value-added, and specialized. Functional policies describe the oper-

ational features of a Web service (e.g., in WSDL). Non-functional policies include parameters that

measure the quality of the service (e.g., response time). Value-added policies provide “better” envi-

ronments for Web service interactions. They refer to a set of specifications for supporting optional

(but important) requirements for the service (e.g., security, privacy, conversation). A specialized

policy defines requirements that are specific to an application domain. Shipping and billing are ex-

amples of specialized policies in business-to-business e-commerce. The scope of a change defines

the subject to which that change was applied. It includes details about (i) the location of the mod-

ified policy specification and (ii) the element that has been updated within that specification. The

specification location is given by the URI of the XML file that stores the specification. The updated

element is identified by the XPath query of that element within the specification. For instance, let us

consider the following WSDL file (Figure 5.5) located at “http://www.ws.com/stockquote.wsdl”.

Let us assume that the name of the operation “getQuote” has been modified in the WSDL

document. The category and scope of the change can then be defined as:

• Category = (Functional,WSDL).
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<definitions>
<types>   <!-- XML Schema -->  </types>
<message name=“getQuote_In”> ….
<message name=“getQuote_Out”> …
<portType name=“StockQuoteServiceInterface”>

<operation name=“getQuote”>
<input message=“getQuote_In” />
<output message=“getQuote_Out” />

</operation>
</portType>

Figure 5.5: WSDL file example.

• Scope = (URL,Q) where:

– URL = “http://www.ws.com/stockquote.wsdl”

– Q = “definitions/portType/operation/@name”

5.2.3 Fault coordinators

In the proposed framework, fault management is a collaborative process between architectural

modules called fault coordinators. Each Web service (participant or composite) has one coordi-

nator associated to it. This peer-to-peer topology distributes control and externalizes fault man-

agement, hence creating a clear separation between the business logic of the services and fault

management tasks.

We define two types of coordinators (Figure 5.6): soft-state senders (SS-S) and soft-state re-

ceivers (SS-R). Each participant (resp., composite service) has a sender (resp., receiver) attached

to it. A sender SS-Si maintains the Statei data structure. To keep track of its receivers, SS-Si

maintains a Receivers(SS-Si) data structure. If WSi (attached to SS-Si) participates in CSj (at-
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Figure 5.6: Fault Coordinators.

tached to SS-Rj) then SS-Rj ∈ Receivers(SS-Si). SS-Si periodically sends Statei to its receivers

via Refresh() messages. The refresh period is determined by the tSSS timer maintained by SS-Si.

A receiver SS-Rj maintains two data structures: Senders(SS-Rj) and tSSR. Senders(SS-Rj) is the

set of senders from which SS-Rj expects to receive Refresh(). If WSi participates in CSj then

SS-Si ∈ Senders(SS-Rj). tSSR is a timer used by SS-Rj to process Refresh() messages received

from its senders.

Bottom-up fault management involves three major tasks: fault detection, fault propagation, and

fault reaction. The sequence diagram in Figure 5.7 depicts the relationship between these tasks.

First, SS-Si detects faults that occurred in the attached WSi. This task is collaborative between

WSi and SS-Si, as stated in Figure 5.6. Messages may be passed to/from WSi during this task.

Then, SS-Si propagates the fault to SS-Rj . As for fault detection, this task is collaborative between

the sender and receiver. Finally, SS-Rj and/or CSj execute appropriate measures to react to the
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fault. Details about fault detection, propagation, and reaction follow in the upcoming Sections.

Participant WSi Sender SS-Si Receiver SS-Rj Composite Service CSj

Fault 
Occurrence

Fault Detection

Fault Propagation

Fault Reaction

Figure 5.7: Sequence Diagram for Bottom-up Fault Management.

5.3 Fault Detection and Propagation

Each fault coordinator is itself deployed as a Web service on the same node and servers (e.g.,

Web server) as the attached service. Hence, identifying physical faults in a coordinator is equiv-

alent to identifying physical faults in its attached service: if a physical fault affects a service

(participant or composite), it also affects its coordinator; and vice versa.

The way participation decision is made varies from a participant to another. We give below

four scenarios on how such decisions could be made:

1. A service load balancer may check that the server workload will not exceed a given threshold

if the service participates in a new composition. The threshold could, for instance, be defined
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to maintain a minimum quality of service.

2. A policy compatibility checker may also verify the compliance of the service policies with

the composite service policies. For instance, the checker could compare privacy policies

to make sure that the participant and composite service have compatible expectations and

requirements about the privacy of their data.

3. A service reputation manager may verify that the reputation (however reputation is de-

fined) of the composite service is higher than a minimum value defined by the participant’s

provider.

4. A notification may be sent to the service provider. The provider will then manually decide

whether to participate or not. An appropriate message will be sent to the composite service

based on the provider’s decision.

Once faults are detected by coordinators, they need to be propagated to relevant composite

services. In the rest of this chapter, we describe the algorithms executed by senders and receivers

for propagating bottom-up faults. We assume that WSi (with SS-Si as an attached sender) par-

ticipates in CSj (with SS-Rj as attached receiver). We assume the existence of a pre-defined

function Agreed2Join() used by services to decide whether they are willing to participate in com-

positions.Each service may provide its own definition and implementation of the Agreed2Join()

function. We introduce two protocols: pure soft-state and soft-state with explicit removal. Com-

munication messages in our protocol are shown in Figure 5.8.
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Figure 5.8: Communication between the composition service (CS) and Web service (WS).

5.3.1 Pure Soft-State

The Pure soft-state (Pure-SS) protocol adapts the well-know soft-state signaling described

in (Ji, Ge, Kurose, and Towsley, Ji et al.2007; Garlan and Schmerl, Garlan and Schmerl2002)

to service-oriented environments. It enables the propagation of participation refusal and policy

changes faults to receivers. Physical faults are implicitly detected by receivers if they do not get

Refresh() messages from a faulty sender during a certain period of time.

Sender’s Algorithm

Figure 5.9 gives the algorithm executed by SS-Si. SS-Si may receive two types of messages

from SS-Rj: Join(SS-Rj) and Leave(). Join(SS-Rj) is the first message that SS-Si receives from

SS-Rj; it invites WSi to participate in CSj (lines 1-13). SS-Si calls the Agreed2Join() function

to figure out whether WSi is willing to participate in CSj . If Agree2Join(SS-Rj) returns False,
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SS-Si sends the Decision2Join(SS-Si,False) message to SS-Rj . Otherwise, SS-Si adds SS-Rj to its

receivers. If SS-Rj is the first receiver of SS-Si, SS-Si initializes Statei (we should initialize the

value of Receiversi before line 04) and starts its tSSS timer. Finally, SS-Si sends its decision to

SS-Rj through the Decision2Join(SS-Si,True) message. At any time, SS-Si may receive a Leave()

message from SS-Rj (lines 14-16). This message indicates that CSj is no longer using WSi as a

participant. In this case, SS-Si removes SS-Rj from its receivers.

(01) At Reception of Join(SS-Rj) Do
(02)   If Agreed2Join(SS-Rj) = True  Then
(03)             Receiversi = Receiversi {SS-Rj};
(04)              If Receiversi = 1 Then
(05)                             Statei.ChangeStatus = False; 
(06)                              Statei.ChangeDetails = ;
(07)                              Start SSS timer of SS-Si;
(08)              EndIf
(09)              Send Decision2Join(SS-Si,True) to SS-Rj
(10)   Else
(11)              Send Decision2Join(SS-Si,False) to SS-Rj
(12)   EndIf
(13) End 

(14) At Reception of Leave(SS-Rj) Do

(15)     Receiversi = Receiversi {SS-Rj};
(16) End

(17) At the occurrence of Change(C,S) in WSi Do
(18)    Statei.ChangeStatus = True; 
(19)    Statei.ChangeDetails = Statei.ChangeDetails  {(C,S)};
(21) End

(22) At the end of SSS timer of SS-Si Do
(23)     For each SS-Rj / SS-Rj Receiversi Do
(24)          Send Refresh(Statei) to SS-Rj;   
(25)     EndFor
(26)     Statei.ChangeStatus = False; 
(27)     Statei.ChangeDetails = ;
(28)     Re-start SSS timer of SS-Si;
(29) End

Figure 5.9: SS-Si Sender Protocol for Pure-SS.

WSi detects policy changes that may occur in the attached SS-Si using one of the techniques

described earlier. At the occurrence of a policy change (with a category C and scope S) in WSi

(lines 17-21), SS-Si sets Statei.ChangeStatus to True. SS-Si keeps track of that change by insert-
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ing (C,S) in Statei.ChangeDetails. In this way, the state of SS-Si to be sent to receivers at the end

of tSSS cycle includes all changes that have occurred during that cycle. At the end of each period

(denoted by tSSS timer), SS-Si sends a Refresh() message to each one of its receivers (lines 22-29).

This message includes Statei as a parameter, hence notifying SS-Rj about all policy changes that

occurred in WSi during the last tSSS period. SS-Si then reinitializes Statei and restarts its tSSS

timer.

Receiver’s Algorithm

The aim of SS-Rj protocol is to detect faults in its senders. For that purpose, SS-Rj maintains

a local table called SR-Tablej . SR-Tablej allows SS-Rj to keep track of Refresh() messages trans-

mitted by senders. It contains an entry for each SS-Si that belongs to Sender(SS-Rj). Each entry

contains two columns:

• Refreshed: SR-Tablej[SS-Si,Refreshed] equals True iff SS-Rj received a Refresh() from SS-

Si in the current tSSR cycle.

• Retry: SR-Tablej[SS-Si,Retry] contains the number of consecutive cycles during which SS-

Rj did not receive Refresh() from SS-Si.

A temporary node failure in SS-Si may prevent SS-Si from sending Refresh() to SS-Rj during

a tSSR cycle. In this case, SS-Rj may want to give SS-Si a second chance for sending Refresh()

during the next tSSR cycle. For that purpose, SS-Rj maintains a variable (positive integer) Max-

Retryj . If SS-Rj does not receive Refresh() from SS-Si during Max-Retryj consecutive tSSR cycles,

it considers WSi as faulty. The value of Max-Retryj is set by CSj composer and may vary from a
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composite service to another.

