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Background: Our aim was to explore potential use of temporal profiles of seven emerging cardio-renal and two
pulmonary candidate biomarkers for predicting future adverse clinical outcome in stable patients with chronic
heart failure (CHF).
Methods: In 263 CHF patients,we determined the risk of a composite endpoint of HF-hospitalization, cardiac death,
LVAD-placement and heart transplantation in relation to repeatedly assessed (567 samples in total) blood
biomarker levels, and slopes of their temporal trajectories (i.e., rate of biomarker change per year). In each patient,
we estimated biomarker trajectories using repeatedly measured osteopontin (OPN), osteoprotegerin (OPG),
epidermal growth factor receptor (EGFR), heparin-binding protein (HBP), trefoil factor-3 (TFF3), kallikrein-6
(KLK-6), matrix extracellular phosphoglycoprotein (MEPE), pulmonary surfactant-associated protein-D (PSP-D),
and secretoglobulin family 3A-member-2 (SCGB3A2).
Results: During 2.2 years of follow-up, OPN, OPG, and HBP levels predicted the composite endpoint (univariable
hazard ratio [95% confidence interval] per 1SD increase: 2.31 [1.76–3.15], 2.23 [1.69–3.00], and 1.36[1.09–1.70]).
Independently of the biomarkers' levels, the slopes of OPG, TFF-3, PSP-D trajectories were also strong clinical
predictors (per 0.1SD increase: 1.24 [1.14–1.38], 1.31 [1.17–1.49], and 1.32 [1.21–1.47]). All associations persisted
after multivariable adjustment for baseline characteristics, and repeatedly assessed CHF pharmacological
treatment and cardiac biomarkers NT-proBNP and troponin T.
Conclusions: Repeatedly-measured levels of OPN, OPG, and HBP, and slopes of OPG, TFF-3, and PSP-D strongly
predict clinical outcome. These candidate biomarkers may be clinically relevant as they could further define a
patient's risk and provide additional pathophysiological insights into CHF.

© 2018 Published by Elsevier B.V.
1. Introduction

Chronic heart failure (CHF) is a clinical syndrome which often
requires constant therapeutic interventions due to recurrent episodes
of cardiac decompensation [1]. The failing heart also induces structural
and functional changes in distant organs such as the kidneys and the
lungs [2,3]. Eventually, a vicious circle of pathophysiological processes
is formed between these organs leading to end-stage heart failure
[4,5]. In this context, circulating biomarkers that reflect the status of
this multi-organ pathophysiology may be a valuable clinical tool, as
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these biological signals precede decompensation and may provide
early organ-specific information in CHF. Therefore, patient-specific bio-
marker profiles may further characterize the multi-organ involvement
in CHF, but may also help in monitoring disease progression to allow
timely adaptation of treatment to prevent impending decompensation.

Although previous biomarker-based studies have increased our
understanding of CHF [6,7], several important aspects of biological
signals in CHF remain to be addressed. Most previous studies have
examined the prognostic value of a single baseline assessment which
is unable to capture progression of CHF that naturally occurs over
time. These studies also used conventional statistical models that do
not allow for individualized risk prediction using patient-specific
biomarker values and their change over time. Finally, similar sets of
CHF biomarkers have been investigated by most of the existing studies
such as natriuretic peptides, troponins, and markers representing
certain aspects of CHF like galectin-3 and ST2.
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Data on the utility of new candidate biomarkers in CHF are scarce,
and their clinical value remains uncertain. Therefore, in this study, our
aim was to explore the prognostic utility of temporal profiles of several
emerging cardio-renal and pulmonary candidate biomarkers in CHF
patients during their outpatient follow-up.

Cardio-renal candidate biomarkers included osteopontin (OPN),
which is associated with accumulation of monocytes/macrophages in
injured renal tissues including both glomeruli and tubules [8], and
which is mainly overexpressed in cardiac non-myocytes during
pathological cardiac remodeling [9]; osteoprotegerin (OPG), which is
involved in bone metabolism, endocrine function, and immunity [10],
and is secreted mainly by osteoblasts and by vascular smooth muscle
and endothelial cells, but also in the renal tissue [11]; matrix extracellular
phosphoglycoprotein (MEPE), which is another molecule that regulates
bone metabolism, and in particular phosphates handling in the renal tu-
bules [12]; trefoil factor-3 (TFF3), which is a member of the trefoil factor
peptide family secreted by the renal tubulocites in response to injury
[13]; heparin-binding protein (HBP), which is released from neutrophils
upon activation, afterwhich it induces vascular leakage, edema formation,
and inflammatory reactionswhich play a role in sepsis-induced acute kid-
ney injury (AKI) [14–16]; epidermal growth factor receptor (EGFR),
which is a tyrosine kinase receptor found to be involved in acute and
chronic renal injury [17]; and kallikrein 6 (KLK-6) which is a recently
identified member of the kallikrein gene family and is involved in
degradation of extracellularmatrix during tumor invasion andmetastasis,
but also in demyelization and spinal cord injury [18,19].

