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Abstract

Measles virus (MV) is a highly contagious member of the Morbillivirus genus that remains a

major cause of childhood mortality worldwide. Although infection induces a strong MV-spe-

cific immune response that clears viral load and confers lifelong immunity, transient immu-

nosuppression can also occur, leaving the host vulnerable to colonization from secondary

pathogens. This apparent contradiction of viral clearance in the face of immunosuppression

underlies what is often referred to as the ‘measles paradox’, and remains poorly understood.

To explore the mechanistic basis underlying the measles paradox, and identify key factors

driving viral clearance, we return to a previously published dataset of MV infection in rhesus

macaques. These data include virological and immunological information that enable us to

fit a mathematical model describing how the virus interacts with the host immune system. In

particular, our model incorporates target cell depletion through infection of host immune

cells—a hallmark of MV pathology that has been neglected from previous models. We find

the model captures the data well, and that both target cell depletion and immune activation

are required to explain the overall dynamics. Furthermore, by simulating conditions of

increased target cell availability and suppressed cellular immunity, we show that the latter

causes greater increases in viral load and delays to MV clearance. Overall, this signals a

more dominant role for cellular immunity in resolving acute MV infection. Interestingly, we

find contrasting dynamics dominated by target cell depletion when viral fitness is increased.

This may have wider implications for animal morbilliviruses, such as canine distemper virus

(CDV), that cause fatal target cell depletion in their natural hosts. To our knowledge this
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work represents the first fully calibrated within-host model of MV dynamics and, more

broadly, provides a new platform from which to explore the complex mechanisms underlying

Morbillivirus infection.

Author summary

Measles is a highly contagious virus from the Morbillivirus genus that induces a strong

adaptive immune response, despite also causing transient immunosuppression. How viral

clearance is achieved amidst these seemingly contradictory dynamics (the so-called ‘mea-

sles paradox’) is poorly understood. To identify key factors driving viral clearance, we fit a

mathematical model to data describing measles virus infection in rhesus macaques. In

particular, our model incorporates target cell depletion through infection of immune cells

—a hallmark of measles pathology neglected from previous models. The model accurately

captures the data, and, by simulating effects of increased immune cell depletion and

recovery, we find that cellular immunity is a stronger mediator of viral clearance than tar-

get cell depletion. Interestingly, we find contrasting dynamics dominated by target cell

depletion when viral fitness is increased. This may have wider implications for closely

related animal morbilliviruses that cause fatal target cell depletion in their natural hosts.

Introduction

Measles virus (MV) is highly contagious and remains one of the leading causes of child mortal-

ity worldwide, despite the existence of a safe and effective vaccine [1]. In addition to its public

health importance, MV is also a paradigm for understanding the dynamics of acute respiratory

infections at broad epidemiological scales [2, 3]. However, at finer within-host scales, the

kinetics of MV are less well understood. Unlike other common respiratory viruses such as

influenza, MV does not initially infect epithelial cells of the respiratory tract [4]. Instead, MV

is unusual in that it preferentially targets host immune cells, in particular those expressing the

CD150 (SLAMF1) receptor [5, 6]. This atypical target population includes dendritic cells of

the innate immune system, and B and T lymphocytes of the adaptive system [6, 7], and thus

creates a dynamical feedback whereby the cells responsible for mounting an effective immune

response are also under viral predation.

Clinical progression of disease initiates in the respiratory tract with infection of dendritic

cells and alveolar macrophages [4]. These cells then migrate to lymph nodes and lymphoid tis-

sues, where the virus replicates extensively in resident B and T lymphocytes, and eventually

spreads systemically [8]. Therefore, although MV enters (and exits) the host via the respiratory

tract, its subsequent pathogenesis is markedly different from that of classical respiratory

viruses. During viral replication and spread, immune suppression coincides with the substan-

tial depletion of host lymphocytes (typically from 7 days post infection (dpi) and recovering

over a timescale of weeks) [8]. Most MV fatalities result from complications mediated by sec-

ondary infection during this period of immune vulnerability [9, 10]. However, in tandem

there is also a rapid expansion of the adaptive immune system around 10–14 dpi, with activa-

tion of MV-specific effector T cells and increased antibody production [6, 11, 12]. These seem-

ingly contrasting dynamics are often referred to as the ‘measles paradox’. Although the strong

immune response ultimately leads to lifelong protection against reinfection, the interplay
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between immune cell depletion and activation, and its impact on viral clearance, are not well

understood.

Conventional wisdom suggests that viral clearance is dominated by the adaptive immune

response, in particular by MV-specific CD8+ cytotoxic T cells. Large expansions of these cells

have been observed in humans during acute infection, and they have been shown to efficiently

clear MV-infected cells in vitro [13–16]. In addition, patients with impaired cellular immunity

are less able to control infection, experiencing delays to viral clearance and prolonged viral

shedding [17]. These dynamics have also been tested in vivo through experimental infection of

macaques, a model system for human infection [18–20]. For example, in Permar et al. (2003)

macaques were depleted of CD8+ T cells prior to, and in the first four days following, MV

infection. Compared to control individuals, macaques with depleted T cells experienced higher

viral loads and delays to viral clearance from peripheral blood [21]. In contrast, macaques with

impaired humoral immunity exhibit similar clinical pathology to control individuals [22].

Together, these findings suggest the CD8+ T cell response is an important factor limiting viral

growth during peak viremia.

Despite this experimental work, however, questions still remain regarding the impact of tar-

get cell depletion on viral dynamics, particularly during early replication in lymphoid tissues.

For example, MV is cytopathic and germinal centers of human patients show severe lymphoid

exhaustion during the prodromal stages of infection; similar dynamics have also been observed

in lymphoid tissues of macaques [8, 23–26]. Moreover, direct comparisons of viral kinetics in

blood and lymphoid tissues have shown that target cells are generally infected at higher rates

in the latter; for example up to 10% of peripheral B cells are infected during peak viremia, com-

pared to over 30% in lymphoid tissues [6, 8]. The true extent of target cell depletion may there-

fore be underestimated in experiments analyzing only blood measurements. More generally,

extreme target cell depletion has been observed during infections of closely related viruses

within the same Morbillivirus genus. Ferrets infected with canine distemper virus (CDV) can

experience infection of up to 80% of peripheral blood mononuclear cells (PBMC) during peak

viremia and often succumb to disease before any immune response is detected [27]. Target cell

limitation is therefore a major component of viral dynamics in similar eco-immunological

systems.

Although both cellular immunity and target cell depletion may contribute to MV clearance,

their relative importance has not been assessed systematically. Due to the complex dynamics

of infection, with feedbacks between virus, target cells, and the host immune response, mathe-

matical modeling provides a tractable approach to tease these drivers apart. Most notably, pio-

neering work modeling the dynamics of HIV (one of the best-studied lymphotropic viruses)

has demonstrated the importance of both target cell depletion and host immunity in driving

viral dynamics. For instance, simple ‘target cell limited’ models (i.e. models considering only

the predation of virus on host target cells) can capture the early dynamics of infection [28–31],

whereas incorporating CD8+ T cells can improve model predictions following the initial peak

in viral load [30, 32–34]. However, key differences between HIV and MV are that the former

infects CD4+ T cells and CD4-expressing macrophages and establishes lifelong infection,

whereas the latter targets all CD150+ lymphocytes (including CD4+ and CD8+ T cells) and

causes acute, self-limiting disease.

In general, fewer modeling studies have focused on acute infections due to the difficulty in

generating high resolution data over the short timescales relevant for infection. Nonetheless,

insights have been gained from particularly well-developed systems such as lymphocytic cho-

riomeningitis virus (LCMV) and influenza. For example, models describing influenza A

dynamics have revealed the importance of both the innate and adaptive immune responses in

driving rapid viral turnover and eventual decline [35–37]. In comparison to LCMV and
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influenza, modeling acute MV infection poses the additional challenge that activated immune

cells are also targets of viral predation. In particular, since MV-specific CD4+ and CD8+ effec-

tor T cells are susceptible to infection (although the latter at a potentially lower rate), their pro-

liferation may counterintuitively facilitate viral growth by increasing the target cell population

[13]. These potential activation costs have yet to be incorporated within a dynamic framework

of MV infection [12, 38].