(01) At addition of WSi to CSj Do
(02)     Send Join(SS-Rj) to SS-Si;
(03) End

(04) At deletion of WSi from CSj Do
(05)     Send Leave(SS-Rj) to SS-Si;
(06)     Delete SS-Si entry from SR-Tablej;
(07) End

(08) At Reception of Decision2Join(SS-Si,decision) Do
(09)    If decision = True Then
(10)         Sendersj = Sendersj {SS-Si};
(11)         Create an entry for SS-Si in SR-Tablej;
(12)         SR-Tablei[SS-Si,Refreshed] = False;
(13)         SR-Tablei[SS-Si,Retry] = 0;
(14)         If Sendersj = 1 Then
(15)             Start SSR timer of SS-Rj;
(16)         EndIf
(17)    Else React(“Refusal”,SS-Si);
(18)    EndIf
(19) End

(20) At Reception of Refresh(Statei) From SS-Si Do
(21)    SR-Tablei[SS-Si, Refreshed] = True;
(22)    If Statei.ChangeStatus = True  Then
(23)      React(“changes”,SS-Si, Statei.ChangeDetails);
(24)    EndIf
(25) End

(26) At the end of SSR timer of SS-Rj Do
(27)   For each SS-Si / SS-Si Sendersj Do
(28)     If SR-Tablej[SS-Si, Refreshed] = True Then
(29)         SR-Tablej[SS-Si, Refreshed] = False;
(30)         SR-Tablej[SS-Si, Retry] = 0;
(31)     Else
(32)        SR-Tablej[SS-Si, Retry]++               
(33)        If SR-Tablej[SS-Si,Retry] = Max-Retryj Then
(34)            React(“No Refresh”, SS-Si);   
(35)        EndIf
(36)     EndIf
(37)   EndFor
(38)   Re-start SSR timer of SS-Rj;
(39) End

Figure 5.10: SS-Rj Receiver Protocol for Pure-SS.

The smaller is Max-Retryj , the more pessimistic is CSj composer about the occurrence of

faults in participants. SS-Rj submits two types of messages to SS-Si: Join() and Leave(). It

also receives two types of messages from SS-Si: Decision2Join() and Refresh(). Figure 5.10

gives the algorithm executed by SS-Rj . Whenever a new participant WSi is added to CSj , SS-Rj

sends a Join(SS-Rj) message to SS-Si (lines 1-3). At the deletion of WSi from CSj , SS-Rj sends
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a Leave(SS-Rj) message to SS-Si and removes SS-Si entry from SR-Tablej (lines 4-7). At the

reception of Decision2Join(SS-Si,True), SS-Rj adds SS-Si to the list of senders (lines 8-19). It

also creates a new entry for SS-Si in SR-Tablej and initializes the Refreshed and Retry columns of

that entry to False and 0, respectively. If SS-Si is the first sender of SS-Rj , SS-Rj starts its tSSR

timer. At the reception of Decision2Join(SS-Si,False), SS-Rj calls the React() function to process

the participation refusal fault issued by SS-Si.
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Figure 5.11: Pure-SS Protocol - Example.

At the reception of Refresh(Statei), SS-Rj sets SR-Tablej[SS-Si,Refreshed] to True (lines 20-

25). If Statei.ChangeStatus is True, SS-Rj calls the React() function to process all changes that

occurred in SS-Si during the last tSSR cycle. At the end of tSSR timer (lines 26-39), SS-Rj checks
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if it received Refresh() from each of its senders. If SS-Rj received Refresh() from SS-Si, it re-

initializes the Refreshed and Retry columns of SS-Si entry in SR-Tablej to False and 0, respec-

tively. Otherwise, SS-Rj increments SR-Tablej[SS-Rj ,Retry]. If SR-Tablej[SS-Si,Retry] equals

Max-Retryj (i.e., SS-Rj did not receive Refresh() from SS-Si during Max-Retryj consecutive tSSR

cycles), SS-Rj assumes a physical (node) fault in SS-Si and hence, calls the React() function to

process that fault. SS-Rj finally restarts its tSSR timer.

Let us consider the senders and receivers corresponding to our reference scenario. We focus on

the Refresh() messages sent by SS-S3 to SS-R1 and SS-R2. We assume that tSSR1 = tSSR2 = 2×

tSSS3. Figure 5.11 depicts the interactions between SS-S3 and SS-R1/SS-R2. At time t31, SS-S3 de-

tects a change (with category C1 and scope S1) in WS3. SS-S3 assigns True to State3.ChangeStatus

and inserts (C1,S1) in State3.ChangeDetails. At time t2, SS-S3 sends Refresh(True,(C1,S1)) to

SS-R1 and SS-R2, and re-initializes State3. SS-R1 and SS-R2 process those changes by call-

ing their React() function at times t11 and t21, respectively. At t3, SS-R1 and SS-R2 note the

reception of the Refresh() sent by SS-S3. At this same time, SS-S3 sends Refresh() to both re-

ceivers with the parameters (False, ∅) since no changes have been detected in the second SS-S3

cycle. SS-S3 detects two changes (C2,S2) and (C3,S3) in WS3 at t32 and t33, respectively. At t33,

State3.ChangeStatus equals True and State3.ChangeDetails contains (C2,S2),(C3,S3). At t4, SS-S3

sends Refresh(True,(C2,S2),(C3,S3)) to SS-R1 and SS-R2. SS-R1 and SS-R2 process those changes

at t12 and t22, respectively. At t5, SS-R1 and SS-R2 note the reception of the Refresh() sent by

SS-S3. At times t5 and t6, SS-S3 sends Refresh() to SS-R1 and SS-R2 with the parameters (False,∅)

since no changes have been detected in the corresponding SS-S3 cycle. At t7, SS-R1 and SS-R2
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note the reception of the Refresh() sent by SS-S3. Let us now assume a server failure in WS3 (and

hence SS-S3) at t34. At t9, SS-R1 and SS-R2 find out that they did not receive Refresh() from SS-S3

during the last SS-R2 cycle. If Max-Retry2 is equal to 1, SS-R1 and SS-R2 conclude that SS-S3

failed and hence call the React() function.

5.3.2 Soft-State with Explicit Removal

In the Pure-SS protocol, SS-Rj assumes a failure in SS-Si if it does not receive Refresh()

messages from SS-Si after Max-Retryi SS-Rj cycles. This could happen because of a node fault

(physical fault) or status change (logical fault) in SS-Si. While physical faults are out of SS-Si’s

control, status changes are scheduled by service providers and hence, can explicitly be related by

SS-Si to SS-Rj . This would have two major advantages. First, SS-Rj will be able to status change

faults as soon as they occur in SS-Si, instead of waiting the end of Max-Retryi SS-Rj cycles.

Second, SS-Rj may differentiate between logical and physical faults and hence, react to them

appropriately. The soft-state protocol with explicit removal (Removal-SS) extends Pure-SS with

explicit removal messages; these messages announce future status change faults in the participants.

Sender’s Algorithm

Figure 5.12 shows the steps of the Removal-SS algorithm executed by SS-Si. The statements

in lines 1-29 are the same as in Pure-SS. In what follows, we focus on the parts that are specific to

Removal-SS (lines 30-44). If WSi provider is scheduling a service shut-down (lines 30-34), SS-Si

sends an explicit Shutdown() message along with the down and up times (from and to, respectively)

to each SS-Rj in Receivers(SS-Si). In this case, SS-Si will not send Refresh() messages during the
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(01) At Reception of Join(SS-Rj) Do
(02)   If Agreed2Join(SS-Rj) = True  Then
(03)             Receiversi = Receiversi {SS-Rj};
(04)              If Receiversi = 1 Then
(05)                             Statei.ChangeStatus = False; 
(06)                              Statei.ChangeDetails = ;
(07)                              Start SSS timer of SS-Si;
(08)              EndIf
(09)              Send Decision2Join(SS-Si,True) to SS-Rj
(10)   Else
(11)              Send Decision2Join(SS-Si,False) to SS-Rj
(12)   EndIf
(13) End

(14) At Reception of Leave(SS-Rj) Do
(15)     Receiversi = Receiversi {SS-Rj};
(16) End

(17) At the occurrence of Change(C,S) in WSi Do
(18)    Statei.ChangeStatus = True; 
(19)    Statei.ChangeDetails = Statei.ChangeDetails  {(C,S)};
(21) End

(b)

(22) At the end of SSS timer of SS-Si Do
(23)     For each SS-Rj / SS-Rj Receiversi Do
(24)          Send Refresh(Statei) to SS-Rj;   
(25)     EndFor
(26)     Statei.ChangeStatus = False; 
(27)     Statei.ChangeDetails = ;
(28)     Re-start SSS timer of SS-Si;
(29) End

(30) At Shutdown(from, to) scheduled by WSi Provider Do
(31)     For each SS-Rj / SS-Rj Receivers(SS-Si) Do
(32)            Send Shutdown(from, to) To SS-Rj; 
(33) EndFor
(34) End

(35) At a service re-start initiated by WSi providerDo
(36)     For each SS-Rj / SS-Rj Receivers(SS-Si) Do
(37)            Send Awake(SS-Si) To SS-Rj; 
(38) EndFor
(39)     Re-start SSS timer of SS-Si;
(40) End

(41) At Stop(SS-Rj) initiated by WSi Provider Do
(42)     Receivers(SS-Si) = Receivers(SS-Si) – { SS-Rj }; 
(43)     Send Stop(SS-Si) to SS-Rj;
(44) End

Figure 5.12: SS-Si Sender Protocol for Removal-SS.

period [from,to[. If WSi provider decides to re-start WSi (lines 35-40), SS-Si sends Awake()

messages to all receivers in Receivers(SS-Si) and re-starts its tSSS timer. If WSi provider decides

to stop its service with CSj (lines 41-44), SS-Si removes SS-Rj from its receivers and sends an

explicit removal message Stop() to SS-Rj . SS-Si will no longer send Refresh() messages to SS-Rj .

Receiver’s Algorithm

Figure 5.13 describes the algorithm executed by SS-Ri. The statements in lines 1-25 are

similar to the ones given in Pure-SS receiver’s algorithm. To handle freeze faults (i.e., tempo-
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rary shutdowns), SR-Tablei entries are extended with “from” and “to” attributes. SR-Tablei[SS-

Sj ,from] and SR-Tablei[SS-Sj ,to] contain the down and up times of the shutdown scheduled by

WSj provider, respectively. At the creation of an entry for SS-Sj in SR-Tablei, SR-Tablei[SS-

Sj ,from] and SR-Tablei[SS-Sj ,to] are initialized to 0 (lines 14-15). At the end of tSSR timer (lines

20-25), SS-Ri checks if it received a Refresh() message from senders. If a sender SS-Sj is in the

frozen status (lines 28-30), SS-Ri does not expect to receive a Refresh() from SS-Sj and hence

skips SS-Sj .