Pulmonary candidate biomarkers included pulmonary surfactant-
associated protein-D (PSP-D), whichwas found to reduce alveolarmac-
rophages apoptosis and to promote clearance of necrotic cells after lung
injury [20], and secretoglobulin family 3A-member-2 (SCGB3A2),
which is another newly discovered biomarker with prominent anti-
inflammatory and anti-fibrotic activity in animal models of pulmonary
fibrosis [21].

2. Methods

2.1. CHF cohort

The Serial Biomarker Measurements and New Echocardiographic Techniques in
Chronic Heart Failure Patients Result in Tailored Prediction of Prognosis (Bio-SHiFT) is a
prospective cohort of stable patients with CHF, conducted in Erasmus MC, Rotterdam,
and Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands [22,23]. Patients were
included if aged ≥18 years, capable of understanding and signing informed consent, and
if CHF had been diagnosed ≥3 months ago according to European Society of Cardiology
guidelines (Fig. S1) [1,24,25]. Patients were ambulatory and stable, i.e. they had not
been hospitalized for HF in the past threemonths. The studywas approved by themedical
ethics committees, conducted in accordance with the Declaration of Helsinki, and
registered in ClinicalTrials.gov (NCT01851538). Written informed consent was obtained
from all patients. This investigation comprised 263 CHF patients enrolled during the first
inclusion period (October 2011 until June 2013).

2.2. Baseline and follow-up assessment

All patients were evaluated by research physicians, who collected information on
HF-related symptoms, NYHA class, and performed a physical examination. Information
on HF etiology, left ventricular ejection fraction (EF of 50% at inclusion used as a cut-off
for HFrEF versus HFpEF) [25], cardiovascular risk factors, medical history and treatment
was retrieved primarily from hospital records and was checked in case of ambiguities.

During the study, all patients were routinely followed at the outpatient clinic by their
treating physicians. Additionally, study follow-up visits were predefined and scheduled
every 3 months (±1 month). At each study follow-up visit, a short medical evaluation
was performed and blood and urine sampleswere collected. During follow-up, all medica-
tion changes and occurrence of hospitalizations for HF, MI, PCI, CABG, arrhythmias, and
CVA, cardiac transplantation, left ventricular assist device (LVAD) implantation and mor-
tality, were recorded in the electronic case report forms, and associated hospital records
and discharge letters were collected. Subsequently, a clinical event committee, blinded
to the biomarker results, reviewed hospital records and discharge letters and adjudicated
the study endpoints.

2.3. Study endpoints

The composite endpoint comprised of hospitalization for themanagement of acute or
worsened HF, cardiac death, cardiac transplantation, and LVAD implantation, whichever
Please cite this article as: M. Brankovic, et al., Utility of temporal profiles
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occurred first. Cardiac deathwas defined as death fromMI or other ischemic heart disease
(ICD-10: I20-I25), death from other heart disease including HF (I30-I45 and I47-I52), sud-
den cardiac death (I46), sudden death undefined (R96) or unwitnessed or ill-described
death (R98, R99). Hospitalization for acute orworsened HFwas defined as a hospitalization
for an exacerbation of HF symptoms, in combination with two or more of the following:
BNP or NT-proBNP N 3× upper limit of normal, signs of worsening HF, such as pulmonary
rales, raised jugular venous pressure or peripheral edema, increased dose or intravenous
administration of diuretics, or administration of positive inotropic agents [24].

2.4. Study measurements and laboratory analysis

Blood sampleswere collected at baseline and at each 3-monthly study follow-up visit,
and were processed and stored at−80 °C within 2 h after collection. Treating physicians
were unaware of biomarker results as biomarkers were measured batchwise after
completion of follow-up using methods described in the supplemental text. Thus, the
biomarker measurements did not lead to drug adjustments. All patients received
treatment according to the ESC guidelines on CHF [1,24]. All laboratory personnel was
blinded for clinical data and patients outcomes. For efficiency, for the current investigation
we selected all baseline samples, the two samples closest in time to the composite
endpoint, and for patients in whom the primary endpoint did not occur during follow-
up, the last sample available. Glomerular filtration rate (GFR) was determined by the
Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI) equation validated in HF
patients [26].

2.5. The Olink multiplex PEA platform panel for new biomarkers

The Olink Cardiovascular (CVD) panel III was used for analysis of high-abundance
proteins (Olink Proteomics AB, Uppsala, Sweden). The proteins present in this Olink panel
were selected because either they have a proven pathophysiological role in cardiovascular
disease, or because they are promising in this respect but yet unexplored. In the current in-
vestigation, biomarkers from the panel were chosen and grouped based on their previously
described predominant tissue expression and involvement in renal [9,16,27–31] and/or
pulmonary [32,33] pathophysiology.

The Olink panel is based on PEA (proximity extension assay) technology as described
in the supplementary text [34]. The biomarkers are presented in normalized protein
expression (NPX) units on a 2log scale. In a validation study, the mean intra-assay and
inter-assay coefficients of variation were 8% and 12%, respectively [34].