To our knowledge, two within-host models have previously been developed for MV infec-

tion, but neither accounted for the susceptibility of activated host immune cells. The first

model, presented in Heffernan and Keeling (2008), assumed that target cells and MV-specific

T cells were independent populations, and so the strength of the cellular immune response was

unaffected by viral predation. Furthermore, although this framework captured some qualita-

tive dynamics of infection, it was not calibrated against virological or immunological data and

so could not be quantitatively verified. In contrast, the subsequent model of Lin et al. (2012)

was calibrated against high resolution data and incorporated a wider array of adaptive immune

mechanisms, including viral suppression by MV-specific antibodies and immune suppression

by regulatory T cells. However, this model also ignored feedbacks between the virus and host

immune cells, and thus did not fully capture the costs of immune activation during MV infec-

tion. In addition, the primary focus of the study was the long-term dynamics of MV within the

host, rather than the clearance of acute viremia.

In this paper, we build on previous work by developing a new mathematical model of MV

dynamics that incorporates predatory feedbacks between the virus and host immune cells. We

calibrate the model using the virological and immunological data presented in Lin et al. (2012)

and consequently find that a framework including both target cell depletion and cellular

immune activation best captures the overall dynamics. By using the calibrated model to simu-

late the effects of increased target cell availability and suppressed cellular immunity, we find

that the latter has a greater detrimental impact on the host’s ability to clear acute infection.

This comparison provides quantitative evidence that cellular immunity is the more dominant

factor driving viral clearance. Finally, by extending our analysis to incorporate higher viral

growth rates, we demonstrate that the model can also reproduce extreme target cell depletion

dynamics, such as those more in line with CDV infection in ferrets. In summary, this work

presents the first calibrated model of MV dynamics to tease apart key drivers of viral clearance

and, more generally, outlines a new quantitative framework to explore the complex dynamics

underlying Morbillivirus infection.

Results

Experimental data

The data depict key virological and immunological components of MV infection (Fig 1) and

have been described previously [12]. Briefly, seven juvenile rhesus macaques were infected

with wild-type MV (Bilthoven strain) and monitored for up to 71 dpi. During the course of

acute infection, regular blood samples were analyzed for infectious viral load, the number of

circulating lymphocytes, and the activity of MV-specific T cells and antibodies. Despite sub-

stantial individual variation across the data, there are consistent and striking patterns. First,

infectious viral load peaks between 7–10 dpi and coincides with a sharp decline in lymphocyte

numbers, characteristic of MV-induced lymphophenia (Fig 1A and 1B). Following peak viral

load, there is also a rapid increase in cellular and humoral immune activity, signifying the

induction of a strong MV-specific adaptive immune response (Fig 1C and 1D). In particular,

the T cell response peaks between 14–18 dpi and coincides with the recovery of the lymphocyte

population, whereas the antibody response continues to increase past day 35. It is also
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important to note that since T cell activity was measured by ex vivo restimulation of PBMC,

the data may underestimate the full potency of the original effector response [39]. Collectively,

the distinct balance between viral growth, lymphocyte depletion, and subsequent immune cell

stimulation typifies the measles paradox and demonstrates the utility of these data in exploring

the role of target cell depletion and immune activation in driving viral clearance.

In addition to the classic characteristics of MV infection described above, we also note

intriguing kinetics that are not well-described in previous literature. Firstly, at 3 dpi there is a

striking and consistent increase in lymphocyte numbers across all individuals (Fig 1B). The

biological mechanisms underlying this increase are not fully understood, but it may represent

incoming lymphocytes from lymphoid tissues or early activation of peripheral lymphocytes.

Secondly, after 35 dpi and the clearance of acute viremia, some individuals also experience a

resurgence in lymphocyte and T cell numbers (e.g. 40V and 67U; Fig 1B and 1C). Again, the

mechanisms for this recovery are not well-characterized, but it may signal the reactivation of

MV-specific immune cells due to long-term persistence of infection [42–44]. We return to

these points in the Discussion.

Fig 1. Immunological and virological data from Lin et al. (2012). Each color represents measurements from one of seven

macaques (corresponding identification codes in panel A) infected with wild-type MV and monitored up to 71 days post infection.

(A) Infectious viral load was determined by cocultivation of peripheral blood mononuclear cells with susceptible cells and then

translated to tissue culture 50% infectious doses (TCID50) [40]. (B) The total number of lymphocytes per microliter of blood was

measured using an automated cell counter. (C) MV-specific T cell activity was determined by the number of IFN-γ spot-forming

cells per microliter of blood using enzyme-linked immunospot (ELISpot) assays. (D) MV-specific IgG titers were quantified using

enzyme immunoassays (EIAs) and IgG avidity was measured by disruption of antibody binding [41]. Overall antibody response is

expressed as IgG titer × avidity. Further details of the data and experimental methods are given in the S1 Appendix.

https://doi.org/10.1371/journal.ppat.1007493.g001
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Model selection and calibration

To examine the roles of target cells, T cells, and antibodies in driving within-host MV dynam-

ics, three different models were fit to the immunological and virological data: (i) a target cell

limited model, (ii) a model with target cells and activated T cells, and (iii) a model with target

cells, activated T cells, and antibodies (see Materials and methods). Briefly, we assume host

lymphocytes are the principal virus target cells, and divide these into subpopulations of ‘gen-

eral’ susceptible cells (such as naive and memory B and T cells) and MV-specific T cells that

become activated in response to viral load. Although epithelial cells in the respiratory tract and

skin are infected following viremia, these are not considered primary drivers of virus dynamics

and are thus excluded from the current model [6]. Initially, susceptible cells proliferate or

become infected by virus. Infected cells then produce replicated virus which can infect other

susceptible cells or is removed from the system through natural decay and non-specific

immune processes. In model (iii), infectious virus is also cleared by antibodies. Infected cells

are removed through natural decay and infection-induced apoptosis, and in models (ii) and

(iii) are also killed by activated MV-specific T cells through direct lysis [11, 14, 15, 45, 46]. One

crucial aspect of MV dynamics is that activated T cells may also be susceptible to viral preda-

tion. We therefore allow these cells to become infected, at which point they are assumed to

lose all cytotoxic capabilities. For parsimony, we assume activated T cells are equally suscepti-

ble to infection as the general population, although in reality there may be nuances of hetero-

geneity across different lymphocyte subsets [8, 13]. Finally, activated T cells that escape

infection eventually either die, or become memory T cells and join the general susceptible pop-

ulation. The model schematics are depicted in Fig 2 and the corresponding equations are pre-

sented in the Materials and methods.

Fig 2. Schematic of the three main model structures: (i) target cell limited; (ii) target cells and T cells; and (iii)

target cells, T cells, and antibodies. Virion shapes (V) represent infectious virus and circles represent distinct cell

populations i.e. general susceptible lymphocytes (S), infected lymphocytes (I), and MV-specific activated T

lymphocytes (A). Typical transitions of virion and cell dynamics are depicted by arrows and the constant biological

parameters governing each transition are described by the corresponding text. The basic structure of model (i) is

captured by the thin black arrows connecting all virion and cell populations. Model (ii) is obtained by the addition of T

cell killing (red lightning bolt), and model (iii) is obtained by the addition of T cell killing and antibody killing (yellow

lightning bolt). Additional functions governing the temporal evolution of T-cell activation and lymphocyte

proliferation are discussed in the main text.

https://doi.org/10.1371/journal.ppat.1007493.g002
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Each model was calibrated using the viral load, lymphocyte, and MV-specific T cell data

(Fig 1A–1C), and statistical fits were compared using Akaike Information Criterion corrected

for small sample sizes (AICc; see Materials and methods). For the majority of individuals, AICc

values indicated best support for model (ii) (Table 1), and the corresponding model predic-

tions demonstrated close agreement with the data (Fig 3). Interestingly, this model also

Table 1. Model comparisons using Akaike Information Criterion corrected for small sample sizes (AICc).