Otherwise, SS-Ri handles SS-Sj as in the case of Pure-SS protocol (lines 31-41). At the recep-

tion of a Shutdown() message from SS-Sj (lines 42-46), SS-Ri processes the shutdown scheduled

by SS-Sj by calling the utility procedure Process-Shutdown(). At the reception of a Awake() mes-

sage from SS-Sj (lines 47-53), SS-Ri checks if SS-Sj still belongs to Senders(SS-Rj). SS-Sj could

have been removed from Senders(SS-Rj) as part of the Process-Shutdown() utility procedure. If

SS-Sj ̸∈ Senders(SS-Rj), SS-Ri sends a Leave() message to SS-Sj . Otherwise, SS-Ri re-initializes

SR-Tablei[SS-Sj ,DownTime] and SR-Tablei[SS-Sj ,UpTime] with 0. At the reception of a Stop()

message from SS-Sj (lines 54-58), SS-Ri deletes SS-Sj entry in SR-Table and removes SS-Sj from

Senders(SS-Ri). Finally, it processes the stop notified by SS-Sj by calling the utility procedure

Process-Stop().

Let us consider our running scenario shown in Figure 5.14. We assume that at time t31, WS3

provider schedules a shutdown during the period [t31,t5]. This explicit removal is communicated to

SS-R1 and SS-R2 via Shutdown() messages. SS-R1 and SS-R2 receive those messages at times t11

and t21, respectively, and call Process-Shutdown() procedure. Hence, they do not expect to receive
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(01) At addition of WSi to CSj Do
(02)     Send Join(SS-Rj) to SS-Si;
(03) End

(04) At deletion of WSi from CSj Do
(05)     Send Leave(SS-Rj) to SS-Si;
(06)     Delete SS-Si entry from SR-Tablej;
(07) End

(08) At Reception of Decision2Join(SS-Si,decision) Do
(09)    If decision = True Then
(10)         Sendersj = Sendersj {SS-Si};
(11)         Create an entry for SS-Si in SR-Tablej;
(12)         SR-Tablei[SS-Si,Refreshed] = False;
(13)         SR-Tablei[SS-Si,Retry] = 0;
(14)         If Sendersj = 1 Then
(15)             Start SSR timer of SS-Rj;
(16)         EndIf
(17)    Else React(“Refusal”,SS-Si);
(18)    EndIf
(19) End

(20) At Reception of Refresh(Statei) From SS-Si Do
(21)    SR-Tablei[SS-Si, Refreshed] = True;
(22)    If Statei.ChangeStatus = True  Then
(23)      React(“changes”,SS-Si, Statei.ChangeDetails);
(24)    EndIf
(25) End

(26) At the end of SSR timer of SS-Ri Do
(27)  For each SS-Sj / SS-Sj Senders(SS-Ri) Do
(28)     If time  SR-Tablei[SS-Sj,from]  time < SR-Tablei[SS-Sj,to]
(29)          Then Continue;
(30)     EndIf
(31)     If SR-Tablei[SS-Sj, Refreshed] = True
(32)               Then SR-Tablei[SS-Sj, Refreshed] = False;
(33)                         SR-Tablei[SS-Sj, Retry] = 0;
(34)               Else SR-Tablei[SS-Sj, Retry 
(35)                       If SR-Tablei[SS-Sj, Retry] = Max-Retryi

(36)                        Then React(“No Refresh”, SS-Si); 
(37)                     EndIf
(38)     EndIf
(39)  EndFor
(40)     Re-start SSR timer of SS-Ri;
(41) End

(42) At Reception of Shutdown(from, to) From SS-Sj Do 
(43)     SR-Tablei[SS-Sj,from] = from;
(44)     SR-Tablei[SS-Sj,to] = to;
(45)     React(“shutdown”, SS-Sj, from, to);
(46) End

(47) At Reception of Awake(SS-Sj) From SS-Sj Do 
(48)      If SS-Sj Senders(SS-Ri)
(49)        Then Send Leave(SS-Ri) to SS-Sj;
(50)         Else SR-Tablei[SS-Sj,from] = 0;
(51)                 SR-Tablei[SS-Sj,to] = 0;
(52)      EndIf
(53) End

(54) At Reception of Stop(SS-Sj)  From SS-Sj Do 
(55)     Remove SS-Sj Entry From SR-Tablei;
(56)     Senders(SS-Ri) = Senders(SS-Ri) – { SS-Sj };
(57)     React(”stop”, SS-Sj);
(58) End

Figure 5.13: SS-Rj Receiver Protocol for Removal-SS.

Refresh() messages at t5. At time t5, WS3 is reinstated; SS-S3 sends Awake() message to SS-R1

and SS-R2. SS-S3 resumes sending Refresh() at time t6. Assume that at time t32, WS3 provider

would like to stop its service with SS-R2. For that purpose, SS-S3 sends a Stop() message to SS-

R2. SS-R2 receives this message at time t22, deletes SS-S3 entry in SR-Table3, removes SS-S3 from

Senders(SS-R2), and calls Process-Stop() procedure. At times t7 and t9, SS-R1 notes the reception

of Refresh() messages. However, SS-R2 does not expect the reception of such messages since WS3
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is no longer a composition participant.
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Figure 5.14: Removal-SS Protocol - Example.

5.4 Fault Reaction

Once the (composite) system determines that a fault has occurred, the next step is to prepare

an optimal fault-response and recovery strategy. In this section, we first present Event-Condition-

Action (ECA) rules, and then discuss the main recovery polices used by our framework. One of the

issues to be considered is the conversion and negotiation of new policies for the replaced/composed

web service. In our framework we propose an approach that uses ontologies and semantic web

rules to ensure that policy information is correctly translated. The idea is to standardize all the
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policies using a standard policy language i.e WS-Policy that could explicitly describe all the con-

straints i.e. privacy parameters that need to considered in a composition. Before introducing a new

service to the composition, the systems checks for policy conformance of the selected service. We

use ontologies to translate domain specific terms and use semantic web rules to convert compatible

rules i.e. (uptime of 99.9% to downtime of 0.01% etc). Then we use our automated negotiation

framework to negotiate a suitable solution for the composition (Hashmi, Alhosban, Malik, and

Medjahed, Hashmi et al.2011).

Event processing is a method of tracking and analyzing streams of data about a specific event,

and then deriving a conclusion based on these events. Complex Event Processing (CEP), is event

processing that combines data from multiple sources to infer patterns in more complicated sce-

narios. The main goal of CEP is to identify meaningful events and response to them as quickly

as possible. CEP employs different techniques such as detection of the complex pattern, event

correlation, event abstraction, event hierarchies and relationship between events (Pascalau and

Giurca, Pascalau and Giurca2009; Wasserkrug, Gal, Etzion, and Turchin, Wasserkrug et al.2008;

Mozafari, Zeng, and Zaniolo, Mozafari et al.2012; Kellner and Fiege, Kellner and Fiege2009).

Event-driven systems are becoming the paradigm of choice for organizing many classes of

loosely coupled and dynamic applications (Garlan and Schmerl, Garlan and Schmerl2002; Ghosh,

Sharman, Raghav Rao, and Upadhyaya, Ghosh et al.2007; Verma and Sheth, Verma and Sheth2005;

Guinea, Guinea2005; Kokash, Kokash2007; Brambilla, Ceri, Comai, and Tziviskou, Brambilla

et al.2005). Events are typically used to provide users or systems awareness about specific sit-
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Figure 5.15: ECA Architecture.

uations that may occur during a system’s execution span. System faults fall into one such cat-

egory of notifications. To capture and react to events, each service also includes a set of rules.

In this chapter, we adopt the ECA rules model (Garlan and Schmerl, Garlan and Schmerl2002)

for defining these rules. Our selection is based on the fact that ECA rules specify constraints on

the service properties and method and specify the reaction to requests and their responses. In

addition, implementing intelligent systems require reasoning possibilities thus using CEP is not

enough, so we use ECA to represent knowledge and act to the event individually. ECA rules au-

tomatically perform actions in response to events provided that slated condition hold. ECA rules
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have a high level, declarative syntax and are amenable to analysis optimization techniques (Bai-

ley, Poulovassilis, and Wood, Bailey et al.2002; Qiao, Zhong, Wang, and Li, Qiao et al.2007;

Papamarkos, Poulovassilis, and Wood, Papamarkos et al.2011; Poulovassilis, Papamarkos, and

Wood, Poulovassilis et al.2006).

We use the previously mentioned communication messages framework to support the ECA

rules. Each ECA rule contains an event, condition, and action part. An event is a method invo-

cation, a service state transition (e.g., termination of a Web service operation), or a combination

of events via logical operations (AND, OR, NOT). A condition is a Boolean expression over the

service state. An action can be a method invocation, a notification or a group of actions to be

sequentially or currently executed. In what follows, we focus on the recovery policy action.

In general, Events are typically used to provide awareness about specific situations such as

notify users about the shipment of a product or tracking changes that may occur in services. We

define an event as the occurrence of fault (i.e., physical and logical fault). The main idea of

using ECA is to react to changes that may occur in the services (e.g. a Web service is no longer

available or out of service). Whenever a change event occurs, information about the corresponding

change is sent to the composition service and/or other services that rely on it. These services

react to the notified changes using their own policies via local ECA rules. The event part of ECA

rule refers to change notification. The actions part allows for the specification of change policies.

Figure 5.15 shows the set of events that may occur during the communication among the individual

Web services and their corresponding composition services, along with their conditions and actions

(recovery policies).
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Every event (fault in our case) has a correlated condition and/or parameter associated to it.

Starting from the event node fault, if the Web service exceeds λ (i.e., condition = ‘true’) then the

Web service is not available and the composition will delete it from the list of component services,

where λ is the time that the service takes to send periodic refresh notifications to its receiver

services. So, if the failing Web service has a high critical value, the suggested action would be to

replace it with a similar service.

Definition (Critical Service). For each composition, critical service is the component service

that has the highest out degree of data dependency in the composition.

Hence in a composition, a service that provides the maximum number of input parameters (as

its output parameters) for the participants of that composition is considered a Critical Service.

There may be more than one critical service in the same composition. If the critical service fails

in providing its service then the dependent component services cannot be executed and the com-

position will fail. For each composition, we first define the critical services which will help us in

determining the action(s) in ECA rules. The degree of criticality is thus based on the tasks un-

dertaken by these services, where each task contains one or more operations. The main factors

for service criticality (CritS) are: the operation priority value that is provided by the consumer

(Wuseri) and operation criticality (defined as the ratio of the operation’s execution time to the

total execution time of the service).