2.6. Statistical analysis

For the analysis,we used the Z-score (i.e. the standardized form) of the 2log-transformed
biomarkers to allow for direct comparisons of different biomarkers. We used a network
analysis [35] to assess the relationships between biomarkerswith Pearson's correlation coef-
ficients p b 0.05 using a clustering coefficient as ameasure of the degree towhich biomarkers
tend to cluster together (higher coefficients suggest a certain centrality of a biomarkerwithin
the network) [36].

To study the effect of baseline characteristics on repeatedly measured biomarkers,
linear mixed-effects (LME) models were performed using biomarkers as the dependent
variables and baseline characteristics as the independent variables (fixed part). The
sampling time was entered into the fixed- and random parts of the models.

To estimate the associations between biomarker levels and survival, we applied a
joint modeling (JM) prediction analysis that combines LME models for repeated
measurements, and Cox survival analysis for time-to-event data [37]. For both the
fixed- and random-effects parts of the LME models, linear terms were used for sampling
times, and both intercepts and slopes were included in the random-effects design
matrix. This allowed the markers' trajectories to differ at baseline and over time. We
also estimated the time-dependent slope (i.e., rate of change) of each biomarker, indicat-
ing whether and by how much the levels are increasing or decreasing on a continuous
scales.

Besides sampling time, all markers were adjusted as follows: (1) clinical model: Cox
and LME models were adjusted for age, sex, diabetes, atrial fibrillation, baseline NYHA
class, diuretics, systolic blood pressure, and eGFR; (2) clinical & time-varying HF medica-
tion model: after adjusting for clinical characteristics, biomarker values were extracted
from the joint models and entered simultaneously with repeatedly assessed equivalent
doses of carvedilol, enalapril, furosemide, and spironolactone (for details on conversion
factors for equivalent doses see table S1) into a time-dependent Cox analysis to examine
the incremental value of the new biomarkers over clinical characteristics and medication
during follow-up; (3) time-dependent Cox model using the marker's fitted values
adjusted for type of HF (HFrEF vs. HFpEF), and time-varying NT-proBNP and hs-cTnT
collected at the same time points during follow-up as the biomarker of interest. Data on
all variables were complete, except for systolic blood pressure which was missing in b5%
of patients and for which imputations were applied using the patients' clinical and
outcome data. Results are given as hazard ratios (HR) and 95% confidence intervals (CI)
per 1SD increase of the marker's level and per 0.1SD increase of the slope at any time-
point during follow-up.

To correct for multiple testing, we performed matrix spectral decomposition which
has been used in genetic studies as it has been demonstrated to be more effective than
Bonferroni correction [38]. In this way, we accounted for the correlations between the
biomarkers by setting a significance level at p b 0.008 (0.05/6).
of new cardio-renal and pulmonary candidate biomarkers in chronic
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All tests were two-tailed and were performed with R Statistical Software using pack-
ages nlme and JMbayes [37]. The network analysis was performed using Gephi software
(https://gephi.org) and the matSpD application (https://gump.qimr.edu.au/general/
daleN/matSpD) available online.
3. Results

3.1. Baseline characteristics

Patients who experienced the primary endpoint during follow-up
were older, more frequently had diabetes, atrial fibrillation, lower
systolic blood pressure, higher NYHA class, higher levels of NT-proBNP
and cardiac troponin T, and were more frequently on diuretics
(Table 1). All biomarkers showed significantly higher levels at baseline,
except for EGFRwhichwas lower, in patients who later experienced the
endpoint than in endpoint-free patients (Fig. S2).
Table 1
Patients characteristics in relation to the occurrence of the composite endpoint.

Variable Total

N (%) 263 (100)

Demographics
Age, years 67 ± 13
Men, n (%) 189 (72)

Clinical characteristics
BMI, kg/m2 27.5 ± 4.7
Heart rate, b.p.m. 67 ± 12
SBP, mm Hg 122 ± 20
DBP, mm Hg 72 ± 11

Features of heart failure
NYHA class III or IV, n (%) 69 (26)
HF-rEF n (%) 250 (95)
HF-pEF n (%) 13 (5)
LVEF, % 32 ± 11
NT pro-BNP (ng/L)a 1161 (439–2305)
Hs-cTnT (ng/L)a 18.0 (9.5–33.2)

Etiology of heart failure, n (%)
Ischemic 117 (44)
Hypertension 34 (13)
Secondary to valvular disease 12 (5)
Cardiomyopathy 68 (26)
Unknown or Others 32 (12)

Medical history, n (%)
Prior MI 96 (36)
Prior PCI 82 (31)
Prior CABG 43 (16)
Atrial fibrillation 106 (40)
Diabetes 81 (31)
Hypercholesterolemia 96 (36)
Hypertension 120 (46)
COPD 31 (12)

Medication use, n (%)
Beta-blocker 236 (90)
ACE-I or ARB 245 (93)
Diuretics 237 (90)
Loop diuretics 236 (90)
Thiazides 7 (3)

Aldosterone antagonist 179 (68)
Glomerular function

Creatinine, mg/dL 1.18 (0.99–1.49)
eGFR, mL/min/1.73m2 58 (43–76)

KDOQI classification, n (%)
eGFR ≥ 90 mL/min/1.73m2 28 (11)
eGFR 60–89 mL/min/1.73m2 95 (36)
eGFR 30–59 mL/min/1.73m2 119 (45)
eGFR b 30 mL/min/1.73m2 21 (8)

BMI, Body mass index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; NYHA clas
HF-pEF, heart failure with preserved ejection fraction; LVEF, left ventricular ejection fraction; M
bypass grafting; CVA, cerebrovascular accident; TIA, transitory ischemic attack; COPD, chroni
angiotensin II receptor blockers; eGFR, estimated glomerularfiltration rate. Normally distributed
distributed variables as median and interquartile interval. Categorical variables are presented a

a Median with inter-quartile range (IQR).