Individual (i) Target cells (ii) Target cells and T cells (iii) Target cells, T cells, and antibodies

15U 112.1 5.9 0.0

46U 64.2 0.0 2.9

55U 100.4 0.0 7.4

67U 21.5 0.0 16.1

40V 94.6 0.0 14.8

43V 102.3 0.0 1.9

55V 76.0 0.0 1.0

Models are listed in order of increasing complexity (from left to right). For each individual, the numerical values in

each column indicate the difference in AICc between that model and the model with the lowest AICc (and hence best

statistical support). Zero values (in bold) therefore indicate the best-supported model.

https://doi.org/10.1371/journal.ppat.1007493.t001

Fig 3. The target and T cell model calibrated with data from Lin et al. (2012). Points indicate data for (A) total lymphocytes, (B) MV-specific T cells,

and (C) viral load; solid lines indicate the corresponding model predictions determined by maximum likelihood optimization. The activated T cell

predictions are depicted before scaling for comparison with the MV-specific T cell data. Each row corresponds to an individual macaque (with

identification codes inset in panel C), and panels B and C are shown on the log scale.

https://doi.org/10.1371/journal.ppat.1007493.g003
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captured the late increases in lymphocyte and T cell numbers by predicting a corresponding

resurgence in viral load (e.g. individual 67U; Fig 3). In contrast, the higher AICc values of

model (iii) suggest the inclusion of antibodies did not provide a sufficient improvement in fit

to warrant the increase in model complexity. Furthermore, although this model produced

visually similar fits to the T cell model, it could not capture the late increase in cell numbers

(S2 Fig). We therefore conclude that cellular immunity plays an important role in the acute

dynamics of infection, whereas antibodies may be less relevant at these relatively short time-

scales. All subsequent analyses were thus conducted using the target cell and T cell model.

To test model parsimony with respect to target cell dynamics, we compared alternative

functions governing the activity of MV-specific T cells and proliferation of the general suscep-

tible population (see Materials and methods). For T cell activation, we chose a saturating func-

tion of viral load (Eq 5) that allows the activation and proliferation of T cells to dominate the

immune response when viral load is high, and contraction and memory conversion to domi-

nate once viral load has declined [47, 48]. Eq 5 has been previously employed for LCMV and

has the advantage that T cell activation and contraction is described as a continuous dynamical

process [47]. This function had greater statistical support than alternative expressions describ-

ing constant activation within a discrete time window, or activation that was proportional to

viral load (S1 Table and S13 Fig). All subsequent analyses were therefore conducted using

Eq 5. To capture the early activation of general lymphocytes, we explored a model in which

proliferation was of temporary duration, td (where td was estimated during the fitting process)

(Eq 6). Although simpler functions omitting proliferation, or allowing constant proliferation,

had better statistical support (S2 Table and S14 Fig), the corresponding visual fits were rela-

tively poor (see for example S3 Fig). In particular, the simpler models could not capture the

initial increase in lymphocyte numbers observed at three dpi (S4 Fig). For the remainder of

the paper we therefore use Eq 6, but note that this choice does not impact our general conclu-

sions. For instance, when proliferation is omitted, we still find that the model with target cells

and T cells outperforms the corresponding target cell only and target cell, T cell, and antibody

models (S3 Table).

Parameter estimates for the best-fitting target cell and T cell model (Eqs 1–6) are presented

in Table 2. As a measure of within-host viral fitness, the basic reproduction number (the aver-

age number of cells infected by one virus-infected cell in a fully susceptible population) was

calculated from these estimates [49]. Note that here we distinguish between R0, the reproduc-

tion number in the absence of an initial immune response, and R�
0
, the corresponding expres-

sion when activated T cells are present. Despite variation amongst individuals, the parameters

governing competition between viral growth and cellular immunity (e.g. R0, R�
0
, and the T cell

proliferation and killing rates, q and k) were relatively well-conserved. To account for underes-

timation of the effector T cell response, a scaling factor, ψ, was included when fitting the

model to the MV-specific T cell data (see Materials and methods). The resulting estimates

were large and likely driven by the rapid recovery of total lymphocytes following lymphopenia.

More specifically, since the predominant mechanism for lymphocyte expansion is through

proliferation of activated T cells (A), capturing lymphocyte recovery required a greater expan-

sion of these cells than was measured in the data. Finally, using fitted parameters from Table 2

we also estimated the half-life of an infected cell due to T cell killing, which is ln(2)/kA and

changes over the course of infection. Across individuals, these half-lives ranged from 1.9–8.4

hours at peak viral load to 6.2–28 minutes at the height of the T cell response.

To investigate the impact of parameter imprecision on model outcome, additional uncer-

tainty and sensitivity analyses were conducted (see Materials and methods). Although the

uncertainty analysis indicated substantial variation in model output for different parameter

Mathematical modeling of acute measles virus infection
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values (S7 Fig), subsequent sensitivity estimates suggested this was largely driven by a subset of

key parameters, namely: the viral decay rate (c), the death rate of infected cells (δ), the viral

replication rate (p), and, to a lesser extent, the T cell killing rate (k) (S8 Fig). By bootstrapping

model residuals we also found parameters that were more conserved across individuals (e.g.

R0, R�
0
, q) tended to have tighter confidence intervals, but a greater degree of correlation with

other parameters (see for example S5 and S6 Figs). Together these results suggest that although

many parameter combinations may provide similar qualitative fits to the data, the underlying

balance between virus and immune cell competition is generally conserved.

Drivers of viral clearance

To explore drivers of viral clearance, we first qualitatively assessed the immunological and

virological dynamics predicted by the best-fitting model. In all individuals, the sharp decline

in susceptible target cells (up to 85%) coincided with the timing of peak viral load (shaded red

regions, Fig 4A and 4D), and preceded the dramatic expansion of activated T cells (Fig 4C).

One may therefore hypothesize that target cell depletion mediates viral dynamics during the

initial turnover phase, before the cellular immune response is fully activated. Together with

the previous AICc comparisons, these qualitative assessments suggest respective roles for both

cellular immunity and target cell depletion in driving viral decline.

To extend our qualitative assessments, we conducted two additional simulation experi-

ments to quantitatively compare the impact of cellular immunity and target cell depletion on

viral dynamics (see Materials and methods). First, to test the importance of cellular immunity,

we recreated the T cell depletion experiment conducted by Permar et al. (2003). This involved

reducing the initial population of activated T cells to low levels and then suppressing subse-

quent activation and proliferation until day four. Secondly, to test the importance of target cell

depletion we simulated the addition of new susceptible cells to the lymphocyte pool one day

after the occurrence of peak viral load. Results from both experiments were then compared to

control simulations from the original model (i.e. Fig 4). In all cases we found that the depletion

Table 2. Parameter estimates from the best-fitting model combining target cells and T cells.

Individual Parameter

R0
† R�

0

‡ S0
§ A0 β td k p q qs r s V0 ψ

15U 6.9 5.3 3828 36.5 0.143 5.7 0.005 0.019 0.99 0.075 0.056 0.0104 1.1×10-5 992

46U 9.3 8.8 3905 1.1 0.165 2.6 0.024 0.022 1.11 0.028 0.016 0.0006 2.5×10-5 799

55U 8.2 7.8 2456 1.2 0.040 3.2 0.022 0.126 1.67 0.006 0.024 0.0993 1.0×10-5 1151

67U 15.9 3.7 4053 74.7 0.014 4.0 0.023 0.414 0.38 0.049 0.058 0.0007 1.0×10-6 959

40V 7.2 6.6 5487 2.6 0.013 7.0 0.017 0.152 1.11 0.006 0.159 0.0232 9.9×10-5 167

43V 6.9 2.2 3342 67.4 0.035 4.2 0.016 0.089 0.98 0.188 0.119 0.0997 3.0×10-6 585

55V 7.5 6.9 3876 3.8 0.056 7.0 0.011 0.052 0.59 0.007 0.089 0.0001 1.0×10-4 2206

Median

7.5 6.6 3876 3.8 0.040 4.2 0.017 0.089 0.99 0.028 0.058 0.0104 1.1×10-5 959

Standard deviation

3.2 2.4 906 32.9 0.062 1.8 0.007 0.137 0.41 0.066 0.052 0.0459 4.4×10-5 630

Median and standard deviations for each parameter were calculated using the estimates from all seven individuals. Parameter definitions are given in the Materials and

methods. The values of R0, R�
0
, and S0 were calculated from the remaining eleven fitted parameters.

†R0 was calculated as R0 = pβS0/cδ, where S0 is the initial number of susceptible cells.
‡R�

0
was calculated as R�

0
¼ pbðS0 þ A0Þ=cðdþ kA0Þ, where A0 is the initial number of activated T cells.