OpCritical(opi, servicej) =
WOpij ×

∑n
k=1 Rk

|W |+ |D|
(5.1)
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Where WOpij is the weight of the operation i in service j which is calculated by dividing the

execution time of the operation over the total service time, Rk is the reputation of the service, W

is the number of component services in the composition, and D is the number of Web services that

depend on Web service j. By depend we mean that the operations of one service use the output of

the other service. After determining the criticality of the operation we calculate the criticality of

the task, and the criticality of the overall service (CritS).

TaskCriticality(taskk) =

∑z
i=1 Wuseri ×OpCritical(opi, servicej)∑z

i=1 Wuseri
(5.2)

where z is the number of operations in taskk, and Wuseri is the user’s weight for opi. Then,

CritS =
m∑
i=1

TaskCriticality(taski) (5.3)

where m is the number of tasks in the servicej . If CritS > β (where β is a predefined threshold)

then the service is considered as a critical one.

In Figure 5.16, a sample rule in pseudo-code form (R1) is provided for a critical service. In

contrast, when the condition = ‘false’ (i.e. service is not critical), the composite service deletes the

Web service from the list and skips the task (R2). In case of a physical fault (i.e., the composition

service did not receive any response from the component Web service for the join request message)

for a critical service, we implement the replace strategy. We use θ to determine the maximum

response time allowed to receive a reply for join request message (see R3 and R4 in Figure 5.16).

In case of a logical fault, e.g., a freeze fault the providers shut down their services for a limited

time period. In the stop fault, providers make their services permanently unavailable. In these two
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cases, the action could be to retry the service after a certain time period (known as stop or freeze

time). Hence, we defined ∆ which is the freeze time as R5.

Rule R1
event node fault
condition Time.refresh > λ and WS critical
action delete (WS) from (SS--Rj) list

implement Replace strategy

Rule R2
event node fault
condition Time.refresh > λ and WS not critical
action delete (WS) from (SS--Rj) list

implement Skip strategy 

Rule R3
event physical fault 
condition Time. join (SS--Rj)  > � and  WS critical
action delete WS from  (SS--Rj) list

implement Replace strategy

Rule R4
event physical fault 
condition Time. join (SS--Rj)  > � and  WS not critical
action delete WS from  (SS--Rj) list

implement Skip strategy

Rule R5
event freeze fault 
condition Change status = ‘YES’ and  Time.wait > ∆
action delete WS from (SS—Rj) list

implement Replace strategy

Figure 5.16: ECA examples.

There is another important concept for selecting the recovery policy which is Web Services

Versioning. Because Web services are bound to change and evolve over time and the loose cou-

pling principles of SOA imply that service providers can release a new version of a shared service

without waiting for consumers to adapt, and that service consumers should test and certify on a

new shared service version before switching. Consequently, you might need to have multiple ver-

sions of a shared service running concurrently and simultaneously accessible by different service

consumers. Some service consumers might need to continue using an old version of a service until

migration of the consumer code occurs. Therefore, Web services versioning is an important sub-

ject that should be considered carefully in all enterprise SOA approaches (Ibrahim, Ibrahim2009;
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Frank, Lam, Fong, Fang, and Khangaonkar, Frank et al.2008). Service versioning comprises ser-

vice specifications as observed at discrete points in time. These are identifiable by a version iden-

tification number; each version is agnostic of the others and managed individually. Each of the

service versions is created by applying a number of changes to a previous service version, which

can be thought of as the baseline for that version. Information regarding the baseline of each ver-

sion, and how a service version differs from its baseline constitutes the version history of a given

service (Andrikopoulos, Benbernou, and Papazoglou, Andrikopoulos et al.2008).
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CHAPTER 6

PERFORMANCE ANALYSIS

In this chapter, we present a comprehensive performance analysis of the different stages of

our work. Each stage has its own experiments, analysis and results. Our prototype SURETY

is deployed to study the performance of different fault management strategies. The WSDream-

QoSDataset (Zheng and Lyu, Zheng and Lyu2010) is used, which contains 150 Web services dis-

tributed in computer nodes located all over the world (i.e., distributed in 22 different countries),

where each Web service is invoked 100 times by a service user. Planet-Lab is employed for mon-

itoring the Web services. The service users observe, collect, and contribute the failure data of

the selected Web services to our server, which is implemented in C# using Asp.Net running on

Microsoft .Net version 3.5 and SQL as the back-end database. The following table (Table 6.1)

provides a sample of the experiment run.

Table 6.1: Sample Web services run using Planet-Lab
Client IP Response time (ms) Data size Message

35.9.27.26 2736 582 OK
35.9.27.26 804 14419 OK
35.9.27.26 20176 2624 connect timed out

The notations used hereafter are listed in Table 6.2. Most of the terms in the table are self-

explanatory.
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Table 6.2: Definition of Symbols
Symbol Definition

T The total execution time.
t0 Start time.
tn End time.
ti Time at which a new service is invoked.
k Number of services.

P (x)t Fault occurrence likelihood for servicex when in-
voked at time t.

λi Weight of servicei in relation to T.
λ′
i Weight of servicei in relation to (T − ti).

∆i First-hand fault history ratio of servicei.
∆′

i Second-hand fault history ratio of servicei.
f(si) The priority of servicei in the composition.

6.1 Fault Prediction

We simulated a services-based system complete with fault prediction, recovery strategies and

performance measurement. The input to the system is an XML schema of the system that is used

to exhibit the characteristics of a running system.

The experimental results based on the main scenario are discussed below for fault prediction,

the experiment focus is on our in reducing the total execution time. The major motive is to not let

the service executa if there is a high likelihood of it failing at run time (as this increases the total

execution time). In Figure 6.1, we show a system with 11 services and 6 invocation points (details

in these in Chapter 1). The invocation points are set at t1 = 30 ms, t2 = 50 ms, t3 = 450 ms, t4 =

560 ms, t5 = 670 ms, t6 = 890 ms with the total execution time (T) of 1000 ms . At t1 the system

invokes two services (service1, service3) in parallel, at t2 the system uses probabilistic invocation

for three services (service3a, service3b, service3c). At t3 the system invokes one service (service2)

which is sequential invocation, and at t4 the invocation is synchronous for one service service4.
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At t5 the invocation is again probabilistic for three services (service5, service6, service7) and at

t6 the system invokes one service (service8). Table 6.3 shows a sample (i.e. these are not constant)

of the different parameter values for all 6 invocation points.

First invocation 
point

Parallel 
invocation 

t1 t2

Second invocation 
point

Probabilistic 
invocation 

t3

Third invocation 
point

Sequential 
invocation 

t4

Fourth invocation 
point

Service1

Service3

Service3a

Service3b

Service2

Probabilistic 
invocation 

Service5

Service6

t5 t6

Fifth invocation 
point

Sixth invocation 
point

Service3c

Synchronous 
invocation 

Service4

Service7

Synchronous 
invocation 

Service8

Figure 6.1: Simulation Environment of Eleven Services and Six Invocation Points.

Table 6.3: Service Parameters at Invocation Points
Invocation
Point

Service Time Priority λi λ′
i ∆i ∆′

i P (si)

1 Service1 180 60% 0.18 0.1856 0.30 0.15 0.2289
1 Service3 250 40% 0.25 0.2577 0.40 0.60 0.2875
2 Service3a 80 70% 0.08 0.8421 0.90 0.70 0.7498
2 Service3b 90 50% 0.09 0.0947 0 0.20 0.1241
2 Service3c 80 30% 0.08 0.0842 0.50 0.40 0.1120
3 Service2 150 80% 0.15 0.2727 0.70 0.80 0.5414
4 Service4 1000 80% 0.1 0.2273 0.60 0.80 0.4471
5 Service5 80 90% 0.08 0.2424 0.70 0.65 0.2883
5 Service6 70 80% 0.07 0.2121 0.50 0.80 0.3522
5 Service7 80 90% 0.08 0.2424 0.75 0.90 0.6395
6 Service8 100 80% 0.1 0.9091 0.70 0.80 0.0374

After experimenting multiple threshold values we assume the different theta values for this ex-

periment i.e., θ1 = 0.50, θ2 = 0.60. The table lists the priority of each service involved, the services’
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time weights and their history ratios (from internal and external experiences). Using Equation 3.5,

FOLT calculated the fault likelihood at the first invocation point (Parallel invocation) to be Ppar

=0.4505. Since service1 and service3 had a very low fault likelihood, this in turn implied that the

invocation point fault likelihood was lower. In this case Ppar < θ1, FOLT did not build any plan and

continued with the system execution. For the second invocation point (Probabilistic invocation), as

per the given parameters FOLT calculated the fault likelihood using Equation 9 to be Ppro=0.0104.

Hence, the system did not build a recovery plan and continued its execution. Similarly at third

invocation point (Sequential invocation): the fault likelihood was calculated using Equation 6 to

be Pseq=0.5414. In this case Pseq > θ1, the system did build a recovery plan and continued its

execution. However, the execution of the created plan had to wait until the occurrence of fault be-

cause Pseq < θ2. Fourth invocation point (Synchronous invocation): The fault likelihood was same

as of service4 = 0.4471. Fifth invocation point (Probabilistic invocation): The fault likelihood

calculated by FOLT was Ppro=0.0649. Since service7 had a high fault likelihood and the other

two services had low fault likelihood , this in turn implied that the invocation point fault likelihood

was lower. In the case that the selected service was service7, the system will build a recovery plan

and execute it(fault likelihood of service7 > θ2). Sixth invocation point (Asynchronous invoca-

tion): The fault likelihood of this invocation point was same as that of service8 = 0.0374. For this

invocation point the system did not create any plan.

In Figure 6.2-(a) We can see the eleven services in this system and their fault likelihoods. We

notice that servie3a has the highest fault likelihood and service8 has the lowest fault likelihoods.