Please cite this article as: M. Brankovic, et al., Utility of temporal profiles
heart failure, Int J Cardiol (2018), https://doi.org/10.1016/j.ijcard.2018.08.
3.2. Follow-up and study endpoints

During a median (IQR) follow-up of 2.2 (1.4–2.5) years, we
collected at fixed 3-month intervals a median (IQR) of 9 (5–10)
blood samples per patient (1984 samples in total). Seventy (27%)
patients reached the composite endpoint: 56 patients were re-
hospitalized for acute or worsened HF, 3 patients underwent
heart transplantation, 2 patients underwent LVAD placement,
and 9 patients died of cardiovascular causes. For reasons of effi-
ciency, we set out to select all baseline samples, the two samples
closest in time to the composite endpoint, and the last sample
available for event-free patients for biomarker measurement.
Some of these samples were not available, for example in case
an endpoint occurred early after baseline or before next scheduled
study visit. Ultimately, 567 samples were used for biomarker
measurement.
Composite endpoint p-Value

Yes No

70 (27) 193 (73)

69 ± 13 66 ± 12 0.05
53 (76) 136 (70) 0.41

27.6 ± 4.8 27.4 ± 4.7 0.80
69 ± 13 67 ± 11 0.31
117 ± 17 124 ± 21 0.02
70 ± 10 73 ± 11 0.06

31 (44) 38 (20) b 0.001
66 (94) 184 (95) 0.75
4 (6) 9 (5)
30 ± 11 33 ± 10 0.18
2388 (1492–4376) 806 (268–1757) b 0.001
31.9 (20.6–49.7) 13.9(8.4–26.7) b 0.001

36 (51) 81 (42) 0.17
10 (14) 24 (12) 0.70
5 (7) 7 (4) 0.23
15 (21) 53 (28) 0.32
4 (6) 28 (15)

32 (46) 64 (33) 0.06
27 (39) 55 (28) 0.12
13 (19) 30 (15) 0.57
36 (51) 70 (36) 0.03
32 (46) 49 (25) 0.002
30 (43) 66 (34) 0.20
38 (54) 82 (42) 0.09
12 (17) 19 (10) 0.10

61 (87) 175 (91) 0.40
63 (90) 182 (94) 0.22
68 (97) 169 (88) 0.02
68 (97) 168 (87) 0.02
3 (4) 4 (2) 0.28
53 (76) 126 (65) 0.11

1.30(1.02–1.52) 1.17(0.98–1.45) 0.18
53 (40–73) 59 (44–77) 0.16

0.18
7 (10) 21 (11)
20 (28) 75 (39)
37 (53) 82 (42)
6 (9) 15 (8)

s, New York Heart Association class; HF-rEF, Heart failure with reduced ejection fraction;
I, myocardial infarction; PCI, percutaneous coronary intervention; CABG, coronary artery

c obstructive pulmonary disease; ACE-I, angiotensin-converting enzyme inhibitors; ARB,
continuous variables are presented asmean±standarddeviation (SD), andnon-normally
s numbers and percentages.
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Table 2
Association between baseline characteristics and repeatedly measured levels of candidate biomarkers during follow-up.

Dependent variable

OPN OPG EGFR HBP TFF3

Independent variable β(95% CI) p-Value β(95% CI) p-Value β(95% CI) p-Value β(95% CI) p-Value β(95% CI) p-Value

Age per 10 yrs. ns ns −0.29 (−0.38 to−0.20) b0.001 ns ns
Male sex ns −0.25 (−0.47 to−0.04) 0.022 ns ns −0.27 (−0.46 to−0.08) 0.006
NYHA class (per 1 point increase) ns ns −0.16 (−0.28 to−0.04) 0.009 ns 0.20 (0.08 to 0.31) 0.001
DM ns 0.27 (0.05 to 0.48) 0.015 ns ns ns
AF 0.28 (0.10 to 0.47) 0.003 0.37 (0.18 to 0.58) b0.001 ns 0.23 (0.03 to 0.44) 0.026 ns
SBP per 10 mm Hg ns ns ns ns ns
eGFR per 20 mL/min/1.73 m2 ns −0.12 (−0.22 to−0.02) 0.015 ns −0.10 (−0.20 to−0.01) 0.038 −0.21 (−0.30 to−0.13) b0.001
NT-proBNP per doubling 0.10 (0.04 to 0.16) b0.001 ns ns ns 0.13 (0.07 to 0.18) b0.001
cTnT per doubling 0.18 (0.07 to 0.28) b0.001 0.12 (0.01 to 0.23) 0.033 ns ns 0.17 (0.07 to 0.26) 0.001
Carvedilol eqv. per 50 mg ns ns ns ns ns
Enalapril eqv. per 40 mg ns −0.21 (−0.38 to−0.04) 0.015 ns ns ns
Furosemide eqv. per 40 mg 0.06 (0.04 to 0.09) b0.001 ns ns 0.06 (0.02 to 0.11) 0.009 0.06 (0.02 to 0.11) 0.002
Spironolactone eqv. per 25 mg −0.16 (−0.29 to−0.02) 0.03 ns ns −0.21 (−0.37 to−0.05) 0.012 ns