§S0 was calculated as L0 − A0, where L0 is the initial number of lymphocytes (obtained directly from the data).

https://doi.org/10.1371/journal.ppat.1007493.t002
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of activated T cells caused greater increases in peak viral load, and delays to viral clearance,

than the addition of new target cells (Fig 5).

To systematically compare the impact of each simulation experiment across individuals, we

measured the relative change in predicted viral load between each control and experimental

simulation using Eq 7 (see Materials and methods and S1 Fig). For all macaques, T cell deple-

tion resulted in a greater change in viral load than target cell addition, despite some individual

variation in the magnitude of these changes (Fig 6A). These general findings were robust to

changes in experimental conditions, including the initial number of activated T cells and dura-

tion of T cell depletion, and the magnitude and timing of target cell addition (S9 and S10 Figs).

Our findings were also preserved when using the alternative lymphocyte proliferation func-

tions that gained better statistical support (i.e. when we omitted proliferation, or allowed con-

stant proliferation; see S15 Fig). Overall, these results suggest that cellular immunity is the

more dominant factor driving clearance of acute MV infection.

Finally, we tested the versatility of the model by exploring its capacity to capture the

extreme target cell depletion dynamics observed during other Morbillivirus infections, such

as CDV. To do this, the above experiments were first repeated with an increased viral replica-

tion rate, p (see Materials and methods). This choice was guided by observations that viral

load peaks earlier in macaques infected with CDV than MV, indicative of a higher viral

growth rate [50]. Increasing the replication rate resulted in all individuals experiencing a

greater impact of target cell addition than T cell depletion (Fig 6B), signaling a qualitative

Fig 4. Predictions of the best-fitting target cell and T cell model. Solid lines indicate predictions for (A) susceptible lymphocytes,

(B) infected lymphocytes, (C) activated T cells, and (D) viral load. Each color represents an individual macaque (with identification

codes inset in panel D) and red shaded regions indicate the approximate window of peak viral load. Activated T cell numbers reflect

absolute model predictions by incorporating the data scaling factor, ψ.

https://doi.org/10.1371/journal.ppat.1007493.g004
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Fig 5. Investigating drivers of viral clearance. Solid lines indicate the effect of T cell depletion (A) or target cell

addition (B) on viral load; dashed lines indicate the corresponding control simulations. Grey shaded regions in panel A

represent the period of T cell depletion and the dashed grey vertical lines in panel B represent the timing of target cell

addition. Each color represents an individual macaque (with identification codes inset in panel B).

https://doi.org/10.1371/journal.ppat.1007493.g005

Fig 6. Comparing the dominant driver of viral clearance across individuals. For each macaque, the impacts of T cell

depletion and target cell addition on viral load were calculated as the difference in the area under curve (AUC) between

the experimental and control simulations, normalized by the AUC of the control simulation. Results for each individual

are indicated by the corresponding identification code and the dashed line signifies the y = x boundary where

experimental effects are equal. Simulations were conducted for (A) MV (by using best-fit parameters from the original

target cell and T cell model); and (B) a virus with increased fitness (by doubling each individual’s viral replication rate, p).

All axes are depicted on the log scale.

https://doi.org/10.1371/journal.ppat.1007493.g006
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switch to dynamics driven by target cell limitation. Extending this analysis to other model

parameters suggested that those relating to within-host viral fitness (i.e. the transmission

rate, β, and the decay rate, c) and direct immune cell predation (the T cell killing rate, k)

were also capable of producing this stark effect (S11 Fig). Although preliminary, these results

suggest an important role for virus fitness phenotypes in determining ultimate drivers of

Morbillivirus clearance.

Discussion

In addition to its public health importance, MV is a paradigm for understanding the kinetics

of acute immunizing infections at the epidemic scale [2, 3]. However, the dynamical underpin-

nings of MV immunity and immunosuppression are less well understood, in part due to a lack

of integration between mathematical models and rich within-host data. We address this gap by

developing a novel, data-rooted framework for modeling MV dynamics that incorporates

predatory feedbacks between the virus and host immune cells. In general, we find that a model

combining target cells and T cells best fits the data and is able to capture substantial variation

in individual dynamics. By testing the relative impacts of T cell depletion and target cell addi-

tion on model predictions, we find that cellular immunity has a greater influence on viral

clearance than target cell depletion. In addition to supporting the findings of previous experi-

ments [21], this conclusion highlights the strength of MV-specific killer T cells in overcoming

the direct effects of viral predation. More broadly, we find that the model can also reproduce

dynamics dominated by target cell depletion (such as those observed for CDV) when viral

growth rates are high or the strength of cellular immunity is low. Overall, our work provides a

new quantitative platform from which to explore the complex dynamics of MV infection and

test drivers of viral clearance across the Morbillivirus genus.

One caveat to the above conclusions is that our model is calibrated against data collected

from the blood, and may not be representative of dynamics occurring elsewhere within the

host. For example, higher proportions of infected cells are typically found in lymph nodes

compared to circulating blood [6], suggesting that the former may experience greater amounts

of target cell depletion and T cell activity than reflected in our data. Furthermore, resident lym-

phocytes in skin and respiratory submucosa show signs of infection for days following clear-

ance from blood and lymphoid tissues, indicating potential modulation of host immunity in

peripheral tissues [8, 51]. Together these observations imply differences in viral kinetics across

multiple sites of infection. Further data comparing dynamics between the blood, lymphatic

system, and peripheral tissues is needed to assess the impact of this spatial heterogeneity on

our model predictions. However, experimental and ethical hurdles in obtaining such addi-

tional measurements make this a challenging prospect.

It is also important to note that it is unclear to what extent MV infection in lymphoid tissue

is mediated by cell-cell contact or diffusing free virus [6, 52]. We explored alternative models

in which infection occurs through direct cell-to-cell transmission, either with mass-action

kinetics or with a modified stoichiometry to account for potential clustering effects [53]. Both

models yielded substantially poorer fits (as determined by AICc; see S1 Appendix, S4 and S5

Tables), suggesting that the flexibility afforded to the model by considering the dynamics of

free virus is important. We speculate that this improvement, which derives from the virus den-

sity (V) roughly reflecting the integral of infected cell numbers over a timescale 1/c = 8 hours,

represents (i) a significant role for infection by free virus diffusing in the lymphoid tissues

and/or (ii) any time delay between infection of a cell and the onset of virus production. This

latter point indicates that the infectious force at any instant is proportional to the recent his-

tory of infection events, rather than the instantaneous value of the infected cell density (I).
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In addition to collecting spatially representative data, detecting the activity of MV-specific

effector T cells is also experimentally challenging in macaques. Currently, ex vivo restimulation

assays (such as those employed for the data in this study) provide the best measurements of T

cell activity in nonhuman primates. However, capturing the kinetics of the total lymphocyte

population required a large scaling of our T cell data, suggesting these underestimate the

expansion of MV-specific T cells in vivo. One likely reason is that the assay measures T cells in

peripheral blood, and may neglect the majority of cells fighting ongoing infections in lym-

phoid and peripheral tissues. Secondly, the assay requires ex vivo restimulation of cells that

have been extensively stimulated in vivo, and may therefore reflect subsequent transitions to

memory phenotype rather than true effector capacity [39]. On the other hand, the expansion

of activated T cells may also be overestimated in our framework to compensate for other acti-

vation kinetics that are not explicitly modeled, such as the proliferation of other MV-specific

and bystander lymphocytes [7, 8]. More accurately addressing these potential discrepancies

between assay sensitivity and modeling assumptions is an important area for future work, and

may be achieved by supplementing effector T cell data with measurements from lymphoid tis-

sues, or additional data on B cell and non-specific lymphocyte responses.