These results are based on the different service’s weight, history, behavior, invocation time and
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priority. Figure 6.2-(b) shows the fault likelihood for each invocation point where the highest fault

likelihood was at t3 and the lowest fault likelihood was at t2. Figure 6.2-(c) shows the relationship

between the priority and the fault likelihood. For example, service3a has a priority of 70% and

the fault likelihood is 0.7498, however, the priority for service7 is 90% and the fault likelihood

is 0.6395, because it has lower weight. Figure 6.2-(d) presents the relationship between service

weight and the fault occurrence likelihood.
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Figure 6.2: (a) Fault Likelihood (b) Invocations Points (c) Priority (d) Service Weight

We also performed experiments to assess the FOLT approach’s efficiency. Figure 6.3-(a) shows

the comparison between FOLT, no fault and systems that use replace, retry and restart as recovery

techniques. Here total execution time is plotted on the y-axis and the number of faults on the x-

axis. With increasing number of faults, the execution time also increases. However, FOLT takes



141

0
1
2
3
4
5
6
7

0 2 4 6 8 10

E
x

ec
u

ti
o

n
T

im
e

Number of  Faults

Retry

Replace

Restart

FOLT

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

No Fault Retry Replace Restart FOLT

E
x

ec
u

ti
o

n
 T

im
e

(a) (b)

Figure 6.3: Execution Time Comparisons

less time than compared techniques. This is due to the fact that FOLT preempts a fault and builds a

recovery plan for it. Figure 6.3-(b) shows the total execution time comparisons for the five systems.

Here we fix the number of faults to four.

6.2 Semantic Similarity

In this section, we define an analytical model to study the performance of the proposed semantic

similarity technique (S2R). Our Analytical model has 1000 Web services that are divided into

three categories. We change the number of polices that are evaluated every time (e.g., 2, 4, 8

policies) while keeping other variables such as number of context specifications per policy, number

of members per category, etc. fixed. We focus on computing the total time and search space

complexity for checking the similarity degree of the target Web services through our three levels

(for details see Chapter 2). We compare our technique with three similar existing works through

this analytical model. Table 6.4 defines the parameters and symbols used here after. We assume
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that Web services are divided into categories (e.g., under UDDI categories).

Table 6.4: Definition of Symbols
Symbol Definition
Xj The value of jth component of consumer’s vector.
Yij The value of jth component of ith Provider’s vector.

Xj(min) The minimum allowed value of jth component of consumer’s vector as provided by
the consumer.

Xj(max) The maximum allowed value of jth component of consumer’s vector as provided
by the consumer.

Yij(min) The minimum allowed value of jth component of ith Provider’s vector as provided
by the provider.

Yij(max) The maximum allowed value of jth component of ith Provider’s vector as provided
by the provider.

WXj The weight of jth component of consumer’s vector as provided by the consumer.
WYij The weight of jth component of ith Provider’s vector as provided by the provider.
rj Utility of the solution s for participant j.
Rs Utility of the solution s (for all participants).
Ncom Number of categories.
Np Number of policies per service.
Ncs Number of context specifications per policy.

Nmember Number of members per category.
Nr Number of rules.
Ns Number of services in a particular category.
Tpall Time to fetch all policies of a service.
Tpall1 The time to parse a service description and the network transmission delay.
Tpall2 The time spent by each category to process its sub request.
Tpone Time to fetch one policy of a service.
Tcs Time to get a context specification.

TXML Time to parse a service description.
TNet Network transmission delay.
Trep Time spent to assess a reply from a category.

To simplify the analysis, we assume that the times to retrieve a description from a service

registry and parse that description are fixed values. Based on the categories, we compute the
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average matching time Tmatch which is the time it takes to find the similar services.

Tmatch =
(TMINmatch + TMAXmatch)

2
(6.1)

where TMINmatch is the best case matching time and TMAXmatch is the worst case matching time.

Tmatch includes a polling time (Tpoll) and a decision time (Tdec), where, Tpoll is a combination of

Tpoll1 and Tpoll2. Tpoll1 includes the time it takes to fetch the policies, parse a service description

and the network transmission delay. In the best case, the Web service would have only a single

policy (TMINpoll1) and in the worst case it may have Ncom polices (TMAXpoll1). Hence,

TMINpoll1 = Tpone + TXML + TNet (6.2)

TMAXpoll1 = Tpone +Ncom × (TXML + TNet) (6.3)

Tpoll2 includes the time spent in each category to process its sub request.

TMINpoll2 = 2× Tpone + 2× Tcs + 4× TXML (6.4)

We multiply Tcs by two because we need to compare each policy twice: once for the provider

and once for the consumer. At a minimum, each policy would be compared to a single policy on

both sides. Similarly, we multiply TXML by four because we need to parse the description of XML

four times (we need to parse XML files twice for the consumer and twice for the provider: once
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for determining the properties and once for determining the policies).

TMAXpoll2 = Tpone+Ncs× (TXML+Ns× (Tpone+TXML+2×Tcs+Nr × (2×TXML))) (6.5)

In calculating TMINpoll2 we multiply Tpone by two because we retrieve the policy for the source

and the category member. The decision time (Tdec) includes the network delay and the time spent

to asses a reply from the Web services under the same category. In the best case,

TMINdec = TNet + Trep (6.6)

TMAXdec = Ncom × (TNet + Trep) (6.7)

Based on the previous equations, Tmatch is then,

Tmatch =
(TMINpoll1 + TMAXpoll1 + TMINpoll2 +Ncom × TMAXpoll2 + TMINdec + TMAXdec)

2

(6.8)

The previous formulas give matching times for each technique. In what follows, we calculate

the total matching time for the four techniques: S2R, CME (Medjahed and Atif, Medjahed and

Atif2007), CCB (Segev, Segev2008) and Brute-force (for details see Chapter 4).

Figure 6.4a. shows a comparison between the Brute-force method (exhaustive search), CME (Med-

jahed and Atif, Medjahed and Atif2007), CCB (Segev, Segev2008) and S2R for service matching

time based on the number of services. Note that Brute-force has the highest matching time espe-

cially when we have a large number of services. CME performs better than Brute-force method,
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but still takes more time than CCB. However, our method provides the lowest matching time, even

if the number of services is large.
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Figure 6.4: Matching Time and Search Space analysis.

Figure 6.4b. shows the relationship between the number of services and the search space for

each matching method. We can see that Brute-force method has the largest search space and the

smallest search is attributed to S2R.
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Figure 6.5: Scalability analysis for (a) S2R. (b) CME. (c) Brute-force. (d) CBB.

In the last set of experiments, we evaluate the services matching time with variable number of
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policies. Figure 6.4 presents the results of two, four, and eight policies. In Figure 6.5a. we can see

that S2R took a maximum matching time of (8,000 and 10,000 ms) when we use eight policies.

However, in the Brute-force method (see Figure 6.5c.) the maximum time is between (22,000 and

25,000 ms). Figure 6.5b. shows that the maximum time using CME which is between (14,500 and

16,000 ms). Moreover, Figure 6.5d. shows that CCB took the maximum time of (15,000 to 17,000

ms). This shows that S2R provides better matching time for all variable number of policies.

Legend
40 Web Services                                 220 Web Services                                                        

Figure 6.6: Maximum and minimum matching times.

Figure 6.6 shows the four techniques with their maximum and minimum matching times. We

can see that S2R takes the least amount of time to find the matching services, and scales very well

when the number of Web services is increased (shown in Figure 6.6 from 40 to 220).

Figure 6.7 shows a comparison between the Brute-force method (exhaustive search), CME (Med-

jahed and Atif, Medjahed and Atif2007), CCB (Segev, Segev2008) and MASC for service match-

ing time based on the number of services required by the consumer.

Note that Brute-force has the highest matching time especially when we have a large number

of services. CME performs better than Brute-force method, but still takes more time than CCB.
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Figure 6.7: Service Matching Times.

However, our method provides the lowest matching time, even if the number of services is large

because for each filter we reduced the number of compared services. Figure 6.8 shows the rela-

tionship between the number of services and the search space (number of service calls) for each

matching method. We can see that our technique (MASC) perform better in comparison with other

approaches because CME calls each service three times for comparison, CCB calls each service

twice, while MASC calls just the candidate services twice.
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Figure 6.9 shows the different clusters of services obtained after the HMM and utility calcu-

lations. The HMM classifies the services into two classes (acceptable and unacceptable), while

based on the utility values, the services are clustered separately. In the experiments, we have used

WEKA for cluster construction.

Unacceptable                     Acceptable      

Unacceptable                     Acceptable      

Figure 6.9: Behavioral patterns clustering using WEKA.

Moreover, we test different classification and clustering techniques to find the most appropri-

ate technique for the behavior pattern classification. Table 6.5 shows the comparison between

the classification techniques: 48, J48 with cross-validation, BFTree, NativeBayes and LADTree.

The comparison is based on correctly classified instances, incorrectly classified instances,kappa

statistic, mean absolute error, root mean squared error, relative absolute error and root relative

squared error. The experiments show that NativeBayes performs better than other techniques for

our algorithm and data set.
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Table 6.5: Classification and clustering techniques
Technique J48 BFTree NativeBayes LADTree

Correctly Classified 64% 68% 98% 96%
Incorrectly Classified 36% 32% 2% 4%
Mean absolute error 0.2036 0.1784 0.0073 0.0555
Mean squared error 0.3345 0.2986 0.0457 0.1248

6.3 Dynamic Planning

In this section, we use both analytical analysis and simulation to evaluate FLEX’s performance.

We focus on evaluating the overall system reliability by evaluating the reliability for each invoca-

tion point based on different recovery plans. We then compare our technique with four similar

existing works. The QoS model formally defines a set of quality parameters for Web services.

We define the best quality service through two sets: negative and positive QoS parameters. In the

negative QoS parameters the higher value is the worst quality (e.g., the higher response time is the

worse quality). In the positive QoS parameters the lower value is the worse quality (e.g., the lower

reputation is the worse quality). We calculate the following QoS parameters:

Latency is measured as: Latency(si) = Timep+Timer. Where Timep is the time of process-

ing the request and Timer is the transmission delay. Reliability is calculate as: Reliability(si) =

1− P (si)
t. Availability is measured as: Availability(si) = Nv

Tv
. Where Nv is the number of times

that si was available and Tv is the total times that si was invoked.

Based on the above definitions, we use a score function which computes a scalar value from

the (normalized) QoS parameters for assessing the service recovery plan (SRP):
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Score(si) = (
∑

negative

wi ×
QoSmax

i −QoSi

QoSmax
i −QoSmin

i

+
∑

positive

wi ×
QoSi −QoSmin

i

QoSmax
i −QoSmin

i

) (6.9)

where QoSmax
i is the maximum value for ith QoS parameters and QoSmin

i is the minimum.