Dependent variable

KLK-6 MEPE PSP-D SCGB3A2

Independent variable β(95% CI) p-Value β(95% CI) p-Value β(95% CI) p-Value β(95% CI) p-Value

Age per 10 yrs. ns ns ns ns
Male sex ns ns ns −0.41 (−0.66 to−0.16) 0.002
NYHA class ns ns ns 0.19 (0.04 to 0.34) 0.013
DM ns ns ns −0.46 (−0.71 to−0.22) b0.001
AF ns ns ns ns
SBP per 10 mm Hg −0.05 (−0.10 to 0.00) 0.047 −0.06 (−0.11 to 0.00) 0.041 ns ns
eGFR per 20 mL/min/1.73 m2 −0.23 (−0.33 to−0.14) b0.001 −0.16 (−0.27 to−0.06) 0.002 ns ns
NT-proBNP per doubling 0.08 (0.02 to 0.14) 0.007 ns 0.09 (0.02 to 0.17) 0.016 0.039
cTnT per doubling 0.21 (0.10 to 0.31) b0.001 0.19 (0.06 to 0.31) 0.003 ns ns
Carvedilol eqv. per 50 mg ns 0.14 (0.01 to 0.27) 0.038 ns ns
Enalapril eqv. per 40 mg ns ns ns ns
Furosemide eqv. per 40 mg ns 0.06 (0.01 to 0.11) 0.016 ns ns
Spironolactone eqv. per 25 mg −0.43 (−0.59 to−0.28) b0.001 −0.19 (−0.36 to−0.01) 0.034 −0.24 (−0.43 to−0.05) 0.013 ns

OPN, osteopontin; OPG, osteoprotegerin; EGFR, epidermal growth factor receptor; HBP, heparin-binding protein; TFF3, trefoil factor 3; PSP-D, pulmonary surfactant-associated protein D; SCGB3A2, secretoglobulin family 3A member 2; KLK-6, kal-
likrein-6;MEPE,matrix extracellular phosphoglycoprotein. The effects of patients' baseline characteristics are given as adjusted β (95% confidence interval) for 1SD differences of biomarkers asmeasured on the 2log scale. Thismethod allows a direct
comparison of the effects on different biomarkers. Allβs are adjusted for age, sex, diabetesmellitus (DM), atrialfibrillation (AF), baselineNYHA class, systolic blood pressure (SBP), estimated glomerular filtration rate (eGFR), NT-proBNP levels, cardiac
troponin T levels (cTnT), and equivalent doses of carvedilol, enalapril, furosemide, and spironolactone. Only the associations with significance level of p-value b 0.05 are presented.
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3.3. Patients' clinical profile and biomarkers during follow-up

Table 2 shows the associations between the patients' baseline clini-
cal profiles and the repeatedly-measured levels of candidate biomarkers
during follow-up. Furthermore, we found a negative association be-
tween time-varying enalapril equivalent doses and OPN, OPG, PSP-D,
and SCGB3A2 levels during follow-up (Table S2). Moreover, a negative
association was observed between spironolactone equivalent doses
andOPG, KLK-6, PSP-D, and SCGB3A2 levels,whereas furosemide equiv-
alent doses correlated positively with OPN, TFF-3, KLK-6, and MEPE
levels during follow-up.

3.4. Network analysis

The network analysis showed that OPN and TFF3 had the highest
clustering coefficients which suggests that these two biomarkers had a
certain centrality within the network, meaning that a large number of
biomarker correlations are mediated thought these hubs (Fig. S3).

3.5. Temporal trends in biomarkers and relation to study endpoint

Fig. 1 shows the average temporal evolutions of candidate biomarkers
in patientswho reached the composite endpoint and thosewho remained
endpoint-free. In patients who reached the endpoint, OPN, OPG, HBP, and
TFF3, PSP-D, and SCGB3A2 showed higher baseline levels that increased
further during follow-up as the endpoint approached. Patients with the
endpoint also had constantly higher levels of KLK-6 and MEPE, but with-
out a further increase in the approach to the endpoint. Table 3 shows the
associations of these biomarkers with the composite endpoint.