To explore the role of adaptive immunity more fully, we also incorporated humoral immu-

nity through the actions of MV-specific antibodies. However, in general we found better statis-

tical support for a model without antibodies, and hypothesize that this is due to the relatively

short timescale of acute viremia. Firstly, although the T cell and antibody data increase at simi-

lar times during the initial viral decline phase (10–20 dpi), the subsequent dynamics diverge as

the former contract whereas the latter remain elevated. Consequently, the T cell population

more closely follows the rise and fall of acute viral load, and thus provides a stronger signal for

viral clearance. Secondly, we note that although the previous model of Lin et al. (2012) sup-

ported the inclusion of antibodies, it was calibrated using viral RNA data that persisted in the

blood for 65 dpi and is thus more relevant over longer timescales of infection. Finally, experi-

mental evidence suggests that T cells may be more influential than antibodies in clearing acute

infection. For example, macaques with impaired humoral immunity exhibit similar clinical

pathology to control individuals, whereas those with impaired cellular immunity experience

higher viral loads and delays to clearance [21, 22]. Similar dynamics have also been observed

in human patients [17, 54, 55]. Therefore, although antibodies are crucial for the establishment

of long-term immunity, further work is required to resolve their role in suppressing acute viral

dynamics [46].

In addition to the kinetics of acute viremia, we note that the model generates intriguing sec-

ondary peaks in viral load and lymphocyte numbers over longer timescales (around 50–60

dpi). By conducting subsequent sensitivity analysis, we found the time to viral resurgence is

inversely associated with a subset of parameters, namely A0, q, and r (S1 Appendix and S17

Fig). The parameters A0 and q are associated with accelerated T cell activity, and r is associated

with faster T cell contraction, suggesting that earlier viral control and resolution of immune

activity facilitate more rapid virus rebound. Although our predictions of viral resurgence may

be an artifact of the ordinary differential equation framework (whereby viral load can escape

elimination despite falling below one infectious virion), we note that they mirror the resur-

gence in lymphocyte numbers observed in our data, and also echo qualitative viral dynamics

observed in other macaque experiments [12, 42, 44]. In particular, Nelson et al. (2017)

reported secondary peaks in viral RNA occurring at similar times to those predicted by our

model (around 60 dpi). Such observations suggest persistent cycles of infection that are a hall-

mark of ecological predator-prey systems and may have implications for the recovery of the

host immune system, and the development of lifelong MV-specific immunity. Although not

the primary focus of this study, future work could explore these interactions further by
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integrating our model with longer term data on viral load and cell population dynamics. For

instance, the development of MV-specific memory T cells could be modeled over the course of

persistent infection by tracking activated T cells that transition to the susceptible compartment

(as illustrated in the Materials and methods and S12 Fig).

One key challenge in modeling MV dynamics is that parameter values are poorly character-

ized compared to other systems such as HIV and LCMV. As a result, we fixed just three

parameters prior to calibration, and subsequently tested model sensitivity to our fitted esti-

mates. Firstly, we found substantial individual variation across the fitted estimates, and a num-

ber of parameter pairs that were highly correlated. Although this suggests many parameter

combinations may provide similar qualitative fits, we did find certain values, such as those for

R0, R�
0
, and the T cell proliferation rate, q, that were relatively well-conserved across individu-

als. In particular, R0 ranged from 6.9–15.9 (and R�
0

from 2.2–8.8), similar to estimates for influ-

enza (4.4–37.7) and HIV (3.8–11) [30, 35], and q reached 0.38–1.67 day-1, in line with previous

CD8+ T cell expansion rates for HIV (0.51–1.22 day-1) [56]. Such conserved parameters pro-

vide benchmark estimates that should be validated in future work. In addition, sensitivity anal-

ysis suggested the majority of model uncertainty was driven by a subset of key parameters.

Targeting these for future experimental estimation would allow more parameters to be fixed

during model calibration and reduce problems of parameter correlations and identifiability.

In addition to R0 and q, we also found the half-life of an infected cell due to T cell killing

was relatively consistent across individuals, reaching a minimum of 6.2–28 minutes at the

height of the cellular immune response. Although very short, these are within ranges for acute

LCMV infection (2–14 minutes) and reflect fast rates of T cell killing [57, 58]. This fast killing

is linked to our assumption that the MV-specific T cell data predominantly reflect CD8+ T

cells that mediate viral clearance through direct lysis of infected cells [11, 14, 15, 45, 46]. How-

ever, the data may also include CD4+ T cells that act through indirect, or ‘non-lytic’, mecha-

nisms (for example secreting various cytokines that suppress viral replication) [12, 42]. While

such additional mechanisms may impact the magnitude of our T cell killing rates during acute

viral clearance, we expect the relative proportion of CD4+:CD8+ to remain approximately con-

stant over time so that our qualitative conclusions are unchanged. Further disentangling indi-

rect from direct killing mechanisms will be challenging with standard dynamic frameworks

[59], particularly without data to distinguish between activated CD4+ and CD8+ cell subsets.

Beyond parameter estimation, our work also highlights the difficulty in accurately describ-

ing target cell dynamics. One such example is the increase in lymphocyte numbers during the

initial days of infection. Although a model incorporating early lymphocyte proliferation pro-

duced better visual fits, it was statistically outperformed by a model ignoring this effect. Under-

standing the biological mechanisms underlying this dynamic will be crucial to developing a

more parsimonious framework that is supported both qualitatively and quantitatively. Another

example is that the current model does not account for heterogeneities within the lymphocyte

population. In particular, we assume that all target cells are equally susceptible to infection,

whereas evidence suggests that CD4+ T cells are more susceptible than CD8+ T cells in vitro,

and memory lymphocytes are also preferentially targeted in vivo [8, 13]. Although the model

could be adapted to distinguish between these different subsets, additional data regarding their

relative abundance would first be required. Generating and integrating such data would be

challenging given the substantial variation in lymphocyte phenotype distribution observed

both within and between hosts [8].

Finally, to explore the ability of the model to capture dynamics dominated by target cell

limitation rather than cellular immunity, we predominantly focussed on parameters mediating

within-host viral fitness. This was motivated by observations that CDV causes extreme target
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cell depletion in natural host species (e.g. ferrets), and also reaches higher growth rates than

MV during initial infection of macaques [27, 50, 60]. To simplify analysis, parameters were

chosen to produce substantive yet biologically reasonable increases in viral fitness; for example,

doubling R0 led to a range of 13.7–31.7 that was still within estimates for influenza. As the pri-

mary aim was to demonstrate the versatility of the model across a qualitative range of Morbilli-
virus dynamics, the analysis was necessarily approximate and did not incorporate a greater

range of parameter modifications. However, in future work we intend to exploit this versatility

to calibrate the model against comparative data for both MV and CDV. Such efforts will

address important questions surrounding the mechanisms of viral clearance across different

morbilliviruses.

Conclusion

In conclusion, this paper presents the first within-host model of MV dynamics to incorporate

predatory feedbacks between the virus and host immune system. By calibrating this model

against virological and immunological data, we have provided insight into the roles of adaptive

immunity and target cell depletion in mediating viral clearance. Although we note caveats

associated with model parameterization and parsimony, these could be alleviated by future

experimental advances and targeted data collection. In particular, efforts should focus on inde-

pendent estimation of key parameters, and characterization of dynamics within different lym-

phocyte subsets. More broadly, comparing MV dynamics with CDV may provide further

insights into mechanisms of viral clearance across the Morbillivirus genus.

Materials and methods

Model

The within-host target cell and T cell model is a system of ordinary differential equations given

by

dS
dt
¼ � bSV þ qsd̂ðtÞSþ rð1 � f ðVÞÞA ð1Þ

dI
dt
¼ bðSþ AÞV � dI � kIA ð2Þ

dA
dt
¼ qf ðVÞA � bAV � ð1 � f ðVÞÞðd þ rÞA ð3Þ

dV
dt
¼ pI � cV; ð4Þ

where

f ðVÞ ¼
V

sþ V
ð5Þ

for some saturation constant, s, and

d̂ðtÞ ¼

(
1 if t < td;

0 if t � td:
ð6Þ

As described above, host lymphocytes are initially divided into subpopulations of ‘general’
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susceptible cells (S) and MV-specific activated T cells (A). The former includes naive and

memory B and T cells, whereas the latter represents T cells that will become activated in

response to viral infection. As the virus (V) enters the host, susceptible cells become infected

(I) and produce replicated virus at per-capita rate p. Virus produced by these cells then infects

more cells (at rate βV) or is removed from the system through natural decay and non-specific

immune processes (c). During the first td days of infection, susceptible cells proliferate (qs)
and, in response to viral load, MV-specific activated T cells proliferate (q) and kill infected

cells through direct lysis (k). Infected cells are also removed from the system through natural

and infection-induced decay (δ). Since activated T cells may also be susceptible to viral preda-

tion, we allow these cells to become infected, at which point they lose all cytotoxic capabilities.