Then reliability scores for the different planning strategies (details in Chapter 2) are computed as:

• Retry (si): find the score for si and multiply it by the same score:

Scoreretry = (Scores)
2 (6.10)

• Retry-Until(si, ρ): find the score for si and take the power to the number of retries:

ScoreRetry−Until = (Scores)
m (6.11)

• Replace(si, sj): find the score for si and sj:

ScoreReplace = (Scoresi)× (Scoresj) + ∂ (6.12)

where ∂ is the cost of fining similar service.

• Replicate(si, (s1...sk)): find the score for the replicated services from si and sk:

ScoreReplicate = (Scoresi)×
∑k

h=1(scoresh)

number of replicas
+ ∂ (6.13)



151

The overall system reliability depends on the reliability for each invocation point, thus we use

a linear function to approximate:

Total reliability =
I∑

α=1

log(Reliability(α)) (6.14)

where I is the number of invocation points in the system and Reliability(α) is the reliability

for the invocation point α.
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Figure 6.10: Assessed service score for user’s requirements.

Figure 6.10 compares the scores for various techniques (i.e., FLEX, FACT (Liu, Li, Huang,

and Xiao, Liu et al.2009), BPEL4Job (Tan, Fong, and Bobroff, Tan et al.2010), SMP (Dai, Yang,

and Zhang, Dai et al.2009)and FTWeb (Santos, Lung, and Montez, Santos et al.2005)), for the

different QoS requirements of four users. We can see that SMP is a good choice for User1 and

User3 incase we had to replace Web service1 with the best performing candidate Web service. Fur-

thermore, FTWeb is the good choice for obtaining a good consistent score since it uses replication.

BPEL4Job depends on the QoS values of a Web service and since Web service1 has high QoS pa-

rameters values, it gives BPEL4Job a higher score. Note that FLEX performs better than the above
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mentioned techniques even though we may have different preferences for user requirements, as we

dynamically select the best recovery plan containing Web services with the highest score.

In FLEX, if we have more than one recovery plan at any invocation point, then we consider

two factors for selecting the best recovery strategy. One is the type of service invocation point

(i.e., sequential, parallel, etc) and second is the type of recovery plan (replace, retry, etc). We use a

greedy approach )to select the most suitable recovery plan at each invocation point. This approach

guarantees the selection of the best possible recovery plan (based on the cumulative score) at each

invocation point and hence better system reliability. In addition to calculating the score of the

recovery plans, FLEX calculates the reliability of each invocation point based on the Equations (4,

5, 6, 7, and 8). Table 6.6 summarizes the invocation points’ reliability.

Table 6.6: The conditions for each planning strategy
Invocation Reliability (R)

Sequential(S : A) R = R(S)×R(A)
Parallel (S : S1, S2) R = R(S)× ⊓2

i=1R(Si)
Probabilistic (S : S1—p, S2—1-p) R = R(S)×

∑n
i=1 p ∗R(Si)

Circular (S—m) R = R(S)m

Figure 6.11 shows the relationship between the service execution time and the failure ratio.

Each sub-figure represents a category in our running example (e.g., hotel category, flight category,

etc.,). We have 14 Web services under each category, we run each Web service 100 times and

monitor the failure ratio and the execution time. We found that, when the service execution time

increases the failure ratio also increases. In Figure 6.12, we show the results of running SURETY

as a composite service with FLEX support. The same configuration of services is run with similar

fault management techniques defined in the related work section, such as FACT (Liu, Li, Huang,
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Figure 6.11: Impact of the services response time on the failure ratio.

and Xiao, Liu et al.2009), BPEL4Job (Tan, Fong, and Bobroff, Tan et al.2010), SMP (Dai, Yang,

and Zhang, Dai et al.2009), FTWeb (Santos, Lung, and Montez, Santos et al.2005). The three sub-

figures show the different number of faults (2 faults, 5 faults and 8 faults) generated in SURETY.

As can be seen, FLEX exhibits the lowest failure ratio in all cases due to the selection of the ‘best‘

planning and replacement strategy.
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Figure 6.12: Impact of the number of faults on the failure ratio.
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Figure 6.13: Assessing the over all system reliability.

As we mentioned earlier, the overall system reliability is assessed according to the reliability of

each invocation point (Inv. Pt. in Figure 6.13). Our running example, includes nine Web services

(S1,...,S9) and six invocation points (Inv.Pt1,...,Inv.Pt6 ). The running example also includes three

similar Web services for each one of the nine Web services and we assign different scores to them.

For example, the Web services (S11, S12, S13) are similar to S1, and each one of them has a

different score (i.e., ScoreS11 = 0.8, ScoreS12 = 0.5, and ScoreS13 = 0.7). If S1 fails then we

try to recover the system using one of the five recovery strategies. Figure 6.13 shows how the

invocation point scores are calculated for our running scenario. The first step of our experiment

is based on determining the invocation points and their respective sub invocation points. In the

second step we calculate the score for each Web service involved in respective recovery planning

strategy. The third step calculates the score for each Web service at every sub invocation point. The

fourth step calculates the aggregated score for each invocation point and the final step calculates
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the overall system reliability.
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Figure 6.14: Overall reliability for different planning strategies.

We calculate the overall system reliability using Equation 31 for the above mentioned five dif-

ferent techniques in literature: FLEX, FACT (Liu, Li, Huang, and Xiao, Liu et al.2009), BPEL4Job (Tan,

Fong, and Bobroff, Tan et al.2010), SMP (Dai, Yang, and Zhang, Dai et al.2009), FTWeb (Santos,

Lung, and Montez, Santos et al.2005). Figure 6.14 shows the impacts of the five techniques on the

overall reliability in our running scenario. As can be seen, FLEX has the highest overall reliability.

This result is achieved by selecting the qualified (i.e., suitable) recovery plan based on the com-

bination of QoS values of a service and users QoS requirements. FTWeb performs better incase

the replicated services match user’s preferences. While BPEL4Job has the worst overall reliability

because it retries the same service (without much avail).

Figure 6.15 shows the probability of system faults for each planning strategy. BPEL4Job has

the highest fault probability since we retry the same service and FLEX has the lowest probability

of fault because the recovery plan selection is based on selecting the services with the lowest

probability of failure. From the results shown in Figure 6.15, we can see that fault probability

increases when any system ignores the user’s preferences and the Web service performance (i.e.,
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evaluating the selected Web service). However, the main factor that decreases the fault probability

in FLEX is the fault prediction.
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Figure 6.15: Probability of system faults for different planning strategies.

Figure 6.16a. shows a comparison between the Brute-force method (exhaustive search), Context-

based matching (CBM) has been proposed in (Medjahed and Atif, Medjahed and Atif2007), Cir-

cular context-based (CCB) has been proposed in (Segev, Segev2008) and our similarity module

(SM-FLEX) for service matching time based on the number of services. Note that Brute-force

has the highest matching time especially when we have a large number of services. CME per-

forms better than Brute-force method, but still takes more time than CCB. However, our method

(SM-FLEX) provides the lowest service matching time, even if the number of services is large.

Figure 6.16b. shows the relationship between the number of services and the search space for each

matching method. We can see that Brute-force method has the largest search space and the smallest

search is attributed to SM-FLEX.
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Figure 6.16: Matching Time and Search Space analysis.

6.4 Fault Propagation

In order to evaluate the performance of our proposed technique, we measured multiple factors:

response time (Figure 6.18), failure ratio (Figure 6.19), total cost (Figure 6.20), fault propagation

(Figure 6.21 and 6.22), overhead (Figure 6.23) and dropped messages (Figure 6.24). For this

purpose, we used the the WSDream QoS-Dataset (Zheng and Lyu, Zheng and Lyu2010). This

data-set contains 150 Web services distributed in computer nodes located all over the world (i.e.,

distributed in 22 different countries), where each Web service is invoked 100 times by a service

user. Planet-Lab is employed for monitoring the Web services. The service users observe, collect,

and contribute the failure data of the selected Web services. Our prototype is implemented in C#

using Asp.Net running on Microsoft .Net version 3.5 and SQL as the back-end database.
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Figure 6.17 shows the selected services for 40 compositions that implement our scenario. The

compositions from 1 to 20 are alternatives for CS1 and the compositions from 21 to 40 are alter-

natives for CS2.

Alternative 
Compositions 

CS1

Alternative 
Compositions 

CS2

Figure 6.17: Service selection for multiple compositions

We compared our proposed approach on the overall response time of the composite solution.

Figure 6.18 shows a response time comparison between the three different types of systems. First,

the ideal system (i.e., system without any faults), second a system with faults but without using our

soft-state protocol, and lastly system with faults that uses our soft-state protocol. We compared

these three types of composite systems for the 40 compositions that are using the same car service.

Using the system without faults as a base line, we can see that the system with faults and with

soft-state has a better response time as compared to the system with faults and without soft-state.

We then observe the relationship of increasing user load and failure ratios among the composite
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Figure 6.18: Service selection for multiple compositions

solutions, without using fault propagation (i.e., soft-state protocol). Figure6.19 shows the relation-

ship between the failure ratio and execution time for different simultaneous user loads. When the

number of users is increased, the failure ratio also increased. We can infer that is a multi-user

scenario, if a fault occurs in any component service and the system does not support signaling pro-

tocols (i.e., protocols that that would inform other services/users about the failure), services cannot

be notified of the faulty component and will come across this information once that faulty service

is invoked. Hence The faulty service maybe used by another service/user, which will increase the

probability of faults in the composite solution. To enrich our experiment, we create an analytical
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module, table 6.7 defines the parameters and symbols used here after.

Table 6.7: Symbol Definition
Symbol Definition

T The total life time of a connection.
ET Average life time of a connection.
λ Message arrival rate.

TD Teardown state.
Cr Cost of each refresh message.
µ Total number of refresh messages

TCr Total cost of refresh messages.
P The probability of a message getting lost.
Pr The total loss probability for all messages.
Cs The cost per unit time for being in an inconsistent state.

TCs The total time of being in inconsistent states over the connection’s entire life time.
C(tSSR, tSSS) The total cost.

Ncs Number of context specifications per policy.
Cre The re-initialization cost.