After adjustment for clinical characteristics and repeatedly assessed
CHF pharmacological treatment, OPN, OPG, HBP, TFF3, KLK-6, and PSP-D
independently predicted the endpoint (per 1SD increase of marker
levels: hazard ratio [95%CI] 2.78 [2.03–3.08], 2.31 [1.72–3.10], 1.65
[1.32–2.06], 2.35 [1.84–2.99], 1.61 [1.17–2.22], 1.12 [1.04–1.19], each p
b 0.008). Levels of these biomarkers, except for KLK-6 and PSP-D,
remained significant predictors after adjustment for time-varying levels
of two established cardiac biomarkers (NT-proBNP and hs-cTnT).
Independently of their absolute levels, the slopes of OPG, TFF3, and
PSP-D remained robust clinical predictors after adjusting for clinical
characteristics and repeatedly assessed CHF pharmacological treatment
and cardiac biomarkers (Table 3).

4. Discussion

This study is thefirst to demonstrate that temporal trends in levels of
OPN, OPG, and HBP strongly predict clinical outcome in CHF. Moreover,
independent of the absolute level of the biomarker, higher slopes of
OPG, TFF-3, and PSP-D trajectories were also strong clinical predictors.
Importantly, all associations with adverse outcomes were independent
of patients' clinical profiles, CHF pharmacological treatment and known
cardiac biomarkers measured repeatedly during follow-up. Therefore,
these candidate biomarkers may become relevant for clinical practice
as they might further define a patient's risk, but also for future HF trials
as they might help design more effective biomarker-guided therapy.

Recently, we have demonstrated in the same cohort that temporal
patterns of NT-proBNP, troponin T and C-reactive protein are associated
with adverse outcome [23]. Our current investigation extends these
findings to several novel cardio-renal and pulmonary candidate bio-
markers. OPNwas previously found to be significantly increased in crit-
ically ill patients with AKI compared to those without AKI [27].
Moreover, both animal and human studies have shown that OPN is up-
regulated in left ventricular hypertrophy, diabetic and dilated cardio-
myopathy [39–42]. Interestingly, a small-scale study of CHF patients
undergoing cardiac resynchronization therapy (CRT) showed that
CRT-responders had significantly lower circulating OPN levels than
non-responders [43]. Thus, it is apparent that OPN is involved both in
Please cite this article as: M. Brankovic, et al., Utility of temporal profiles
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cardiac and renal damage. However, up till now, there have been insuf-
ficient data to address the temporal relationship of OPN with adverse
clinical outcomes. To this end, our results demonstrate that repeatedly
measured OPN levels, but not the slope, are clinically relevant for risk
stratification of CHF patients. Taken together, the re-assessment of
OPN levels might not only help to update a patient's risk estimates,
but may also serve as a potential response-indicator to HF therapy,
However, the latter application of OPN levels warrants confirmation in
subsequent clinical studies.

OPG levels predicted progression of vascular calcification and sur-
vival in pre-dialysis, dialysis, and renal-transplant patients [11]. In
CKD patients, OPG levels were found to be markedly increased in
those who had diabetes, which was also observed in our CHF patients
[28]. In patientswith post-infarction or chronic HF, OPG levels predicted
death after acute coronary syndrome and HF-hospitalizations
[29,30,44]. However, it is here that our study extends existing evidence
by showing that OPG levels dynamically increase as the adverse event
such as HF-hospitalization or death approaches. Importantly, the
patient's risk entailed by this temporal increase (i.e., higher slope of
the OPG trajectory) was independent of OPG levels. In other words, in
two patients who have the same “high” OPG levels, it is important
whether the OPG levels were high but steady (zero slope) or were in-
creasing prior to assessment (increasing slope). In the latter case, our
study shows that every 0.1SD increase in the slope will translate into a
24% higher risk of the event. This information may be used to addition-
ally refine the patients' risk assessment. Interestingly, we also found
that patients who were on higher doses of renin-angiotensin-system
(RAS) blockers had lower OPG levels. This is indirectly supported by
Tsuruda et al. who demonstrated that OPG levels increase in response
to cardiac damage during angiotensin II-induced hypertrophy in mice
[45]. Therefore, the question is raised whether serial assessment of
circulating OPG may be used to identify patients who respond poorly
to RAS inhibition. In case OPG does not decrease after RAS inhibition,
therapy might be intensified in order to prevent pathological cardiac
remodeling.

TFF-3 was found to be upregulated after ischemic myocardial injury
inmice [46]. The same authors showed that administration of TFF-3 sig-
nificantly reduced the infarct size suggesting a cardioprotective effect.
In CKD, TFF-3 was found to predict onset of CKD and poor survival
[31]. However, data on the prognostic role of TFF-3 in CHF is currently
lacking. Hence, this study is the first to demonstrate that increasing
slope of the TFF-3 trajectory is a strong clinical predictor in CHF. The im-
portance of TFF-3 in the pathophysiology of CHF is also supported by the
network analysis that showed that TFF-3 was the hub within the cur-
rently investigated biomarker network. Still, the exact mechanisms of
the actions of TFF-3 and its potential use for targetingHF therapy remain
to be investigated.