Finally, activated T cells that aren’t infected either die (d), or become memory T cells (r) and

join the general susceptible population. The accumulation of these MV-specific memory T

cells (M) can be predicted using the expression dM/dt = r(1 − f(V))A. Note that we assume the

birth and death of susceptible cells over the short time span of acute viremia is small relative to

infection-induced cell proliferation and death. We therefore omit these dynamics to preserve

model parsimony.

The saturation function, f(V), was chosen to allow activation and proliferation of T cells to

dominate the immunological response when viral load is high, and for contraction and mem-

ory conversion to dominate once viral load has declined [47, 48]. We also investigated alterna-

tive functions, including activation within a discrete timeframe and proliferation that was

proportional to viral load (S1 Appendix and S13 Fig), but both resulted in poorer statistical fits

to the data. We note that while infected cells produce both infectious and non-infectious virus

particles, their relative roles in immune activation have yet to be determined. However, our

general conclusions remain unchanged even if an (unknown) proportion of virus is non-infec-

tious but still contributes to T cell activation. In this case, the saturation function is f(αV),

where α is the (assumed constant) proportion of total virus that is immunostimulatory, and

can be absorbed into the saturation parameter, s. Similarly, the proportion of virus that is

infectious is contained within the transmission parameter, β.

The function governing lymphocyte proliferation, d̂ðtÞ, was chosen to capture the tempo-

rary increase in lymphocyte numbers arising from early activation. As the mechanisms

underlying this dynamic are poorly understood, we also explored two simpler scenarios,

one with constant proliferation (i.e. d̂ðtÞ ¼ 1; 8 t), and another with no proliferation (i.e.

d̂ðtÞ ¼ 0; 8 t). Further details of these modifications can be found in the S1 Appendix and

S14 Fig.

The model described by Eqs 1–6 incorporates the dynamics of target cell depletion and

immune activity through the action of MV-specific killer T cells. However, we also investigated

two alternative immunological scenarios. In the more complex scenario, we incorporated the

humoral immune response by allowing MV-specific antibodies to provide additional viral

clearance. This was achieved by modifying the viral load equation to

dV
dt
¼ pI � cV � yYV;

where Y(t) represents the MV-specific IgG response (titer × avidity) at time t, and is input

directly from the antibody data (Fig 1D). In the simpler scenario, we created a target cell lim-

ited model by removing all terms relating to direct immune-mediated viral clearance (i.e. the

antibody clearance term, θYV, and the cytotoxic T cell term, kIA). In the absence of an adaptive

immune response, the basic reproduction number for this model (the average number of cells

infected by one virus-infected cell in a fully susceptible population) is given by R0 = pβS0/cδ,
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where S0 is the initial number of susceptible cells. However, when activated T cells are present

at initial infection (i.e. A0 6¼ 0), R�
0
¼ pbðS0 þ A0Þ=cðdþ kA0Þ [49]. Note that innate immunity

was omitted from all models. In addition to preserving model parsimony, this choice was moti-

vated by experimental evidence that MV inhibits innate immune functioning, in particular the

production of IFN-α and IFN-β [61]. A list of all model parameters is given in Table 3 and the

model schematics are illustrated in Fig 2.

Statistical inference

The model was calibrated using the viral load, lymphocyte, and MV-specific T cell data (Fig

1A–1C). Specifically, the viral load data were used to fit the virus compartment (V), the total

lymphocyte data to fit the sum of the model lymphocyte compartments (S + I + A), and the

MV-specific T cell data to fit the activated T cell compartment (A). Since Lin et al. (2012)

expressed the original T cell data in cells per million PBMC, these were first transformed to

the scale of the lymphocyte data (cells per microliter) by using PBMC per microliter measure-

ments from the original study. During the fitting process, the T cell data were also scaled by a

constant, ψ� 1, to account for underestimation of T cell activity during the ex vivo restimula-

tion assay. For the model incorporating antibody-mediated viral clearance, we interpolated the

MV-specific antibody data (Fig 1D) to approximate Y(t) at every time, t. Initial conditions for

the total number of lymphocytes were obtained directly from the lymphocyte data, of which

we assumed there were no infected cells (i.e. I(0) = I0 = 0). The initial viral load and number of

activated T cells (V0 and A0, respectively) were estimated during the fitting process, and the

initial number of susceptible cells (S0) was defined as the difference between the total number

of lymphocytes and activated T cells. The differential equations of each model ((i) target cells

only, (ii) target cells and T cells, and (iii) target cells, T cells, and antibodies), were solved

numerically in R using the deSolve package [62]. Following previous studies, the subsequent

viral load, activated T cell, and total lymphocyte predictions were fit to the corresponding data

by maximum likelihood optimization in R, assuming normally-distributed residuals between

the log-transformed data and model predictions [36, 37, 63]. Results in the main text are

reported from models fit independently to each individual. However, fitting the models to

Table 3. Parameters included in all model structures.

Parameter Description Units Value

A0 Initial number of activated T cells cells/μl Fitted

β Transmission rate (log TCID50/106 PBMC)-1 day-1 Fitted

td Duration of general lymphocyte activation day Fitted

k Activated T cell killing rate (cells/μl)-1 day-1 Fitted

p Virus replication rate (log TCID50/106 PBMC)(cells/μl)-1 day-1 Fitted

q Activated T cell proliferation rate day-1 Fitted

qs General lymphocyte proliferation rate day-1 Fitted

r Memory conversion rate day-1 Fitted

s Saturation parameter log TCID50/106 PBMC Fitted

V0 Initial viral load log TCID50/106 PBMC Fitted

θ Rate of antibody-mediated clearance (titer × avidity)-1 day-1 Fitted

ψ Scaling factor for activated T cell data - Fitted

c Viral load decay rate day-1 3 [38]

d Activated T cell death rate day-1 1/40 [38]

δ Infected cell death rate day-1 1/2 [30, 31, 37]

https://doi.org/10.1371/journal.ppat.1007493.t003
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pooled data across all individuals gave qualitatively similar results (e.g. S16 Fig). Further details

of the fitting procedure can be found in the S1 Appendix.

The statistical support for each model was compared using Akaike Information Criterion

corrected for small sample sizes (AICc) [64, 65]. This metric assesses goodness of fit whilst also

penalizing models with more parameters. The AICc value for each model is given by

AICc ¼ 2k̂ � 2 ln L̂ þ
2k̂ðk̂ þ 1Þ

n � k̂ � 1
;

where L̂ is the maximum likelihood estimate, k̂ is the number of estimated parameters, and n
is the number of data points available for fitting. Lower AICc values indicate a more parsimo-

nious fit and were thus used to identify the best-fitting model.

Approximate credible intervals on parameter estimates were obtained by bootstrapping

model residuals with 500 replicates. These replicates were also used to estimate pairwise

parameter correlations. Additional uncertainty and sensitivity analyses were undertaken using

Latin Hypercube sampling (LHS) and partial rank correlation (PRC) methods [66]. In combi-

nation, these techniques assess how imprecision in input parameters impacts model predic-

tions, and can identify parameters with the greatest influence on model outcome. Such

methods have been described previously with respect to HIV transmission models [66], and

further details of the implementation in this study are given in the S1 Appendix.

Drivers of viral clearance

To compare the impact of target cell depletion and cellular immune activity on viral clearance

we conducted two additional simulation experiments with the best-fitting model. First, to test

the importance of cellular immunity we recreated the T cell depletion experiment conducted

by Permar et al. (2003). Specifically, we reduced the initial population of activated T cells to

low levels (A0 = 1×10-1 cells/μl) and then suppressed subsequent activation and proliferation

until day four. Results were then compared to control simulations with no restrictions on T

cell activity. We hypothesized that a delay to viral clearance, as observed in the original experi-

ments [21], would signal an important role for cellular immunity in mediating viral decline.

Secondly, to test the importance of target cell depletion we performed additional simulations

in which new susceptible cells (Snew = 2000) were added to the lymphocyte pool one day after

the occurrence of peak viral load. We hypothesized that if target cell availability limits viral

growth and contributes to eventual decline, adding new cells should release this restriction

and allow viral load to increase again.