First, we analyze the relationship between tSSR/tSSS values and the following two parameters:

fault propagation time and false faults. The total number of refresh messages that are sent during

a connection’s life time is the connection’s life time divided by the refresh time which is the
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summation of tSSR and tSSS ,

µ =
T

(tSSR, tSSS)
(6.15)

The total cost of refresh messages during a connection’s life time is the number of refresh

messages times the cost of each refresh message,

TCr = Cr × µ (6.16)

The total loss probability for all messages is loss probability for one message times the number

of refresh messages,

Pr = P × µ (6.17)

Since the cost per unit time of being in an inconsistent state is Cs then the total time of being

in inconsistent states over the connection life time is

C(tSSR, tSSS) = TCr + TCs+ Cre× Pr (6.18)

Then, the expected cost is then given as:

E[C(tSSR, tSSS)] = E[TCr] + E[TCs] + E[Cre× Pr] (6.19)

Using the Equations 6.15, 6.16 and 6.17:
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E[C(tSSR, tSSS)] = E[Cr× T

(tSSR, tSSS)
]+E[Cs×P×Pr]+E[Cre×P× T

(tSSR, tSSS)
] (6.20)

Since the above mentioned values are based on the connection’s life time (T), the expected

value for the cost is given by:

E[C(tSSR, tSSS)] = Cr × E[T ]

(tSSR, tSSS)
+ Cs× P × E[T ] + Cre× P × E[T ]

(tSSR, tSSS)
(6.21)

If the time for communication is T, the message arrival rate is λ, and there are n clients sending

requests in different times within the interval [0,T], then the expected number of messages that

reach the server are

N = 1 + n× (
T

λ
)− (T × λ)n (6.22)

Using the expected cost equation (Equation 6.21) and the expected number of messages at

the server (Equation 6.22) we evaluate the total cost of our system with variable size window of

refresh messages. Figure 6.20 presents the results of refresh window for 0.1 to 0.25 msec. In

Figure 6.20(a)and (b) we can see that our technique is a still better than the hard state protocol

for when the life time is small (10 and 20 msec). However, when we increase the life time to

40 msec there is a noticeable improvement of the cost for our technique. Figure 6.20(c) shows

that our protocol perform better when we increase the life time of refresh message. Moreover,
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Figure 6.20: Total cost for life time (a) 10 msec (b) 20 msec (c) 40 msec (d) 80 msec

Figure 6.20(d) shows that when the life time is equal to 80, our method significantly reduces the

overall cost of messages in the system. This shows that our method provides a better protocol in

terms of message cost for all variable life time of refresh messages.

To analyze the Fault propagation time let us assume that a fault occurred in a sender service

at time t1 and has been detected by a receiver service at time t2. The fault propagation time is

equal to t2-t1 (i.e., the time it took for the receiver to detect a fault in its sender). Figure 6.21

compares the average fault propagation time for various tSSR timer values. We consider different

fault ratios for each tSSR timer value. For instance, a fault ratio of 10 means that 10% (1 out of 10)

of participants within a composite service failed. We focused on physical node faults; these are
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Figure 6.21: Impact of tSSR on Fault Propagation Time.

created by physically stopping the services corresponding to faulty senders (selected randomly).

Figure 6.21 shows that the tSSR timer value has a direct impact on the fault propagation time, e.g.,

the smaller the tSSR, the shorter is the fault propagation time. False faults refer to the situation

where receiver service assume faults that did not actually occur in their corresponding sender

services.
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Figure 6.22 depicts the relationship between false faults and time difference (i.e., tSSS − tSSR).

We set tSSR to 20s and vary tSSS from 20s to 25s, 30s, 35s, 40s, etc. Figure 6.22. shows that false
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faults occur if tSSS − tSSR ≥ 0 (i.e., tSSS ≥ tSSR). In addition, the bigger is tSSS (compared to

tSSR), the larger is the number of false faults. These faults correspond to cases where Refresh()

messages are sent after the end of the corresponding tSSR cycles.
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Figure 6.23: Overhead in relation to the number of services and control messages.

We also evaluated our technique on the network traffic overhead. The overhead is calculated

as number of control messages divided by the count of all messages generated by the system. The

simulations show good improvement in the amount of overhead associated with our technique in

comparison to the broadcast method and the hard state protocol. The broadcast means that the

protocol require the server to receive acknowledgements from each client in the network even if

it is not in the service/composition set, the server’s processing capabilities become the bottleneck

when the number of clients grows. Figure 6.23(a) shows that the overhead for broadcast technique

and hard state are high and our technique decreases the overhead by more than 25%. In addition,

we can see that our technique has a fairly low message overhead when we increase the number of

composite services. Moreover, Figure 6.23(b) shows that the overhead for broadcast technique is

much higher than our technique for the number of control messages per Web service.

The last set of the experiments depict cost of dropped messages by each protocol which can
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be seen in Figure 6.24. Dropped message means that the node failed to send the required refresh

message in a timely manner or the message did not reach its intended destination in due time. The

information yielded in the figure shows that the pure soft-state is pretty consistent with the total

cost even if the probability of dropped messages is high, while the hard state protocol has high cost

as compared to our method.
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Figure 6.24: The extra system cost in relation to the probability of dropped messages.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we predict the fault using the fault likelihood, assess the service reliability and

based on this assessment we generate recovery plans on run time. Our main contributions include:

• We proposed a Fault Occurrence Likelihood Technique FOLT in SOAs.

• We extended FOLT to generate recovery plans in case of a fault (through the technique FauLt

with EXception handling technique (FLEX)), using Quality of Service (QoS) definitions

such as availability, cost, time, reputation, etc. to calculate the services’ utility.

• We used the functional and non-functional properties of Web services to rank them for find-

ing the ‘best’ Web services that are similar in case of replacement or replication (S2R).

• We applied our similarity algorithm onto the Cloud environment with good results (Matching

Alternative Services in the Cloud (SMART)).

Predicting Faults in Service-oriented Systems

The Web has started a steady evolution to become a vibrant environment (dubbed the Semantic

Web) where applications can be automatically invoked by other Web clients. A key development

in this regard has been the introduction of Web services. The ultimate goal of the Web services

technology is enabling the use of independent components in a ”composition” that is automatically

formed as a result of the consumer‘s demand, and which may dissolve post demand-completion.

Web services may make promises about the provided service and its associated quality but may
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fail partially or fully to deliver these promises and bring down the quality of the whole application.

Moreover, traditional fault management techniques may not totally support these Service-Oriented

Architectures (SOAs) because of their autonomous and heterogeneous nature. My research ad-

dresses the fault management challenge by predicting the faults and calculating their occurrence

likelihood in the system. I developed and implemented FOLT: a Fault Occurrence Likelihood esti-

mation approach for service compositions. FOLT depends on three major factors: the service’s past

fault history, the time it takes to complete the required task in relation to the composition’s total

execution time, and the service’s weight in the composition. Since a composed service using one

or more of the invocation models (e.g., sequential, parallel, etc.), may encounter a fault during its

execution, the likelihood of a fault’s occurrence is directly proportional to the system’s complex-

ity. FOLT output values are thus influenced by the invocation model(s) used in the composition. In

designing FOLT, we explored methods for the creation of a novel heuristics, its collection, assess-

ment, and robustness of the system against malicious or incorrect information. The defined metrics

are mathematically sound, and experiment results reveal that our approach provides a more robust,

accurate, scalable, and relatively simple to deploy solution in comparison with existing works.

Semantic Similarity for SOA and Cloud

SOAs enable the automatic creation of business applications from independently developed and

deployed services. Mechanisms are thus needed to select these service components that meet or

exceed the functional and non-functional requirements of SOAs. The primary objective of service

selection in SOAs can be viewed as a maximization of an application specific utility function

that matches the constraints of the service requester against the capabilities and offerings of the
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service provider(s). For this purpose, I developed and implemented S2R: a Semantic Web service

Similarity and Ranking approach. Generally, similarity measurement consists of two components:

syntactic and semantic. In S2R, both syntactic and semantic similarity filters are applied to find

a set of Web services that match users’ requirements. S2R is divided into three levels. In the

first level, we filter the available Web services under a specific category based on their functional

properties such as input, output and operations. In the second level, we further reduce the service

search space based on non-functional properties, such as QoS parameters. Once a reduced pool

of similar Web services is obtained, we rank them based on their utility value (in the third level).

This value is calculated using a utility function which allows stakeholders to ascribe a value to

the usefulness of the overall system as a function of several QoS attributes such as response time,

availability, cost, reliability, etc. according to their preferences. Using the utility function, S2R

filters Web services at each level so that more costly operations (e.g., reputation calculations) are

applied on a reduced number of candidate services to shorten the time and space complexity of

this search process. Moreover, since service selection is an on-demand process, we apply the S2R

filters at run time. We compare S2R with similar existing approaches and the experiment results

show the applicability and performance improvement in the service selection process, through time

and search space complexity reduction.

Efficient Run-time Planning

Another aspect of my graduate research is fault-tolerance through self-healing. In this re-

spect, I developed and implemented FLEX: FoLt with EXception handling technique. FLEX is

a framework for infusing dependability in SOAs through self-healing. We identify a set of high-
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level exception handling strategies based on the composition components’ QoS performances and

consumer requirements. Multiple recovery plans are produced and evaluated according to the per-

formance of the included services, to select and execute the best recovery plan. We assess the

overall system dependability using the generated plan and the available invocation information of

the included services. FLEX combines our planning strategies based on FOLT calculations and

incorporates the exception handling constructs of BPEL. Our planning module captures both the

functional and non-functional features of Web services. Specifically, FLEX dynamically evaluates

the performance of Web services based on their previous history (in terms of QoS), and user re-

quirements. The likelihood of fault occurrence is then used to create (multiple) recovery plans. The

best recovery plan is then chosen to be either executed immediately (if fault likelihood is above a

pre-defined threshold), or saved for a later execution (i.e., to be executed when the fault occurs).

The experiment results show that our proposed technique improves the service election quality by

selecting the services with the highest score, and improves overall system performance.

There are still some limitations in predicting the service failures (i.e., the failure is the result

of error/fault). Building efficient distributed systems that provide integration solutions (across

multiple disciplines) while meeting expectations of reliability, performance and QoS requirements

remains a challenging task. In my future research, I intend to leverage my graduate research

experience in tackling these and related issues. First, I will continue and extend my research on

FLEX; I plan to investigate reliability issues for SOAs and the Cloud. I plan to characterize FLEX

behavior by integrating it to multiple real systems. As I start my career as a faculty member, my

first major objective will be to write research proposals seeking funding from federal and other
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agencies such as NSF. I plan to invest my best efforts towards securing the NSF CAREER grant

to support my research. I plan to continue the current collaborations, and initiate new ones with

faculty interested in my topics. Since fault management systems are relevant to various application

domains, such as semantic Web and cloud computing, I see excellent collaboration opportunities

with faculty members and industrial partners working in the above fields. Some items of immediate

interests are:

• Fault Management in the Cloud: Redundancy is a fundamental concept in dependable

computing which is applied to servers, software components, processors, storage, etc. There

are two types of redundancy: time redundancy and space redundancy. With redundancy in

time, operations are repeated several times whereas redundancy in space relies on redundant

hardware and/or software. Both types increase the cost and lower the performance. Cloud

computing has the potential to change this situation dramatically, since it first lowers the

cost of redundant resources, second, offers to adjust resources dynamically, and third, allows

temporarily the use a huge amount of resources. However, the Cloud still suffers from many

challenges in using the current fault management techniques. Thus, I intend to study the

main factors of increasing the performance of the Cloud, implement my defined techniques

on the Cloud, starting from predicting faults, determining the best recovery strategy for each

situation and improving the system performance (i.e., reduce cost, reduce time, guarantee

availability, and increase reliability).