In critically ill patients, HBPwas found to be associatedwith respira-
tory and circulatory failure, infection-related organ dysfunction, and
mortality [47,48]. However, to our best knowledge, there is no previous
publication on the role of HBP in CHF. Our study provides strong evi-
dence that HBP is also implicated in CHF by showing a significant asso-
ciation with cardiac decompensation and mortality. Although HBP was
independently associated with eGFR, it is unclear whether renal dys-
function is the only factor that contributes to the pool of circulating
HBP in CHF. Nevertheless, this study establishes a basis for further inves-
tigations on the role of HBP in CHF.

Finally, the pulmonary biomarkers were increased and associated
with the primary endpoint independently of the patients' clinical pro-
files and pharmacological treatment during follow-up. However, only
higher slope of PSP-D remained significant predictor after adjustment
for time-varying cardiac biomarkers. The fact that the current study
population was in a relatively good condition (74% was in NYHA class
I-II)may have contributed to the inability to demonstrate robust associ-
ations, as lung damage may be expected to manifest itself prominently
only with more advanced stages of CHF [3]. Taken together, PSP-D and
of new cardio-renal and pulmonary candidate biomarkers in chronic
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Table 3
Associations between candidate biomarkers and the composite endpoint.

Crude model Clinical data Clinical data & time-varying
medication

Time-varying cardiac
biomarkers & HF-type

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

Levels (per 1SD increase)
Cardiorenal biomarkers

OPN 2.31 (1.76–3.15) b0.001⁎ 2.45 (1.64–3.68) b0.001⁎ 2.78 (2.03–3.80) b0.001⁎ 1.64 (1.16–2.32) 0.006⁎
OPG 2.23 (1.69–3.00) b0.001⁎ 2.76 (1.90–4.16) b0.001⁎ 2.31 (1.72–3.10) b0.001⁎ 1.68 (1.21–2.32) 0.002⁎
EGFR 0.77 (0.54–1.08) 0.13 x xx x
HBP 1.36 (1.09–1.70) 0.006⁎ 1.49 (1.15–1.88) 0.002⁎ 1.65 (1.32–2.06) b0.001⁎ 1.60 (1.24–2.05) b0.001⁎
TFF3 2.20 (1.75–2.82) b0.001⁎ 2.38 (1.73–3.33) b0.001⁎ 2.35 (1.84–2.99) b0.001⁎ 1.29 (0.94–1.77) 0.11
KLK-6 1.60 (1.25–2.04) b0.001⁎ 1.45 (1.07–1.94) 0.014 1.61 (1.17–2.22) 0.003⁎ 0.95 (0.70–1.29) 0.74
MEPE 1.35 (1.04–1.75) 0.02 1.06 (0.79–1.42) 0.66 xx 0.76 (0.57–1.01) 0.05

Pulmonary biomarkers
PSP-D 1.66 (1.28–2.12) b0.001⁎ 1.51 (1.15–1.95) 0.002⁎ 1.63 (1.23–2.16) 0.001⁎ 1.16 (0.89–1.50) 0.26
SCGB3A2 1.44 (1.17–1.77) b0.001⁎ 1.32 (1.02–1.69) 0.032 1.37 (1.08–1.73) 0.008 1.06 (0.81–1.40) 0.67

Slope (per 0.1SD increase/year)a

Cardiorenal biomarkers
OPN 1.14 (1.03–1.29) 0.010 1.12 (1.00–1.29) 0.046 1.08 (1.03–1.14) 0.003⁎ 1.05 (1.00–1.12) 0.07
OPG 1.24 (1.14–1.38) b0.001⁎ 1.48 (1.19–1.88) 0.004⁎ 1.15 (1.08–1.23) b0.001⁎ 1.09 (1.03–1.16) 0.003⁎
EGFR x x xx x
HBP 0.87 (0.77–1.08) 0.19 0.92 (0.73–0.19) 0.62 xx 1.03 (0.99–1.07) 0.13
TFF3 1.31 (1.17–1.49) b0.001⁎ 1.55 (1.30–1.87) b0.001⁎ 1.19 (1.11–1.28) b0.001⁎ 1.15 (1.07–1.23) b0.001⁎
KLK-6 1.01 (0.76–1.38) 0.99 1.05 (0.66–1.77) 0.90 xx 1.02 (0.95–1.10) 0.58
MEPE 0.96 (0.86–1.10) 0.57 1.03 (0.91–1.16) 0.66 xx 1.02 (0.95–1.09) 0.61

Pulmonary biomarkers
PSP-D 1.32 (1.21–1.47) b0.001⁎ 1.52 (1.32–1.78) b0.001⁎ 1.12 (1.04–1.19) 0.001⁎ 1.10 (1.04–1.16) b0.001⁎
SCGB3A2 1.33 (1.18–1.53) b0.001⁎ 1.39 (1.19–1.67) b0.001⁎ 1.10 (1.102–1.20) 0.020 1.08 (1.00–1.17) 0.05