To compare the impact of each simulation experiment across individuals, we measured the

relative change in predicted viral load, ΔV. This was defined as the difference in the area under

the curve (AUC) between the experimental (VE) and control (VC) simulations, normalized by

the AUC of the control simulation i.e.

DV ¼

R tT
0
VE dt �

R tT
0
VC dt

R tT
0
VC dt

; ð7Þ

where tT is the total simulation time (for an illustration see S1 Fig). To test the sensitivity of

our results to experimental conditions, we repeated the above analysis whilst varying key

parameters in each simulation. For the T cell depletion experiment we changed the initial

number of activated T cells and the duration of T cell suppression, and for the target cell

addition experiment we varied the number of new target cells added and the timing of this

addition.
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Finally, we tested the versatility of the model by exploring its capacity to capture the

extreme cell depletion dynamics observed in other Morbillivirus systems, such as CDV. More

specifically, we repeated the above analysis whilst changing certain parameter conditions to

favor viral fitness over cellular immunity. This choice was guided by observations that viral

load peaks earlier in macaques infected with CDV than MV, indicative of a higher viral growth

rate [50]. For each new condition, one parameter from the original best-fitting model was

modified, and the control and experimental simulations were performed as described above.

Recalculating ΔV then provided a new comparison of the impact of target cell depletion and

cellular immunity on viral clearance. To simplify the analysis we first chose parameter modifi-

cations that would double R0, and therefore increase the within-host viral fitness by a biologi-

cally substantive degree. This included scenarios which doubled the replication rate, p,

doubled the transmission rate, β, or halved the viral decay rate, c. For comparative purposes,

the investigation was then extended to other parameters mediating the strength of cellular

immunity. This included halving the T cell killing rate, k, and proliferation rate, q. Parameters

that led to the greatest influence of target cell depletion on viral dynamics were identified from

the final set of comparisons.

Supporting information

S1 Fig. Quantification of the relative change in viral load using individual 55U as an exam-

ple. In each panel, upper green lines indicate the treatment effect ((A) T cell depletion or (B)

target cell addition) and lower green lines indicate the corresponding control simulation.

The effect of each treatment is calculated as the difference in the area under the curve (AUC)

between the treatment and control simulations (green shaded regions), normalized by the

AUC of the control simulation (white regions). The grey rectangular region represents the

period of T cell depletion and the dashed grey vertical line represents the timing of target cell

addition.

(PDF)

S2 Fig. The target cell, T cell, and antibody model calibrated with data from Lin et al.

(2012). Points indicate data for (A) total lymphocytes, (B) MV-specific T cells, and (C) viral

load; solid lines indicate the corresponding model predictions determined by maximum likeli-

hood optimization. The activated T cell predictions are depicted before scaling for comparison

with the MV-specific T cell data. Each row corresponds to an individual macaque (with identi-

fication codes inset in panel C), and panels B and C are shown on the log scale.

(PDF)

S3 Fig. The target cell and T cell model without lymphocyte proliferation, calibrated with

data from Lin et al. (2012). Points indicate data for (A) total lymphocytes, (B) activated T

cells, and (C) viral load; solid lines indicate the corresponding model predictions determined

by maximum likelihood optimization. The activated T cell predictions are depicted before scal-

ing for comparison with the MV-specific T cell data. Each row corresponds to an individual

macaque (with identification codes inset in panel C), and panels B and C are shown on the log

scale.

(PDF)

S4 Fig. Comparison of alternative general lymphocyte proliferation functions. Solid lines

indicate lymphocyte dynamics predicted by the target cell and T cell model without lympho-

cyte proliferation (blue) and with early lymphocyte proliferation (orange); points indicate

lymphocyte data from Lin et al. (2012). Each panel corresponds to an individual macaque
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(indicated by the panel label).

(PDF)

S5 Fig. Representative parameter confidence intervals from individual 55V. Histograms

show fitted parameter estimates obtained from 500 bootstrap samples. R0 was calculated from

the fitted parameters as pβS0/cδ; similarly R�
0

was calculated as pβ(S0 + A0)/c(δ + kA0). Shaded

regions encompass the 90th percentiles.

(PDF)

S6 Fig. Representative pairwise parameter correlations from individual 55V. Fitted param-

eter estimates were obtained from 500 bootstrap samples. Colors and numerical values indi-

cate the magnitude of correlation; correlations above a standard significance threshold (i.e.

p> 0.05) are depicted in white.

(PDF)

S7 Fig. Uncertainty analysis for the target cell and T cell model. Each point represents the

output (summarized here as total viral load) obtained from 1 of 100 different parameter sets

generated by Latin Hypercube sampling. The corresponding distributions and box plots for

each individual are outlined in black.

(PDF)

S8 Fig. Partial rank correlation coefficient analysis to assess sensitivity of the target cell

and T cell model. Each bar represents a different parameter, and the absolute height repre-

sents the magnitude of model sensitivity to that parameter. Positive values indicate that an

increase in parameter value causes a positive change in the measured model output (i.e. an

increase in total viral load), whereas negative values indicate a negative change. Note that the

scaling factor, ψ, was omitted from this analysis as it does not appear in the model equations or

directly impact the resulting predictions. Each panel corresponds to an individual macaque

(identified by the panel label). Significance thresholds are defined as follows: �p< 0.05,
��p< 0.01, ���p< 0.001.

(PDF)

S9 Fig. Sensitivity of the T cell depletion simulation to experimental conditions. The rela-

tive change in viral load (or ‘relative effect’) was recalculated whilst: (A) the initial number of

activated T cells (A0) was varied between 0.01, 0.1 (original condition), and 1 cells/μl; and (B)

the duration of T cell suppression was varied between 3, 4 (original condition), and 5 days. On

each panel, the effect of the original target cell addition experiment (‘Target cells’) is shown for

comparison. For each macaque, the relative change in viral load was calculated as the differ-

ence in the area under the curve (AUC) between the experimental and control simulations,

normalized by the AUC of the control simulation. Results for each individual are indicated by

the corresponding identification code. In all but one case (individual 55U when A0 = 1 cells/

μl), the effect of T cell depletion for each individual remains greater than that of target cell

addition.

(PDF)

S10 Fig. Sensitivity of the target cell addition simulation to experimental conditions. The

relative change in viral load (or ‘relative effect’) was recalculated whilst: (A) the number of

added target cells was varied between 1000, 2000 (original condition), and 3000 cells/μl; and

(B) the timing of target cell addition was varied between 0.5, 1 (original condition), and 1.5

days following peak viral load. On each panel, the effect of the original T cell depletion experi-

ment (‘T cells’) is shown for comparison. For each macaque, the relative change in viral load

was calculated as the difference in the area under the curve (AUC) between the experimental
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and control simulations, normalized by the AUC of the control simulation. Results for each

individual are indicated by the corresponding identification code. In all cases the effect of tar-

get cell addition for each individual remains less than that of T cell depletion.

(PDF)

S11 Fig. Relative effect of T cell depletion and target cell addition for different parameter

modifications. For each macaque, the relative effect of each experiment is calculated as the dif-

ference in the area under the viral load curve (AUC) between the experimental and control

simulations, normalized by the AUC of the control simulation. Results for each individual are

indicated by the corresponding identification code. Parameters from the original target cell

and T cell model are given in panel A. All other panels represent the impact of changing one

parameter (indicated by the panel title). Panels (B)–(F) represent changes that cause R0 = pβS0/

cδ, the within-host viral fitness, to double. Panels (G)–(I) represent changes that reduce the

strength of the T cell response. Panels (J)–(L) represent other parameter changes that are not

directly related to viral fitness or T cell predation.

(PDF)

S12 Fig. Cumulative development of MV-specific memory T cells. For each macaque, the

development of MV-specific memory T cells can be predicted by tracking the activated T cells

that transition to the susceptible cell compartment. Solid lines indicate the predictions of the

best-fitting target cell and T cell model, and each color represents an individual macaque (with

identification codes in the inset legend).

(TIF)

S13 Fig. Functions governing T cell activation. Three different functions are used to model

the activation of MV-specific T cells, f(V): (A) activation that is proportional to viral load;

(B) activation that saturates at high viral loads; and (C) constant activation within a discrete

timeframe. Solid lines indicate f(V) for each model, and each color represents an individual

macaque (with identification codes in panel C). Mathematical formulae for f(V) are given in

the Materials and methods and S1 Appendix.