• Decentralized Automatic Management: Reflection is the ability of a system to monitor and

change its own behavior, as well as aspects of its implementation and allowing the ability to
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be sensitive to its environment. To achieve high level of reflection, I will build an automatic

and decentralized fault management approach. The new approach will be in generic enough

to be implemented in a heterogeneous environment.

• Trustworthy Service Compositions: The sharing of privately owned data through and

across remote applications while respecting access control restrictions poses a fundamental

challenge in building loosely coupled distributed systems (e.g. Web services compositions).

I intend to explore how services hosted at different sites can be composed while respecting

data access requirements. I plan to investigate the applicability of cryptographic techniques

(such as private information retrieval) and reputation in enforcing these requirements.

• Accurate Reputation: A fundamental issue in evaluating any Web service is determining

other Web services reputation accuracy. Our work is primarily dependent on the reputation

that is provided from other services. For example, a technical incident at a server running

a Web service may cause the service to be unavailable. The unavailability may prompt the

service requester to change the reputation rating immediately, decide to wait for a period of

time before updating the reputation rating, or put the suspected service on probation as a tem-

porary measure. I intend to explore techniques for accurate reputation change management

so that no service provider is wrongfully disadvantaged.
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BAÏNA, K., BENALI, K., AND GODART, C. 2001. A process service model for dynamic enter-

prise process interconnection. In Proceedings of the 9th International Conference on Cooperative

Information Systems. CooplS ’01. Springer-Verlag, London, UK, 239–254.



175

BEN LAKHAL, N., KOBAYASHI, T., AND YOKOTA, H. 2009. Fenecia: failure endurable nested-

transaction based execution of composite web services with incorporated state analysis. The

VLDB Journal 18, 1, 1–56.

BERGMANN, R., RICHTER, M. M., SCHMITT, S., STAHL, A., AND VOLLRATH, I. 2001.

Utility-oriented matching: A new research direction for case-based reasoning. In In profession-

lles wissens managment: Erfahrungen Und Visionen. Proceeding of the 1st conference knowledgr

management. Shaker. 264–274.

BOOTH, D. AND LIU, C. K. 2006. Web services description language (wsdl).

http://w3.org/TR/2006/CR-wsdl20-primer-20060327/.
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GRIFFITH, R., KAISER, G., AND LÓPEZ, J. A. 2009. Multi-perspective evaluation of self-

healing systems using simple probabilistic models. In ICAC ’09: Proceedings of the 6th interna-

tional conference on Autonomic computing. ACM, New York, NY, USA, 59–60.

GU, X., NAHRSTEDT, K., YUAN, W., WICHADAKUL, D., AND XU, D. 2001. An xml-based

quality of service enabling language for the web. Tech. rep., Champaign, IL, USA.

GU, Z., LI, J., TANG, J., XU, B., AND HUANG, R. 2007. Verification of web service con-

versations specified in wscl. In Proceedings of the 31st Annual International Computer Software



180

and Applications Conference - Volume 02. COMPSAC ’07. IEEE Computer Society, Washington,

DC, USA, 432–437.

GUINEA, S. 2005. Self-healing web service compositions. In Proceedings of the 27th interna-

tional conference on Software engineering. ICSE ’05. ACM, New York, NY, USA, 655–655.

GUOPING, Z., HUIJUAN, Z., AND ZHIBIN, W. 2009. A qos-based web services selection method

for dynamic web service composition. In Proceedings of the 2009 First International Workshop

on Education Technology and Computer Science - Volume 03. ETCS ’09. IEEE Computer Society,

Washington, DC, USA, 832–835.

HALIMA, R. B., DRIRA, K., AND JMAIEL, M. 2008. A qos-oriented reconfigurable middleware

for self-healing web services. In Proceedings of the 2008 IEEE International Conference on Web

Services. ICWS ’08. IEEE Computer Society, Washington, DC, USA, 104–111.

HANEMANN, A. 2006. A hybrid rule-based/case-based reasoning approach for service fault

diagnosis. In AINA (2). 734–740.

HASHMI, K., ALHOSBAN, A., MALIK, Z., AND MEDJAHED, B. 2011. Webneg: A genetic

algorithm based approach for service negotiation. In ICWS. 105–112.

HEUVEL, W.-J. V. D., YANG, J., AND PAPAZOGLOU, M. P. 2001. Service representation, dis-

covery, and composition for e-marketplaces. In Proceedings of the 9th International Conference

on Cooperative Information Systems. CooplS ’01. Springer-Verlag, London, UK, 270–284.

HUANG, X., ZOU, S., WANG, W., AND CHENG, S. 2005. Mdfm: Multi-domain fault manage-

ment for internet services. In MMNS’05. 121–132.



181

HWANG, S.-Y., WANG, H., TANG, J., AND SRIVASTAVA, J. 2007. A probabilistic approach to

modeling and estimating the qos of web-services-based workflows. Inf. Sci. 177, 23, 5484–5503.

IBRAHIM, D. H. A. 2009. The concept of web service versioning in provenance. In Proceedings

of the 2009 International Conference on Network-Based Information Systems. NBIS ’09. IEEE

Computer Society, Washington, DC, USA, 469–474.

JACQUES-SILVA, G., CHALLENGER, J., DEGENARO, L., GILES, J., AND WAGLE, R. 2008.

Self healing in system-s. Cluster Computing 11, 3, 247–257.

JENSEN, R. M. 2004. Fault tolerant planning: Toward probabilistic uncertainty models in sym-

bolic non-deterministic planning. In In Proceedings of the 14th International Conference on

Automated Planning and Scheduling ICAPS-04. 335–344.

JI, P., GE, Z., KUROSE, J., AND TOWSLEY, D. 2007. A comparison of hard-state and soft-state

signaling protocols. IEEE/ACM Trans. Netw. 15, 2, 281–294.

KARIMZADEHGAN, M., LI, W., ZHANG, R., AND MAO, J. 2011. A stochastic learning-to-rank

algorithm and its application to contextual advertising. In Proceedings of the 20th international

conference on World wide web. WWW ’11. ACM, New York, NY, USA, 377–386.

KATCHABAW, M. J., LUTFIYYA, H. L., MARSHALL, A. D., AND BAUER, M. A. 1996. Policy-

driven fault management in distributed systems. In ISSRE ’96: Proceedings of the The Seventh

International Symposium on Software Reliability Engineering. IEEE Computer Society, Wash-

ington, DC, USA, 236.



182

KELLNER, I. AND FIEGE, L. 2009. Viewpoints in complex event processing: industrial expe-

rience report. In Proceedings of the Third ACM International Conference on Distributed Event-

Based Systems. DEBS ’09. ACM, New York, NY, USA, 9:1–9:8.

KEROMYTIS, A. D. 2007. Characterizing self-healing software systems. In Proceedings of the

4th International Conference on Mathematical Methods, Models and Architectures for Computer

Networks Security (MMM-ACNS.

KOKASH, N. 2007. Risk management for service-oriented systems. In ICWE’07: Proceedings of

the 7th international conference on Web engineering. Springer-Verlag, Berlin, Heidelberg, 563–

568.

KONTOGIANNIS, K., LEWIS, G. A., SMITH, D. B., LITOIU, M., MULLER, H., SCHUSTER, S.,

AND STROULIA, E. 2007. The landscape of service-oriented systems: A research perspective.

Systems Development in SOA Environments, International Workshop on 0, 1.

KOTLA, R., CLEMENT, A., WONG, E., ALVISI, L., AND DAHLIN, M. 2008. Zyzzyva: specu-

lative byzantine fault tolerance. Commun. ACM 51, 11, 86–95.
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Service Oriented Architectures (SOAs) enable the automatic creation of business applications

from independently developed and deployed Web services. As Web services are inherently unre-

liable, how to deliver reliable Web services composition over unreliable Web services is a signifi-

cant and challenging problem. The process requires monitoring the system’s behavior, determining

when and why faults occur, and then applying fault prevention/recovery mechanisms to minimize

the impact and/or recover from these faults. However, it is hard to apply a non-distributed man-

agement approach to SOA, since a manager needs to communicate with the different components

through authentications. In SOA, a business process can terminate successfully if all services fin-

ish their work correctly through providing alternative plans in case of fault. However, the business

process itself may encounter different faults because the fault may occur anywhere at any time due

to SOA specifications.

In this work, we propose new fault management technique (FLEX) and we identify several

improvements over existing techniques. First, existing techniques rely mainly on static information
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while FLEX is based on dynamic information. Second, existing frameworks use a limited number

of attributes; while we use all possible attributes by identify them as either required or optional.

Third, FLEX reduces the comparison cost (time and space) by filtering out services at each level

needed for evaluation. In general, FLEX is divided into two phases: Phase I, computes service

reliability and utility, while in Phase II, runtime planning and evaluation. In Phase I, we assess

the fault likelihood of the service using a combination of techniques (e.g., Hidden Marcov Model,

Reputation, and Clustering). In Phase II, we build a recovery plan to execute in case of fault(s)

and we calculate the overall system reliability based on the fault occurrence likelihoods assessed

for all the services that are part of the current composition. FLEX is novel because it relies on key

activities of the autonomic control loop (i.e., collect, analyze, decide, plan, and execute) to support

dynamic management based on the changes of user requirements and QoS level. Our technique

dynamically evaluates the performance of Web services based on their previous history and user

requirements, assess the likelihood of fault occurrence, and uses the result to create (multiple)

recovery plans. Moreover, we define a method to assess the overall system reliability by evaluating

the performance of individual recovery plans, when invoked together.

The Experiment results show that our technique improves the service selection quality by se-

lecting the services with the highest score and improves the overall system performance in compar-

ison with existing works. In the future, we plan to investigate techniques for monitoring service-

oriented systems and assess the online negotiation possibilities for combining different services to

create high performance systems.
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