OPN, osteopontin; OPG, osteoprotegerin; EGFR, epidermal growth factor receptor; HBP, heparin-binding protein; TFF3, trefoil factor 3; PSP-D, pulmonary surfactant-associated protein D;
SCGB3A2, secretoglobulin family 3A member 2; KLK-6, kallikrein-6; MEPE, matrix extracellular phosphoglycoprotein.
Hazard ratios (HRs) and 95% confidence intervals (CIs) are given per 1SD increase of the level and per 0.1SD increase of the annual slope at any point in time during follow-up. Crude
model: Coxmodel unadjusted, LMEmodel adjusted for sampling time. Clinicalmodel: Cox and LMEmodels adjusted for age, sex, diabetes, atrial fibrillation, baseline NYHA class, diuretics,
systolic blood pressure, an eGFR, and sampling time (LME); Clinical & time-varying medication model: time-dependent Cox model using marker's fitted values from clinical model ad-
justed for total daily doses of equivalents of carvedilol, enalapril, furosemide, and spironolactone during follow-up. Time-varying cardiac biomarkers & HF-type model: time-dependent
Cox model using marker's fitted values adjusted for type of HF (HFrEF vs. HFpEF) and time-varying NT-proBNP and cardiac troponin T collected at the same time points during follow-up
as the biomarker of interest. Cox and LMEmodels adjusted for baseline NT-proBNP and hs-cTnT, and sampling time (LME). x, not performed because repeatedly measured level was not
significant. xx, not performed because marker's levels/slope was not significant in the clinical model.

a Annual slopes were additionally adjusted for the levels of repeatedly measured marker during follow-up.
⁎ p-Value below the corrected significance level for multiple testing (p b 0.007).
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SCGB3A2 are promising markers and warrant further exploration in
more severe stages of CHF.
4.1. Clinical implications

We found that the new candidate biomarkers studied here are
related to the patients' clinical characteristics. Limited data are available
on this topic in patients with CHF. Secondly, in this study we utilized
a network analysis which may help us to further specify the role of
emerging biomarkers in heart failure by analyzing their inter-
biomarker relations. In this regard, OPN and TFF-3 were identified as
the hubs within the current network, and these findings were subse-
quently strengthened by the fact that these biomarkers also carried
the highest crude risk of adverse events. Thirdly, this study is unique
in showing that not only the levels, but also the slopes of biomarker
trajectories (i.e., information on how much a marker was increasing,
decreasing, or was stable in approach to a subsequent adverse cardiac
event) are relevant for risk assessment. As such, temporal biomarker
profiles may potentially help to identify the patients who respond
poorly to treatment. This may enable timely adaptation of therapy,
thereby preventing future events to occur. Finally, our results indicate
a promising role of these new biomarkers in defining more effective
Fig. 1.Average temporal evolution of candidate biomarkers during follow-up. Legend: Average e
free patients (solid blue line). Dashed lines represent the 95% confidence interval. X-axis depict
who experienced incident events) or last sample moment (patients who remained event-free
(OPN), b. Osteoprotegerin (OPG), c. Epidermal growth factor receptor (EGFR), d. Heparin
extracellular phosphoglycoprotein (MEPE). h. Pulmonary surfactant-associated protein-D
references to colour in this figure legend, the reader is referred to the web version of this artic
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biomarker-guided therapy, rather than the current approach where
therapy is largely based on symptoms and ejection fraction [49].
4.2. Study limitations

Firstly, this cohort consistedmainly of HFrEF patients. The low num-
ber of HFpEF patients is most likely attributable to the fact that in the
Netherlands, most HFpEF patients are followed in secondary referral
centres or by the general practitioner, while the current study was per-
formed in two tertiary referral centres. Potential inclusion bias is not a
likely reason for the low HpEF rate, because all consecutive patients
were screened in both participating centres. Secondly, enrolled CHF
patients were in a better health condition than previously reported
CHF populations. Yet, we were able to demonstrate, even in this ‘less
sick’ CHF population, that several biomarkers are strongly associated
with the clinical outcomes. Third, re-hospitalization for HF represented
the majority of the composite endpoint. Investigation of individual,
‘harder’ endpoints such as cardiovascular mortality is advisable, but
warrants larger numbers of such endpoints. Finally, future research
should focus on better standardization of the assays and reproducibility
in other CHF cohorts in order to successfully translate these emerging
biomarkers into daily clinical practice.
volution inpatientswho reached the composite endpoint (solid red line), and in endpoint-
s the time from baseline (left part of the x-axis), and time remaining to the event (patients
) (right part of the x-axis). Biomarker levels are presented on the y-axis. a. Osteopontin
-binding protein (HBP), e. Trefoil factor-3 (TFF-3), f. Kallikrein-6 (KLK-6) g. Matrix

(PSP-D) i. Secretoglobulin family 3A-member-2 (SCGB3A2). (For interpretation of the
le.)

of new cardio-renal and pulmonary candidate biomarkers in chronic
001

https://doi.org/10.1016/j.ijcard.2018.08.001


8 M. Brankovic et al. / International Journal of Cardiology xxx (2018) xxx–xxx
5. Conclusion

Repeatedly-measured levels of OPN, OPG, and HBP, and slopes of
OPG, TFF-3, and PSP-D strongly predict clinical outcome during
outpatient follow-up in CHF. The use of these candidate markers may be
clinically relevant as they may further refine a patient's risk assessment
and provide additional pathophysiological insights into CHF.
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