(TIF)

S14 Fig. Functions governing lymphocyte proliferation. Three different functions are used

to model the proliferation of susceptible lymphocytes, d̂ðtÞ: (A) no proliferation; (B) constant

proliferation; and (C) constant proliferation within a temporary timeframe. Solid lines indicate

d̂ðtÞ for each model, and each color represents an individual macaque (with identification

codes in panel C). Mathematical formulae for d̂ðtÞ are given in the Materials and methods and

S1 Appendix.

(TIF)

S15 Fig. Comparing drivers of viral clearance with alternative lymphocyte proliferation

functions. Three different functions are used to model the proliferation of susceptible lympho-

cytes, d̂ðtÞ: (A) no proliferation; (B) constant proliferation; and (C) constant proliferation

within a temporary timeframe. For each macaque, the impacts of T cell depletion and target

cell addition on viral load were calculated as the difference in area under curve (AUC) between

the experimental and control simulations, normalized by the AUC of the control simulation.

Results for each individual are indicated by the corresponding identification code and the

dashed line signifies the y = x boundary where experimental effects are equal. Mathematical for-

mulae for all proliferation functions are given in the Materials and methods and S1 Appendix.

(PDF)
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S16 Fig. Comparing the drivers of viral clearance between the pooled and individual fits.

For each individual (or pooled) fit, the impacts of T cell depletion and target cell addition on

viral load were calculated as the difference in area under curve (AUC) between the experimen-

tal and control simulations, normalized by the AUC of the control simulation. Results for each

individual are indicated by the corresponding identification code and the dashed line signifies

the y = x boundary where experimental effects are equal. Results for the pooled data are indi-

cated by the grey ‘Pooled’ label. Simulations were conducted for (A) MV (by using best-fit

parameters from the original target cell and T cell model); and (B) a virus with increased fit-

ness (by doubling the viral replication rate, p, of each individual (or pooled) fit).

(PDF)

S17 Fig. Partial rank correlation coefficient analysis to assess sensitivity of the predicted

time to rebound in the best fitting model. Each bar represents a different parameter, and the

absolute height represents the magnitude of model sensitivity to that parameter. Positive values

indicate that an increase in parameter value causes a positive change in the measured model

output (i.e. the time to virus rebound), whereas negative values indicate a negative change.

Note that the scaling factor, ψ, was omitted from this analysis as it does not appear in the

model equations or directly impact the resulting predictions. Each panel corresponds to an

individual macaque (identified by the panel label). Significance thresholds are defined as fol-

lows: �p< 0.05, ��p< 0.01, ���p< 0.001.

(PDF)

S1 Appendix. Further details of experimental data, model formulations, and fitting proce-

dures.

(PDF)

S1 Table. Comparison of alternative T cell activation functions using AICc. Each row repre-

sents a different individual and columns represent different model structures (in order of

increasing complexity from left to right). For each individual, numerical values indicate the

difference in AICc between each model and the model with the lowest AICc (and hence best

statistical support). Zero values (in bold) therefore indicate the best-supported model.

(PDF)

S2 Table. Comparison of alternative general lymphocyte proliferation functions using

AICc. Each row represents a different individual and columns represent different model struc-

tures (in order of increasing complexity from left to right). For each individual, numerical val-

ues indicate the difference in AICc between each model and the model with the lowest AICc

(and hence best statistical support). Zero values (in bold) therefore indicate the best-supported

model.

(PDF)

S3 Table. Model comparisons using AICc when general lymphocyte proliferation is omit-

ted (i.e. δ̂ðtÞ ¼ 0 ∀ t). Each row represents a different individual and columns represent

different model structures (in order of increasing complexity from left to right). For each indi-

vidual, numerical values indicate the difference in AICc between each model and the model

with the lowest AICc (and hence best statistical support). Zero values (in bold) therefore indi-

cate the best-supported model.

(PDF)

S4 Table. Comparison of alternative transmission kinetics using AICc. Each row represents

a different individual and columns represent different model structures (in order of increasing

complexity from left to right). For each individual, numerical values indicate the difference in
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AICc between each model and the model with the lowest AICc (and hence best statistical sup-

port). Zero values (in bold) therefore indicate the best-supported model. For the majority of

individuals, the best supported model includes infectious (free) virus.

(PDF)

S5 Table. Comparison of alternative adjusted cell-cell transmission kinetics using AICc.

Each row represents a different individual and columns represent different model structures.

The original model (with infectious virus) is on the left, and the adjusted cell-cell transmission

model (with different numbers of cell neighbors) is on the right. For each individual, numeri-

cal values indicate the difference in AICc between each model and the model with the lowest

AICc (and hence best statistical support). Zero values (in bold) therefore indicate the best-sup-

ported model. For all individuals, the best supported model includes infectious (free) virus.

(PDF)
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13. de Vries RD, Yüksel S, Osterhaus ADME, de Swart RL. Specific CD8+ T-lymphocytes control dissemi-

nation of measles virus. European Journal of Immunology. 2010; 40(2):388–395. https://doi.org/10.

1002/eji.200939949 PMID: 19950186

14. van Binnendijk RS, Poelen MC, Kuijpers KC, Osterhaus ADME, Uytdehaag FGCM. The predominance

of CD8+ T cells after infection with measles virus suggests a role for CD8+ class I MHC-restricted cyto-

toxic T lymphocytes (CTL) in recovery from measles. Clonal analyses of human CD8+ class I MHC-

restricted CTL. Journal of Immunology. 1990; 144(6):2394–2399.

15. Jaye A, Magnusen AF, Sadiq AD, Corrah T, Whittle HC. Ex vivo analysis of cytotoxic T lymphocytes to

measles antigens during infection and after vaccination in Gambian children. Journal of Clinical Investi-

gation. 1998; 102(11):1969–1977. https://doi.org/10.1172/JCI3290 PMID: 9835622

16. Jaye A, Herberts CA, Jallow S, Atabani S, Klein MR, Hoogerhout P, et al. Vigorous but short-term

gamma interferon T-cell responses against a dominant HLA-A*02-restricted measles virus epitope in

patients with measles. Journal of Virology. 2003; 77(8):5014–5016. https://doi.org/10.1128/JVI.77.8.

5014-5016.2003 PMID: 12663809

17. Burnet FM. Measles as an index of immunological function. The Lancet. 1968; 292(7568):610–613.

https://doi.org/10.1016/S0140-6736(68)90701-0

18. van Binnendijk RS, van der Heijden RWJ, van Amerongen G, Uytdehaag FGCM, Osterhaus ADME.

Viral replication and development of specific immunity in macaques after infection with different mea-

sles virus strains. Journal of Infectious Diseases. 1994; 170(2):443–448. PMID: 8035034

19. Auwaerter PG, Rota PA, Elkins WR, Adams RJ, DeLozier T, Shi Y, et al. Measles virus infection in rhe-

sus macaques: altered immune responses and comparison of the virulence of six different virus strains.

The Journal of Infectious Diseases. 1999; 180(4):950–958. https://doi.org/10.1086/314993 PMID:

10479117

20. de Swart RL. Measles: What we have learned from non-human primate models. Drug Discovery Today:

Disease Models. 2017; 23:31–34. https://doi.org/10.1016/j.ddmod.2018.01.002

21. Permar SR, Klumpp SA, Mansfield KG, Kim WK, Gorgone DA, Lifton MA, et al. Role of CD8+ lympho-

cytes in control and clearance of measles virus infection of rhesus monkeys. Journal of Virology. 2003;

77(7):4396–4400. https://doi.org/10.1128/JVI.77.7.4396-4400.2003 PMID: 12634396

22. Permar SR, Klumpp SA, Mansfield KG, Carville AAL, Gorgone DA, Lifton MA, et al. Limited contribution

of humoral immunity to the clearance of measles viremia in rhesus monkeys. Journal of Infectious Dis-

eases. 2004; 190(5):998–1005. https://doi.org/10.1086/422846 PMID: 15295708

23. Condack C, Grivel JC, Devaux P, Margolis L, Cattaneo R. Measles virus vaccine attenuation: subopti-

mal infection of lymphatic tissue and tropism alteration. The Journal of Infectious Diseases. 2007; 196

(4):541–549. https://doi.org/10.1086/519689 PMID: 17624839
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